fault.c 37.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 *  Copyright (C) 1995  Linus Torvalds
I
Ingo Molnar 已提交
3
 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4
 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
L
Linus Torvalds 已提交
5
 */
6 7
#include <linux/sched.h>		/* test_thread_flag(), ...	*/
#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
8
#include <linux/extable.h>		/* search_exception_tables	*/
9
#include <linux/bootmem.h>		/* max_low_pfn			*/
10
#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
11
#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
12
#include <linux/perf_event.h>		/* perf_sw_event		*/
13
#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
14
#include <linux/prefetch.h>		/* prefetchw			*/
15
#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
16
#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
I
Ingo Molnar 已提交
17

18
#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
19 20
#include <asm/traps.h>			/* dotraplinkage, ...		*/
#include <asm/pgalloc.h>		/* pgd_*(), ...			*/
V
Vegard Nossum 已提交
21
#include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
22 23
#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
B
Brian Gerst 已提交
24
#include <asm/vm86.h>			/* struct vm86			*/
25
#include <asm/mmu_context.h>		/* vma_pkey()			*/
L
Linus Torvalds 已提交
26

27 28 29
#define CREATE_TRACE_POINTS
#include <asm/trace/exceptions.h>

30
/*
I
Ingo Molnar 已提交
31 32 33 34 35 36 37
 * Page fault error code bits:
 *
 *   bit 0 ==	 0: no page found	1: protection fault
 *   bit 1 ==	 0: read access		1: write access
 *   bit 2 ==	 0: kernel-mode access	1: user-mode access
 *   bit 3 ==				1: use of reserved bit detected
 *   bit 4 ==				1: fault was an instruction fetch
38
 *   bit 5 ==				1: protection keys block access
39
 */
I
Ingo Molnar 已提交
40 41 42 43 44 45 46
enum x86_pf_error_code {

	PF_PROT		=		1 << 0,
	PF_WRITE	=		1 << 1,
	PF_USER		=		1 << 2,
	PF_RSVD		=		1 << 3,
	PF_INSTR	=		1 << 4,
47
	PF_PK		=		1 << 5,
I
Ingo Molnar 已提交
48
};
49

50
/*
51 52
 * Returns 0 if mmiotrace is disabled, or if the fault is not
 * handled by mmiotrace:
53
 */
54
static nokprobe_inline int
55
kmmio_fault(struct pt_regs *regs, unsigned long addr)
56
{
57 58 59 60
	if (unlikely(is_kmmio_active()))
		if (kmmio_handler(regs, addr) == 1)
			return -1;
	return 0;
61 62
}

63
static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
64
{
65 66 67
	int ret = 0;

	/* kprobe_running() needs smp_processor_id() */
68
	if (kprobes_built_in() && !user_mode(regs)) {
69 70 71 72 73
		preempt_disable();
		if (kprobe_running() && kprobe_fault_handler(regs, 14))
			ret = 1;
		preempt_enable();
	}
74

75
	return ret;
76
}
77

78
/*
I
Ingo Molnar 已提交
79 80 81 82 83 84
 * Prefetch quirks:
 *
 * 32-bit mode:
 *
 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
 *   Check that here and ignore it.
85
 *
I
Ingo Molnar 已提交
86
 * 64-bit mode:
87
 *
I
Ingo Molnar 已提交
88 89 90 91
 *   Sometimes the CPU reports invalid exceptions on prefetch.
 *   Check that here and ignore it.
 *
 * Opcode checker based on code by Richard Brunner.
92
 */
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
static inline int
check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
		      unsigned char opcode, int *prefetch)
{
	unsigned char instr_hi = opcode & 0xf0;
	unsigned char instr_lo = opcode & 0x0f;

	switch (instr_hi) {
	case 0x20:
	case 0x30:
		/*
		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
		 * In X86_64 long mode, the CPU will signal invalid
		 * opcode if some of these prefixes are present so
		 * X86_64 will never get here anyway
		 */
		return ((instr_lo & 7) == 0x6);
#ifdef CONFIG_X86_64
	case 0x40:
		/*
		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
		 * Need to figure out under what instruction mode the
		 * instruction was issued. Could check the LDT for lm,
		 * but for now it's good enough to assume that long
		 * mode only uses well known segments or kernel.
		 */
119
		return (!user_mode(regs) || user_64bit_mode(regs));
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
#endif
	case 0x60:
		/* 0x64 thru 0x67 are valid prefixes in all modes. */
		return (instr_lo & 0xC) == 0x4;
	case 0xF0:
		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
		return !instr_lo || (instr_lo>>1) == 1;
	case 0x00:
		/* Prefetch instruction is 0x0F0D or 0x0F18 */
		if (probe_kernel_address(instr, opcode))
			return 0;

		*prefetch = (instr_lo == 0xF) &&
			(opcode == 0x0D || opcode == 0x18);
		return 0;
	default:
		return 0;
	}
}

I
Ingo Molnar 已提交
140 141
static int
is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
142
{
I
Ingo Molnar 已提交
143
	unsigned char *max_instr;
144
	unsigned char *instr;
145
	int prefetch = 0;
L
Linus Torvalds 已提交
146

I
Ingo Molnar 已提交
147 148 149 150
	/*
	 * If it was a exec (instruction fetch) fault on NX page, then
	 * do not ignore the fault:
	 */
151
	if (error_code & PF_INSTR)
L
Linus Torvalds 已提交
152
		return 0;
153

154
	instr = (void *)convert_ip_to_linear(current, regs);
155
	max_instr = instr + 15;
L
Linus Torvalds 已提交
156

157
	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
L
Linus Torvalds 已提交
158 159
		return 0;

160
	while (instr < max_instr) {
I
Ingo Molnar 已提交
161
		unsigned char opcode;
L
Linus Torvalds 已提交
162

163
		if (probe_kernel_address(instr, opcode))
164
			break;
L
Linus Torvalds 已提交
165 166 167

		instr++;

168
		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
L
Linus Torvalds 已提交
169 170 171 172 173
			break;
	}
	return prefetch;
}

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
/*
 * A protection key fault means that the PKRU value did not allow
 * access to some PTE.  Userspace can figure out what PKRU was
 * from the XSAVE state, and this function fills out a field in
 * siginfo so userspace can discover which protection key was set
 * on the PTE.
 *
 * If we get here, we know that the hardware signaled a PF_PK
 * fault and that there was a VMA once we got in the fault
 * handler.  It does *not* guarantee that the VMA we find here
 * was the one that we faulted on.
 *
 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 * 2. T1   : set PKRU to deny access to pkey=4, touches page
 * 3. T1   : faults...
 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 * 5. T1   : enters fault handler, takes mmap_sem, etc...
 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 *	     faulted on a pte with its pkey=4.
 */
static void fill_sig_info_pkey(int si_code, siginfo_t *info,
		struct vm_area_struct *vma)
{
	/* This is effectively an #ifdef */
	if (!boot_cpu_has(X86_FEATURE_OSPKE))
		return;

	/* Fault not from Protection Keys: nothing to do */
	if (si_code != SEGV_PKUERR)
		return;
	/*
	 * force_sig_info_fault() is called from a number of
	 * contexts, some of which have a VMA and some of which
	 * do not.  The PF_PK handing happens after we have a
	 * valid VMA, so we should never reach this without a
	 * valid VMA.
	 */
	if (!vma) {
		WARN_ONCE(1, "PKU fault with no VMA passed in");
		info->si_pkey = 0;
		return;
	}
	/*
	 * si_pkey should be thought of as a strong hint, but not
	 * absolutely guranteed to be 100% accurate because of
	 * the race explained above.
	 */
	info->si_pkey = vma_pkey(vma);
}

I
Ingo Molnar 已提交
224 225
static void
force_sig_info_fault(int si_signo, int si_code, unsigned long address,
226 227
		     struct task_struct *tsk, struct vm_area_struct *vma,
		     int fault)
228
{
229
	unsigned lsb = 0;
230 231
	siginfo_t info;

I
Ingo Molnar 已提交
232 233 234 235
	info.si_signo	= si_signo;
	info.si_errno	= 0;
	info.si_code	= si_code;
	info.si_addr	= (void __user *)address;
236 237 238 239 240
	if (fault & VM_FAULT_HWPOISON_LARGE)
		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 
	if (fault & VM_FAULT_HWPOISON)
		lsb = PAGE_SHIFT;
	info.si_addr_lsb = lsb;
I
Ingo Molnar 已提交
241

242 243
	fill_sig_info_pkey(si_code, &info, vma);

244 245 246
	force_sig_info(si_signo, &info, tsk);
}

247 248 249 250 251
DEFINE_SPINLOCK(pgd_lock);
LIST_HEAD(pgd_list);

#ifdef CONFIG_X86_32
static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
252
{
253 254 255 256
	unsigned index = pgd_index(address);
	pgd_t *pgd_k;
	pud_t *pud, *pud_k;
	pmd_t *pmd, *pmd_k;
I
Ingo Molnar 已提交
257

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
	pgd += index;
	pgd_k = init_mm.pgd + index;

	if (!pgd_present(*pgd_k))
		return NULL;

	/*
	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
	 * and redundant with the set_pmd() on non-PAE. As would
	 * set_pud.
	 */
	pud = pud_offset(pgd, address);
	pud_k = pud_offset(pgd_k, address);
	if (!pud_present(*pud_k))
		return NULL;

	pmd = pmd_offset(pud, address);
	pmd_k = pmd_offset(pud_k, address);
	if (!pmd_present(*pmd_k))
		return NULL;

279
	if (!pmd_present(*pmd))
280
		set_pmd(pmd, *pmd_k);
281
	else
282 283 284 285 286 287 288 289 290 291 292 293 294
		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));

	return pmd_k;
}

void vmalloc_sync_all(void)
{
	unsigned long address;

	if (SHARED_KERNEL_PMD)
		return;

	for (address = VMALLOC_START & PMD_MASK;
295
	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
296 297 298
	     address += PMD_SIZE) {
		struct page *page;

A
Andrea Arcangeli 已提交
299
		spin_lock(&pgd_lock);
300
		list_for_each_entry(page, &pgd_list, lru) {
301
			spinlock_t *pgt_lock;
302
			pmd_t *ret;
303

A
Andrea Arcangeli 已提交
304
			/* the pgt_lock only for Xen */
305 306 307 308 309 310 311
			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;

			spin_lock(pgt_lock);
			ret = vmalloc_sync_one(page_address(page), address);
			spin_unlock(pgt_lock);

			if (!ret)
312 313
				break;
		}
A
Andrea Arcangeli 已提交
314
		spin_unlock(&pgd_lock);
315 316 317 318 319 320 321 322
	}
}

/*
 * 32-bit:
 *
 *   Handle a fault on the vmalloc or module mapping area
 */
323
static noinline int vmalloc_fault(unsigned long address)
324 325 326 327 328 329 330 331 332
{
	unsigned long pgd_paddr;
	pmd_t *pmd_k;
	pte_t *pte_k;

	/* Make sure we are in vmalloc area: */
	if (!(address >= VMALLOC_START && address < VMALLOC_END))
		return -1;

333 334
	WARN_ON_ONCE(in_nmi());

335 336 337 338 339 340 341 342 343 344 345 346
	/*
	 * Synchronize this task's top level page-table
	 * with the 'reference' page table.
	 *
	 * Do _not_ use "current" here. We might be inside
	 * an interrupt in the middle of a task switch..
	 */
	pgd_paddr = read_cr3();
	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
	if (!pmd_k)
		return -1;

347 348 349
	if (pmd_huge(*pmd_k))
		return 0;

350 351 352 353 354 355
	pte_k = pte_offset_kernel(pmd_k, address);
	if (!pte_present(*pte_k))
		return -1;

	return 0;
}
356
NOKPROBE_SYMBOL(vmalloc_fault);
357 358 359 360 361 362 363 364

/*
 * Did it hit the DOS screen memory VA from vm86 mode?
 */
static inline void
check_v8086_mode(struct pt_regs *regs, unsigned long address,
		 struct task_struct *tsk)
{
365
#ifdef CONFIG_VM86
366 367
	unsigned long bit;

368
	if (!v8086_mode(regs) || !tsk->thread.vm86)
369 370 371 372
		return;

	bit = (address - 0xA0000) >> PAGE_SHIFT;
	if (bit < 32)
373 374
		tsk->thread.vm86->screen_bitmap |= 1 << bit;
#endif
375
}
L
Linus Torvalds 已提交
376

A
Akinobu Mita 已提交
377
static bool low_pfn(unsigned long pfn)
L
Linus Torvalds 已提交
378
{
A
Akinobu Mita 已提交
379 380
	return pfn < max_low_pfn;
}
381

A
Akinobu Mita 已提交
382 383 384 385 386 387
static void dump_pagetable(unsigned long address)
{
	pgd_t *base = __va(read_cr3());
	pgd_t *pgd = &base[pgd_index(address)];
	pmd_t *pmd;
	pte_t *pte;
I
Ingo Molnar 已提交
388

389
#ifdef CONFIG_X86_PAE
A
Akinobu Mita 已提交
390 391 392
	printk("*pdpt = %016Lx ", pgd_val(*pgd));
	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
		goto out;
393
#endif
A
Akinobu Mita 已提交
394 395
	pmd = pmd_offset(pud_offset(pgd, address), address);
	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
396 397 398 399 400

	/*
	 * We must not directly access the pte in the highpte
	 * case if the page table is located in highmem.
	 * And let's rather not kmap-atomic the pte, just in case
I
Ingo Molnar 已提交
401
	 * it's allocated already:
402
	 */
A
Akinobu Mita 已提交
403 404
	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
		goto out;
405

A
Akinobu Mita 已提交
406 407 408
	pte = pte_offset_kernel(pmd, address);
	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
out:
409
	printk("\n");
410 411 412 413 414 415
}

#else /* CONFIG_X86_64: */

void vmalloc_sync_all(void)
{
416
	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
417 418 419 420 421 422 423
}

/*
 * 64-bit:
 *
 *   Handle a fault on the vmalloc area
 */
424
static noinline int vmalloc_fault(unsigned long address)
425 426 427 428 429 430 431 432 433 434
{
	pgd_t *pgd, *pgd_ref;
	pud_t *pud, *pud_ref;
	pmd_t *pmd, *pmd_ref;
	pte_t *pte, *pte_ref;

	/* Make sure we are in vmalloc area: */
	if (!(address >= VMALLOC_START && address < VMALLOC_END))
		return -1;

435 436
	WARN_ON_ONCE(in_nmi());

437 438 439 440 441
	/*
	 * Copy kernel mappings over when needed. This can also
	 * happen within a race in page table update. In the later
	 * case just flush:
	 */
442
	pgd = (pgd_t *)__va(read_cr3()) + pgd_index(address);
443 444 445 446
	pgd_ref = pgd_offset_k(address);
	if (pgd_none(*pgd_ref))
		return -1;

447
	if (pgd_none(*pgd)) {
448
		set_pgd(pgd, *pgd_ref);
449 450
		arch_flush_lazy_mmu_mode();
	} else {
451
		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
452
	}
453 454 455 456 457 458 459 460 461 462 463

	/*
	 * Below here mismatches are bugs because these lower tables
	 * are shared:
	 */

	pud = pud_offset(pgd, address);
	pud_ref = pud_offset(pgd_ref, address);
	if (pud_none(*pud_ref))
		return -1;

464
	if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
465 466
		BUG();

467 468 469
	if (pud_huge(*pud))
		return 0;

470 471 472 473 474
	pmd = pmd_offset(pud, address);
	pmd_ref = pmd_offset(pud_ref, address);
	if (pmd_none(*pmd_ref))
		return -1;

475
	if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
476 477
		BUG();

478 479 480
	if (pmd_huge(*pmd))
		return 0;

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
	pte_ref = pte_offset_kernel(pmd_ref, address);
	if (!pte_present(*pte_ref))
		return -1;

	pte = pte_offset_kernel(pmd, address);

	/*
	 * Don't use pte_page here, because the mappings can point
	 * outside mem_map, and the NUMA hash lookup cannot handle
	 * that:
	 */
	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
		BUG();

	return 0;
}
497
NOKPROBE_SYMBOL(vmalloc_fault);
498

499
#ifdef CONFIG_CPU_SUP_AMD
500
static const char errata93_warning[] =
501 502 503 504 505
KERN_ERR 
"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
"******* Working around it, but it may cause SEGVs or burn power.\n"
"******* Please consider a BIOS update.\n"
"******* Disabling USB legacy in the BIOS may also help.\n";
506
#endif
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

/*
 * No vm86 mode in 64-bit mode:
 */
static inline void
check_v8086_mode(struct pt_regs *regs, unsigned long address,
		 struct task_struct *tsk)
{
}

static int bad_address(void *p)
{
	unsigned long dummy;

	return probe_kernel_address((unsigned long *)p, dummy);
}

static void dump_pagetable(unsigned long address)
{
A
Akinobu Mita 已提交
526 527
	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
	pgd_t *pgd = base + pgd_index(address);
L
Linus Torvalds 已提交
528 529 530 531
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

I
Ingo Molnar 已提交
532 533 534
	if (bad_address(pgd))
		goto bad;

535
	printk("PGD %lx ", pgd_val(*pgd));
I
Ingo Molnar 已提交
536 537 538

	if (!pgd_present(*pgd))
		goto out;
L
Linus Torvalds 已提交
539

540
	pud = pud_offset(pgd, address);
I
Ingo Molnar 已提交
541 542 543
	if (bad_address(pud))
		goto bad;

L
Linus Torvalds 已提交
544
	printk("PUD %lx ", pud_val(*pud));
545
	if (!pud_present(*pud) || pud_large(*pud))
I
Ingo Molnar 已提交
546
		goto out;
L
Linus Torvalds 已提交
547 548

	pmd = pmd_offset(pud, address);
I
Ingo Molnar 已提交
549 550 551
	if (bad_address(pmd))
		goto bad;

L
Linus Torvalds 已提交
552
	printk("PMD %lx ", pmd_val(*pmd));
I
Ingo Molnar 已提交
553 554
	if (!pmd_present(*pmd) || pmd_large(*pmd))
		goto out;
L
Linus Torvalds 已提交
555 556

	pte = pte_offset_kernel(pmd, address);
I
Ingo Molnar 已提交
557 558 559
	if (bad_address(pte))
		goto bad;

560
	printk("PTE %lx", pte_val(*pte));
I
Ingo Molnar 已提交
561
out:
L
Linus Torvalds 已提交
562 563 564 565
	printk("\n");
	return;
bad:
	printk("BAD\n");
566 567
}

568
#endif /* CONFIG_X86_64 */
L
Linus Torvalds 已提交
569

I
Ingo Molnar 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582
/*
 * Workaround for K8 erratum #93 & buggy BIOS.
 *
 * BIOS SMM functions are required to use a specific workaround
 * to avoid corruption of the 64bit RIP register on C stepping K8.
 *
 * A lot of BIOS that didn't get tested properly miss this.
 *
 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 * Try to work around it here.
 *
 * Note we only handle faults in kernel here.
 * Does nothing on 32-bit.
583
 */
584
static int is_errata93(struct pt_regs *regs, unsigned long address)
L
Linus Torvalds 已提交
585
{
586 587 588 589 590
#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
	    || boot_cpu_data.x86 != 0xf)
		return 0;

591
	if (address != regs->ip)
L
Linus Torvalds 已提交
592
		return 0;
I
Ingo Molnar 已提交
593

594
	if ((address >> 32) != 0)
L
Linus Torvalds 已提交
595
		return 0;
I
Ingo Molnar 已提交
596

L
Linus Torvalds 已提交
597
	address |= 0xffffffffUL << 32;
598 599
	if ((address >= (u64)_stext && address <= (u64)_etext) ||
	    (address >= MODULES_VADDR && address <= MODULES_END)) {
600
		printk_once(errata93_warning);
601
		regs->ip = address;
L
Linus Torvalds 已提交
602 603
		return 1;
	}
604
#endif
L
Linus Torvalds 已提交
605
	return 0;
606
}
L
Linus Torvalds 已提交
607

608
/*
I
Ingo Molnar 已提交
609 610 611 612 613
 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 * to illegal addresses >4GB.
 *
 * We catch this in the page fault handler because these addresses
 * are not reachable. Just detect this case and return.  Any code
614 615 616 617 618
 * segment in LDT is compatibility mode.
 */
static int is_errata100(struct pt_regs *regs, unsigned long address)
{
#ifdef CONFIG_X86_64
I
Ingo Molnar 已提交
619
	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
620 621 622 623 624
		return 1;
#endif
	return 0;
}

625 626 627 628
static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
{
#ifdef CONFIG_X86_F00F_BUG
	unsigned long nr;
I
Ingo Molnar 已提交
629

630
	/*
I
Ingo Molnar 已提交
631
	 * Pentium F0 0F C7 C8 bug workaround:
632
	 */
633
	if (boot_cpu_has_bug(X86_BUG_F00F)) {
634 635 636 637 638 639 640 641 642 643 644
		nr = (address - idt_descr.address) >> 3;

		if (nr == 6) {
			do_invalid_op(regs, 0);
			return 1;
		}
	}
#endif
	return 0;
}

645 646
static const char nx_warning[] = KERN_CRIT
"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
647 648
static const char smep_warning[] = KERN_CRIT
"unable to execute userspace code (SMEP?) (uid: %d)\n";
649

I
Ingo Molnar 已提交
650 651 652
static void
show_fault_oops(struct pt_regs *regs, unsigned long error_code,
		unsigned long address)
653
{
654 655 656 657
	if (!oops_may_print())
		return;

	if (error_code & PF_INSTR) {
658
		unsigned int level;
659 660
		pgd_t *pgd;
		pte_t *pte;
I
Ingo Molnar 已提交
661

662 663 664 665
		pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
		pgd += pgd_index(address);

		pte = lookup_address_in_pgd(pgd, address, &level);
666

667
		if (pte && pte_present(*pte) && !pte_exec(*pte))
668
			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
669 670
		if (pte && pte_present(*pte) && pte_exec(*pte) &&
				(pgd_flags(*pgd) & _PAGE_USER) &&
671
				(__read_cr4() & X86_CR4_SMEP))
672
			printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
673 674
	}

675
	printk(KERN_ALERT "BUG: unable to handle kernel ");
676
	if (address < PAGE_SIZE)
677
		printk(KERN_CONT "NULL pointer dereference");
678
	else
679
		printk(KERN_CONT "paging request");
I
Ingo Molnar 已提交
680

681
	printk(KERN_CONT " at %p\n", (void *) address);
682
	printk(KERN_ALERT "IP:");
683
	printk_address(regs->ip);
I
Ingo Molnar 已提交
684

685 686 687
	dump_pagetable(address);
}

I
Ingo Molnar 已提交
688 689 690
static noinline void
pgtable_bad(struct pt_regs *regs, unsigned long error_code,
	    unsigned long address)
L
Linus Torvalds 已提交
691
{
I
Ingo Molnar 已提交
692 693 694 695 696 697 698
	struct task_struct *tsk;
	unsigned long flags;
	int sig;

	flags = oops_begin();
	tsk = current;
	sig = SIGKILL;
699

L
Linus Torvalds 已提交
700
	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
701
	       tsk->comm, address);
L
Linus Torvalds 已提交
702
	dump_pagetable(address);
I
Ingo Molnar 已提交
703 704

	tsk->thread.cr2		= address;
705
	tsk->thread.trap_nr	= X86_TRAP_PF;
I
Ingo Molnar 已提交
706 707
	tsk->thread.error_code	= error_code;

708
	if (__die("Bad pagetable", regs, error_code))
709
		sig = 0;
I
Ingo Molnar 已提交
710

711
	oops_end(flags, regs, sig);
L
Linus Torvalds 已提交
712 713
}

I
Ingo Molnar 已提交
714 715
static noinline void
no_context(struct pt_regs *regs, unsigned long error_code,
716
	   unsigned long address, int signal, int si_code)
717 718 719 720
{
	struct task_struct *tsk = current;
	unsigned long flags;
	int sig;
721 722
	/* No context means no VMA to pass down */
	struct vm_area_struct *vma = NULL;
723

I
Ingo Molnar 已提交
724
	/* Are we prepared to handle this kernel fault? */
725
	if (fixup_exception(regs, X86_TRAP_PF)) {
726 727 728 729 730 731 732 733 734 735 736 737 738 739
		/*
		 * Any interrupt that takes a fault gets the fixup. This makes
		 * the below recursive fault logic only apply to a faults from
		 * task context.
		 */
		if (in_interrupt())
			return;

		/*
		 * Per the above we're !in_interrupt(), aka. task context.
		 *
		 * In this case we need to make sure we're not recursively
		 * faulting through the emulate_vsyscall() logic.
		 */
740
		if (current->thread.sig_on_uaccess_err && signal) {
741
			tsk->thread.trap_nr = X86_TRAP_PF;
742 743 744 745
			tsk->thread.error_code = error_code | PF_USER;
			tsk->thread.cr2 = address;

			/* XXX: hwpoison faults will set the wrong code. */
746 747
			force_sig_info_fault(signal, si_code, address,
					     tsk, vma, 0);
748
		}
749 750 751 752

		/*
		 * Barring that, we can do the fixup and be happy.
		 */
753
		return;
754
	}
755

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
#ifdef CONFIG_VMAP_STACK
	/*
	 * Stack overflow?  During boot, we can fault near the initial
	 * stack in the direct map, but that's not an overflow -- check
	 * that we're in vmalloc space to avoid this.
	 */
	if (is_vmalloc_addr((void *)address) &&
	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
		register void *__sp asm("rsp");
		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
		/*
		 * We're likely to be running with very little stack space
		 * left.  It's plausible that we'd hit this condition but
		 * double-fault even before we get this far, in which case
		 * we're fine: the double-fault handler will deal with it.
		 *
		 * We don't want to make it all the way into the oops code
		 * and then double-fault, though, because we're likely to
		 * break the console driver and lose most of the stack dump.
		 */
		asm volatile ("movq %[stack], %%rsp\n\t"
			      "call handle_stack_overflow\n\t"
			      "1: jmp 1b"
			      : "+r" (__sp)
			      : "D" ("kernel stack overflow (page fault)"),
				"S" (regs), "d" (address),
				[stack] "rm" (stack));
		unreachable();
	}
#endif

788
	/*
I
Ingo Molnar 已提交
789 790 791 792 793 794 795
	 * 32-bit:
	 *
	 *   Valid to do another page fault here, because if this fault
	 *   had been triggered by is_prefetch fixup_exception would have
	 *   handled it.
	 *
	 * 64-bit:
796
	 *
I
Ingo Molnar 已提交
797
	 *   Hall of shame of CPU/BIOS bugs.
798 799 800 801 802 803 804 805 806
	 */
	if (is_prefetch(regs, error_code, address))
		return;

	if (is_errata93(regs, address))
		return;

	/*
	 * Oops. The kernel tried to access some bad page. We'll have to
I
Ingo Molnar 已提交
807
	 * terminate things with extreme prejudice:
808 809 810 811 812
	 */
	flags = oops_begin();

	show_fault_oops(regs, error_code, address);

813
	if (task_stack_end_corrupted(tsk))
814
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
815

816
	tsk->thread.cr2		= address;
817
	tsk->thread.trap_nr	= X86_TRAP_PF;
818
	tsk->thread.error_code	= error_code;
819 820 821 822

	sig = SIGKILL;
	if (__die("Oops", regs, error_code))
		sig = 0;
I
Ingo Molnar 已提交
823

824
	/* Executive summary in case the body of the oops scrolled away */
825
	printk(KERN_DEFAULT "CR2: %016lx\n", address);
I
Ingo Molnar 已提交
826

827 828 829
	oops_end(flags, regs, sig);
}

I
Ingo Molnar 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843
/*
 * Print out info about fatal segfaults, if the show_unhandled_signals
 * sysctl is set:
 */
static inline void
show_signal_msg(struct pt_regs *regs, unsigned long error_code,
		unsigned long address, struct task_struct *tsk)
{
	if (!unhandled_signal(tsk, SIGSEGV))
		return;

	if (!printk_ratelimit())
		return;

844
	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
I
Ingo Molnar 已提交
845 846 847 848 849 850 851 852 853 854 855
		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
		tsk->comm, task_pid_nr(tsk), address,
		(void *)regs->ip, (void *)regs->sp, error_code);

	print_vma_addr(KERN_CONT " in ", regs->ip);

	printk(KERN_CONT "\n");
}

static void
__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
856 857
		       unsigned long address, struct vm_area_struct *vma,
		       int si_code)
858 859 860 861 862 863
{
	struct task_struct *tsk = current;

	/* User mode accesses just cause a SIGSEGV */
	if (error_code & PF_USER) {
		/*
I
Ingo Molnar 已提交
864
		 * It's possible to have interrupts off here:
865 866 867 868 869
		 */
		local_irq_enable();

		/*
		 * Valid to do another page fault here because this one came
I
Ingo Molnar 已提交
870
		 * from user space:
871 872 873 874 875 876 877
		 */
		if (is_prefetch(regs, error_code, address))
			return;

		if (is_errata100(regs, address))
			return;

878 879 880 881 882 883
#ifdef CONFIG_X86_64
		/*
		 * Instruction fetch faults in the vsyscall page might need
		 * emulation.
		 */
		if (unlikely((error_code & PF_INSTR) &&
884
			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
885 886 887 888
			if (emulate_vsyscall(regs, address))
				return;
		}
#endif
889 890 891 892 893 894 895

		/*
		 * To avoid leaking information about the kernel page table
		 * layout, pretend that user-mode accesses to kernel addresses
		 * are always protection faults.
		 */
		if (address >= TASK_SIZE_MAX)
896
			error_code |= PF_PROT;
897

898
		if (likely(show_unhandled_signals))
I
Ingo Molnar 已提交
899 900 901
			show_signal_msg(regs, error_code, address, tsk);

		tsk->thread.cr2		= address;
902
		tsk->thread.error_code	= error_code;
903
		tsk->thread.trap_nr	= X86_TRAP_PF;
904

905
		force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0);
I
Ingo Molnar 已提交
906

907 908 909 910 911 912
		return;
	}

	if (is_f00f_bug(regs, address))
		return;

913
	no_context(regs, error_code, address, SIGSEGV, si_code);
914 915
}

I
Ingo Molnar 已提交
916 917
static noinline void
bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
918
		     unsigned long address, struct vm_area_struct *vma)
919
{
920
	__bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR);
921 922
}

I
Ingo Molnar 已提交
923 924
static void
__bad_area(struct pt_regs *regs, unsigned long error_code,
925
	   unsigned long address,  struct vm_area_struct *vma, int si_code)
926 927 928 929 930 931 932 933 934
{
	struct mm_struct *mm = current->mm;

	/*
	 * Something tried to access memory that isn't in our memory map..
	 * Fix it, but check if it's kernel or user first..
	 */
	up_read(&mm->mmap_sem);

935
	__bad_area_nosemaphore(regs, error_code, address, vma, si_code);
936 937
}

I
Ingo Molnar 已提交
938 939
static noinline void
bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
940
{
941
	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
942 943
}

944 945 946
static inline bool bad_area_access_from_pkeys(unsigned long error_code,
		struct vm_area_struct *vma)
{
947 948 949
	/* This code is always called on the current mm */
	bool foreign = false;

950 951 952 953
	if (!boot_cpu_has(X86_FEATURE_OSPKE))
		return false;
	if (error_code & PF_PK)
		return true;
954
	/* this checks permission keys on the VMA: */
955 956
	if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
				(error_code & PF_INSTR), foreign))
957
		return true;
958
	return false;
959 960
}

I
Ingo Molnar 已提交
961 962
static noinline void
bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
963
		      unsigned long address, struct vm_area_struct *vma)
964
{
965 966 967 968 969
	/*
	 * This OSPKE check is not strictly necessary at runtime.
	 * But, doing it this way allows compiler optimizations
	 * if pkeys are compiled out.
	 */
970
	if (bad_area_access_from_pkeys(error_code, vma))
971 972 973
		__bad_area(regs, error_code, address, vma, SEGV_PKUERR);
	else
		__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
974 975
}

I
Ingo Molnar 已提交
976
static void
977
do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
978
	  struct vm_area_struct *vma, unsigned int fault)
979 980
{
	struct task_struct *tsk = current;
981
	int code = BUS_ADRERR;
982

I
Ingo Molnar 已提交
983
	/* Kernel mode? Handle exceptions or die: */
984
	if (!(error_code & PF_USER)) {
985
		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
986 987
		return;
	}
I
Ingo Molnar 已提交
988

989
	/* User-space => ok to do another page fault: */
990 991
	if (is_prefetch(regs, error_code, address))
		return;
I
Ingo Molnar 已提交
992 993 994

	tsk->thread.cr2		= address;
	tsk->thread.error_code	= error_code;
995
	tsk->thread.trap_nr	= X86_TRAP_PF;
I
Ingo Molnar 已提交
996

997
#ifdef CONFIG_MEMORY_FAILURE
998
	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
999 1000 1001 1002 1003 1004
		printk(KERN_ERR
	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
			tsk->comm, tsk->pid, address);
		code = BUS_MCEERR_AR;
	}
#endif
1005
	force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault);
1006 1007
}

1008
static noinline void
I
Ingo Molnar 已提交
1009
mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1010 1011
	       unsigned long address, struct vm_area_struct *vma,
	       unsigned int fault)
1012
{
1013 1014 1015
	if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
		no_context(regs, error_code, address, 0, 0);
		return;
1016 1017
	}

I
Ingo Molnar 已提交
1018
	if (fault & VM_FAULT_OOM) {
1019 1020
		/* Kernel mode? Handle exceptions or die: */
		if (!(error_code & PF_USER)) {
1021 1022
			no_context(regs, error_code, address,
				   SIGSEGV, SEGV_MAPERR);
1023
			return;
1024 1025
		}

1026 1027 1028 1029 1030 1031
		/*
		 * We ran out of memory, call the OOM killer, and return the
		 * userspace (which will retry the fault, or kill us if we got
		 * oom-killed):
		 */
		pagefault_out_of_memory();
I
Ingo Molnar 已提交
1032
	} else {
1033 1034
		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
			     VM_FAULT_HWPOISON_LARGE))
1035
			do_sigbus(regs, error_code, address, vma, fault);
1036
		else if (fault & VM_FAULT_SIGSEGV)
1037
			bad_area_nosemaphore(regs, error_code, address, vma);
I
Ingo Molnar 已提交
1038 1039 1040
		else
			BUG();
	}
1041 1042
}

1043 1044 1045 1046
static int spurious_fault_check(unsigned long error_code, pte_t *pte)
{
	if ((error_code & PF_WRITE) && !pte_write(*pte))
		return 0;
I
Ingo Molnar 已提交
1047

1048 1049
	if ((error_code & PF_INSTR) && !pte_exec(*pte))
		return 0;
1050 1051 1052 1053 1054 1055
	/*
	 * Note: We do not do lazy flushing on protection key
	 * changes, so no spurious fault will ever set PF_PK.
	 */
	if ((error_code & PF_PK))
		return 1;
1056 1057 1058 1059

	return 1;
}

1060
/*
I
Ingo Molnar 已提交
1061 1062 1063 1064 1065 1066 1067 1068
 * Handle a spurious fault caused by a stale TLB entry.
 *
 * This allows us to lazily refresh the TLB when increasing the
 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 * eagerly is very expensive since that implies doing a full
 * cross-processor TLB flush, even if no stale TLB entries exist
 * on other processors.
 *
1069 1070 1071 1072
 * Spurious faults may only occur if the TLB contains an entry with
 * fewer permission than the page table entry.  Non-present (P = 0)
 * and reserved bit (R = 1) faults are never spurious.
 *
1073 1074
 * There are no security implications to leaving a stale TLB when
 * increasing the permissions on a page.
1075 1076 1077 1078 1079
 *
 * Returns non-zero if a spurious fault was handled, zero otherwise.
 *
 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
 * (Optional Invalidation).
1080
 */
1081
static noinline int
I
Ingo Molnar 已提交
1082
spurious_fault(unsigned long error_code, unsigned long address)
1083 1084 1085 1086 1087
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
1088
	int ret;
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
	/*
	 * Only writes to RO or instruction fetches from NX may cause
	 * spurious faults.
	 *
	 * These could be from user or supervisor accesses but the TLB
	 * is only lazily flushed after a kernel mapping protection
	 * change, so user accesses are not expected to cause spurious
	 * faults.
	 */
	if (error_code != (PF_WRITE | PF_PROT)
	    && error_code != (PF_INSTR | PF_PROT))
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
		return 0;

	pgd = init_mm.pgd + pgd_index(address);
	if (!pgd_present(*pgd))
		return 0;

	pud = pud_offset(pgd, address);
	if (!pud_present(*pud))
		return 0;

1111 1112 1113
	if (pud_large(*pud))
		return spurious_fault_check(error_code, (pte_t *) pud);

1114 1115 1116 1117
	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;

1118 1119 1120
	if (pmd_large(*pmd))
		return spurious_fault_check(error_code, (pte_t *) pmd);

1121
	pte = pte_offset_kernel(pmd, address);
1122
	if (!pte_present(*pte))
1123 1124
		return 0;

1125 1126 1127 1128 1129
	ret = spurious_fault_check(error_code, pte);
	if (!ret)
		return 0;

	/*
I
Ingo Molnar 已提交
1130 1131
	 * Make sure we have permissions in PMD.
	 * If not, then there's a bug in the page tables:
1132 1133 1134
	 */
	ret = spurious_fault_check(error_code, (pte_t *) pmd);
	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
I
Ingo Molnar 已提交
1135

1136
	return ret;
1137
}
1138
NOKPROBE_SYMBOL(spurious_fault);
1139

1140
int show_unhandled_signals = 1;
L
Linus Torvalds 已提交
1141

I
Ingo Molnar 已提交
1142
static inline int
M
Michel Lespinasse 已提交
1143
access_error(unsigned long error_code, struct vm_area_struct *vma)
1144
{
1145 1146
	/* This is only called for the current mm, so: */
	bool foreign = false;
1147 1148 1149 1150 1151 1152 1153 1154 1155

	/*
	 * Read or write was blocked by protection keys.  This is
	 * always an unconditional error and can never result in
	 * a follow-up action to resolve the fault, like a COW.
	 */
	if (error_code & PF_PK)
		return 1;

1156 1157 1158 1159 1160
	/*
	 * Make sure to check the VMA so that we do not perform
	 * faults just to hit a PF_PK as soon as we fill in a
	 * page.
	 */
1161 1162
	if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
				(error_code & PF_INSTR), foreign))
1163
		return 1;
1164

M
Michel Lespinasse 已提交
1165
	if (error_code & PF_WRITE) {
I
Ingo Molnar 已提交
1166
		/* write, present and write, not present: */
1167 1168
		if (unlikely(!(vma->vm_flags & VM_WRITE)))
			return 1;
I
Ingo Molnar 已提交
1169
		return 0;
1170 1171
	}

I
Ingo Molnar 已提交
1172 1173 1174 1175 1176 1177 1178 1179
	/* read, present: */
	if (unlikely(error_code & PF_PROT))
		return 1;

	/* read, not present: */
	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
		return 1;

1180 1181 1182
	return 0;
}

1183 1184
static int fault_in_kernel_space(unsigned long address)
{
1185
	return address >= TASK_SIZE_MAX;
1186 1187
}

1188 1189
static inline bool smap_violation(int error_code, struct pt_regs *regs)
{
1190 1191 1192 1193 1194 1195
	if (!IS_ENABLED(CONFIG_X86_SMAP))
		return false;

	if (!static_cpu_has(X86_FEATURE_SMAP))
		return false;

1196 1197 1198
	if (error_code & PF_USER)
		return false;

1199
	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1200 1201 1202 1203 1204
		return false;

	return true;
}

L
Linus Torvalds 已提交
1205 1206 1207 1208
/*
 * This routine handles page faults.  It determines the address,
 * and the problem, and then passes it off to one of the appropriate
 * routines.
1209 1210 1211 1212
 *
 * This function must have noinline because both callers
 * {,trace_}do_page_fault() have notrace on. Having this an actual function
 * guarantees there's a function trace entry.
L
Linus Torvalds 已提交
1213
 */
1214
static noinline void
1215 1216
__do_page_fault(struct pt_regs *regs, unsigned long error_code,
		unsigned long address)
L
Linus Torvalds 已提交
1217
{
I
Ingo Molnar 已提交
1218
	struct vm_area_struct *vma;
L
Linus Torvalds 已提交
1219 1220
	struct task_struct *tsk;
	struct mm_struct *mm;
1221
	int fault, major = 0;
1222
	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
L
Linus Torvalds 已提交
1223

1224 1225
	tsk = current;
	mm = tsk->mm;
I
Ingo Molnar 已提交
1226

V
Vegard Nossum 已提交
1227 1228 1229 1230 1231 1232
	/*
	 * Detect and handle instructions that would cause a page fault for
	 * both a tracked kernel page and a userspace page.
	 */
	if (kmemcheck_active(regs))
		kmemcheck_hide(regs);
1233
	prefetchw(&mm->mmap_sem);
V
Vegard Nossum 已提交
1234

1235
	if (unlikely(kmmio_fault(regs, address)))
1236
		return;
L
Linus Torvalds 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

	/*
	 * We fault-in kernel-space virtual memory on-demand. The
	 * 'reference' page table is init_mm.pgd.
	 *
	 * NOTE! We MUST NOT take any locks for this case. We may
	 * be in an interrupt or a critical region, and should
	 * only copy the information from the master page table,
	 * nothing more.
	 *
	 * This verifies that the fault happens in kernel space
	 * (error_code & 4) == 0, and that the fault was not a
1249
	 * protection error (error_code & 9) == 0.
L
Linus Torvalds 已提交
1250
	 */
1251
	if (unlikely(fault_in_kernel_space(address))) {
V
Vegard Nossum 已提交
1252 1253 1254 1255 1256 1257 1258
		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
			if (vmalloc_fault(address) >= 0)
				return;

			if (kmemcheck_fault(regs, address, error_code))
				return;
		}
1259

I
Ingo Molnar 已提交
1260
		/* Can handle a stale RO->RW TLB: */
1261
		if (spurious_fault(error_code, address))
1262 1263
			return;

I
Ingo Molnar 已提交
1264
		/* kprobes don't want to hook the spurious faults: */
1265
		if (kprobes_fault(regs))
1266
			return;
1267 1268
		/*
		 * Don't take the mm semaphore here. If we fixup a prefetch
I
Ingo Molnar 已提交
1269
		 * fault we could otherwise deadlock:
1270
		 */
1271
		bad_area_nosemaphore(regs, error_code, address, NULL);
I
Ingo Molnar 已提交
1272

1273
		return;
1274 1275
	}

I
Ingo Molnar 已提交
1276
	/* kprobes don't want to hook the spurious faults: */
1277
	if (unlikely(kprobes_fault(regs)))
1278
		return;
1279

1280
	if (unlikely(error_code & PF_RSVD))
1281
		pgtable_bad(regs, error_code, address);
L
Linus Torvalds 已提交
1282

1283
	if (unlikely(smap_violation(error_code, regs))) {
1284
		bad_area_nosemaphore(regs, error_code, address, NULL);
1285
		return;
1286 1287
	}

L
Linus Torvalds 已提交
1288
	/*
I
Ingo Molnar 已提交
1289
	 * If we're in an interrupt, have no user context or are running
1290
	 * in a region with pagefaults disabled then we must not take the fault
L
Linus Torvalds 已提交
1291
	 */
1292
	if (unlikely(faulthandler_disabled() || !mm)) {
1293
		bad_area_nosemaphore(regs, error_code, address, NULL);
1294 1295
		return;
	}
L
Linus Torvalds 已提交
1296

1297 1298 1299 1300 1301 1302 1303
	/*
	 * It's safe to allow irq's after cr2 has been saved and the
	 * vmalloc fault has been handled.
	 *
	 * User-mode registers count as a user access even for any
	 * potential system fault or CPU buglet:
	 */
1304
	if (user_mode(regs)) {
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
		local_irq_enable();
		error_code |= PF_USER;
		flags |= FAULT_FLAG_USER;
	} else {
		if (regs->flags & X86_EFLAGS_IF)
			local_irq_enable();
	}

	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);

1315 1316
	if (error_code & PF_WRITE)
		flags |= FAULT_FLAG_WRITE;
1317 1318
	if (error_code & PF_INSTR)
		flags |= FAULT_FLAG_INSTRUCTION;
1319

I
Ingo Molnar 已提交
1320 1321
	/*
	 * When running in the kernel we expect faults to occur only to
I
Ingo Molnar 已提交
1322 1323 1324 1325 1326 1327 1328
	 * addresses in user space.  All other faults represent errors in
	 * the kernel and should generate an OOPS.  Unfortunately, in the
	 * case of an erroneous fault occurring in a code path which already
	 * holds mmap_sem we will deadlock attempting to validate the fault
	 * against the address space.  Luckily the kernel only validly
	 * references user space from well defined areas of code, which are
	 * listed in the exceptions table.
L
Linus Torvalds 已提交
1329 1330
	 *
	 * As the vast majority of faults will be valid we will only perform
I
Ingo Molnar 已提交
1331 1332 1333 1334
	 * the source reference check when there is a possibility of a
	 * deadlock. Attempt to lock the address space, if we cannot we then
	 * validate the source. If this is invalid we can skip the address
	 * space check, thus avoiding the deadlock:
L
Linus Torvalds 已提交
1335
	 */
1336
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1337
		if ((error_code & PF_USER) == 0 &&
1338
		    !search_exception_tables(regs->ip)) {
1339
			bad_area_nosemaphore(regs, error_code, address, NULL);
1340 1341
			return;
		}
1342
retry:
L
Linus Torvalds 已提交
1343
		down_read(&mm->mmap_sem);
1344 1345
	} else {
		/*
I
Ingo Molnar 已提交
1346 1347 1348
		 * The above down_read_trylock() might have succeeded in
		 * which case we'll have missed the might_sleep() from
		 * down_read():
1349 1350
		 */
		might_sleep();
L
Linus Torvalds 已提交
1351 1352 1353
	}

	vma = find_vma(mm, address);
1354 1355 1356 1357 1358
	if (unlikely(!vma)) {
		bad_area(regs, error_code, address);
		return;
	}
	if (likely(vma->vm_start <= address))
L
Linus Torvalds 已提交
1359
		goto good_area;
1360 1361 1362 1363
	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
		bad_area(regs, error_code, address);
		return;
	}
1364
	if (error_code & PF_USER) {
1365 1366 1367
		/*
		 * Accessing the stack below %sp is always a bug.
		 * The large cushion allows instructions like enter
I
Ingo Molnar 已提交
1368
		 * and pusha to work. ("enter $65535, $31" pushes
1369
		 * 32 pointers and then decrements %sp by 65535.)
1370
		 */
1371 1372 1373 1374
		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
			bad_area(regs, error_code, address);
			return;
		}
L
Linus Torvalds 已提交
1375
	}
1376 1377 1378 1379 1380 1381 1382 1383 1384
	if (unlikely(expand_stack(vma, address))) {
		bad_area(regs, error_code, address);
		return;
	}

	/*
	 * Ok, we have a good vm_area for this memory access, so
	 * we can handle it..
	 */
L
Linus Torvalds 已提交
1385
good_area:
M
Michel Lespinasse 已提交
1386
	if (unlikely(access_error(error_code, vma))) {
1387
		bad_area_access_error(regs, error_code, address, vma);
1388
		return;
L
Linus Torvalds 已提交
1389 1390 1391 1392 1393
	}

	/*
	 * If for any reason at all we couldn't handle the fault,
	 * make sure we exit gracefully rather than endlessly redo
1394 1395
	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
L
Linus Torvalds 已提交
1396
	 */
1397
	fault = handle_mm_fault(vma, address, flags);
1398
	major |= fault & VM_FAULT_MAJOR;
I
Ingo Molnar 已提交
1399

1400
	/*
1401 1402 1403
	 * If we need to retry the mmap_sem has already been released,
	 * and if there is a fatal signal pending there is no guarantee
	 * that we made any progress. Handle this case first.
1404
	 */
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	if (unlikely(fault & VM_FAULT_RETRY)) {
		/* Retry at most once */
		if (flags & FAULT_FLAG_ALLOW_RETRY) {
			flags &= ~FAULT_FLAG_ALLOW_RETRY;
			flags |= FAULT_FLAG_TRIED;
			if (!fatal_signal_pending(tsk))
				goto retry;
		}

		/* User mode? Just return to handle the fatal exception */
1415
		if (flags & FAULT_FLAG_USER)
1416 1417 1418 1419
			return;

		/* Not returning to user mode? Handle exceptions or die: */
		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1420
		return;
1421
	}
1422

1423
	up_read(&mm->mmap_sem);
1424
	if (unlikely(fault & VM_FAULT_ERROR)) {
1425
		mm_fault_error(regs, error_code, address, vma, fault);
1426
		return;
1427 1428
	}

1429
	/*
1430 1431
	 * Major/minor page fault accounting. If any of the events
	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1432
	 */
1433 1434 1435 1436 1437 1438
	if (major) {
		tsk->maj_flt++;
		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
	} else {
		tsk->min_flt++;
		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1439
	}
1440

1441
	check_v8086_mode(regs, address, tsk);
L
Linus Torvalds 已提交
1442
}
1443
NOKPROBE_SYMBOL(__do_page_fault);
1444

1445
dotraplinkage void notrace
1446 1447
do_page_fault(struct pt_regs *regs, unsigned long error_code)
{
1448
	unsigned long address = read_cr2(); /* Get the faulting address */
1449
	enum ctx_state prev_state;
1450 1451 1452 1453 1454 1455 1456 1457

	/*
	 * We must have this function tagged with __kprobes, notrace and call
	 * read_cr2() before calling anything else. To avoid calling any kind
	 * of tracing machinery before we've observed the CR2 value.
	 *
	 * exception_{enter,exit}() contain all sorts of tracepoints.
	 */
1458 1459

	prev_state = exception_enter();
1460
	__do_page_fault(regs, error_code, address);
1461
	exception_exit(prev_state);
1462
}
1463
NOKPROBE_SYMBOL(do_page_fault);
1464

1465
#ifdef CONFIG_TRACING
1466 1467 1468
static nokprobe_inline void
trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
			 unsigned long error_code)
1469 1470
{
	if (user_mode(regs))
1471
		trace_page_fault_user(address, regs, error_code);
1472
	else
1473
		trace_page_fault_kernel(address, regs, error_code);
1474 1475
}

1476
dotraplinkage void notrace
1477 1478
trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
{
1479 1480 1481 1482 1483 1484 1485
	/*
	 * The exception_enter and tracepoint processing could
	 * trigger another page faults (user space callchain
	 * reading) and destroy the original cr2 value, so read
	 * the faulting address now.
	 */
	unsigned long address = read_cr2();
1486
	enum ctx_state prev_state;
1487 1488

	prev_state = exception_enter();
1489
	trace_page_fault_entries(address, regs, error_code);
1490
	__do_page_fault(regs, error_code, address);
1491 1492
	exception_exit(prev_state);
}
1493
NOKPROBE_SYMBOL(trace_do_page_fault);
1494
#endif /* CONFIG_TRACING */