tlb_uv.c 20.7 KB
Newer Older
1 2 3 4 5 6 7 8
/*
 *	SGI UltraViolet TLB flush routines.
 *
 *	(c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
 *
 *	This code is released under the GNU General Public License version 2 or
 *	later.
 */
9
#include <linux/seq_file.h>
10 11 12 13
#include <linux/proc_fs.h>
#include <linux/kernel.h>

#include <asm/mmu_context.h>
T
Tejun Heo 已提交
14
#include <asm/uv/uv.h>
15
#include <asm/uv/uv_mmrs.h>
16
#include <asm/uv/uv_hub.h>
17
#include <asm/uv/uv_bau.h>
I
Ingo Molnar 已提交
18
#include <asm/apic.h>
19
#include <asm/idle.h>
20
#include <asm/tsc.h>
21
#include <asm/irq_vectors.h>
22

23 24 25 26 27 28 29
static struct bau_control	**uv_bau_table_bases __read_mostly;
static int			uv_bau_retry_limit __read_mostly;

/* position of pnode (which is nasid>>1): */
static int			uv_nshift __read_mostly;

static unsigned long		uv_mmask __read_mostly;
30

31 32
static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
static DEFINE_PER_CPU(struct bau_control, bau_control);
33 34 35 36 37 38 39 40 41

/*
 * Free a software acknowledge hardware resource by clearing its Pending
 * bit. This will return a reply to the sender.
 * If the message has timed out, a reply has already been sent by the
 * hardware but the resource has not been released. In that case our
 * clear of the Timeout bit (as well) will free the resource. No reply will
 * be sent (the hardware will only do one reply per message).
 */
42
static void uv_reply_to_message(int resource,
43 44
				struct bau_payload_queue_entry *msg,
				struct bau_msg_status *msp)
45
{
46
	unsigned long dw;
47

48
	dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
49 50 51 52
	msg->replied_to = 1;
	msg->sw_ack_vector = 0;
	if (msp)
		msp->seen_by.bits = 0;
53
	uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
54 55 56 57 58 59
}

/*
 * Do all the things a cpu should do for a TLB shootdown message.
 * Other cpu's may come here at the same time for this message.
 */
60
static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
61
				   int msg_slot, int sw_ack_slot)
62 63 64
{
	unsigned long this_cpu_mask;
	struct bau_msg_status *msp;
65
	int cpu;
66 67 68 69 70

	msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
	cpu = uv_blade_processor_id();
	msg->number_of_cpus =
	    uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
71
	this_cpu_mask = 1UL << cpu;
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
	if (msp->seen_by.bits & this_cpu_mask)
		return;
	atomic_or_long(&msp->seen_by.bits, this_cpu_mask);

	if (msg->replied_to == 1)
		return;

	if (msg->address == TLB_FLUSH_ALL) {
		local_flush_tlb();
		__get_cpu_var(ptcstats).alltlb++;
	} else {
		__flush_tlb_one(msg->address);
		__get_cpu_var(ptcstats).onetlb++;
	}

	__get_cpu_var(ptcstats).requestee++;

	atomic_inc_short(&msg->acknowledge_count);
	if (msg->number_of_cpus == msg->acknowledge_count)
		uv_reply_to_message(sw_ack_slot, msg, msp);
}

/*
95
 * Examine the payload queue on one distribution node to see
96 97 98 99
 * which messages have not been seen, and which cpu(s) have not seen them.
 *
 * Returns the number of cpu's that have not responded.
 */
100
static int uv_examine_destination(struct bau_control *bau_tablesp, int sender)
101 102 103
{
	struct bau_payload_queue_entry *msg;
	struct bau_msg_status *msp;
104 105 106
	int count = 0;
	int i;
	int j;
107

108 109 110 111 112 113 114 115 116
	for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE;
	     msg++, i++) {
		if ((msg->sending_cpu == sender) && (!msg->replied_to)) {
			msp = bau_tablesp->msg_statuses + i;
			printk(KERN_DEBUG
			       "blade %d: address:%#lx %d of %d, not cpu(s): ",
			       i, msg->address, msg->acknowledge_count,
			       msg->number_of_cpus);
			for (j = 0; j < msg->number_of_cpus; j++) {
117
				if (!((1L << j) & msp->seen_by.bits)) {
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
					count++;
					printk("%d ", j);
				}
			}
			printk("\n");
		}
	}
	return count;
}

/*
 * Examine the payload queue on all the distribution nodes to see
 * which messages have not been seen, and which cpu(s) have not seen them.
 *
 * Returns the number of cpu's that have not responded.
 */
static int uv_examine_destinations(struct bau_target_nodemask *distribution)
{
	int sender;
	int i;
	int count = 0;

140
	sender = smp_processor_id();
141
	for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) {
142 143
		if (!bau_node_isset(i, distribution))
			continue;
144
		count += uv_examine_destination(uv_bau_table_bases[i], sender);
145 146 147 148
	}
	return count;
}

149 150 151 152 153
/*
 * wait for completion of a broadcast message
 *
 * return COMPLETE, RETRY or GIVEUP
 */
154
static int uv_wait_completion(struct bau_desc *bau_desc,
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
			      unsigned long mmr_offset, int right_shift)
{
	int exams = 0;
	long destination_timeouts = 0;
	long source_timeouts = 0;
	unsigned long descriptor_status;

	while ((descriptor_status = (((unsigned long)
		uv_read_local_mmr(mmr_offset) >>
			right_shift) & UV_ACT_STATUS_MASK)) !=
			DESC_STATUS_IDLE) {
		if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
			source_timeouts++;
			if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
				source_timeouts = 0;
			__get_cpu_var(ptcstats).s_retry++;
			return FLUSH_RETRY;
		}
		/*
		 * spin here looking for progress at the destinations
		 */
		if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
			destination_timeouts++;
			if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
				/*
				 * returns number of cpus not responding
				 */
				if (uv_examine_destinations
				    (&bau_desc->distribution) == 0) {
					__get_cpu_var(ptcstats).d_retry++;
					return FLUSH_RETRY;
				}
				exams++;
				if (exams >= uv_bau_retry_limit) {
					printk(KERN_DEBUG
					       "uv_flush_tlb_others");
					printk("giving up on cpu %d\n",
					       smp_processor_id());
					return FLUSH_GIVEUP;
				}
				/*
				 * delays can hang the simulator
				   udelay(1000);
				 */
				destination_timeouts = 0;
			}
		}
202
		cpu_relax();
203 204 205 206 207 208 209 210 211
	}
	return FLUSH_COMPLETE;
}

/**
 * uv_flush_send_and_wait
 *
 * Send a broadcast and wait for a broadcast message to complete.
 *
T
Tejun Heo 已提交
212
 * The flush_mask contains the cpus the broadcast was sent to.
213
 *
T
Tejun Heo 已提交
214 215 216
 * Returns NULL if all remote flushing was done. The mask is zeroed.
 * Returns @flush_mask if some remote flushing remains to be done. The
 * mask will have some bits still set.
217
 */
T
Tejun Heo 已提交
218 219 220
const struct cpumask *uv_flush_send_and_wait(int cpu, int this_blade,
					     struct bau_desc *bau_desc,
					     struct cpumask *flush_mask)
221 222 223 224
{
	int completion_status = 0;
	int right_shift;
	int tries = 0;
225 226
	int blade;
	int bit;
227
	unsigned long mmr_offset;
228
	unsigned long index;
229 230 231 232 233 234 235 236 237 238 239 240 241 242
	cycles_t time1;
	cycles_t time2;

	if (cpu < UV_CPUS_PER_ACT_STATUS) {
		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
		right_shift = cpu * UV_ACT_STATUS_SIZE;
	} else {
		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
		right_shift =
		    ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
	}
	time1 = get_cycles();
	do {
		tries++;
243 244
		index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
			cpu;
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
		uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
		completion_status = uv_wait_completion(bau_desc, mmr_offset,
					right_shift);
	} while (completion_status == FLUSH_RETRY);
	time2 = get_cycles();
	__get_cpu_var(ptcstats).sflush += (time2 - time1);
	if (tries > 1)
		__get_cpu_var(ptcstats).retriesok++;

	if (completion_status == FLUSH_GIVEUP) {
		/*
		 * Cause the caller to do an IPI-style TLB shootdown on
		 * the cpu's, all of which are still in the mask.
		 */
		__get_cpu_var(ptcstats).ptc_i++;
260
		return flush_mask;
261 262 263 264 265 266
	}

	/*
	 * Success, so clear the remote cpu's from the mask so we don't
	 * use the IPI method of shootdown on them.
	 */
T
Tejun Heo 已提交
267
	for_each_cpu(bit, flush_mask) {
268 269 270
		blade = uv_cpu_to_blade_id(bit);
		if (blade == this_blade)
			continue;
T
Tejun Heo 已提交
271
		cpumask_clear_cpu(bit, flush_mask);
272
	}
T
Tejun Heo 已提交
273 274 275
	if (!cpumask_empty(flush_mask))
		return flush_mask;
	return NULL;
276 277
}

278 279 280
/**
 * uv_flush_tlb_others - globally purge translation cache of a virtual
 * address or all TLB's
T
Tejun Heo 已提交
281
 * @cpumask: mask of all cpu's in which the address is to be removed
282 283
 * @mm: mm_struct containing virtual address range
 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
T
Tejun Heo 已提交
284
 * @cpu: the current cpu
285 286 287 288 289 290
 *
 * This is the entry point for initiating any UV global TLB shootdown.
 *
 * Purges the translation caches of all specified processors of the given
 * virtual address, or purges all TLB's on specified processors.
 *
T
Tejun Heo 已提交
291 292
 * The caller has derived the cpumask from the mm_struct.  This function
 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
293
 *
T
Tejun Heo 已提交
294
 * The cpumask is converted into a nodemask of the nodes containing
295
 * the cpus.
296
 *
T
Tejun Heo 已提交
297 298 299 300 301
 * Note that this function should be called with preemption disabled.
 *
 * Returns NULL if all remote flushing was done.
 * Returns pointer to cpumask if some remote flushing remains to be
 * done.  The returned pointer is valid till preemption is re-enabled.
302
 */
T
Tejun Heo 已提交
303 304 305
const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
					  struct mm_struct *mm,
					  unsigned long va, unsigned int cpu)
306
{
T
Tejun Heo 已提交
307 308
	static DEFINE_PER_CPU(cpumask_t, flush_tlb_mask);
	struct cpumask *flush_mask = &__get_cpu_var(flush_tlb_mask);
309
	int i;
310
	int bit;
311
	int blade;
T
Tejun Heo 已提交
312
	int uv_cpu;
313
	int this_blade;
314
	int locals = 0;
315
	struct bau_desc *bau_desc;
T
Tejun Heo 已提交
316 317 318 319

	cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));

	uv_cpu = uv_blade_processor_id();
320 321
	this_blade = uv_numa_blade_id();
	bau_desc = __get_cpu_var(bau_control).descriptor_base;
T
Tejun Heo 已提交
322
	bau_desc += UV_ITEMS_PER_DESCRIPTOR * uv_cpu;
323 324 325 326

	bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);

	i = 0;
T
Tejun Heo 已提交
327
	for_each_cpu(bit, flush_mask) {
328
		blade = uv_cpu_to_blade_id(bit);
329
		BUG_ON(blade > (UV_DISTRIBUTION_SIZE - 1));
330 331
		if (blade == this_blade) {
			locals++;
332
			continue;
333
		}
334 335 336
		bau_node_set(blade, &bau_desc->distribution);
		i++;
	}
337 338 339 340 341
	if (i == 0) {
		/*
		 * no off_node flushing; return status for local node
		 */
		if (locals)
T
Tejun Heo 已提交
342
			return flush_mask;
343
		else
T
Tejun Heo 已提交
344
			return NULL;
345
	}
346 347 348 349
	__get_cpu_var(ptcstats).requestor++;
	__get_cpu_var(ptcstats).ntargeted += i;

	bau_desc->payload.address = va;
T
Tejun Heo 已提交
350
	bau_desc->payload.sending_cpu = cpu;
351

T
Tejun Heo 已提交
352
	return uv_flush_send_and_wait(uv_cpu, this_blade, bau_desc, flush_mask);
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
}

/*
 * The BAU message interrupt comes here. (registered by set_intr_gate)
 * See entry_64.S
 *
 * We received a broadcast assist message.
 *
 * Interrupts may have been disabled; this interrupt could represent
 * the receipt of several messages.
 *
 * All cores/threads on this node get this interrupt.
 * The last one to see it does the s/w ack.
 * (the resource will not be freed until noninterruptable cpus see this
 *  interrupt; hardware will timeout the s/w ack and reply ERROR)
 */
369
void uv_bau_message_interrupt(struct pt_regs *regs)
370
{
371 372
	struct bau_payload_queue_entry *va_queue_first;
	struct bau_payload_queue_entry *va_queue_last;
373
	struct bau_payload_queue_entry *msg;
374
	struct pt_regs *old_regs = set_irq_regs(regs);
375 376
	cycles_t time1;
	cycles_t time2;
377 378 379 380 381 382 383 384 385 386
	int msg_slot;
	int sw_ack_slot;
	int fw;
	int count = 0;
	unsigned long local_pnode;

	ack_APIC_irq();
	exit_idle();
	irq_enter();

387
	time1 = get_cycles();
388 389 390

	local_pnode = uv_blade_to_pnode(uv_numa_blade_id());

391
	va_queue_first = __get_cpu_var(bau_control).va_queue_first;
392
	va_queue_last = __get_cpu_var(bau_control).va_queue_last;
393

394 395 396 397
	msg = __get_cpu_var(bau_control).bau_msg_head;
	while (msg->sw_ack_vector) {
		count++;
		fw = msg->sw_ack_vector;
398
		msg_slot = msg - va_queue_first;
399 400 401 402 403
		sw_ack_slot = ffs(fw) - 1;

		uv_bau_process_message(msg, msg_slot, sw_ack_slot);

		msg++;
404 405
		if (msg > va_queue_last)
			msg = va_queue_first;
406 407 408 409 410 411 412
		__get_cpu_var(bau_control).bau_msg_head = msg;
	}
	if (!count)
		__get_cpu_var(ptcstats).nomsg++;
	else if (count > 1)
		__get_cpu_var(ptcstats).multmsg++;

413 414
	time2 = get_cycles();
	__get_cpu_var(ptcstats).dflush += (time2 - time1);
415 416 417 418 419

	irq_exit();
	set_irq_regs(old_regs);
}

420
static void uv_enable_timeouts(void)
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
{
	int i;
	int blade;
	int last_blade;
	int pnode;
	int cur_cpu = 0;
	unsigned long apicid;

	last_blade = -1;
	for_each_online_node(i) {
		blade = uv_node_to_blade_id(i);
		if (blade == last_blade)
			continue;
		last_blade = blade;
		apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
		pnode = uv_blade_to_pnode(blade);
		cur_cpu += uv_blade_nr_possible_cpus(i);
	}
}

441
static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
442 443 444 445 446 447
{
	if (*offset < num_possible_cpus())
		return offset;
	return NULL;
}

448
static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
449 450 451 452 453 454 455
{
	(*offset)++;
	if (*offset < num_possible_cpus())
		return offset;
	return NULL;
}

456
static void uv_ptc_seq_stop(struct seq_file *file, void *data)
457 458 459 460 461 462 463
{
}

/*
 * Display the statistics thru /proc
 * data points to the cpu number
 */
464
static int uv_ptc_seq_show(struct seq_file *file, void *data)
465 466 467 468 469 470 471 472 473 474
{
	struct ptc_stats *stat;
	int cpu;

	cpu = *(loff_t *)data;

	if (!cpu) {
		seq_printf(file,
		"# cpu requestor requestee one all sretry dretry ptc_i ");
		seq_printf(file,
475
		"sw_ack sflush dflush sok dnomsg dmult starget\n");
476 477 478 479 480 481 482 483 484 485 486
	}
	if (cpu < num_possible_cpus() && cpu_online(cpu)) {
		stat = &per_cpu(ptcstats, cpu);
		seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
			   cpu, stat->requestor,
			   stat->requestee, stat->onetlb, stat->alltlb,
			   stat->s_retry, stat->d_retry, stat->ptc_i);
		seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
			   uv_read_global_mmr64(uv_blade_to_pnode
					(uv_cpu_to_blade_id(cpu)),
					UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
487
			   stat->sflush, stat->dflush,
488 489 490 491 492 493 494 495 496 497 498
			   stat->retriesok, stat->nomsg,
			   stat->multmsg, stat->ntargeted);
	}

	return 0;
}

/*
 *  0: display meaning of the statistics
 * >0: retry limit
 */
499
static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
500
				 size_t count, loff_t *data)
501 502 503 504
{
	long newmode;
	char optstr[64];

505
	if (count == 0 || count > sizeof(optstr))
506
		return -EINVAL;
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
	if (copy_from_user(optstr, user, count))
		return -EFAULT;
	optstr[count - 1] = '\0';
	if (strict_strtoul(optstr, 10, &newmode) < 0) {
		printk(KERN_DEBUG "%s is invalid\n", optstr);
		return -EINVAL;
	}

	if (newmode == 0) {
		printk(KERN_DEBUG "# cpu:      cpu number\n");
		printk(KERN_DEBUG
		"requestor:  times this cpu was the flush requestor\n");
		printk(KERN_DEBUG
		"requestee:  times this cpu was requested to flush its TLBs\n");
		printk(KERN_DEBUG
		"one:        times requested to flush a single address\n");
		printk(KERN_DEBUG
		"all:        times requested to flush all TLB's\n");
		printk(KERN_DEBUG
		"sretry:     number of retries of source-side timeouts\n");
		printk(KERN_DEBUG
		"dretry:     number of retries of destination-side timeouts\n");
		printk(KERN_DEBUG
		"ptc_i:      times UV fell through to IPI-style flushes\n");
		printk(KERN_DEBUG
		"sw_ack:     image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
		printk(KERN_DEBUG
534
		"sflush_us:  cycles spent in uv_flush_tlb_others()\n");
535
		printk(KERN_DEBUG
536
		"dflush_us:  cycles spent in handling flush requests\n");
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
		printk(KERN_DEBUG "sok:        successes on retry\n");
		printk(KERN_DEBUG "dnomsg:     interrupts with no message\n");
		printk(KERN_DEBUG
		"dmult:      interrupts with multiple messages\n");
		printk(KERN_DEBUG "starget:    nodes targeted\n");
	} else {
		uv_bau_retry_limit = newmode;
		printk(KERN_DEBUG "timeout retry limit:%d\n",
		       uv_bau_retry_limit);
	}

	return count;
}

static const struct seq_operations uv_ptc_seq_ops = {
552 553 554 555
	.start		= uv_ptc_seq_start,
	.next		= uv_ptc_seq_next,
	.stop		= uv_ptc_seq_stop,
	.show		= uv_ptc_seq_show
556 557
};

558
static int uv_ptc_proc_open(struct inode *inode, struct file *file)
559 560 561 562 563
{
	return seq_open(file, &uv_ptc_seq_ops);
}

static const struct file_operations proc_uv_ptc_operations = {
564 565 566 567 568
	.open		= uv_ptc_proc_open,
	.read		= seq_read,
	.write		= uv_ptc_proc_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
569 570
};

571
static int __init uv_ptc_init(void)
572
{
573
	struct proc_dir_entry *proc_uv_ptc;
574 575 576 577 578 579 580 581 582 583 584 585 586 587

	if (!is_uv_system())
		return 0;

	proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
	if (!proc_uv_ptc) {
		printk(KERN_ERR "unable to create %s proc entry\n",
		       UV_PTC_BASENAME);
		return -EINVAL;
	}
	proc_uv_ptc->proc_fops = &proc_uv_ptc_operations;
	return 0;
}

588 589 590 591
/*
 * begin the initialization of the per-blade control structures
 */
static struct bau_control * __init uv_table_bases_init(int blade, int node)
592
{
593 594
	int i;
	struct bau_msg_status *msp;
595
	struct bau_control *bau_tabp;
596

597
	bau_tabp =
598
	    kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
599
	BUG_ON(!bau_tabp);
600

601
	bau_tabp->msg_statuses =
602
	    kmalloc_node(sizeof(struct bau_msg_status) *
603 604
			 DEST_Q_SIZE, GFP_KERNEL, node);
	BUG_ON(!bau_tabp->msg_statuses);
605

606
	for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++)
607 608
		bau_cpubits_clear(&msp->seen_by, (int)
				  uv_blade_nr_possible_cpus(blade));
609

610
	uv_bau_table_bases[blade] = bau_tabp;
611

612
	return bau_tabp;
613 614
}

615 616 617
/*
 * finish the initialization of the per-blade control structures
 */
618 619 620 621
static void __init
uv_table_bases_finish(int blade, int node, int cur_cpu,
		      struct bau_control *bau_tablesp,
		      struct bau_desc *adp)
622 623
{
	struct bau_control *bcp;
624
	int i;
625

626
	for (i = cur_cpu; i < cur_cpu + uv_blade_nr_possible_cpus(blade); i++) {
627
		bcp = (struct bau_control *)&per_cpu(bau_control, i);
628 629 630 631 632 633

		bcp->bau_msg_head	= bau_tablesp->va_queue_first;
		bcp->va_queue_first	= bau_tablesp->va_queue_first;
		bcp->va_queue_last	= bau_tablesp->va_queue_last;
		bcp->msg_statuses	= bau_tablesp->msg_statuses;
		bcp->descriptor_base	= adp;
634 635
	}
}
636 637

/*
638
 * initialize the sending side's sending buffers
639
 */
640
static struct bau_desc * __init
641
uv_activation_descriptor_init(int node, int pnode)
642 643 644 645
{
	int i;
	unsigned long pa;
	unsigned long m;
646
	unsigned long n;
647
	unsigned long mmr_image;
648 649
	struct bau_desc *adp;
	struct bau_desc *ad2;
650

651
	adp = (struct bau_desc *)
652
	    kmalloc_node(16384, GFP_KERNEL, node);
653
	BUG_ON(!adp);
654

655 656 657
	pa = __pa((unsigned long)adp);
	n = pa >> uv_nshift;
	m = pa & uv_mmask;
658

659
	mmr_image = uv_read_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE);
660
	if (mmr_image) {
661 662 663
		uv_write_global_mmr64(pnode, (unsigned long)
				      UVH_LB_BAU_SB_DESCRIPTOR_BASE,
				      (n << UV_DESC_BASE_PNODE_SHIFT | m));
664 665
	}

666
	for (i = 0, ad2 = adp; i < UV_ACTIVATION_DESCRIPTOR_SIZE; i++, ad2++) {
667
		memset(ad2, 0, sizeof(struct bau_desc));
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
		ad2->header.sw_ack_flag = 1;
		ad2->header.base_dest_nodeid =
		    uv_blade_to_pnode(uv_cpu_to_blade_id(0));
		ad2->header.command = UV_NET_ENDPOINT_INTD;
		ad2->header.int_both = 1;
		/*
		 * all others need to be set to zero:
		 *   fairness chaining multilevel count replied_to
		 */
	}
	return adp;
}

/*
 * initialize the destination side's receiving buffers
 */
684 685
static struct bau_payload_queue_entry * __init
uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp)
686
{
687
	struct bau_payload_queue_entry *pqp;
688
	char *cp;
689

690 691 692 693
	pqp = (struct bau_payload_queue_entry *) kmalloc_node(
		(DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
		GFP_KERNEL, node);
	BUG_ON(!pqp);
694

695 696 697 698 699 700 701 702 703 704
	cp = (char *)pqp + 31;
	pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
	bau_tablesp->va_queue_first = pqp;
	uv_write_global_mmr64(pnode,
			      UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
			      ((unsigned long)pnode <<
			       UV_PAYLOADQ_PNODE_SHIFT) |
			      uv_physnodeaddr(pqp));
	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
			      uv_physnodeaddr(pqp));
705
	bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
706 707 708
	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
			      (unsigned long)
			      uv_physnodeaddr(bau_tablesp->va_queue_last));
709
	memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
710

711 712
	return pqp;
}
713

714 715 716 717 718 719 720 721
/*
 * Initialization of each UV blade's structures
 */
static int __init uv_init_blade(int blade, int node, int cur_cpu)
{
	int pnode;
	unsigned long pa;
	unsigned long apicid;
722
	struct bau_desc *adp;
723 724
	struct bau_payload_queue_entry *pqp;
	struct bau_control *bau_tablesp;
725

726 727 728 729 730 731 732 733 734 735 736 737 738 739
	bau_tablesp = uv_table_bases_init(blade, node);
	pnode = uv_blade_to_pnode(blade);
	adp = uv_activation_descriptor_init(node, pnode);
	pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
	uv_table_bases_finish(blade, node, cur_cpu, bau_tablesp, adp);
	/*
	 * the below initialization can't be in firmware because the
	 * messaging IRQ will be determined by the OS
	 */
	apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
	pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
	if ((pa & 0xff) != UV_BAU_MESSAGE) {
		uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
				      ((apicid << 32) | UV_BAU_MESSAGE));
740
	}
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
	return 0;
}

/*
 * Initialization of BAU-related structures
 */
static int __init uv_bau_init(void)
{
	int blade;
	int node;
	int nblades;
	int last_blade;
	int cur_cpu = 0;

	if (!is_uv_system())
		return 0;
757

758
	uv_bau_retry_limit = 1;
759
	uv_nshift = uv_hub_info->n_val;
760
	uv_mmask = (1UL << uv_hub_info->n_val) - 1;
761 762
	nblades = 0;
	last_blade = -1;
763 764
	for_each_online_node(node) {
		blade = uv_node_to_blade_id(node);
765 766 767 768 769 770 771
		if (blade == last_blade)
			continue;
		last_blade = blade;
		nblades++;
	}
	uv_bau_table_bases = (struct bau_control **)
	    kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
772
	BUG_ON(!uv_bau_table_bases);
773

774
	last_blade = -1;
775 776
	for_each_online_node(node) {
		blade = uv_node_to_blade_id(node);
777 778 779
		if (blade == last_blade)
			continue;
		last_blade = blade;
780 781
		uv_init_blade(blade, node, cur_cpu);
		cur_cpu += uv_blade_nr_possible_cpus(blade);
782
	}
783
	alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
784
	uv_enable_timeouts();
785

786 787 788
	return 0;
}
__initcall(uv_bau_init);
789
__initcall(uv_ptc_init);