tlb_uv.c 20.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *	SGI UltraViolet TLB flush routines.
 *
 *	(c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
 *
 *	This code is released under the GNU General Public License version 2 or
 *	later.
 */
#include <linux/mc146818rtc.h>
#include <linux/proc_fs.h>
#include <linux/kernel.h>

#include <asm/mmu_context.h>
#include <asm/idle.h>
#include <asm/genapic.h>
#include <asm/uv/uv_hub.h>
#include <asm/uv/uv_mmrs.h>
#include <asm/uv/uv_bau.h>
19
#include <asm/tsc.h>
20

21 22 23 24 25 26
#include <mach_apic.h>

static struct bau_control **uv_bau_table_bases __read_mostly;
static int uv_bau_retry_limit __read_mostly;
static int uv_nshift __read_mostly; /* position of pnode (which is nasid>>1) */
static unsigned long uv_mmask __read_mostly;
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

char *status_table[] = {
	"IDLE",
	"ACTIVE",
	"DESTINATION TIMEOUT",
	"SOURCE TIMEOUT"
};

DEFINE_PER_CPU(struct ptc_stats, ptcstats);
DEFINE_PER_CPU(struct bau_control, bau_control);

/*
 * Free a software acknowledge hardware resource by clearing its Pending
 * bit. This will return a reply to the sender.
 * If the message has timed out, a reply has already been sent by the
 * hardware but the resource has not been released. In that case our
 * clear of the Timeout bit (as well) will free the resource. No reply will
 * be sent (the hardware will only do one reply per message).
 */
46
static void uv_reply_to_message(int resource,
47 48 49
		    struct bau_payload_queue_entry *msg,
		    struct bau_msg_status *msp)
{
50
	unsigned long dw;
51

52
	dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
53 54 55 56
	msg->replied_to = 1;
	msg->sw_ack_vector = 0;
	if (msp)
		msp->seen_by.bits = 0;
57
	uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
58 59 60 61 62 63 64
	return;
}

/*
 * Do all the things a cpu should do for a TLB shootdown message.
 * Other cpu's may come here at the same time for this message.
 */
65
static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
		       int msg_slot, int sw_ack_slot)
{
	int cpu;
	unsigned long this_cpu_mask;
	struct bau_msg_status *msp;

	msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
	cpu = uv_blade_processor_id();
	msg->number_of_cpus =
	    uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
	this_cpu_mask = (unsigned long)1 << cpu;
	if (msp->seen_by.bits & this_cpu_mask)
		return;
	atomic_or_long(&msp->seen_by.bits, this_cpu_mask);

	if (msg->replied_to == 1)
		return;

	if (msg->address == TLB_FLUSH_ALL) {
		local_flush_tlb();
		__get_cpu_var(ptcstats).alltlb++;
	} else {
		__flush_tlb_one(msg->address);
		__get_cpu_var(ptcstats).onetlb++;
	}

	__get_cpu_var(ptcstats).requestee++;

	atomic_inc_short(&msg->acknowledge_count);
	if (msg->number_of_cpus == msg->acknowledge_count)
		uv_reply_to_message(sw_ack_slot, msg, msp);
	return;
}

/*
 * Examine the payload queue on all the distribution nodes to see
 * which messages have not been seen, and which cpu(s) have not seen them.
 *
 * Returns the number of cpu's that have not responded.
 */
106
static int uv_examine_destinations(struct bau_target_nodemask *distribution)
107 108 109 110 111 112 113 114 115 116 117 118 119
{
	int sender;
	int i;
	int j;
	int k;
	int count = 0;
	struct bau_control *bau_tablesp;
	struct bau_payload_queue_entry *msg;
	struct bau_msg_status *msp;

	sender = smp_processor_id();
	for (i = 0; i < (sizeof(struct bau_target_nodemask) * BITSPERBYTE);
	     i++) {
120 121 122 123 124 125 126 127 128
		if (!bau_node_isset(i, distribution))
			continue;
		bau_tablesp = uv_bau_table_bases[i];
		for (msg = bau_tablesp->va_queue_first, j = 0;
		     j < DESTINATION_PAYLOAD_QUEUE_SIZE; msg++, j++) {
			if ((msg->sending_cpu == sender) &&
			    (!msg->replied_to)) {
				msp = bau_tablesp->msg_statuses + j;
				printk(KERN_DEBUG
129
				"blade %d: address:%#lx %d of %d, not cpu(s): ",
130 131 132 133 134 135 136 137 138
				       i, msg->address,
				       msg->acknowledge_count,
				       msg->number_of_cpus);
				for (k = 0; k < msg->number_of_cpus;
				     k++) {
					if (!((long)1 << k & msp->
					      seen_by.bits)) {
						count++;
						printk("%d ", k);
139 140
					}
				}
141
				printk("\n");
142 143 144 145 146 147
			}
		}
	}
	return count;
}

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
/*
 * wait for completion of a broadcast message
 *
 * return COMPLETE, RETRY or GIVEUP
 */
static int uv_wait_completion(struct bau_activation_descriptor *bau_desc,
			      unsigned long mmr_offset, int right_shift)
{
	int exams = 0;
	long destination_timeouts = 0;
	long source_timeouts = 0;
	unsigned long descriptor_status;

	while ((descriptor_status = (((unsigned long)
		uv_read_local_mmr(mmr_offset) >>
			right_shift) & UV_ACT_STATUS_MASK)) !=
			DESC_STATUS_IDLE) {
		if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
			source_timeouts++;
			if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
				source_timeouts = 0;
			__get_cpu_var(ptcstats).s_retry++;
			return FLUSH_RETRY;
		}
		/*
		 * spin here looking for progress at the destinations
		 */
		if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
			destination_timeouts++;
			if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
				/*
				 * returns number of cpus not responding
				 */
				if (uv_examine_destinations
				    (&bau_desc->distribution) == 0) {
					__get_cpu_var(ptcstats).d_retry++;
					return FLUSH_RETRY;
				}
				exams++;
				if (exams >= uv_bau_retry_limit) {
					printk(KERN_DEBUG
					       "uv_flush_tlb_others");
					printk("giving up on cpu %d\n",
					       smp_processor_id());
					return FLUSH_GIVEUP;
				}
				/*
				 * delays can hang the simulator
				   udelay(1000);
				 */
				destination_timeouts = 0;
			}
		}
	}
	return FLUSH_COMPLETE;
}

/**
 * uv_flush_send_and_wait
 *
 * Send a broadcast and wait for a broadcast message to complete.
 *
 * The cpumaskp mask contains the cpus the broadcast was sent to.
 *
 * Returns 1 if all remote flushing was done. The mask is zeroed.
 * Returns 0 if some remote flushing remains to be done. The mask is left
 * unchanged.
 */
int uv_flush_send_and_wait(int cpu, int this_blade,
	struct bau_activation_descriptor *bau_desc, cpumask_t *cpumaskp)
{
	int completion_status = 0;
	int right_shift;
	int bit;
	int blade;
	int tries = 0;
	unsigned long index;
	unsigned long mmr_offset;
	cycles_t time1;
	cycles_t time2;

	if (cpu < UV_CPUS_PER_ACT_STATUS) {
		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
		right_shift = cpu * UV_ACT_STATUS_SIZE;
	} else {
		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
		right_shift =
		    ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
	}
	time1 = get_cycles();
	do {
		tries++;
		index = ((unsigned long)
			1 << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) | cpu;
		uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
		completion_status = uv_wait_completion(bau_desc, mmr_offset,
					right_shift);
	} while (completion_status == FLUSH_RETRY);
	time2 = get_cycles();
	__get_cpu_var(ptcstats).sflush += (time2 - time1);
	if (tries > 1)
		__get_cpu_var(ptcstats).retriesok++;

	if (completion_status == FLUSH_GIVEUP) {
		/*
		 * Cause the caller to do an IPI-style TLB shootdown on
		 * the cpu's, all of which are still in the mask.
		 */
		__get_cpu_var(ptcstats).ptc_i++;
		return 0;
	}

	/*
	 * Success, so clear the remote cpu's from the mask so we don't
	 * use the IPI method of shootdown on them.
	 */
	for_each_cpu_mask(bit, *cpumaskp) {
		blade = uv_cpu_to_blade_id(bit);
		if (blade == this_blade)
			continue;
		cpu_clear(bit, *cpumaskp);
	}
	if (!cpus_empty(*cpumaskp))
		return 0;
	return 1;
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
/**
 * uv_flush_tlb_others - globally purge translation cache of a virtual
 * address or all TLB's
 * @cpumaskp: mask of all cpu's in which the address is to be removed
 * @mm: mm_struct containing virtual address range
 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
 *
 * This is the entry point for initiating any UV global TLB shootdown.
 *
 * Purges the translation caches of all specified processors of the given
 * virtual address, or purges all TLB's on specified processors.
 *
 * The caller has derived the cpumaskp from the mm_struct and has subtracted
 * the local cpu from the mask.  This function is called only if there
 * are bits set in the mask. (e.g. flush_tlb_page())
 *
 * The cpumaskp is converted into a nodemask of the nodes containing
 * the cpus.
293 294 295
 *
 * Returns 1 if all remote flushing was done.
 * Returns 0 if some remote flushing remains to be done.
296
 */
297 298
int uv_flush_tlb_others(cpumask_t *cpumaskp, struct mm_struct *mm,
	unsigned long va)
299 300
{
	int i;
301
	int bit;
302 303 304
	int blade;
	int cpu;
	int this_blade;
305
	int locals = 0;
306 307 308 309 310
	struct bau_activation_descriptor *bau_desc;

	cpu = uv_blade_processor_id();
	this_blade = uv_numa_blade_id();
	bau_desc = __get_cpu_var(bau_control).descriptor_base;
311
	bau_desc += UV_ITEMS_PER_DESCRIPTOR * cpu;
312 313 314 315 316 317 318 319

	bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);

	i = 0;
	for_each_cpu_mask(bit, *cpumaskp) {
		blade = uv_cpu_to_blade_id(bit);
		if (blade > (UV_DISTRIBUTION_SIZE - 1))
			BUG();
320 321
		if (blade == this_blade) {
			locals++;
322
			continue;
323
		}
324 325 326
		bau_node_set(blade, &bau_desc->distribution);
		i++;
	}
327 328 329 330 331 332 333 334 335
	if (i == 0) {
		/*
		 * no off_node flushing; return status for local node
		 */
		if (locals)
			return 0;
		else
			return 1;
	}
336 337 338 339 340 341
	__get_cpu_var(ptcstats).requestor++;
	__get_cpu_var(ptcstats).ntargeted += i;

	bau_desc->payload.address = va;
	bau_desc->payload.sending_cpu = smp_processor_id();

342
	return uv_flush_send_and_wait(cpu, this_blade, bau_desc, cpumaskp);
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
}

/*
 * The BAU message interrupt comes here. (registered by set_intr_gate)
 * See entry_64.S
 *
 * We received a broadcast assist message.
 *
 * Interrupts may have been disabled; this interrupt could represent
 * the receipt of several messages.
 *
 * All cores/threads on this node get this interrupt.
 * The last one to see it does the s/w ack.
 * (the resource will not be freed until noninterruptable cpus see this
 *  interrupt; hardware will timeout the s/w ack and reply ERROR)
 */
359
void uv_bau_message_interrupt(struct pt_regs *regs)
360 361 362 363
{
	struct bau_payload_queue_entry *pqp;
	struct bau_payload_queue_entry *msg;
	struct pt_regs *old_regs = set_irq_regs(regs);
364
	cycles_t time1, time2;
365 366 367 368 369 370 371 372 373 374
	int msg_slot;
	int sw_ack_slot;
	int fw;
	int count = 0;
	unsigned long local_pnode;

	ack_APIC_irq();
	exit_idle();
	irq_enter();

375
	time1 = get_cycles();
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

	local_pnode = uv_blade_to_pnode(uv_numa_blade_id());

	pqp = __get_cpu_var(bau_control).va_queue_first;
	msg = __get_cpu_var(bau_control).bau_msg_head;
	while (msg->sw_ack_vector) {
		count++;
		fw = msg->sw_ack_vector;
		msg_slot = msg - pqp;
		sw_ack_slot = ffs(fw) - 1;

		uv_bau_process_message(msg, msg_slot, sw_ack_slot);

		msg++;
		if (msg > __get_cpu_var(bau_control).va_queue_last)
			msg = __get_cpu_var(bau_control).va_queue_first;
		__get_cpu_var(bau_control).bau_msg_head = msg;
	}
	if (!count)
		__get_cpu_var(ptcstats).nomsg++;
	else if (count > 1)
		__get_cpu_var(ptcstats).multmsg++;

399 400
	time2 = get_cycles();
	__get_cpu_var(ptcstats).dflush += (time2 - time1);
401 402 403 404 405 406

	irq_exit();
	set_irq_regs(old_regs);
	return;
}

407
static void uv_enable_timeouts(void)
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
{
	int i;
	int blade;
	int last_blade;
	int pnode;
	int cur_cpu = 0;
	unsigned long apicid;

	last_blade = -1;
	for_each_online_node(i) {
		blade = uv_node_to_blade_id(i);
		if (blade == last_blade)
			continue;
		last_blade = blade;
		apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
		pnode = uv_blade_to_pnode(blade);
		cur_cpu += uv_blade_nr_possible_cpus(i);
	}
	return;
}

429
static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
430 431 432 433 434 435
{
	if (*offset < num_possible_cpus())
		return offset;
	return NULL;
}

436
static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
437 438 439 440 441 442 443
{
	(*offset)++;
	if (*offset < num_possible_cpus())
		return offset;
	return NULL;
}

444
static void uv_ptc_seq_stop(struct seq_file *file, void *data)
445 446 447 448 449 450 451
{
}

/*
 * Display the statistics thru /proc
 * data points to the cpu number
 */
452
static int uv_ptc_seq_show(struct seq_file *file, void *data)
453 454 455 456 457 458 459 460 461 462
{
	struct ptc_stats *stat;
	int cpu;

	cpu = *(loff_t *)data;

	if (!cpu) {
		seq_printf(file,
		"# cpu requestor requestee one all sretry dretry ptc_i ");
		seq_printf(file,
463
		"sw_ack sflush dflush sok dnomsg dmult starget\n");
464 465 466 467 468 469 470 471 472 473 474
	}
	if (cpu < num_possible_cpus() && cpu_online(cpu)) {
		stat = &per_cpu(ptcstats, cpu);
		seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
			   cpu, stat->requestor,
			   stat->requestee, stat->onetlb, stat->alltlb,
			   stat->s_retry, stat->d_retry, stat->ptc_i);
		seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
			   uv_read_global_mmr64(uv_blade_to_pnode
					(uv_cpu_to_blade_id(cpu)),
					UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
475
			   stat->sflush, stat->dflush,
476 477 478 479 480 481 482 483 484 485 486
			   stat->retriesok, stat->nomsg,
			   stat->multmsg, stat->ntargeted);
	}

	return 0;
}

/*
 *  0: display meaning of the statistics
 * >0: retry limit
 */
487
static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
		  size_t count, loff_t *data)
{
	long newmode;
	char optstr[64];

	if (copy_from_user(optstr, user, count))
		return -EFAULT;
	optstr[count - 1] = '\0';
	if (strict_strtoul(optstr, 10, &newmode) < 0) {
		printk(KERN_DEBUG "%s is invalid\n", optstr);
		return -EINVAL;
	}

	if (newmode == 0) {
		printk(KERN_DEBUG "# cpu:      cpu number\n");
		printk(KERN_DEBUG
		"requestor:  times this cpu was the flush requestor\n");
		printk(KERN_DEBUG
		"requestee:  times this cpu was requested to flush its TLBs\n");
		printk(KERN_DEBUG
		"one:        times requested to flush a single address\n");
		printk(KERN_DEBUG
		"all:        times requested to flush all TLB's\n");
		printk(KERN_DEBUG
		"sretry:     number of retries of source-side timeouts\n");
		printk(KERN_DEBUG
		"dretry:     number of retries of destination-side timeouts\n");
		printk(KERN_DEBUG
		"ptc_i:      times UV fell through to IPI-style flushes\n");
		printk(KERN_DEBUG
		"sw_ack:     image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
		printk(KERN_DEBUG
520
		"sflush_us:  cycles spent in uv_flush_tlb_others()\n");
521
		printk(KERN_DEBUG
522
		"dflush_us:  cycles spent in handling flush requests\n");
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
		printk(KERN_DEBUG "sok:        successes on retry\n");
		printk(KERN_DEBUG "dnomsg:     interrupts with no message\n");
		printk(KERN_DEBUG
		"dmult:      interrupts with multiple messages\n");
		printk(KERN_DEBUG "starget:    nodes targeted\n");
	} else {
		uv_bau_retry_limit = newmode;
		printk(KERN_DEBUG "timeout retry limit:%d\n",
		       uv_bau_retry_limit);
	}

	return count;
}

static const struct seq_operations uv_ptc_seq_ops = {
538 539 540 541
	.start	= uv_ptc_seq_start,
	.next	= uv_ptc_seq_next,
	.stop	= uv_ptc_seq_stop,
	.show	= uv_ptc_seq_show
542 543
};

544
static int uv_ptc_proc_open(struct inode *inode, struct file *file)
545 546 547 548 549
{
	return seq_open(file, &uv_ptc_seq_ops);
}

static const struct file_operations proc_uv_ptc_operations = {
550 551 552 553 554
	.open		= uv_ptc_proc_open,
	.read		= seq_read,
	.write		= uv_ptc_proc_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
555 556
};

557
static int __init uv_ptc_init(void)
558
{
559
	struct proc_dir_entry *proc_uv_ptc;
560 561 562 563

	if (!is_uv_system())
		return 0;

564
	if (!proc_mkdir("sgi_uv", NULL))
565 566 567 568 569 570 571 572 573 574 575 576
		return -EINVAL;

	proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
	if (!proc_uv_ptc) {
		printk(KERN_ERR "unable to create %s proc entry\n",
		       UV_PTC_BASENAME);
		return -EINVAL;
	}
	proc_uv_ptc->proc_fops = &proc_uv_ptc_operations;
	return 0;
}

577 578 579 580
/*
 * begin the initialization of the per-blade control structures
 */
static struct bau_control * __init uv_table_bases_init(int blade, int node)
581
{
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
	int i;
	int *ip;
	struct bau_msg_status *msp;
	struct bau_control *bau_tablesp;

	bau_tablesp =
	    kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
	if (!bau_tablesp)
		BUG();
	bau_tablesp->msg_statuses =
	    kmalloc_node(sizeof(struct bau_msg_status) *
			 DESTINATION_PAYLOAD_QUEUE_SIZE, GFP_KERNEL, node);
	if (!bau_tablesp->msg_statuses)
		BUG();
	for (i = 0, msp = bau_tablesp->msg_statuses;
	     i < DESTINATION_PAYLOAD_QUEUE_SIZE; i++, msp++) {
		bau_cpubits_clear(&msp->seen_by, (int)
				  uv_blade_nr_possible_cpus(blade));
	}
	bau_tablesp->watching =
	    kmalloc_node(sizeof(int) * DESTINATION_NUM_RESOURCES,
			 GFP_KERNEL, node);
	if (!bau_tablesp->watching)
		BUG();
	for (i = 0, ip = bau_tablesp->watching;
	     i < DESTINATION_PAYLOAD_QUEUE_SIZE; i++, ip++) {
		*ip = 0;
	}
	uv_bau_table_bases[blade] = bau_tablesp;
	return bau_tablesp;
612 613
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
/*
 * finish the initialization of the per-blade control structures
 */
static void __init uv_table_bases_finish(int blade, int node, int cur_cpu,
				  struct bau_control *bau_tablesp,
				  struct bau_activation_descriptor *adp)
{
	int i;
	struct bau_control *bcp;

	for (i = cur_cpu; i < (cur_cpu + uv_blade_nr_possible_cpus(blade));
	     i++) {
		bcp = (struct bau_control *)&per_cpu(bau_control, i);
		bcp->bau_msg_head = bau_tablesp->va_queue_first;
		bcp->va_queue_first = bau_tablesp->va_queue_first;
		bcp->va_queue_last = bau_tablesp->va_queue_last;
		bcp->watching = bau_tablesp->watching;
		bcp->msg_statuses = bau_tablesp->msg_statuses;
		bcp->descriptor_base = adp;
	}
}
635 636

/*
637
 * initialize the sending side's sending buffers
638
 */
639 640
static struct bau_activation_descriptor * __init
uv_activation_descriptor_init(int node, int pnode)
641 642 643 644
{
	int i;
	unsigned long pa;
	unsigned long m;
645
	unsigned long n;
646
	unsigned long mmr_image;
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
	struct bau_activation_descriptor *adp;
	struct bau_activation_descriptor *ad2;

	adp = (struct bau_activation_descriptor *)
	    kmalloc_node(16384, GFP_KERNEL, node);
	if (!adp)
		BUG();
	pa = __pa((unsigned long)adp);
	n = pa >> uv_nshift;
	m = pa & uv_mmask;
	mmr_image = uv_read_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE);
	if (mmr_image)
		uv_write_global_mmr64(pnode, (unsigned long)
				      UVH_LB_BAU_SB_DESCRIPTOR_BASE,
				      (n << UV_DESC_BASE_PNODE_SHIFT | m));
	for (i = 0, ad2 = adp; i < UV_ACTIVATION_DESCRIPTOR_SIZE; i++, ad2++) {
		memset(ad2, 0, sizeof(struct bau_activation_descriptor));
		ad2->header.sw_ack_flag = 1;
		ad2->header.base_dest_nodeid =
		    uv_blade_to_pnode(uv_cpu_to_blade_id(0));
		ad2->header.command = UV_NET_ENDPOINT_INTD;
		ad2->header.int_both = 1;
		/*
		 * all others need to be set to zero:
		 *   fairness chaining multilevel count replied_to
		 */
	}
	return adp;
}

/*
 * initialize the destination side's receiving buffers
 */
static struct bau_payload_queue_entry * __init uv_payload_queue_init(int node,
				int pnode, struct bau_control *bau_tablesp)
{
683 684 685
	char *cp;
	struct bau_payload_queue_entry *pqp;

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	pqp = (struct bau_payload_queue_entry *)
	    kmalloc_node((DESTINATION_PAYLOAD_QUEUE_SIZE + 1) *
			 sizeof(struct bau_payload_queue_entry),
			 GFP_KERNEL, node);
	if (!pqp)
		BUG();
	cp = (char *)pqp + 31;
	pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
	bau_tablesp->va_queue_first = pqp;
	uv_write_global_mmr64(pnode,
			      UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
			      ((unsigned long)pnode <<
			       UV_PAYLOADQ_PNODE_SHIFT) |
			      uv_physnodeaddr(pqp));
	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
			      uv_physnodeaddr(pqp));
	bau_tablesp->va_queue_last =
	    pqp + (DESTINATION_PAYLOAD_QUEUE_SIZE - 1);
	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
			      (unsigned long)
			      uv_physnodeaddr(bau_tablesp->va_queue_last));
	memset(pqp, 0, sizeof(struct bau_payload_queue_entry) *
	       DESTINATION_PAYLOAD_QUEUE_SIZE);
	return pqp;
}
711

712 713 714 715 716 717 718 719 720 721 722
/*
 * Initialization of each UV blade's structures
 */
static int __init uv_init_blade(int blade, int node, int cur_cpu)
{
	int pnode;
	unsigned long pa;
	unsigned long apicid;
	struct bau_activation_descriptor *adp;
	struct bau_payload_queue_entry *pqp;
	struct bau_control *bau_tablesp;
723

724 725 726 727 728 729 730 731 732 733 734 735 736 737
	bau_tablesp = uv_table_bases_init(blade, node);
	pnode = uv_blade_to_pnode(blade);
	adp = uv_activation_descriptor_init(node, pnode);
	pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
	uv_table_bases_finish(blade, node, cur_cpu, bau_tablesp, adp);
	/*
	 * the below initialization can't be in firmware because the
	 * messaging IRQ will be determined by the OS
	 */
	apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
	pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
	if ((pa & 0xff) != UV_BAU_MESSAGE) {
		uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
				      ((apicid << 32) | UV_BAU_MESSAGE));
738
	}
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
	return 0;
}

/*
 * Initialization of BAU-related structures
 */
static int __init uv_bau_init(void)
{
	int blade;
	int node;
	int nblades;
	int last_blade;
	int cur_cpu = 0;

	if (!is_uv_system())
		return 0;
755

756
	uv_bau_retry_limit = 1;
757 758 759 760
	uv_nshift = uv_hub_info->n_val;
	uv_mmask = ((unsigned long)1 << uv_hub_info->n_val) - 1;
	nblades = 0;
	last_blade = -1;
761 762
	for_each_online_node(node) {
		blade = uv_node_to_blade_id(node);
763 764 765 766 767 768 769 770 771 772
		if (blade == last_blade)
			continue;
		last_blade = blade;
		nblades++;
	}
	uv_bau_table_bases = (struct bau_control **)
	    kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
	if (!uv_bau_table_bases)
		BUG();
	last_blade = -1;
773 774
	for_each_online_node(node) {
		blade = uv_node_to_blade_id(node);
775 776 777
		if (blade == last_blade)
			continue;
		last_blade = blade;
778 779
		uv_init_blade(blade, node, cur_cpu);
		cur_cpu += uv_blade_nr_possible_cpus(blade);
780 781 782 783 784 785
	}
	set_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
	uv_enable_timeouts();
	return 0;
}
__initcall(uv_bau_init);
786
__initcall(uv_ptc_init);