tlb_uv.c 20.8 KB
Newer Older
1 2 3 4 5 6 7 8
/*
 *	SGI UltraViolet TLB flush routines.
 *
 *	(c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
 *
 *	This code is released under the GNU General Public License version 2 or
 *	later.
 */
9
#include <linux/seq_file.h>
10 11 12 13
#include <linux/proc_fs.h>
#include <linux/kernel.h>

#include <asm/mmu_context.h>
T
Tejun Heo 已提交
14
#include <asm/uv/uv.h>
15
#include <asm/uv/uv_mmrs.h>
16
#include <asm/uv/uv_hub.h>
17
#include <asm/uv/uv_bau.h>
18 19
#include <asm/genapic.h>
#include <asm/idle.h>
20
#include <asm/tsc.h>
21
#include <asm/irq_vectors.h>
22

23 24
#include <mach_apic.h>

25 26 27 28 29 30 31
static struct bau_control	**uv_bau_table_bases __read_mostly;
static int			uv_bau_retry_limit __read_mostly;

/* position of pnode (which is nasid>>1): */
static int			uv_nshift __read_mostly;

static unsigned long		uv_mmask __read_mostly;
32

33 34
static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
static DEFINE_PER_CPU(struct bau_control, bau_control);
35 36 37 38 39 40 41 42 43

/*
 * Free a software acknowledge hardware resource by clearing its Pending
 * bit. This will return a reply to the sender.
 * If the message has timed out, a reply has already been sent by the
 * hardware but the resource has not been released. In that case our
 * clear of the Timeout bit (as well) will free the resource. No reply will
 * be sent (the hardware will only do one reply per message).
 */
44
static void uv_reply_to_message(int resource,
45 46
				struct bau_payload_queue_entry *msg,
				struct bau_msg_status *msp)
47
{
48
	unsigned long dw;
49

50
	dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
51 52 53 54
	msg->replied_to = 1;
	msg->sw_ack_vector = 0;
	if (msp)
		msp->seen_by.bits = 0;
55
	uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
56 57 58 59 60 61
}

/*
 * Do all the things a cpu should do for a TLB shootdown message.
 * Other cpu's may come here at the same time for this message.
 */
62
static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
63
				   int msg_slot, int sw_ack_slot)
64 65 66
{
	unsigned long this_cpu_mask;
	struct bau_msg_status *msp;
67
	int cpu;
68 69 70 71 72

	msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
	cpu = uv_blade_processor_id();
	msg->number_of_cpus =
	    uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
73
	this_cpu_mask = 1UL << cpu;
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
	if (msp->seen_by.bits & this_cpu_mask)
		return;
	atomic_or_long(&msp->seen_by.bits, this_cpu_mask);

	if (msg->replied_to == 1)
		return;

	if (msg->address == TLB_FLUSH_ALL) {
		local_flush_tlb();
		__get_cpu_var(ptcstats).alltlb++;
	} else {
		__flush_tlb_one(msg->address);
		__get_cpu_var(ptcstats).onetlb++;
	}

	__get_cpu_var(ptcstats).requestee++;

	atomic_inc_short(&msg->acknowledge_count);
	if (msg->number_of_cpus == msg->acknowledge_count)
		uv_reply_to_message(sw_ack_slot, msg, msp);
}

/*
97
 * Examine the payload queue on one distribution node to see
98 99 100 101
 * which messages have not been seen, and which cpu(s) have not seen them.
 *
 * Returns the number of cpu's that have not responded.
 */
102
static int uv_examine_destination(struct bau_control *bau_tablesp, int sender)
103 104 105
{
	struct bau_payload_queue_entry *msg;
	struct bau_msg_status *msp;
106 107 108
	int count = 0;
	int i;
	int j;
109

110 111 112 113 114 115 116 117 118
	for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE;
	     msg++, i++) {
		if ((msg->sending_cpu == sender) && (!msg->replied_to)) {
			msp = bau_tablesp->msg_statuses + i;
			printk(KERN_DEBUG
			       "blade %d: address:%#lx %d of %d, not cpu(s): ",
			       i, msg->address, msg->acknowledge_count,
			       msg->number_of_cpus);
			for (j = 0; j < msg->number_of_cpus; j++) {
119
				if (!((1L << j) & msp->seen_by.bits)) {
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
					count++;
					printk("%d ", j);
				}
			}
			printk("\n");
		}
	}
	return count;
}

/*
 * Examine the payload queue on all the distribution nodes to see
 * which messages have not been seen, and which cpu(s) have not seen them.
 *
 * Returns the number of cpu's that have not responded.
 */
static int uv_examine_destinations(struct bau_target_nodemask *distribution)
{
	int sender;
	int i;
	int count = 0;

142
	sender = smp_processor_id();
143
	for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) {
144 145
		if (!bau_node_isset(i, distribution))
			continue;
146
		count += uv_examine_destination(uv_bau_table_bases[i], sender);
147 148 149 150
	}
	return count;
}

151 152 153 154 155
/*
 * wait for completion of a broadcast message
 *
 * return COMPLETE, RETRY or GIVEUP
 */
156
static int uv_wait_completion(struct bau_desc *bau_desc,
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
			      unsigned long mmr_offset, int right_shift)
{
	int exams = 0;
	long destination_timeouts = 0;
	long source_timeouts = 0;
	unsigned long descriptor_status;

	while ((descriptor_status = (((unsigned long)
		uv_read_local_mmr(mmr_offset) >>
			right_shift) & UV_ACT_STATUS_MASK)) !=
			DESC_STATUS_IDLE) {
		if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
			source_timeouts++;
			if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
				source_timeouts = 0;
			__get_cpu_var(ptcstats).s_retry++;
			return FLUSH_RETRY;
		}
		/*
		 * spin here looking for progress at the destinations
		 */
		if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
			destination_timeouts++;
			if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
				/*
				 * returns number of cpus not responding
				 */
				if (uv_examine_destinations
				    (&bau_desc->distribution) == 0) {
					__get_cpu_var(ptcstats).d_retry++;
					return FLUSH_RETRY;
				}
				exams++;
				if (exams >= uv_bau_retry_limit) {
					printk(KERN_DEBUG
					       "uv_flush_tlb_others");
					printk("giving up on cpu %d\n",
					       smp_processor_id());
					return FLUSH_GIVEUP;
				}
				/*
				 * delays can hang the simulator
				   udelay(1000);
				 */
				destination_timeouts = 0;
			}
		}
204
		cpu_relax();
205 206 207 208 209 210 211 212 213
	}
	return FLUSH_COMPLETE;
}

/**
 * uv_flush_send_and_wait
 *
 * Send a broadcast and wait for a broadcast message to complete.
 *
T
Tejun Heo 已提交
214
 * The flush_mask contains the cpus the broadcast was sent to.
215
 *
T
Tejun Heo 已提交
216 217 218
 * Returns NULL if all remote flushing was done. The mask is zeroed.
 * Returns @flush_mask if some remote flushing remains to be done. The
 * mask will have some bits still set.
219
 */
T
Tejun Heo 已提交
220 221 222
const struct cpumask *uv_flush_send_and_wait(int cpu, int this_blade,
					     struct bau_desc *bau_desc,
					     struct cpumask *flush_mask)
223 224 225 226
{
	int completion_status = 0;
	int right_shift;
	int tries = 0;
227 228
	int blade;
	int bit;
229
	unsigned long mmr_offset;
230
	unsigned long index;
231 232 233 234 235 236 237 238 239 240 241 242 243 244
	cycles_t time1;
	cycles_t time2;

	if (cpu < UV_CPUS_PER_ACT_STATUS) {
		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
		right_shift = cpu * UV_ACT_STATUS_SIZE;
	} else {
		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
		right_shift =
		    ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
	}
	time1 = get_cycles();
	do {
		tries++;
245 246
		index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
			cpu;
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
		uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
		completion_status = uv_wait_completion(bau_desc, mmr_offset,
					right_shift);
	} while (completion_status == FLUSH_RETRY);
	time2 = get_cycles();
	__get_cpu_var(ptcstats).sflush += (time2 - time1);
	if (tries > 1)
		__get_cpu_var(ptcstats).retriesok++;

	if (completion_status == FLUSH_GIVEUP) {
		/*
		 * Cause the caller to do an IPI-style TLB shootdown on
		 * the cpu's, all of which are still in the mask.
		 */
		__get_cpu_var(ptcstats).ptc_i++;
		return 0;
	}

	/*
	 * Success, so clear the remote cpu's from the mask so we don't
	 * use the IPI method of shootdown on them.
	 */
T
Tejun Heo 已提交
269
	for_each_cpu(bit, flush_mask) {
270 271 272
		blade = uv_cpu_to_blade_id(bit);
		if (blade == this_blade)
			continue;
T
Tejun Heo 已提交
273
		cpumask_clear_cpu(bit, flush_mask);
274
	}
T
Tejun Heo 已提交
275 276 277
	if (!cpumask_empty(flush_mask))
		return flush_mask;
	return NULL;
278 279
}

280 281 282
/**
 * uv_flush_tlb_others - globally purge translation cache of a virtual
 * address or all TLB's
T
Tejun Heo 已提交
283
 * @cpumask: mask of all cpu's in which the address is to be removed
284 285
 * @mm: mm_struct containing virtual address range
 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
T
Tejun Heo 已提交
286
 * @cpu: the current cpu
287 288 289 290 291 292
 *
 * This is the entry point for initiating any UV global TLB shootdown.
 *
 * Purges the translation caches of all specified processors of the given
 * virtual address, or purges all TLB's on specified processors.
 *
T
Tejun Heo 已提交
293 294
 * The caller has derived the cpumask from the mm_struct.  This function
 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
295
 *
T
Tejun Heo 已提交
296
 * The cpumask is converted into a nodemask of the nodes containing
297
 * the cpus.
298
 *
T
Tejun Heo 已提交
299 300 301 302 303
 * Note that this function should be called with preemption disabled.
 *
 * Returns NULL if all remote flushing was done.
 * Returns pointer to cpumask if some remote flushing remains to be
 * done.  The returned pointer is valid till preemption is re-enabled.
304
 */
T
Tejun Heo 已提交
305 306 307
const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
					  struct mm_struct *mm,
					  unsigned long va, unsigned int cpu)
308
{
T
Tejun Heo 已提交
309 310
	static DEFINE_PER_CPU(cpumask_t, flush_tlb_mask);
	struct cpumask *flush_mask = &__get_cpu_var(flush_tlb_mask);
311
	int i;
312
	int bit;
313
	int blade;
T
Tejun Heo 已提交
314
	int uv_cpu;
315
	int this_blade;
316
	int locals = 0;
317
	struct bau_desc *bau_desc;
318

T
Tejun Heo 已提交
319 320 321 322 323
	WARN_ON(!in_atomic());

	cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));

	uv_cpu = uv_blade_processor_id();
324 325
	this_blade = uv_numa_blade_id();
	bau_desc = __get_cpu_var(bau_control).descriptor_base;
T
Tejun Heo 已提交
326
	bau_desc += UV_ITEMS_PER_DESCRIPTOR * uv_cpu;
327 328 329 330

	bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);

	i = 0;
T
Tejun Heo 已提交
331
	for_each_cpu(bit, flush_mask) {
332
		blade = uv_cpu_to_blade_id(bit);
333
		BUG_ON(blade > (UV_DISTRIBUTION_SIZE - 1));
334 335
		if (blade == this_blade) {
			locals++;
336
			continue;
337
		}
338 339 340
		bau_node_set(blade, &bau_desc->distribution);
		i++;
	}
341 342 343 344 345
	if (i == 0) {
		/*
		 * no off_node flushing; return status for local node
		 */
		if (locals)
T
Tejun Heo 已提交
346
			return flush_mask;
347
		else
T
Tejun Heo 已提交
348
			return NULL;
349
	}
350 351 352 353
	__get_cpu_var(ptcstats).requestor++;
	__get_cpu_var(ptcstats).ntargeted += i;

	bau_desc->payload.address = va;
T
Tejun Heo 已提交
354
	bau_desc->payload.sending_cpu = cpu;
355

T
Tejun Heo 已提交
356
	return uv_flush_send_and_wait(uv_cpu, this_blade, bau_desc, flush_mask);
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
}

/*
 * The BAU message interrupt comes here. (registered by set_intr_gate)
 * See entry_64.S
 *
 * We received a broadcast assist message.
 *
 * Interrupts may have been disabled; this interrupt could represent
 * the receipt of several messages.
 *
 * All cores/threads on this node get this interrupt.
 * The last one to see it does the s/w ack.
 * (the resource will not be freed until noninterruptable cpus see this
 *  interrupt; hardware will timeout the s/w ack and reply ERROR)
 */
373
void uv_bau_message_interrupt(struct pt_regs *regs)
374
{
375 376
	struct bau_payload_queue_entry *va_queue_first;
	struct bau_payload_queue_entry *va_queue_last;
377
	struct bau_payload_queue_entry *msg;
378
	struct pt_regs *old_regs = set_irq_regs(regs);
379 380
	cycles_t time1;
	cycles_t time2;
381 382 383 384 385 386 387 388 389 390
	int msg_slot;
	int sw_ack_slot;
	int fw;
	int count = 0;
	unsigned long local_pnode;

	ack_APIC_irq();
	exit_idle();
	irq_enter();

391
	time1 = get_cycles();
392 393 394

	local_pnode = uv_blade_to_pnode(uv_numa_blade_id());

395
	va_queue_first = __get_cpu_var(bau_control).va_queue_first;
396
	va_queue_last = __get_cpu_var(bau_control).va_queue_last;
397

398 399 400 401
	msg = __get_cpu_var(bau_control).bau_msg_head;
	while (msg->sw_ack_vector) {
		count++;
		fw = msg->sw_ack_vector;
402
		msg_slot = msg - va_queue_first;
403 404 405 406 407
		sw_ack_slot = ffs(fw) - 1;

		uv_bau_process_message(msg, msg_slot, sw_ack_slot);

		msg++;
408 409
		if (msg > va_queue_last)
			msg = va_queue_first;
410 411 412 413 414 415 416
		__get_cpu_var(bau_control).bau_msg_head = msg;
	}
	if (!count)
		__get_cpu_var(ptcstats).nomsg++;
	else if (count > 1)
		__get_cpu_var(ptcstats).multmsg++;

417 418
	time2 = get_cycles();
	__get_cpu_var(ptcstats).dflush += (time2 - time1);
419 420 421 422 423

	irq_exit();
	set_irq_regs(old_regs);
}

424
static void uv_enable_timeouts(void)
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
{
	int i;
	int blade;
	int last_blade;
	int pnode;
	int cur_cpu = 0;
	unsigned long apicid;

	last_blade = -1;
	for_each_online_node(i) {
		blade = uv_node_to_blade_id(i);
		if (blade == last_blade)
			continue;
		last_blade = blade;
		apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
		pnode = uv_blade_to_pnode(blade);
		cur_cpu += uv_blade_nr_possible_cpus(i);
	}
}

445
static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
446 447 448 449 450 451
{
	if (*offset < num_possible_cpus())
		return offset;
	return NULL;
}

452
static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
453 454 455 456 457 458 459
{
	(*offset)++;
	if (*offset < num_possible_cpus())
		return offset;
	return NULL;
}

460
static void uv_ptc_seq_stop(struct seq_file *file, void *data)
461 462 463 464 465 466 467
{
}

/*
 * Display the statistics thru /proc
 * data points to the cpu number
 */
468
static int uv_ptc_seq_show(struct seq_file *file, void *data)
469 470 471 472 473 474 475 476 477 478
{
	struct ptc_stats *stat;
	int cpu;

	cpu = *(loff_t *)data;

	if (!cpu) {
		seq_printf(file,
		"# cpu requestor requestee one all sretry dretry ptc_i ");
		seq_printf(file,
479
		"sw_ack sflush dflush sok dnomsg dmult starget\n");
480 481 482 483 484 485 486 487 488 489 490
	}
	if (cpu < num_possible_cpus() && cpu_online(cpu)) {
		stat = &per_cpu(ptcstats, cpu);
		seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
			   cpu, stat->requestor,
			   stat->requestee, stat->onetlb, stat->alltlb,
			   stat->s_retry, stat->d_retry, stat->ptc_i);
		seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
			   uv_read_global_mmr64(uv_blade_to_pnode
					(uv_cpu_to_blade_id(cpu)),
					UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
491
			   stat->sflush, stat->dflush,
492 493 494 495 496 497 498 499 500 501 502
			   stat->retriesok, stat->nomsg,
			   stat->multmsg, stat->ntargeted);
	}

	return 0;
}

/*
 *  0: display meaning of the statistics
 * >0: retry limit
 */
503
static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
504
				 size_t count, loff_t *data)
505 506 507 508
{
	long newmode;
	char optstr[64];

509
	if (count == 0 || count > sizeof(optstr))
510
		return -EINVAL;
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
	if (copy_from_user(optstr, user, count))
		return -EFAULT;
	optstr[count - 1] = '\0';
	if (strict_strtoul(optstr, 10, &newmode) < 0) {
		printk(KERN_DEBUG "%s is invalid\n", optstr);
		return -EINVAL;
	}

	if (newmode == 0) {
		printk(KERN_DEBUG "# cpu:      cpu number\n");
		printk(KERN_DEBUG
		"requestor:  times this cpu was the flush requestor\n");
		printk(KERN_DEBUG
		"requestee:  times this cpu was requested to flush its TLBs\n");
		printk(KERN_DEBUG
		"one:        times requested to flush a single address\n");
		printk(KERN_DEBUG
		"all:        times requested to flush all TLB's\n");
		printk(KERN_DEBUG
		"sretry:     number of retries of source-side timeouts\n");
		printk(KERN_DEBUG
		"dretry:     number of retries of destination-side timeouts\n");
		printk(KERN_DEBUG
		"ptc_i:      times UV fell through to IPI-style flushes\n");
		printk(KERN_DEBUG
		"sw_ack:     image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
		printk(KERN_DEBUG
538
		"sflush_us:  cycles spent in uv_flush_tlb_others()\n");
539
		printk(KERN_DEBUG
540
		"dflush_us:  cycles spent in handling flush requests\n");
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
		printk(KERN_DEBUG "sok:        successes on retry\n");
		printk(KERN_DEBUG "dnomsg:     interrupts with no message\n");
		printk(KERN_DEBUG
		"dmult:      interrupts with multiple messages\n");
		printk(KERN_DEBUG "starget:    nodes targeted\n");
	} else {
		uv_bau_retry_limit = newmode;
		printk(KERN_DEBUG "timeout retry limit:%d\n",
		       uv_bau_retry_limit);
	}

	return count;
}

static const struct seq_operations uv_ptc_seq_ops = {
556 557 558 559
	.start		= uv_ptc_seq_start,
	.next		= uv_ptc_seq_next,
	.stop		= uv_ptc_seq_stop,
	.show		= uv_ptc_seq_show
560 561
};

562
static int uv_ptc_proc_open(struct inode *inode, struct file *file)
563 564 565 566 567
{
	return seq_open(file, &uv_ptc_seq_ops);
}

static const struct file_operations proc_uv_ptc_operations = {
568 569 570 571 572
	.open		= uv_ptc_proc_open,
	.read		= seq_read,
	.write		= uv_ptc_proc_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
573 574
};

575
static int __init uv_ptc_init(void)
576
{
577
	struct proc_dir_entry *proc_uv_ptc;
578 579 580 581 582 583 584 585 586 587 588 589 590 591

	if (!is_uv_system())
		return 0;

	proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
	if (!proc_uv_ptc) {
		printk(KERN_ERR "unable to create %s proc entry\n",
		       UV_PTC_BASENAME);
		return -EINVAL;
	}
	proc_uv_ptc->proc_fops = &proc_uv_ptc_operations;
	return 0;
}

592 593 594 595
/*
 * begin the initialization of the per-blade control structures
 */
static struct bau_control * __init uv_table_bases_init(int blade, int node)
596
{
597 598
	int i;
	struct bau_msg_status *msp;
599
	struct bau_control *bau_tabp;
600

601
	bau_tabp =
602
	    kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
603
	BUG_ON(!bau_tabp);
604

605
	bau_tabp->msg_statuses =
606
	    kmalloc_node(sizeof(struct bau_msg_status) *
607 608
			 DEST_Q_SIZE, GFP_KERNEL, node);
	BUG_ON(!bau_tabp->msg_statuses);
609

610
	for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++)
611 612
		bau_cpubits_clear(&msp->seen_by, (int)
				  uv_blade_nr_possible_cpus(blade));
613

614
	uv_bau_table_bases[blade] = bau_tabp;
615

616
	return bau_tabp;
617 618
}

619 620 621
/*
 * finish the initialization of the per-blade control structures
 */
622 623 624 625
static void __init
uv_table_bases_finish(int blade, int node, int cur_cpu,
		      struct bau_control *bau_tablesp,
		      struct bau_desc *adp)
626 627
{
	struct bau_control *bcp;
628
	int i;
629

630
	for (i = cur_cpu; i < cur_cpu + uv_blade_nr_possible_cpus(blade); i++) {
631
		bcp = (struct bau_control *)&per_cpu(bau_control, i);
632 633 634 635 636 637

		bcp->bau_msg_head	= bau_tablesp->va_queue_first;
		bcp->va_queue_first	= bau_tablesp->va_queue_first;
		bcp->va_queue_last	= bau_tablesp->va_queue_last;
		bcp->msg_statuses	= bau_tablesp->msg_statuses;
		bcp->descriptor_base	= adp;
638 639
	}
}
640 641

/*
642
 * initialize the sending side's sending buffers
643
 */
644
static struct bau_desc * __init
645
uv_activation_descriptor_init(int node, int pnode)
646 647 648 649
{
	int i;
	unsigned long pa;
	unsigned long m;
650
	unsigned long n;
651
	unsigned long mmr_image;
652 653
	struct bau_desc *adp;
	struct bau_desc *ad2;
654

655
	adp = (struct bau_desc *)
656
	    kmalloc_node(16384, GFP_KERNEL, node);
657
	BUG_ON(!adp);
658

659 660 661
	pa = __pa((unsigned long)adp);
	n = pa >> uv_nshift;
	m = pa & uv_mmask;
662

663
	mmr_image = uv_read_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE);
664
	if (mmr_image) {
665 666 667
		uv_write_global_mmr64(pnode, (unsigned long)
				      UVH_LB_BAU_SB_DESCRIPTOR_BASE,
				      (n << UV_DESC_BASE_PNODE_SHIFT | m));
668 669
	}

670
	for (i = 0, ad2 = adp; i < UV_ACTIVATION_DESCRIPTOR_SIZE; i++, ad2++) {
671
		memset(ad2, 0, sizeof(struct bau_desc));
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
		ad2->header.sw_ack_flag = 1;
		ad2->header.base_dest_nodeid =
		    uv_blade_to_pnode(uv_cpu_to_blade_id(0));
		ad2->header.command = UV_NET_ENDPOINT_INTD;
		ad2->header.int_both = 1;
		/*
		 * all others need to be set to zero:
		 *   fairness chaining multilevel count replied_to
		 */
	}
	return adp;
}

/*
 * initialize the destination side's receiving buffers
 */
688 689
static struct bau_payload_queue_entry * __init
uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp)
690
{
691
	struct bau_payload_queue_entry *pqp;
692
	char *cp;
693

694 695 696 697
	pqp = (struct bau_payload_queue_entry *) kmalloc_node(
		(DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
		GFP_KERNEL, node);
	BUG_ON(!pqp);
698

699 700 701 702 703 704 705 706 707 708
	cp = (char *)pqp + 31;
	pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
	bau_tablesp->va_queue_first = pqp;
	uv_write_global_mmr64(pnode,
			      UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
			      ((unsigned long)pnode <<
			       UV_PAYLOADQ_PNODE_SHIFT) |
			      uv_physnodeaddr(pqp));
	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
			      uv_physnodeaddr(pqp));
709
	bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
710 711 712
	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
			      (unsigned long)
			      uv_physnodeaddr(bau_tablesp->va_queue_last));
713
	memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
714

715 716
	return pqp;
}
717

718 719 720 721 722 723 724 725
/*
 * Initialization of each UV blade's structures
 */
static int __init uv_init_blade(int blade, int node, int cur_cpu)
{
	int pnode;
	unsigned long pa;
	unsigned long apicid;
726
	struct bau_desc *adp;
727 728
	struct bau_payload_queue_entry *pqp;
	struct bau_control *bau_tablesp;
729

730 731 732 733 734 735 736 737 738 739 740 741 742 743
	bau_tablesp = uv_table_bases_init(blade, node);
	pnode = uv_blade_to_pnode(blade);
	adp = uv_activation_descriptor_init(node, pnode);
	pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
	uv_table_bases_finish(blade, node, cur_cpu, bau_tablesp, adp);
	/*
	 * the below initialization can't be in firmware because the
	 * messaging IRQ will be determined by the OS
	 */
	apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
	pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
	if ((pa & 0xff) != UV_BAU_MESSAGE) {
		uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
				      ((apicid << 32) | UV_BAU_MESSAGE));
744
	}
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	return 0;
}

/*
 * Initialization of BAU-related structures
 */
static int __init uv_bau_init(void)
{
	int blade;
	int node;
	int nblades;
	int last_blade;
	int cur_cpu = 0;

	if (!is_uv_system())
		return 0;
761

762
	uv_bau_retry_limit = 1;
763
	uv_nshift = uv_hub_info->n_val;
764
	uv_mmask = (1UL << uv_hub_info->n_val) - 1;
765 766
	nblades = 0;
	last_blade = -1;
767 768
	for_each_online_node(node) {
		blade = uv_node_to_blade_id(node);
769 770 771 772 773 774 775
		if (blade == last_blade)
			continue;
		last_blade = blade;
		nblades++;
	}
	uv_bau_table_bases = (struct bau_control **)
	    kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
776
	BUG_ON(!uv_bau_table_bases);
777

778
	last_blade = -1;
779 780
	for_each_online_node(node) {
		blade = uv_node_to_blade_id(node);
781 782 783
		if (blade == last_blade)
			continue;
		last_blade = blade;
784 785
		uv_init_blade(blade, node, cur_cpu);
		cur_cpu += uv_blade_nr_possible_cpus(blade);
786
	}
787
	alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
788
	uv_enable_timeouts();
789

790 791 792
	return 0;
}
__initcall(uv_bau_init);
793
__initcall(uv_ptc_init);