fault.c 38.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 *  Copyright (C) 1995  Linus Torvalds
I
Ingo Molnar 已提交
3
 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4
 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
L
Linus Torvalds 已提交
5
 */
6
#include <linux/sched.h>		/* test_thread_flag(), ...	*/
7
#include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
8
#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
9
#include <linux/extable.h>		/* search_exception_tables	*/
10
#include <linux/bootmem.h>		/* max_low_pfn			*/
11
#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
12
#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
13
#include <linux/perf_event.h>		/* perf_sw_event		*/
14
#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
15
#include <linux/prefetch.h>		/* prefetchw			*/
16
#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
17
#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
I
Ingo Molnar 已提交
18

19
#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
20 21
#include <asm/traps.h>			/* dotraplinkage, ...		*/
#include <asm/pgalloc.h>		/* pgd_*(), ...			*/
V
Vegard Nossum 已提交
22
#include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
23 24
#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
B
Brian Gerst 已提交
25
#include <asm/vm86.h>			/* struct vm86			*/
26
#include <asm/mmu_context.h>		/* vma_pkey()			*/
L
Linus Torvalds 已提交
27

28 29 30
#define CREATE_TRACE_POINTS
#include <asm/trace/exceptions.h>

31
/*
I
Ingo Molnar 已提交
32 33 34 35 36 37 38
 * Page fault error code bits:
 *
 *   bit 0 ==	 0: no page found	1: protection fault
 *   bit 1 ==	 0: read access		1: write access
 *   bit 2 ==	 0: kernel-mode access	1: user-mode access
 *   bit 3 ==				1: use of reserved bit detected
 *   bit 4 ==				1: fault was an instruction fetch
39
 *   bit 5 ==				1: protection keys block access
40
 */
I
Ingo Molnar 已提交
41 42 43 44 45 46 47
enum x86_pf_error_code {

	PF_PROT		=		1 << 0,
	PF_WRITE	=		1 << 1,
	PF_USER		=		1 << 2,
	PF_RSVD		=		1 << 3,
	PF_INSTR	=		1 << 4,
48
	PF_PK		=		1 << 5,
I
Ingo Molnar 已提交
49
};
50

51
/*
52 53
 * Returns 0 if mmiotrace is disabled, or if the fault is not
 * handled by mmiotrace:
54
 */
55
static nokprobe_inline int
56
kmmio_fault(struct pt_regs *regs, unsigned long addr)
57
{
58 59 60 61
	if (unlikely(is_kmmio_active()))
		if (kmmio_handler(regs, addr) == 1)
			return -1;
	return 0;
62 63
}

64
static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
65
{
66 67 68
	int ret = 0;

	/* kprobe_running() needs smp_processor_id() */
69
	if (kprobes_built_in() && !user_mode(regs)) {
70 71 72 73 74
		preempt_disable();
		if (kprobe_running() && kprobe_fault_handler(regs, 14))
			ret = 1;
		preempt_enable();
	}
75

76
	return ret;
77
}
78

79
/*
I
Ingo Molnar 已提交
80 81 82 83 84 85
 * Prefetch quirks:
 *
 * 32-bit mode:
 *
 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
 *   Check that here and ignore it.
86
 *
I
Ingo Molnar 已提交
87
 * 64-bit mode:
88
 *
I
Ingo Molnar 已提交
89 90 91 92
 *   Sometimes the CPU reports invalid exceptions on prefetch.
 *   Check that here and ignore it.
 *
 * Opcode checker based on code by Richard Brunner.
93
 */
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
static inline int
check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
		      unsigned char opcode, int *prefetch)
{
	unsigned char instr_hi = opcode & 0xf0;
	unsigned char instr_lo = opcode & 0x0f;

	switch (instr_hi) {
	case 0x20:
	case 0x30:
		/*
		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
		 * In X86_64 long mode, the CPU will signal invalid
		 * opcode if some of these prefixes are present so
		 * X86_64 will never get here anyway
		 */
		return ((instr_lo & 7) == 0x6);
#ifdef CONFIG_X86_64
	case 0x40:
		/*
		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
		 * Need to figure out under what instruction mode the
		 * instruction was issued. Could check the LDT for lm,
		 * but for now it's good enough to assume that long
		 * mode only uses well known segments or kernel.
		 */
120
		return (!user_mode(regs) || user_64bit_mode(regs));
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
#endif
	case 0x60:
		/* 0x64 thru 0x67 are valid prefixes in all modes. */
		return (instr_lo & 0xC) == 0x4;
	case 0xF0:
		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
		return !instr_lo || (instr_lo>>1) == 1;
	case 0x00:
		/* Prefetch instruction is 0x0F0D or 0x0F18 */
		if (probe_kernel_address(instr, opcode))
			return 0;

		*prefetch = (instr_lo == 0xF) &&
			(opcode == 0x0D || opcode == 0x18);
		return 0;
	default:
		return 0;
	}
}

I
Ingo Molnar 已提交
141 142
static int
is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
143
{
I
Ingo Molnar 已提交
144
	unsigned char *max_instr;
145
	unsigned char *instr;
146
	int prefetch = 0;
L
Linus Torvalds 已提交
147

I
Ingo Molnar 已提交
148 149 150 151
	/*
	 * If it was a exec (instruction fetch) fault on NX page, then
	 * do not ignore the fault:
	 */
152
	if (error_code & PF_INSTR)
L
Linus Torvalds 已提交
153
		return 0;
154

155
	instr = (void *)convert_ip_to_linear(current, regs);
156
	max_instr = instr + 15;
L
Linus Torvalds 已提交
157

158
	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
L
Linus Torvalds 已提交
159 160
		return 0;

161
	while (instr < max_instr) {
I
Ingo Molnar 已提交
162
		unsigned char opcode;
L
Linus Torvalds 已提交
163

164
		if (probe_kernel_address(instr, opcode))
165
			break;
L
Linus Torvalds 已提交
166 167 168

		instr++;

169
		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
L
Linus Torvalds 已提交
170 171 172 173 174
			break;
	}
	return prefetch;
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
/*
 * A protection key fault means that the PKRU value did not allow
 * access to some PTE.  Userspace can figure out what PKRU was
 * from the XSAVE state, and this function fills out a field in
 * siginfo so userspace can discover which protection key was set
 * on the PTE.
 *
 * If we get here, we know that the hardware signaled a PF_PK
 * fault and that there was a VMA once we got in the fault
 * handler.  It does *not* guarantee that the VMA we find here
 * was the one that we faulted on.
 *
 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 * 2. T1   : set PKRU to deny access to pkey=4, touches page
 * 3. T1   : faults...
 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 * 5. T1   : enters fault handler, takes mmap_sem, etc...
 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 *	     faulted on a pte with its pkey=4.
 */
static void fill_sig_info_pkey(int si_code, siginfo_t *info,
		struct vm_area_struct *vma)
{
	/* This is effectively an #ifdef */
	if (!boot_cpu_has(X86_FEATURE_OSPKE))
		return;

	/* Fault not from Protection Keys: nothing to do */
	if (si_code != SEGV_PKUERR)
		return;
	/*
	 * force_sig_info_fault() is called from a number of
	 * contexts, some of which have a VMA and some of which
	 * do not.  The PF_PK handing happens after we have a
	 * valid VMA, so we should never reach this without a
	 * valid VMA.
	 */
	if (!vma) {
		WARN_ONCE(1, "PKU fault with no VMA passed in");
		info->si_pkey = 0;
		return;
	}
	/*
	 * si_pkey should be thought of as a strong hint, but not
	 * absolutely guranteed to be 100% accurate because of
	 * the race explained above.
	 */
	info->si_pkey = vma_pkey(vma);
}

I
Ingo Molnar 已提交
225 226
static void
force_sig_info_fault(int si_signo, int si_code, unsigned long address,
227 228
		     struct task_struct *tsk, struct vm_area_struct *vma,
		     int fault)
229
{
230
	unsigned lsb = 0;
231 232
	siginfo_t info;

I
Ingo Molnar 已提交
233 234 235 236
	info.si_signo	= si_signo;
	info.si_errno	= 0;
	info.si_code	= si_code;
	info.si_addr	= (void __user *)address;
237 238 239 240 241
	if (fault & VM_FAULT_HWPOISON_LARGE)
		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 
	if (fault & VM_FAULT_HWPOISON)
		lsb = PAGE_SHIFT;
	info.si_addr_lsb = lsb;
I
Ingo Molnar 已提交
242

243 244
	fill_sig_info_pkey(si_code, &info, vma);

245 246 247
	force_sig_info(si_signo, &info, tsk);
}

248 249 250 251 252
DEFINE_SPINLOCK(pgd_lock);
LIST_HEAD(pgd_list);

#ifdef CONFIG_X86_32
static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
253
{
254 255
	unsigned index = pgd_index(address);
	pgd_t *pgd_k;
256
	p4d_t *p4d, *p4d_k;
257 258
	pud_t *pud, *pud_k;
	pmd_t *pmd, *pmd_k;
I
Ingo Molnar 已提交
259

260 261 262 263 264 265 266 267 268
	pgd += index;
	pgd_k = init_mm.pgd + index;

	if (!pgd_present(*pgd_k))
		return NULL;

	/*
	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
	 * and redundant with the set_pmd() on non-PAE. As would
269
	 * set_p4d/set_pud.
270
	 */
271 272 273 274 275 276 277
	p4d = p4d_offset(pgd, address);
	p4d_k = p4d_offset(pgd_k, address);
	if (!p4d_present(*p4d_k))
		return NULL;

	pud = pud_offset(p4d, address);
	pud_k = pud_offset(p4d_k, address);
278 279 280 281 282 283 284 285
	if (!pud_present(*pud_k))
		return NULL;

	pmd = pmd_offset(pud, address);
	pmd_k = pmd_offset(pud_k, address);
	if (!pmd_present(*pmd_k))
		return NULL;

286
	if (!pmd_present(*pmd))
287
		set_pmd(pmd, *pmd_k);
288
	else
289 290 291 292 293 294 295 296 297 298 299 300 301
		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));

	return pmd_k;
}

void vmalloc_sync_all(void)
{
	unsigned long address;

	if (SHARED_KERNEL_PMD)
		return;

	for (address = VMALLOC_START & PMD_MASK;
302
	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
303 304 305
	     address += PMD_SIZE) {
		struct page *page;

A
Andrea Arcangeli 已提交
306
		spin_lock(&pgd_lock);
307
		list_for_each_entry(page, &pgd_list, lru) {
308
			spinlock_t *pgt_lock;
309
			pmd_t *ret;
310

A
Andrea Arcangeli 已提交
311
			/* the pgt_lock only for Xen */
312 313 314 315 316 317 318
			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;

			spin_lock(pgt_lock);
			ret = vmalloc_sync_one(page_address(page), address);
			spin_unlock(pgt_lock);

			if (!ret)
319 320
				break;
		}
A
Andrea Arcangeli 已提交
321
		spin_unlock(&pgd_lock);
322 323 324 325 326 327 328 329
	}
}

/*
 * 32-bit:
 *
 *   Handle a fault on the vmalloc or module mapping area
 */
330
static noinline int vmalloc_fault(unsigned long address)
331 332 333 334 335 336 337 338 339
{
	unsigned long pgd_paddr;
	pmd_t *pmd_k;
	pte_t *pte_k;

	/* Make sure we are in vmalloc area: */
	if (!(address >= VMALLOC_START && address < VMALLOC_END))
		return -1;

340 341
	WARN_ON_ONCE(in_nmi());

342 343 344 345 346 347 348
	/*
	 * Synchronize this task's top level page-table
	 * with the 'reference' page table.
	 *
	 * Do _not_ use "current" here. We might be inside
	 * an interrupt in the middle of a task switch..
	 */
349
	pgd_paddr = read_cr3_pa();
350 351 352 353
	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
	if (!pmd_k)
		return -1;

354 355 356
	if (pmd_huge(*pmd_k))
		return 0;

357 358 359 360 361 362
	pte_k = pte_offset_kernel(pmd_k, address);
	if (!pte_present(*pte_k))
		return -1;

	return 0;
}
363
NOKPROBE_SYMBOL(vmalloc_fault);
364 365 366 367 368 369 370 371

/*
 * Did it hit the DOS screen memory VA from vm86 mode?
 */
static inline void
check_v8086_mode(struct pt_regs *regs, unsigned long address,
		 struct task_struct *tsk)
{
372
#ifdef CONFIG_VM86
373 374
	unsigned long bit;

375
	if (!v8086_mode(regs) || !tsk->thread.vm86)
376 377 378 379
		return;

	bit = (address - 0xA0000) >> PAGE_SHIFT;
	if (bit < 32)
380 381
		tsk->thread.vm86->screen_bitmap |= 1 << bit;
#endif
382
}
L
Linus Torvalds 已提交
383

A
Akinobu Mita 已提交
384
static bool low_pfn(unsigned long pfn)
L
Linus Torvalds 已提交
385
{
A
Akinobu Mita 已提交
386 387
	return pfn < max_low_pfn;
}
388

A
Akinobu Mita 已提交
389 390
static void dump_pagetable(unsigned long address)
{
391
	pgd_t *base = __va(read_cr3_pa());
A
Akinobu Mita 已提交
392
	pgd_t *pgd = &base[pgd_index(address)];
393 394
	p4d_t *p4d;
	pud_t *pud;
A
Akinobu Mita 已提交
395 396
	pmd_t *pmd;
	pte_t *pte;
I
Ingo Molnar 已提交
397

398
#ifdef CONFIG_X86_PAE
399
	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
A
Akinobu Mita 已提交
400 401
	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
		goto out;
402 403 404
#define pr_pde pr_cont
#else
#define pr_pde pr_info
405
#endif
406 407 408
	p4d = p4d_offset(pgd, address);
	pud = pud_offset(p4d, address);
	pmd = pmd_offset(pud, address);
409 410
	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
#undef pr_pde
411 412 413 414 415

	/*
	 * We must not directly access the pte in the highpte
	 * case if the page table is located in highmem.
	 * And let's rather not kmap-atomic the pte, just in case
I
Ingo Molnar 已提交
416
	 * it's allocated already:
417
	 */
A
Akinobu Mita 已提交
418 419
	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
		goto out;
420

A
Akinobu Mita 已提交
421
	pte = pte_offset_kernel(pmd, address);
422
	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
A
Akinobu Mita 已提交
423
out:
424
	pr_cont("\n");
425 426 427 428 429 430
}

#else /* CONFIG_X86_64: */

void vmalloc_sync_all(void)
{
431
	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
432 433 434 435 436 437 438
}

/*
 * 64-bit:
 *
 *   Handle a fault on the vmalloc area
 */
439
static noinline int vmalloc_fault(unsigned long address)
440 441
{
	pgd_t *pgd, *pgd_ref;
442
	p4d_t *p4d, *p4d_ref;
443 444 445 446 447 448 449 450
	pud_t *pud, *pud_ref;
	pmd_t *pmd, *pmd_ref;
	pte_t *pte, *pte_ref;

	/* Make sure we are in vmalloc area: */
	if (!(address >= VMALLOC_START && address < VMALLOC_END))
		return -1;

451 452
	WARN_ON_ONCE(in_nmi());

453 454 455 456 457
	/*
	 * Copy kernel mappings over when needed. This can also
	 * happen within a race in page table update. In the later
	 * case just flush:
	 */
458
	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
459 460 461 462
	pgd_ref = pgd_offset_k(address);
	if (pgd_none(*pgd_ref))
		return -1;

463
	if (pgd_none(*pgd)) {
464
		set_pgd(pgd, *pgd_ref);
465
		arch_flush_lazy_mmu_mode();
466 467 468 469 470 471 472 473
	} else if (CONFIG_PGTABLE_LEVELS > 4) {
		/*
		 * With folded p4d, pgd_none() is always false, so the pgd may
		 * point to an empty page table entry and pgd_page_vaddr()
		 * will return garbage.
		 *
		 * We will do the correct sanity check on the p4d level.
		 */
474
		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
475
	}
476

477 478 479 480 481 482 483 484 485 486 487 488 489
	/* With 4-level paging, copying happens on the p4d level. */
	p4d = p4d_offset(pgd, address);
	p4d_ref = p4d_offset(pgd_ref, address);
	if (p4d_none(*p4d_ref))
		return -1;

	if (p4d_none(*p4d)) {
		set_p4d(p4d, *p4d_ref);
		arch_flush_lazy_mmu_mode();
	} else {
		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_ref));
	}

490 491 492 493 494
	/*
	 * Below here mismatches are bugs because these lower tables
	 * are shared:
	 */

495 496
	pud = pud_offset(p4d, address);
	pud_ref = pud_offset(p4d_ref, address);
497 498 499
	if (pud_none(*pud_ref))
		return -1;

500
	if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
501 502
		BUG();

503 504 505
	if (pud_huge(*pud))
		return 0;

506 507 508 509 510
	pmd = pmd_offset(pud, address);
	pmd_ref = pmd_offset(pud_ref, address);
	if (pmd_none(*pmd_ref))
		return -1;

511
	if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
512 513
		BUG();

514 515 516
	if (pmd_huge(*pmd))
		return 0;

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
	pte_ref = pte_offset_kernel(pmd_ref, address);
	if (!pte_present(*pte_ref))
		return -1;

	pte = pte_offset_kernel(pmd, address);

	/*
	 * Don't use pte_page here, because the mappings can point
	 * outside mem_map, and the NUMA hash lookup cannot handle
	 * that:
	 */
	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
		BUG();

	return 0;
}
533
NOKPROBE_SYMBOL(vmalloc_fault);
534

535
#ifdef CONFIG_CPU_SUP_AMD
536
static const char errata93_warning[] =
537 538 539 540 541
KERN_ERR 
"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
"******* Working around it, but it may cause SEGVs or burn power.\n"
"******* Please consider a BIOS update.\n"
"******* Disabling USB legacy in the BIOS may also help.\n";
542
#endif
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561

/*
 * No vm86 mode in 64-bit mode:
 */
static inline void
check_v8086_mode(struct pt_regs *regs, unsigned long address,
		 struct task_struct *tsk)
{
}

static int bad_address(void *p)
{
	unsigned long dummy;

	return probe_kernel_address((unsigned long *)p, dummy);
}

static void dump_pagetable(unsigned long address)
{
562
	pgd_t *base = __va(read_cr3_pa());
A
Akinobu Mita 已提交
563
	pgd_t *pgd = base + pgd_index(address);
564
	p4d_t *p4d;
L
Linus Torvalds 已提交
565 566 567 568
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

I
Ingo Molnar 已提交
569 570 571
	if (bad_address(pgd))
		goto bad;

572
	pr_info("PGD %lx ", pgd_val(*pgd));
I
Ingo Molnar 已提交
573 574 575

	if (!pgd_present(*pgd))
		goto out;
L
Linus Torvalds 已提交
576

577 578 579 580
	p4d = p4d_offset(pgd, address);
	if (bad_address(p4d))
		goto bad;

581
	pr_cont("P4D %lx ", p4d_val(*p4d));
582 583 584 585
	if (!p4d_present(*p4d) || p4d_large(*p4d))
		goto out;

	pud = pud_offset(p4d, address);
I
Ingo Molnar 已提交
586 587 588
	if (bad_address(pud))
		goto bad;

589
	pr_cont("PUD %lx ", pud_val(*pud));
590
	if (!pud_present(*pud) || pud_large(*pud))
I
Ingo Molnar 已提交
591
		goto out;
L
Linus Torvalds 已提交
592 593

	pmd = pmd_offset(pud, address);
I
Ingo Molnar 已提交
594 595 596
	if (bad_address(pmd))
		goto bad;

597
	pr_cont("PMD %lx ", pmd_val(*pmd));
I
Ingo Molnar 已提交
598 599
	if (!pmd_present(*pmd) || pmd_large(*pmd))
		goto out;
L
Linus Torvalds 已提交
600 601

	pte = pte_offset_kernel(pmd, address);
I
Ingo Molnar 已提交
602 603 604
	if (bad_address(pte))
		goto bad;

605
	pr_cont("PTE %lx", pte_val(*pte));
I
Ingo Molnar 已提交
606
out:
607
	pr_cont("\n");
L
Linus Torvalds 已提交
608 609
	return;
bad:
610
	pr_info("BAD\n");
611 612
}

613
#endif /* CONFIG_X86_64 */
L
Linus Torvalds 已提交
614

I
Ingo Molnar 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627
/*
 * Workaround for K8 erratum #93 & buggy BIOS.
 *
 * BIOS SMM functions are required to use a specific workaround
 * to avoid corruption of the 64bit RIP register on C stepping K8.
 *
 * A lot of BIOS that didn't get tested properly miss this.
 *
 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 * Try to work around it here.
 *
 * Note we only handle faults in kernel here.
 * Does nothing on 32-bit.
628
 */
629
static int is_errata93(struct pt_regs *regs, unsigned long address)
L
Linus Torvalds 已提交
630
{
631 632 633 634 635
#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
	    || boot_cpu_data.x86 != 0xf)
		return 0;

636
	if (address != regs->ip)
L
Linus Torvalds 已提交
637
		return 0;
I
Ingo Molnar 已提交
638

639
	if ((address >> 32) != 0)
L
Linus Torvalds 已提交
640
		return 0;
I
Ingo Molnar 已提交
641

L
Linus Torvalds 已提交
642
	address |= 0xffffffffUL << 32;
643 644
	if ((address >= (u64)_stext && address <= (u64)_etext) ||
	    (address >= MODULES_VADDR && address <= MODULES_END)) {
645
		printk_once(errata93_warning);
646
		regs->ip = address;
L
Linus Torvalds 已提交
647 648
		return 1;
	}
649
#endif
L
Linus Torvalds 已提交
650
	return 0;
651
}
L
Linus Torvalds 已提交
652

653
/*
I
Ingo Molnar 已提交
654 655 656 657 658
 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 * to illegal addresses >4GB.
 *
 * We catch this in the page fault handler because these addresses
 * are not reachable. Just detect this case and return.  Any code
659 660 661 662 663
 * segment in LDT is compatibility mode.
 */
static int is_errata100(struct pt_regs *regs, unsigned long address)
{
#ifdef CONFIG_X86_64
I
Ingo Molnar 已提交
664
	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
665 666 667 668 669
		return 1;
#endif
	return 0;
}

670 671 672 673
static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
{
#ifdef CONFIG_X86_F00F_BUG
	unsigned long nr;
I
Ingo Molnar 已提交
674

675
	/*
I
Ingo Molnar 已提交
676
	 * Pentium F0 0F C7 C8 bug workaround:
677
	 */
678
	if (boot_cpu_has_bug(X86_BUG_F00F)) {
679 680 681 682 683 684 685 686 687 688 689
		nr = (address - idt_descr.address) >> 3;

		if (nr == 6) {
			do_invalid_op(regs, 0);
			return 1;
		}
	}
#endif
	return 0;
}

690 691
static const char nx_warning[] = KERN_CRIT
"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
692 693
static const char smep_warning[] = KERN_CRIT
"unable to execute userspace code (SMEP?) (uid: %d)\n";
694

I
Ingo Molnar 已提交
695 696 697
static void
show_fault_oops(struct pt_regs *regs, unsigned long error_code,
		unsigned long address)
698
{
699 700 701 702
	if (!oops_may_print())
		return;

	if (error_code & PF_INSTR) {
703
		unsigned int level;
704 705
		pgd_t *pgd;
		pte_t *pte;
I
Ingo Molnar 已提交
706

707
		pgd = __va(read_cr3_pa());
708 709 710
		pgd += pgd_index(address);

		pte = lookup_address_in_pgd(pgd, address, &level);
711

712
		if (pte && pte_present(*pte) && !pte_exec(*pte))
713
			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
714 715
		if (pte && pte_present(*pte) && pte_exec(*pte) &&
				(pgd_flags(*pgd) & _PAGE_USER) &&
716
				(__read_cr4() & X86_CR4_SMEP))
717
			printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
718 719
	}

720
	printk(KERN_ALERT "BUG: unable to handle kernel ");
721
	if (address < PAGE_SIZE)
722
		printk(KERN_CONT "NULL pointer dereference");
723
	else
724
		printk(KERN_CONT "paging request");
I
Ingo Molnar 已提交
725

726
	printk(KERN_CONT " at %p\n", (void *) address);
727
	printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
I
Ingo Molnar 已提交
728

729 730 731
	dump_pagetable(address);
}

I
Ingo Molnar 已提交
732 733 734
static noinline void
pgtable_bad(struct pt_regs *regs, unsigned long error_code,
	    unsigned long address)
L
Linus Torvalds 已提交
735
{
I
Ingo Molnar 已提交
736 737 738 739 740 741 742
	struct task_struct *tsk;
	unsigned long flags;
	int sig;

	flags = oops_begin();
	tsk = current;
	sig = SIGKILL;
743

L
Linus Torvalds 已提交
744
	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
745
	       tsk->comm, address);
L
Linus Torvalds 已提交
746
	dump_pagetable(address);
I
Ingo Molnar 已提交
747 748

	tsk->thread.cr2		= address;
749
	tsk->thread.trap_nr	= X86_TRAP_PF;
I
Ingo Molnar 已提交
750 751
	tsk->thread.error_code	= error_code;

752
	if (__die("Bad pagetable", regs, error_code))
753
		sig = 0;
I
Ingo Molnar 已提交
754

755
	oops_end(flags, regs, sig);
L
Linus Torvalds 已提交
756 757
}

I
Ingo Molnar 已提交
758 759
static noinline void
no_context(struct pt_regs *regs, unsigned long error_code,
760
	   unsigned long address, int signal, int si_code)
761 762 763 764
{
	struct task_struct *tsk = current;
	unsigned long flags;
	int sig;
765 766
	/* No context means no VMA to pass down */
	struct vm_area_struct *vma = NULL;
767

I
Ingo Molnar 已提交
768
	/* Are we prepared to handle this kernel fault? */
769
	if (fixup_exception(regs, X86_TRAP_PF)) {
770 771 772 773 774 775 776 777 778 779 780 781 782 783
		/*
		 * Any interrupt that takes a fault gets the fixup. This makes
		 * the below recursive fault logic only apply to a faults from
		 * task context.
		 */
		if (in_interrupt())
			return;

		/*
		 * Per the above we're !in_interrupt(), aka. task context.
		 *
		 * In this case we need to make sure we're not recursively
		 * faulting through the emulate_vsyscall() logic.
		 */
784
		if (current->thread.sig_on_uaccess_err && signal) {
785
			tsk->thread.trap_nr = X86_TRAP_PF;
786 787 788 789
			tsk->thread.error_code = error_code | PF_USER;
			tsk->thread.cr2 = address;

			/* XXX: hwpoison faults will set the wrong code. */
790 791
			force_sig_info_fault(signal, si_code, address,
					     tsk, vma, 0);
792
		}
793 794 795 796

		/*
		 * Barring that, we can do the fixup and be happy.
		 */
797
		return;
798
	}
799

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
#ifdef CONFIG_VMAP_STACK
	/*
	 * Stack overflow?  During boot, we can fault near the initial
	 * stack in the direct map, but that's not an overflow -- check
	 * that we're in vmalloc space to avoid this.
	 */
	if (is_vmalloc_addr((void *)address) &&
	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
		register void *__sp asm("rsp");
		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
		/*
		 * We're likely to be running with very little stack space
		 * left.  It's plausible that we'd hit this condition but
		 * double-fault even before we get this far, in which case
		 * we're fine: the double-fault handler will deal with it.
		 *
		 * We don't want to make it all the way into the oops code
		 * and then double-fault, though, because we're likely to
		 * break the console driver and lose most of the stack dump.
		 */
		asm volatile ("movq %[stack], %%rsp\n\t"
			      "call handle_stack_overflow\n\t"
			      "1: jmp 1b"
			      : "+r" (__sp)
			      : "D" ("kernel stack overflow (page fault)"),
				"S" (regs), "d" (address),
				[stack] "rm" (stack));
		unreachable();
	}
#endif

832
	/*
I
Ingo Molnar 已提交
833 834 835 836 837 838 839
	 * 32-bit:
	 *
	 *   Valid to do another page fault here, because if this fault
	 *   had been triggered by is_prefetch fixup_exception would have
	 *   handled it.
	 *
	 * 64-bit:
840
	 *
I
Ingo Molnar 已提交
841
	 *   Hall of shame of CPU/BIOS bugs.
842 843 844 845 846 847 848 849 850
	 */
	if (is_prefetch(regs, error_code, address))
		return;

	if (is_errata93(regs, address))
		return;

	/*
	 * Oops. The kernel tried to access some bad page. We'll have to
I
Ingo Molnar 已提交
851
	 * terminate things with extreme prejudice:
852 853 854 855 856
	 */
	flags = oops_begin();

	show_fault_oops(regs, error_code, address);

857
	if (task_stack_end_corrupted(tsk))
858
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
859

860
	tsk->thread.cr2		= address;
861
	tsk->thread.trap_nr	= X86_TRAP_PF;
862
	tsk->thread.error_code	= error_code;
863 864 865 866

	sig = SIGKILL;
	if (__die("Oops", regs, error_code))
		sig = 0;
I
Ingo Molnar 已提交
867

868
	/* Executive summary in case the body of the oops scrolled away */
869
	printk(KERN_DEFAULT "CR2: %016lx\n", address);
I
Ingo Molnar 已提交
870

871 872 873
	oops_end(flags, regs, sig);
}

I
Ingo Molnar 已提交
874 875 876 877 878 879 880 881 882 883 884 885 886 887
/*
 * Print out info about fatal segfaults, if the show_unhandled_signals
 * sysctl is set:
 */
static inline void
show_signal_msg(struct pt_regs *regs, unsigned long error_code,
		unsigned long address, struct task_struct *tsk)
{
	if (!unhandled_signal(tsk, SIGSEGV))
		return;

	if (!printk_ratelimit())
		return;

888
	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
I
Ingo Molnar 已提交
889 890 891 892 893 894 895 896 897 898 899
		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
		tsk->comm, task_pid_nr(tsk), address,
		(void *)regs->ip, (void *)regs->sp, error_code);

	print_vma_addr(KERN_CONT " in ", regs->ip);

	printk(KERN_CONT "\n");
}

static void
__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
900 901
		       unsigned long address, struct vm_area_struct *vma,
		       int si_code)
902 903 904 905 906 907
{
	struct task_struct *tsk = current;

	/* User mode accesses just cause a SIGSEGV */
	if (error_code & PF_USER) {
		/*
I
Ingo Molnar 已提交
908
		 * It's possible to have interrupts off here:
909 910 911 912 913
		 */
		local_irq_enable();

		/*
		 * Valid to do another page fault here because this one came
I
Ingo Molnar 已提交
914
		 * from user space:
915 916 917 918 919 920 921
		 */
		if (is_prefetch(regs, error_code, address))
			return;

		if (is_errata100(regs, address))
			return;

922 923 924 925 926 927
#ifdef CONFIG_X86_64
		/*
		 * Instruction fetch faults in the vsyscall page might need
		 * emulation.
		 */
		if (unlikely((error_code & PF_INSTR) &&
928
			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
929 930 931 932
			if (emulate_vsyscall(regs, address))
				return;
		}
#endif
933 934 935 936 937 938 939

		/*
		 * To avoid leaking information about the kernel page table
		 * layout, pretend that user-mode accesses to kernel addresses
		 * are always protection faults.
		 */
		if (address >= TASK_SIZE_MAX)
940
			error_code |= PF_PROT;
941

942
		if (likely(show_unhandled_signals))
I
Ingo Molnar 已提交
943 944 945
			show_signal_msg(regs, error_code, address, tsk);

		tsk->thread.cr2		= address;
946
		tsk->thread.error_code	= error_code;
947
		tsk->thread.trap_nr	= X86_TRAP_PF;
948

949
		force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0);
I
Ingo Molnar 已提交
950

951 952 953 954 955 956
		return;
	}

	if (is_f00f_bug(regs, address))
		return;

957
	no_context(regs, error_code, address, SIGSEGV, si_code);
958 959
}

I
Ingo Molnar 已提交
960 961
static noinline void
bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
962
		     unsigned long address, struct vm_area_struct *vma)
963
{
964
	__bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR);
965 966
}

I
Ingo Molnar 已提交
967 968
static void
__bad_area(struct pt_regs *regs, unsigned long error_code,
969
	   unsigned long address,  struct vm_area_struct *vma, int si_code)
970 971 972 973 974 975 976 977 978
{
	struct mm_struct *mm = current->mm;

	/*
	 * Something tried to access memory that isn't in our memory map..
	 * Fix it, but check if it's kernel or user first..
	 */
	up_read(&mm->mmap_sem);

979
	__bad_area_nosemaphore(regs, error_code, address, vma, si_code);
980 981
}

I
Ingo Molnar 已提交
982 983
static noinline void
bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
984
{
985
	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
986 987
}

988 989 990
static inline bool bad_area_access_from_pkeys(unsigned long error_code,
		struct vm_area_struct *vma)
{
991 992 993
	/* This code is always called on the current mm */
	bool foreign = false;

994 995 996 997
	if (!boot_cpu_has(X86_FEATURE_OSPKE))
		return false;
	if (error_code & PF_PK)
		return true;
998
	/* this checks permission keys on the VMA: */
999 1000
	if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
				(error_code & PF_INSTR), foreign))
1001
		return true;
1002
	return false;
1003 1004
}

I
Ingo Molnar 已提交
1005 1006
static noinline void
bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
1007
		      unsigned long address, struct vm_area_struct *vma)
1008
{
1009 1010 1011 1012 1013
	/*
	 * This OSPKE check is not strictly necessary at runtime.
	 * But, doing it this way allows compiler optimizations
	 * if pkeys are compiled out.
	 */
1014
	if (bad_area_access_from_pkeys(error_code, vma))
1015 1016 1017
		__bad_area(regs, error_code, address, vma, SEGV_PKUERR);
	else
		__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
1018 1019
}

I
Ingo Molnar 已提交
1020
static void
1021
do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
1022
	  struct vm_area_struct *vma, unsigned int fault)
1023 1024
{
	struct task_struct *tsk = current;
1025
	int code = BUS_ADRERR;
1026

I
Ingo Molnar 已提交
1027
	/* Kernel mode? Handle exceptions or die: */
1028
	if (!(error_code & PF_USER)) {
1029
		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1030 1031
		return;
	}
I
Ingo Molnar 已提交
1032

1033
	/* User-space => ok to do another page fault: */
1034 1035
	if (is_prefetch(regs, error_code, address))
		return;
I
Ingo Molnar 已提交
1036 1037 1038

	tsk->thread.cr2		= address;
	tsk->thread.error_code	= error_code;
1039
	tsk->thread.trap_nr	= X86_TRAP_PF;
I
Ingo Molnar 已提交
1040

1041
#ifdef CONFIG_MEMORY_FAILURE
1042
	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1043 1044 1045 1046 1047 1048
		printk(KERN_ERR
	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
			tsk->comm, tsk->pid, address);
		code = BUS_MCEERR_AR;
	}
#endif
1049
	force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault);
1050 1051
}

1052
static noinline void
I
Ingo Molnar 已提交
1053
mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1054 1055
	       unsigned long address, struct vm_area_struct *vma,
	       unsigned int fault)
1056
{
1057 1058 1059
	if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
		no_context(regs, error_code, address, 0, 0);
		return;
1060 1061
	}

I
Ingo Molnar 已提交
1062
	if (fault & VM_FAULT_OOM) {
1063 1064
		/* Kernel mode? Handle exceptions or die: */
		if (!(error_code & PF_USER)) {
1065 1066
			no_context(regs, error_code, address,
				   SIGSEGV, SEGV_MAPERR);
1067
			return;
1068 1069
		}

1070 1071 1072 1073 1074 1075
		/*
		 * We ran out of memory, call the OOM killer, and return the
		 * userspace (which will retry the fault, or kill us if we got
		 * oom-killed):
		 */
		pagefault_out_of_memory();
I
Ingo Molnar 已提交
1076
	} else {
1077 1078
		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
			     VM_FAULT_HWPOISON_LARGE))
1079
			do_sigbus(regs, error_code, address, vma, fault);
1080
		else if (fault & VM_FAULT_SIGSEGV)
1081
			bad_area_nosemaphore(regs, error_code, address, vma);
I
Ingo Molnar 已提交
1082 1083 1084
		else
			BUG();
	}
1085 1086
}

1087 1088 1089 1090
static int spurious_fault_check(unsigned long error_code, pte_t *pte)
{
	if ((error_code & PF_WRITE) && !pte_write(*pte))
		return 0;
I
Ingo Molnar 已提交
1091

1092 1093
	if ((error_code & PF_INSTR) && !pte_exec(*pte))
		return 0;
1094 1095 1096 1097 1098 1099
	/*
	 * Note: We do not do lazy flushing on protection key
	 * changes, so no spurious fault will ever set PF_PK.
	 */
	if ((error_code & PF_PK))
		return 1;
1100 1101 1102 1103

	return 1;
}

1104
/*
I
Ingo Molnar 已提交
1105 1106 1107 1108 1109 1110 1111 1112
 * Handle a spurious fault caused by a stale TLB entry.
 *
 * This allows us to lazily refresh the TLB when increasing the
 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 * eagerly is very expensive since that implies doing a full
 * cross-processor TLB flush, even if no stale TLB entries exist
 * on other processors.
 *
1113 1114 1115 1116
 * Spurious faults may only occur if the TLB contains an entry with
 * fewer permission than the page table entry.  Non-present (P = 0)
 * and reserved bit (R = 1) faults are never spurious.
 *
1117 1118
 * There are no security implications to leaving a stale TLB when
 * increasing the permissions on a page.
1119 1120 1121 1122 1123
 *
 * Returns non-zero if a spurious fault was handled, zero otherwise.
 *
 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
 * (Optional Invalidation).
1124
 */
1125
static noinline int
I
Ingo Molnar 已提交
1126
spurious_fault(unsigned long error_code, unsigned long address)
1127 1128
{
	pgd_t *pgd;
1129
	p4d_t *p4d;
1130 1131 1132
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
1133
	int ret;
1134

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	/*
	 * Only writes to RO or instruction fetches from NX may cause
	 * spurious faults.
	 *
	 * These could be from user or supervisor accesses but the TLB
	 * is only lazily flushed after a kernel mapping protection
	 * change, so user accesses are not expected to cause spurious
	 * faults.
	 */
	if (error_code != (PF_WRITE | PF_PROT)
	    && error_code != (PF_INSTR | PF_PROT))
1146 1147 1148 1149 1150 1151
		return 0;

	pgd = init_mm.pgd + pgd_index(address);
	if (!pgd_present(*pgd))
		return 0;

1152 1153 1154 1155 1156 1157 1158 1159
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return 0;

	if (p4d_large(*p4d))
		return spurious_fault_check(error_code, (pte_t *) p4d);

	pud = pud_offset(p4d, address);
1160 1161 1162
	if (!pud_present(*pud))
		return 0;

1163 1164 1165
	if (pud_large(*pud))
		return spurious_fault_check(error_code, (pte_t *) pud);

1166 1167 1168 1169
	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;

1170 1171 1172
	if (pmd_large(*pmd))
		return spurious_fault_check(error_code, (pte_t *) pmd);

1173
	pte = pte_offset_kernel(pmd, address);
1174
	if (!pte_present(*pte))
1175 1176
		return 0;

1177 1178 1179 1180 1181
	ret = spurious_fault_check(error_code, pte);
	if (!ret)
		return 0;

	/*
I
Ingo Molnar 已提交
1182 1183
	 * Make sure we have permissions in PMD.
	 * If not, then there's a bug in the page tables:
1184 1185 1186
	 */
	ret = spurious_fault_check(error_code, (pte_t *) pmd);
	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
I
Ingo Molnar 已提交
1187

1188
	return ret;
1189
}
1190
NOKPROBE_SYMBOL(spurious_fault);
1191

1192
int show_unhandled_signals = 1;
L
Linus Torvalds 已提交
1193

I
Ingo Molnar 已提交
1194
static inline int
M
Michel Lespinasse 已提交
1195
access_error(unsigned long error_code, struct vm_area_struct *vma)
1196
{
1197 1198
	/* This is only called for the current mm, so: */
	bool foreign = false;
1199 1200 1201 1202 1203 1204 1205 1206 1207

	/*
	 * Read or write was blocked by protection keys.  This is
	 * always an unconditional error and can never result in
	 * a follow-up action to resolve the fault, like a COW.
	 */
	if (error_code & PF_PK)
		return 1;

1208 1209 1210 1211 1212
	/*
	 * Make sure to check the VMA so that we do not perform
	 * faults just to hit a PF_PK as soon as we fill in a
	 * page.
	 */
1213 1214
	if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
				(error_code & PF_INSTR), foreign))
1215
		return 1;
1216

M
Michel Lespinasse 已提交
1217
	if (error_code & PF_WRITE) {
I
Ingo Molnar 已提交
1218
		/* write, present and write, not present: */
1219 1220
		if (unlikely(!(vma->vm_flags & VM_WRITE)))
			return 1;
I
Ingo Molnar 已提交
1221
		return 0;
1222 1223
	}

I
Ingo Molnar 已提交
1224 1225 1226 1227 1228 1229 1230 1231
	/* read, present: */
	if (unlikely(error_code & PF_PROT))
		return 1;

	/* read, not present: */
	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
		return 1;

1232 1233 1234
	return 0;
}

1235 1236
static int fault_in_kernel_space(unsigned long address)
{
1237
	return address >= TASK_SIZE_MAX;
1238 1239
}

1240 1241
static inline bool smap_violation(int error_code, struct pt_regs *regs)
{
1242 1243 1244 1245 1246 1247
	if (!IS_ENABLED(CONFIG_X86_SMAP))
		return false;

	if (!static_cpu_has(X86_FEATURE_SMAP))
		return false;

1248 1249 1250
	if (error_code & PF_USER)
		return false;

1251
	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1252 1253 1254 1255 1256
		return false;

	return true;
}

L
Linus Torvalds 已提交
1257 1258 1259 1260 1261
/*
 * This routine handles page faults.  It determines the address,
 * and the problem, and then passes it off to one of the appropriate
 * routines.
 */
1262
static noinline void
1263 1264
__do_page_fault(struct pt_regs *regs, unsigned long error_code,
		unsigned long address)
L
Linus Torvalds 已提交
1265
{
I
Ingo Molnar 已提交
1266
	struct vm_area_struct *vma;
L
Linus Torvalds 已提交
1267 1268
	struct task_struct *tsk;
	struct mm_struct *mm;
1269
	int fault, major = 0;
1270
	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
L
Linus Torvalds 已提交
1271

1272 1273
	tsk = current;
	mm = tsk->mm;
I
Ingo Molnar 已提交
1274

V
Vegard Nossum 已提交
1275 1276 1277 1278 1279 1280
	/*
	 * Detect and handle instructions that would cause a page fault for
	 * both a tracked kernel page and a userspace page.
	 */
	if (kmemcheck_active(regs))
		kmemcheck_hide(regs);
1281
	prefetchw(&mm->mmap_sem);
V
Vegard Nossum 已提交
1282

1283
	if (unlikely(kmmio_fault(regs, address)))
1284
		return;
L
Linus Torvalds 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

	/*
	 * We fault-in kernel-space virtual memory on-demand. The
	 * 'reference' page table is init_mm.pgd.
	 *
	 * NOTE! We MUST NOT take any locks for this case. We may
	 * be in an interrupt or a critical region, and should
	 * only copy the information from the master page table,
	 * nothing more.
	 *
	 * This verifies that the fault happens in kernel space
	 * (error_code & 4) == 0, and that the fault was not a
1297
	 * protection error (error_code & 9) == 0.
L
Linus Torvalds 已提交
1298
	 */
1299
	if (unlikely(fault_in_kernel_space(address))) {
V
Vegard Nossum 已提交
1300 1301 1302 1303 1304 1305 1306
		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
			if (vmalloc_fault(address) >= 0)
				return;

			if (kmemcheck_fault(regs, address, error_code))
				return;
		}
1307

I
Ingo Molnar 已提交
1308
		/* Can handle a stale RO->RW TLB: */
1309
		if (spurious_fault(error_code, address))
1310 1311
			return;

I
Ingo Molnar 已提交
1312
		/* kprobes don't want to hook the spurious faults: */
1313
		if (kprobes_fault(regs))
1314
			return;
1315 1316
		/*
		 * Don't take the mm semaphore here. If we fixup a prefetch
I
Ingo Molnar 已提交
1317
		 * fault we could otherwise deadlock:
1318
		 */
1319
		bad_area_nosemaphore(regs, error_code, address, NULL);
I
Ingo Molnar 已提交
1320

1321
		return;
1322 1323
	}

I
Ingo Molnar 已提交
1324
	/* kprobes don't want to hook the spurious faults: */
1325
	if (unlikely(kprobes_fault(regs)))
1326
		return;
1327

1328
	if (unlikely(error_code & PF_RSVD))
1329
		pgtable_bad(regs, error_code, address);
L
Linus Torvalds 已提交
1330

1331
	if (unlikely(smap_violation(error_code, regs))) {
1332
		bad_area_nosemaphore(regs, error_code, address, NULL);
1333
		return;
1334 1335
	}

L
Linus Torvalds 已提交
1336
	/*
I
Ingo Molnar 已提交
1337
	 * If we're in an interrupt, have no user context or are running
1338
	 * in a region with pagefaults disabled then we must not take the fault
L
Linus Torvalds 已提交
1339
	 */
1340
	if (unlikely(faulthandler_disabled() || !mm)) {
1341
		bad_area_nosemaphore(regs, error_code, address, NULL);
1342 1343
		return;
	}
L
Linus Torvalds 已提交
1344

1345 1346 1347 1348 1349 1350 1351
	/*
	 * It's safe to allow irq's after cr2 has been saved and the
	 * vmalloc fault has been handled.
	 *
	 * User-mode registers count as a user access even for any
	 * potential system fault or CPU buglet:
	 */
1352
	if (user_mode(regs)) {
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
		local_irq_enable();
		error_code |= PF_USER;
		flags |= FAULT_FLAG_USER;
	} else {
		if (regs->flags & X86_EFLAGS_IF)
			local_irq_enable();
	}

	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);

1363 1364
	if (error_code & PF_WRITE)
		flags |= FAULT_FLAG_WRITE;
1365 1366
	if (error_code & PF_INSTR)
		flags |= FAULT_FLAG_INSTRUCTION;
1367

I
Ingo Molnar 已提交
1368 1369
	/*
	 * When running in the kernel we expect faults to occur only to
I
Ingo Molnar 已提交
1370 1371 1372 1373 1374 1375 1376
	 * addresses in user space.  All other faults represent errors in
	 * the kernel and should generate an OOPS.  Unfortunately, in the
	 * case of an erroneous fault occurring in a code path which already
	 * holds mmap_sem we will deadlock attempting to validate the fault
	 * against the address space.  Luckily the kernel only validly
	 * references user space from well defined areas of code, which are
	 * listed in the exceptions table.
L
Linus Torvalds 已提交
1377 1378
	 *
	 * As the vast majority of faults will be valid we will only perform
I
Ingo Molnar 已提交
1379 1380 1381 1382
	 * the source reference check when there is a possibility of a
	 * deadlock. Attempt to lock the address space, if we cannot we then
	 * validate the source. If this is invalid we can skip the address
	 * space check, thus avoiding the deadlock:
L
Linus Torvalds 已提交
1383
	 */
1384
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1385
		if ((error_code & PF_USER) == 0 &&
1386
		    !search_exception_tables(regs->ip)) {
1387
			bad_area_nosemaphore(regs, error_code, address, NULL);
1388 1389
			return;
		}
1390
retry:
L
Linus Torvalds 已提交
1391
		down_read(&mm->mmap_sem);
1392 1393
	} else {
		/*
I
Ingo Molnar 已提交
1394 1395 1396
		 * The above down_read_trylock() might have succeeded in
		 * which case we'll have missed the might_sleep() from
		 * down_read():
1397 1398
		 */
		might_sleep();
L
Linus Torvalds 已提交
1399 1400 1401
	}

	vma = find_vma(mm, address);
1402 1403 1404 1405 1406
	if (unlikely(!vma)) {
		bad_area(regs, error_code, address);
		return;
	}
	if (likely(vma->vm_start <= address))
L
Linus Torvalds 已提交
1407
		goto good_area;
1408 1409 1410 1411
	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
		bad_area(regs, error_code, address);
		return;
	}
1412
	if (error_code & PF_USER) {
1413 1414 1415
		/*
		 * Accessing the stack below %sp is always a bug.
		 * The large cushion allows instructions like enter
I
Ingo Molnar 已提交
1416
		 * and pusha to work. ("enter $65535, $31" pushes
1417
		 * 32 pointers and then decrements %sp by 65535.)
1418
		 */
1419 1420 1421 1422
		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
			bad_area(regs, error_code, address);
			return;
		}
L
Linus Torvalds 已提交
1423
	}
1424 1425 1426 1427 1428 1429 1430 1431 1432
	if (unlikely(expand_stack(vma, address))) {
		bad_area(regs, error_code, address);
		return;
	}

	/*
	 * Ok, we have a good vm_area for this memory access, so
	 * we can handle it..
	 */
L
Linus Torvalds 已提交
1433
good_area:
M
Michel Lespinasse 已提交
1434
	if (unlikely(access_error(error_code, vma))) {
1435
		bad_area_access_error(regs, error_code, address, vma);
1436
		return;
L
Linus Torvalds 已提交
1437 1438 1439 1440 1441
	}

	/*
	 * If for any reason at all we couldn't handle the fault,
	 * make sure we exit gracefully rather than endlessly redo
1442 1443
	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
L
Linus Torvalds 已提交
1444
	 */
1445
	fault = handle_mm_fault(vma, address, flags);
1446
	major |= fault & VM_FAULT_MAJOR;
I
Ingo Molnar 已提交
1447

1448
	/*
1449 1450 1451
	 * If we need to retry the mmap_sem has already been released,
	 * and if there is a fatal signal pending there is no guarantee
	 * that we made any progress. Handle this case first.
1452
	 */
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	if (unlikely(fault & VM_FAULT_RETRY)) {
		/* Retry at most once */
		if (flags & FAULT_FLAG_ALLOW_RETRY) {
			flags &= ~FAULT_FLAG_ALLOW_RETRY;
			flags |= FAULT_FLAG_TRIED;
			if (!fatal_signal_pending(tsk))
				goto retry;
		}

		/* User mode? Just return to handle the fatal exception */
1463
		if (flags & FAULT_FLAG_USER)
1464 1465 1466 1467
			return;

		/* Not returning to user mode? Handle exceptions or die: */
		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1468
		return;
1469
	}
1470

1471
	up_read(&mm->mmap_sem);
1472
	if (unlikely(fault & VM_FAULT_ERROR)) {
1473
		mm_fault_error(regs, error_code, address, vma, fault);
1474
		return;
1475 1476
	}

1477
	/*
1478 1479
	 * Major/minor page fault accounting. If any of the events
	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1480
	 */
1481 1482 1483 1484 1485 1486
	if (major) {
		tsk->maj_flt++;
		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
	} else {
		tsk->min_flt++;
		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1487
	}
1488

1489
	check_v8086_mode(regs, address, tsk);
L
Linus Torvalds 已提交
1490
}
1491
NOKPROBE_SYMBOL(__do_page_fault);
1492

1493 1494 1495
static nokprobe_inline void
trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
			 unsigned long error_code)
1496 1497
{
	if (user_mode(regs))
1498
		trace_page_fault_user(address, regs, error_code);
1499
	else
1500
		trace_page_fault_kernel(address, regs, error_code);
1501 1502
}

1503 1504 1505 1506 1507 1508 1509
/*
 * We must have this function blacklisted from kprobes, tagged with notrace
 * and call read_cr2() before calling anything else. To avoid calling any
 * kind of tracing machinery before we've observed the CR2 value.
 *
 * exception_{enter,exit}() contains all sorts of tracepoints.
 */
1510
dotraplinkage void notrace
1511
do_page_fault(struct pt_regs *regs, unsigned long error_code)
1512
{
1513
	unsigned long address = read_cr2(); /* Get the faulting address */
1514
	enum ctx_state prev_state;
1515 1516

	prev_state = exception_enter();
1517
	if (trace_pagefault_enabled())
1518 1519
		trace_page_fault_entries(address, regs, error_code);

1520
	__do_page_fault(regs, error_code, address);
1521 1522
	exception_exit(prev_state);
}
1523
NOKPROBE_SYMBOL(do_page_fault);