fault.c 38.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 *  Copyright (C) 1995  Linus Torvalds
I
Ingo Molnar 已提交
3
 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4
 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
L
Linus Torvalds 已提交
5
 */
6
#include <linux/sched.h>		/* test_thread_flag(), ...	*/
7
#include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
8
#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
9
#include <linux/extable.h>		/* search_exception_tables	*/
10
#include <linux/bootmem.h>		/* max_low_pfn			*/
11
#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
12
#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
13
#include <linux/perf_event.h>		/* perf_sw_event		*/
14
#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
15
#include <linux/prefetch.h>		/* prefetchw			*/
16
#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
17
#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
I
Ingo Molnar 已提交
18

19
#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
20 21
#include <asm/traps.h>			/* dotraplinkage, ...		*/
#include <asm/pgalloc.h>		/* pgd_*(), ...			*/
V
Vegard Nossum 已提交
22
#include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
23 24
#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
B
Brian Gerst 已提交
25
#include <asm/vm86.h>			/* struct vm86			*/
26
#include <asm/mmu_context.h>		/* vma_pkey()			*/
L
Linus Torvalds 已提交
27

28 29 30
#define CREATE_TRACE_POINTS
#include <asm/trace/exceptions.h>

31
/*
I
Ingo Molnar 已提交
32 33 34 35 36 37 38
 * Page fault error code bits:
 *
 *   bit 0 ==	 0: no page found	1: protection fault
 *   bit 1 ==	 0: read access		1: write access
 *   bit 2 ==	 0: kernel-mode access	1: user-mode access
 *   bit 3 ==				1: use of reserved bit detected
 *   bit 4 ==				1: fault was an instruction fetch
39
 *   bit 5 ==				1: protection keys block access
40
 */
I
Ingo Molnar 已提交
41 42 43 44 45 46 47
enum x86_pf_error_code {

	PF_PROT		=		1 << 0,
	PF_WRITE	=		1 << 1,
	PF_USER		=		1 << 2,
	PF_RSVD		=		1 << 3,
	PF_INSTR	=		1 << 4,
48
	PF_PK		=		1 << 5,
I
Ingo Molnar 已提交
49
};
50

51
/*
52 53
 * Returns 0 if mmiotrace is disabled, or if the fault is not
 * handled by mmiotrace:
54
 */
55
static nokprobe_inline int
56
kmmio_fault(struct pt_regs *regs, unsigned long addr)
57
{
58 59 60 61
	if (unlikely(is_kmmio_active()))
		if (kmmio_handler(regs, addr) == 1)
			return -1;
	return 0;
62 63
}

64
static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
65
{
66 67 68
	int ret = 0;

	/* kprobe_running() needs smp_processor_id() */
69
	if (kprobes_built_in() && !user_mode(regs)) {
70 71 72 73 74
		preempt_disable();
		if (kprobe_running() && kprobe_fault_handler(regs, 14))
			ret = 1;
		preempt_enable();
	}
75

76
	return ret;
77
}
78

79
/*
I
Ingo Molnar 已提交
80 81 82 83 84 85
 * Prefetch quirks:
 *
 * 32-bit mode:
 *
 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
 *   Check that here and ignore it.
86
 *
I
Ingo Molnar 已提交
87
 * 64-bit mode:
88
 *
I
Ingo Molnar 已提交
89 90 91 92
 *   Sometimes the CPU reports invalid exceptions on prefetch.
 *   Check that here and ignore it.
 *
 * Opcode checker based on code by Richard Brunner.
93
 */
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
static inline int
check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
		      unsigned char opcode, int *prefetch)
{
	unsigned char instr_hi = opcode & 0xf0;
	unsigned char instr_lo = opcode & 0x0f;

	switch (instr_hi) {
	case 0x20:
	case 0x30:
		/*
		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
		 * In X86_64 long mode, the CPU will signal invalid
		 * opcode if some of these prefixes are present so
		 * X86_64 will never get here anyway
		 */
		return ((instr_lo & 7) == 0x6);
#ifdef CONFIG_X86_64
	case 0x40:
		/*
		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
		 * Need to figure out under what instruction mode the
		 * instruction was issued. Could check the LDT for lm,
		 * but for now it's good enough to assume that long
		 * mode only uses well known segments or kernel.
		 */
120
		return (!user_mode(regs) || user_64bit_mode(regs));
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
#endif
	case 0x60:
		/* 0x64 thru 0x67 are valid prefixes in all modes. */
		return (instr_lo & 0xC) == 0x4;
	case 0xF0:
		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
		return !instr_lo || (instr_lo>>1) == 1;
	case 0x00:
		/* Prefetch instruction is 0x0F0D or 0x0F18 */
		if (probe_kernel_address(instr, opcode))
			return 0;

		*prefetch = (instr_lo == 0xF) &&
			(opcode == 0x0D || opcode == 0x18);
		return 0;
	default:
		return 0;
	}
}

I
Ingo Molnar 已提交
141 142
static int
is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
143
{
I
Ingo Molnar 已提交
144
	unsigned char *max_instr;
145
	unsigned char *instr;
146
	int prefetch = 0;
L
Linus Torvalds 已提交
147

I
Ingo Molnar 已提交
148 149 150 151
	/*
	 * If it was a exec (instruction fetch) fault on NX page, then
	 * do not ignore the fault:
	 */
152
	if (error_code & PF_INSTR)
L
Linus Torvalds 已提交
153
		return 0;
154

155
	instr = (void *)convert_ip_to_linear(current, regs);
156
	max_instr = instr + 15;
L
Linus Torvalds 已提交
157

158
	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
L
Linus Torvalds 已提交
159 160
		return 0;

161
	while (instr < max_instr) {
I
Ingo Molnar 已提交
162
		unsigned char opcode;
L
Linus Torvalds 已提交
163

164
		if (probe_kernel_address(instr, opcode))
165
			break;
L
Linus Torvalds 已提交
166 167 168

		instr++;

169
		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
L
Linus Torvalds 已提交
170 171 172 173 174
			break;
	}
	return prefetch;
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
/*
 * A protection key fault means that the PKRU value did not allow
 * access to some PTE.  Userspace can figure out what PKRU was
 * from the XSAVE state, and this function fills out a field in
 * siginfo so userspace can discover which protection key was set
 * on the PTE.
 *
 * If we get here, we know that the hardware signaled a PF_PK
 * fault and that there was a VMA once we got in the fault
 * handler.  It does *not* guarantee that the VMA we find here
 * was the one that we faulted on.
 *
 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 * 2. T1   : set PKRU to deny access to pkey=4, touches page
 * 3. T1   : faults...
 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 * 5. T1   : enters fault handler, takes mmap_sem, etc...
 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 *	     faulted on a pte with its pkey=4.
 */
static void fill_sig_info_pkey(int si_code, siginfo_t *info,
		struct vm_area_struct *vma)
{
	/* This is effectively an #ifdef */
	if (!boot_cpu_has(X86_FEATURE_OSPKE))
		return;

	/* Fault not from Protection Keys: nothing to do */
	if (si_code != SEGV_PKUERR)
		return;
	/*
	 * force_sig_info_fault() is called from a number of
	 * contexts, some of which have a VMA and some of which
	 * do not.  The PF_PK handing happens after we have a
	 * valid VMA, so we should never reach this without a
	 * valid VMA.
	 */
	if (!vma) {
		WARN_ONCE(1, "PKU fault with no VMA passed in");
		info->si_pkey = 0;
		return;
	}
	/*
	 * si_pkey should be thought of as a strong hint, but not
	 * absolutely guranteed to be 100% accurate because of
	 * the race explained above.
	 */
	info->si_pkey = vma_pkey(vma);
}

I
Ingo Molnar 已提交
225 226
static void
force_sig_info_fault(int si_signo, int si_code, unsigned long address,
227 228
		     struct task_struct *tsk, struct vm_area_struct *vma,
		     int fault)
229
{
230
	unsigned lsb = 0;
231 232
	siginfo_t info;

I
Ingo Molnar 已提交
233 234 235 236
	info.si_signo	= si_signo;
	info.si_errno	= 0;
	info.si_code	= si_code;
	info.si_addr	= (void __user *)address;
237 238 239 240 241
	if (fault & VM_FAULT_HWPOISON_LARGE)
		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 
	if (fault & VM_FAULT_HWPOISON)
		lsb = PAGE_SHIFT;
	info.si_addr_lsb = lsb;
I
Ingo Molnar 已提交
242

243 244
	fill_sig_info_pkey(si_code, &info, vma);

245 246 247
	force_sig_info(si_signo, &info, tsk);
}

248 249 250 251 252
DEFINE_SPINLOCK(pgd_lock);
LIST_HEAD(pgd_list);

#ifdef CONFIG_X86_32
static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
253
{
254 255
	unsigned index = pgd_index(address);
	pgd_t *pgd_k;
256
	p4d_t *p4d, *p4d_k;
257 258
	pud_t *pud, *pud_k;
	pmd_t *pmd, *pmd_k;
I
Ingo Molnar 已提交
259

260 261 262 263 264 265 266 267 268
	pgd += index;
	pgd_k = init_mm.pgd + index;

	if (!pgd_present(*pgd_k))
		return NULL;

	/*
	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
	 * and redundant with the set_pmd() on non-PAE. As would
269
	 * set_p4d/set_pud.
270
	 */
271 272 273 274 275 276 277
	p4d = p4d_offset(pgd, address);
	p4d_k = p4d_offset(pgd_k, address);
	if (!p4d_present(*p4d_k))
		return NULL;

	pud = pud_offset(p4d, address);
	pud_k = pud_offset(p4d_k, address);
278 279 280 281 282 283 284 285
	if (!pud_present(*pud_k))
		return NULL;

	pmd = pmd_offset(pud, address);
	pmd_k = pmd_offset(pud_k, address);
	if (!pmd_present(*pmd_k))
		return NULL;

286
	if (!pmd_present(*pmd))
287
		set_pmd(pmd, *pmd_k);
288
	else
289 290 291 292 293 294 295 296 297 298 299 300 301
		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));

	return pmd_k;
}

void vmalloc_sync_all(void)
{
	unsigned long address;

	if (SHARED_KERNEL_PMD)
		return;

	for (address = VMALLOC_START & PMD_MASK;
302
	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
303 304 305
	     address += PMD_SIZE) {
		struct page *page;

A
Andrea Arcangeli 已提交
306
		spin_lock(&pgd_lock);
307
		list_for_each_entry(page, &pgd_list, lru) {
308
			spinlock_t *pgt_lock;
309
			pmd_t *ret;
310

A
Andrea Arcangeli 已提交
311
			/* the pgt_lock only for Xen */
312 313 314 315 316 317 318
			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;

			spin_lock(pgt_lock);
			ret = vmalloc_sync_one(page_address(page), address);
			spin_unlock(pgt_lock);

			if (!ret)
319 320
				break;
		}
A
Andrea Arcangeli 已提交
321
		spin_unlock(&pgd_lock);
322 323 324 325 326 327 328 329
	}
}

/*
 * 32-bit:
 *
 *   Handle a fault on the vmalloc or module mapping area
 */
330
static noinline int vmalloc_fault(unsigned long address)
331 332 333 334 335 336 337 338 339
{
	unsigned long pgd_paddr;
	pmd_t *pmd_k;
	pte_t *pte_k;

	/* Make sure we are in vmalloc area: */
	if (!(address >= VMALLOC_START && address < VMALLOC_END))
		return -1;

340 341
	WARN_ON_ONCE(in_nmi());

342 343 344 345 346 347 348 349 350 351 352 353
	/*
	 * Synchronize this task's top level page-table
	 * with the 'reference' page table.
	 *
	 * Do _not_ use "current" here. We might be inside
	 * an interrupt in the middle of a task switch..
	 */
	pgd_paddr = read_cr3();
	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
	if (!pmd_k)
		return -1;

354 355 356
	if (pmd_huge(*pmd_k))
		return 0;

357 358 359 360 361 362
	pte_k = pte_offset_kernel(pmd_k, address);
	if (!pte_present(*pte_k))
		return -1;

	return 0;
}
363
NOKPROBE_SYMBOL(vmalloc_fault);
364 365 366 367 368 369 370 371

/*
 * Did it hit the DOS screen memory VA from vm86 mode?
 */
static inline void
check_v8086_mode(struct pt_regs *regs, unsigned long address,
		 struct task_struct *tsk)
{
372
#ifdef CONFIG_VM86
373 374
	unsigned long bit;

375
	if (!v8086_mode(regs) || !tsk->thread.vm86)
376 377 378 379
		return;

	bit = (address - 0xA0000) >> PAGE_SHIFT;
	if (bit < 32)
380 381
		tsk->thread.vm86->screen_bitmap |= 1 << bit;
#endif
382
}
L
Linus Torvalds 已提交
383

A
Akinobu Mita 已提交
384
static bool low_pfn(unsigned long pfn)
L
Linus Torvalds 已提交
385
{
A
Akinobu Mita 已提交
386 387
	return pfn < max_low_pfn;
}
388

A
Akinobu Mita 已提交
389 390 391 392
static void dump_pagetable(unsigned long address)
{
	pgd_t *base = __va(read_cr3());
	pgd_t *pgd = &base[pgd_index(address)];
393 394
	p4d_t *p4d;
	pud_t *pud;
A
Akinobu Mita 已提交
395 396
	pmd_t *pmd;
	pte_t *pte;
I
Ingo Molnar 已提交
397

398
#ifdef CONFIG_X86_PAE
A
Akinobu Mita 已提交
399 400 401
	printk("*pdpt = %016Lx ", pgd_val(*pgd));
	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
		goto out;
402
#endif
403 404 405
	p4d = p4d_offset(pgd, address);
	pud = pud_offset(p4d, address);
	pmd = pmd_offset(pud, address);
A
Akinobu Mita 已提交
406
	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
407 408 409 410 411

	/*
	 * We must not directly access the pte in the highpte
	 * case if the page table is located in highmem.
	 * And let's rather not kmap-atomic the pte, just in case
I
Ingo Molnar 已提交
412
	 * it's allocated already:
413
	 */
A
Akinobu Mita 已提交
414 415
	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
		goto out;
416

A
Akinobu Mita 已提交
417 418 419
	pte = pte_offset_kernel(pmd, address);
	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
out:
420
	printk("\n");
421 422 423 424 425 426
}

#else /* CONFIG_X86_64: */

void vmalloc_sync_all(void)
{
427
	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
428 429 430 431 432 433 434
}

/*
 * 64-bit:
 *
 *   Handle a fault on the vmalloc area
 */
435
static noinline int vmalloc_fault(unsigned long address)
436 437 438 439 440 441 442 443 444 445
{
	pgd_t *pgd, *pgd_ref;
	pud_t *pud, *pud_ref;
	pmd_t *pmd, *pmd_ref;
	pte_t *pte, *pte_ref;

	/* Make sure we are in vmalloc area: */
	if (!(address >= VMALLOC_START && address < VMALLOC_END))
		return -1;

446 447
	WARN_ON_ONCE(in_nmi());

448 449 450 451 452
	/*
	 * Copy kernel mappings over when needed. This can also
	 * happen within a race in page table update. In the later
	 * case just flush:
	 */
453
	pgd = (pgd_t *)__va(read_cr3()) + pgd_index(address);
454 455 456 457
	pgd_ref = pgd_offset_k(address);
	if (pgd_none(*pgd_ref))
		return -1;

458
	if (pgd_none(*pgd)) {
459
		set_pgd(pgd, *pgd_ref);
460 461
		arch_flush_lazy_mmu_mode();
	} else {
462
		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
463
	}
464 465 466 467 468 469 470 471 472 473 474

	/*
	 * Below here mismatches are bugs because these lower tables
	 * are shared:
	 */

	pud = pud_offset(pgd, address);
	pud_ref = pud_offset(pgd_ref, address);
	if (pud_none(*pud_ref))
		return -1;

475
	if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
476 477
		BUG();

478 479 480
	if (pud_huge(*pud))
		return 0;

481 482 483 484 485
	pmd = pmd_offset(pud, address);
	pmd_ref = pmd_offset(pud_ref, address);
	if (pmd_none(*pmd_ref))
		return -1;

486
	if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
487 488
		BUG();

489 490 491
	if (pmd_huge(*pmd))
		return 0;

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	pte_ref = pte_offset_kernel(pmd_ref, address);
	if (!pte_present(*pte_ref))
		return -1;

	pte = pte_offset_kernel(pmd, address);

	/*
	 * Don't use pte_page here, because the mappings can point
	 * outside mem_map, and the NUMA hash lookup cannot handle
	 * that:
	 */
	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
		BUG();

	return 0;
}
508
NOKPROBE_SYMBOL(vmalloc_fault);
509

510
#ifdef CONFIG_CPU_SUP_AMD
511
static const char errata93_warning[] =
512 513 514 515 516
KERN_ERR 
"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
"******* Working around it, but it may cause SEGVs or burn power.\n"
"******* Please consider a BIOS update.\n"
"******* Disabling USB legacy in the BIOS may also help.\n";
517
#endif
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536

/*
 * No vm86 mode in 64-bit mode:
 */
static inline void
check_v8086_mode(struct pt_regs *regs, unsigned long address,
		 struct task_struct *tsk)
{
}

static int bad_address(void *p)
{
	unsigned long dummy;

	return probe_kernel_address((unsigned long *)p, dummy);
}

static void dump_pagetable(unsigned long address)
{
A
Akinobu Mita 已提交
537 538
	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
	pgd_t *pgd = base + pgd_index(address);
539
	p4d_t *p4d;
L
Linus Torvalds 已提交
540 541 542 543
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

I
Ingo Molnar 已提交
544 545 546
	if (bad_address(pgd))
		goto bad;

547
	printk("PGD %lx ", pgd_val(*pgd));
I
Ingo Molnar 已提交
548 549 550

	if (!pgd_present(*pgd))
		goto out;
L
Linus Torvalds 已提交
551

552 553 554 555 556 557 558 559 560
	p4d = p4d_offset(pgd, address);
	if (bad_address(p4d))
		goto bad;

	printk("P4D %lx ", p4d_val(*p4d));
	if (!p4d_present(*p4d) || p4d_large(*p4d))
		goto out;

	pud = pud_offset(p4d, address);
I
Ingo Molnar 已提交
561 562 563
	if (bad_address(pud))
		goto bad;

L
Linus Torvalds 已提交
564
	printk("PUD %lx ", pud_val(*pud));
565
	if (!pud_present(*pud) || pud_large(*pud))
I
Ingo Molnar 已提交
566
		goto out;
L
Linus Torvalds 已提交
567 568

	pmd = pmd_offset(pud, address);
I
Ingo Molnar 已提交
569 570 571
	if (bad_address(pmd))
		goto bad;

L
Linus Torvalds 已提交
572
	printk("PMD %lx ", pmd_val(*pmd));
I
Ingo Molnar 已提交
573 574
	if (!pmd_present(*pmd) || pmd_large(*pmd))
		goto out;
L
Linus Torvalds 已提交
575 576

	pte = pte_offset_kernel(pmd, address);
I
Ingo Molnar 已提交
577 578 579
	if (bad_address(pte))
		goto bad;

580
	printk("PTE %lx", pte_val(*pte));
I
Ingo Molnar 已提交
581
out:
L
Linus Torvalds 已提交
582 583 584 585
	printk("\n");
	return;
bad:
	printk("BAD\n");
586 587
}

588
#endif /* CONFIG_X86_64 */
L
Linus Torvalds 已提交
589

I
Ingo Molnar 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602
/*
 * Workaround for K8 erratum #93 & buggy BIOS.
 *
 * BIOS SMM functions are required to use a specific workaround
 * to avoid corruption of the 64bit RIP register on C stepping K8.
 *
 * A lot of BIOS that didn't get tested properly miss this.
 *
 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 * Try to work around it here.
 *
 * Note we only handle faults in kernel here.
 * Does nothing on 32-bit.
603
 */
604
static int is_errata93(struct pt_regs *regs, unsigned long address)
L
Linus Torvalds 已提交
605
{
606 607 608 609 610
#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
	    || boot_cpu_data.x86 != 0xf)
		return 0;

611
	if (address != regs->ip)
L
Linus Torvalds 已提交
612
		return 0;
I
Ingo Molnar 已提交
613

614
	if ((address >> 32) != 0)
L
Linus Torvalds 已提交
615
		return 0;
I
Ingo Molnar 已提交
616

L
Linus Torvalds 已提交
617
	address |= 0xffffffffUL << 32;
618 619
	if ((address >= (u64)_stext && address <= (u64)_etext) ||
	    (address >= MODULES_VADDR && address <= MODULES_END)) {
620
		printk_once(errata93_warning);
621
		regs->ip = address;
L
Linus Torvalds 已提交
622 623
		return 1;
	}
624
#endif
L
Linus Torvalds 已提交
625
	return 0;
626
}
L
Linus Torvalds 已提交
627

628
/*
I
Ingo Molnar 已提交
629 630 631 632 633
 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 * to illegal addresses >4GB.
 *
 * We catch this in the page fault handler because these addresses
 * are not reachable. Just detect this case and return.  Any code
634 635 636 637 638
 * segment in LDT is compatibility mode.
 */
static int is_errata100(struct pt_regs *regs, unsigned long address)
{
#ifdef CONFIG_X86_64
I
Ingo Molnar 已提交
639
	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
640 641 642 643 644
		return 1;
#endif
	return 0;
}

645 646 647 648
static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
{
#ifdef CONFIG_X86_F00F_BUG
	unsigned long nr;
I
Ingo Molnar 已提交
649

650
	/*
I
Ingo Molnar 已提交
651
	 * Pentium F0 0F C7 C8 bug workaround:
652
	 */
653
	if (boot_cpu_has_bug(X86_BUG_F00F)) {
654 655 656 657 658 659 660 661 662 663 664
		nr = (address - idt_descr.address) >> 3;

		if (nr == 6) {
			do_invalid_op(regs, 0);
			return 1;
		}
	}
#endif
	return 0;
}

665 666
static const char nx_warning[] = KERN_CRIT
"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
667 668
static const char smep_warning[] = KERN_CRIT
"unable to execute userspace code (SMEP?) (uid: %d)\n";
669

I
Ingo Molnar 已提交
670 671 672
static void
show_fault_oops(struct pt_regs *regs, unsigned long error_code,
		unsigned long address)
673
{
674 675 676 677
	if (!oops_may_print())
		return;

	if (error_code & PF_INSTR) {
678
		unsigned int level;
679 680
		pgd_t *pgd;
		pte_t *pte;
I
Ingo Molnar 已提交
681

682 683 684 685
		pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
		pgd += pgd_index(address);

		pte = lookup_address_in_pgd(pgd, address, &level);
686

687
		if (pte && pte_present(*pte) && !pte_exec(*pte))
688
			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
689 690
		if (pte && pte_present(*pte) && pte_exec(*pte) &&
				(pgd_flags(*pgd) & _PAGE_USER) &&
691
				(__read_cr4() & X86_CR4_SMEP))
692
			printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
693 694
	}

695
	printk(KERN_ALERT "BUG: unable to handle kernel ");
696
	if (address < PAGE_SIZE)
697
		printk(KERN_CONT "NULL pointer dereference");
698
	else
699
		printk(KERN_CONT "paging request");
I
Ingo Molnar 已提交
700

701
	printk(KERN_CONT " at %p\n", (void *) address);
702
	printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
I
Ingo Molnar 已提交
703

704 705 706
	dump_pagetable(address);
}

I
Ingo Molnar 已提交
707 708 709
static noinline void
pgtable_bad(struct pt_regs *regs, unsigned long error_code,
	    unsigned long address)
L
Linus Torvalds 已提交
710
{
I
Ingo Molnar 已提交
711 712 713 714 715 716 717
	struct task_struct *tsk;
	unsigned long flags;
	int sig;

	flags = oops_begin();
	tsk = current;
	sig = SIGKILL;
718

L
Linus Torvalds 已提交
719
	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
720
	       tsk->comm, address);
L
Linus Torvalds 已提交
721
	dump_pagetable(address);
I
Ingo Molnar 已提交
722 723

	tsk->thread.cr2		= address;
724
	tsk->thread.trap_nr	= X86_TRAP_PF;
I
Ingo Molnar 已提交
725 726
	tsk->thread.error_code	= error_code;

727
	if (__die("Bad pagetable", regs, error_code))
728
		sig = 0;
I
Ingo Molnar 已提交
729

730
	oops_end(flags, regs, sig);
L
Linus Torvalds 已提交
731 732
}

I
Ingo Molnar 已提交
733 734
static noinline void
no_context(struct pt_regs *regs, unsigned long error_code,
735
	   unsigned long address, int signal, int si_code)
736 737 738 739
{
	struct task_struct *tsk = current;
	unsigned long flags;
	int sig;
740 741
	/* No context means no VMA to pass down */
	struct vm_area_struct *vma = NULL;
742

I
Ingo Molnar 已提交
743
	/* Are we prepared to handle this kernel fault? */
744
	if (fixup_exception(regs, X86_TRAP_PF)) {
745 746 747 748 749 750 751 752 753 754 755 756 757 758
		/*
		 * Any interrupt that takes a fault gets the fixup. This makes
		 * the below recursive fault logic only apply to a faults from
		 * task context.
		 */
		if (in_interrupt())
			return;

		/*
		 * Per the above we're !in_interrupt(), aka. task context.
		 *
		 * In this case we need to make sure we're not recursively
		 * faulting through the emulate_vsyscall() logic.
		 */
759
		if (current->thread.sig_on_uaccess_err && signal) {
760
			tsk->thread.trap_nr = X86_TRAP_PF;
761 762 763 764
			tsk->thread.error_code = error_code | PF_USER;
			tsk->thread.cr2 = address;

			/* XXX: hwpoison faults will set the wrong code. */
765 766
			force_sig_info_fault(signal, si_code, address,
					     tsk, vma, 0);
767
		}
768 769 770 771

		/*
		 * Barring that, we can do the fixup and be happy.
		 */
772
		return;
773
	}
774

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
#ifdef CONFIG_VMAP_STACK
	/*
	 * Stack overflow?  During boot, we can fault near the initial
	 * stack in the direct map, but that's not an overflow -- check
	 * that we're in vmalloc space to avoid this.
	 */
	if (is_vmalloc_addr((void *)address) &&
	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
		register void *__sp asm("rsp");
		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
		/*
		 * We're likely to be running with very little stack space
		 * left.  It's plausible that we'd hit this condition but
		 * double-fault even before we get this far, in which case
		 * we're fine: the double-fault handler will deal with it.
		 *
		 * We don't want to make it all the way into the oops code
		 * and then double-fault, though, because we're likely to
		 * break the console driver and lose most of the stack dump.
		 */
		asm volatile ("movq %[stack], %%rsp\n\t"
			      "call handle_stack_overflow\n\t"
			      "1: jmp 1b"
			      : "+r" (__sp)
			      : "D" ("kernel stack overflow (page fault)"),
				"S" (regs), "d" (address),
				[stack] "rm" (stack));
		unreachable();
	}
#endif

807
	/*
I
Ingo Molnar 已提交
808 809 810 811 812 813 814
	 * 32-bit:
	 *
	 *   Valid to do another page fault here, because if this fault
	 *   had been triggered by is_prefetch fixup_exception would have
	 *   handled it.
	 *
	 * 64-bit:
815
	 *
I
Ingo Molnar 已提交
816
	 *   Hall of shame of CPU/BIOS bugs.
817 818 819 820 821 822 823 824 825
	 */
	if (is_prefetch(regs, error_code, address))
		return;

	if (is_errata93(regs, address))
		return;

	/*
	 * Oops. The kernel tried to access some bad page. We'll have to
I
Ingo Molnar 已提交
826
	 * terminate things with extreme prejudice:
827 828 829 830 831
	 */
	flags = oops_begin();

	show_fault_oops(regs, error_code, address);

832
	if (task_stack_end_corrupted(tsk))
833
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
834

835
	tsk->thread.cr2		= address;
836
	tsk->thread.trap_nr	= X86_TRAP_PF;
837
	tsk->thread.error_code	= error_code;
838 839 840 841

	sig = SIGKILL;
	if (__die("Oops", regs, error_code))
		sig = 0;
I
Ingo Molnar 已提交
842

843
	/* Executive summary in case the body of the oops scrolled away */
844
	printk(KERN_DEFAULT "CR2: %016lx\n", address);
I
Ingo Molnar 已提交
845

846 847 848
	oops_end(flags, regs, sig);
}

I
Ingo Molnar 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861 862
/*
 * Print out info about fatal segfaults, if the show_unhandled_signals
 * sysctl is set:
 */
static inline void
show_signal_msg(struct pt_regs *regs, unsigned long error_code,
		unsigned long address, struct task_struct *tsk)
{
	if (!unhandled_signal(tsk, SIGSEGV))
		return;

	if (!printk_ratelimit())
		return;

863
	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
I
Ingo Molnar 已提交
864 865 866 867 868 869 870 871 872 873 874
		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
		tsk->comm, task_pid_nr(tsk), address,
		(void *)regs->ip, (void *)regs->sp, error_code);

	print_vma_addr(KERN_CONT " in ", regs->ip);

	printk(KERN_CONT "\n");
}

static void
__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
875 876
		       unsigned long address, struct vm_area_struct *vma,
		       int si_code)
877 878 879 880 881 882
{
	struct task_struct *tsk = current;

	/* User mode accesses just cause a SIGSEGV */
	if (error_code & PF_USER) {
		/*
I
Ingo Molnar 已提交
883
		 * It's possible to have interrupts off here:
884 885 886 887 888
		 */
		local_irq_enable();

		/*
		 * Valid to do another page fault here because this one came
I
Ingo Molnar 已提交
889
		 * from user space:
890 891 892 893 894 895 896
		 */
		if (is_prefetch(regs, error_code, address))
			return;

		if (is_errata100(regs, address))
			return;

897 898 899 900 901 902
#ifdef CONFIG_X86_64
		/*
		 * Instruction fetch faults in the vsyscall page might need
		 * emulation.
		 */
		if (unlikely((error_code & PF_INSTR) &&
903
			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
904 905 906 907
			if (emulate_vsyscall(regs, address))
				return;
		}
#endif
908 909 910 911 912 913 914

		/*
		 * To avoid leaking information about the kernel page table
		 * layout, pretend that user-mode accesses to kernel addresses
		 * are always protection faults.
		 */
		if (address >= TASK_SIZE_MAX)
915
			error_code |= PF_PROT;
916

917
		if (likely(show_unhandled_signals))
I
Ingo Molnar 已提交
918 919 920
			show_signal_msg(regs, error_code, address, tsk);

		tsk->thread.cr2		= address;
921
		tsk->thread.error_code	= error_code;
922
		tsk->thread.trap_nr	= X86_TRAP_PF;
923

924
		force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0);
I
Ingo Molnar 已提交
925

926 927 928 929 930 931
		return;
	}

	if (is_f00f_bug(regs, address))
		return;

932
	no_context(regs, error_code, address, SIGSEGV, si_code);
933 934
}

I
Ingo Molnar 已提交
935 936
static noinline void
bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
937
		     unsigned long address, struct vm_area_struct *vma)
938
{
939
	__bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR);
940 941
}

I
Ingo Molnar 已提交
942 943
static void
__bad_area(struct pt_regs *regs, unsigned long error_code,
944
	   unsigned long address,  struct vm_area_struct *vma, int si_code)
945 946 947 948 949 950 951 952 953
{
	struct mm_struct *mm = current->mm;

	/*
	 * Something tried to access memory that isn't in our memory map..
	 * Fix it, but check if it's kernel or user first..
	 */
	up_read(&mm->mmap_sem);

954
	__bad_area_nosemaphore(regs, error_code, address, vma, si_code);
955 956
}

I
Ingo Molnar 已提交
957 958
static noinline void
bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
959
{
960
	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
961 962
}

963 964 965
static inline bool bad_area_access_from_pkeys(unsigned long error_code,
		struct vm_area_struct *vma)
{
966 967 968
	/* This code is always called on the current mm */
	bool foreign = false;

969 970 971 972
	if (!boot_cpu_has(X86_FEATURE_OSPKE))
		return false;
	if (error_code & PF_PK)
		return true;
973
	/* this checks permission keys on the VMA: */
974 975
	if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
				(error_code & PF_INSTR), foreign))
976
		return true;
977
	return false;
978 979
}

I
Ingo Molnar 已提交
980 981
static noinline void
bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
982
		      unsigned long address, struct vm_area_struct *vma)
983
{
984 985 986 987 988
	/*
	 * This OSPKE check is not strictly necessary at runtime.
	 * But, doing it this way allows compiler optimizations
	 * if pkeys are compiled out.
	 */
989
	if (bad_area_access_from_pkeys(error_code, vma))
990 991 992
		__bad_area(regs, error_code, address, vma, SEGV_PKUERR);
	else
		__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
993 994
}

I
Ingo Molnar 已提交
995
static void
996
do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
997
	  struct vm_area_struct *vma, unsigned int fault)
998 999
{
	struct task_struct *tsk = current;
1000
	int code = BUS_ADRERR;
1001

I
Ingo Molnar 已提交
1002
	/* Kernel mode? Handle exceptions or die: */
1003
	if (!(error_code & PF_USER)) {
1004
		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1005 1006
		return;
	}
I
Ingo Molnar 已提交
1007

1008
	/* User-space => ok to do another page fault: */
1009 1010
	if (is_prefetch(regs, error_code, address))
		return;
I
Ingo Molnar 已提交
1011 1012 1013

	tsk->thread.cr2		= address;
	tsk->thread.error_code	= error_code;
1014
	tsk->thread.trap_nr	= X86_TRAP_PF;
I
Ingo Molnar 已提交
1015

1016
#ifdef CONFIG_MEMORY_FAILURE
1017
	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1018 1019 1020 1021 1022 1023
		printk(KERN_ERR
	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
			tsk->comm, tsk->pid, address);
		code = BUS_MCEERR_AR;
	}
#endif
1024
	force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault);
1025 1026
}

1027
static noinline void
I
Ingo Molnar 已提交
1028
mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1029 1030
	       unsigned long address, struct vm_area_struct *vma,
	       unsigned int fault)
1031
{
1032 1033 1034
	if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
		no_context(regs, error_code, address, 0, 0);
		return;
1035 1036
	}

I
Ingo Molnar 已提交
1037
	if (fault & VM_FAULT_OOM) {
1038 1039
		/* Kernel mode? Handle exceptions or die: */
		if (!(error_code & PF_USER)) {
1040 1041
			no_context(regs, error_code, address,
				   SIGSEGV, SEGV_MAPERR);
1042
			return;
1043 1044
		}

1045 1046 1047 1048 1049 1050
		/*
		 * We ran out of memory, call the OOM killer, and return the
		 * userspace (which will retry the fault, or kill us if we got
		 * oom-killed):
		 */
		pagefault_out_of_memory();
I
Ingo Molnar 已提交
1051
	} else {
1052 1053
		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
			     VM_FAULT_HWPOISON_LARGE))
1054
			do_sigbus(regs, error_code, address, vma, fault);
1055
		else if (fault & VM_FAULT_SIGSEGV)
1056
			bad_area_nosemaphore(regs, error_code, address, vma);
I
Ingo Molnar 已提交
1057 1058 1059
		else
			BUG();
	}
1060 1061
}

1062 1063 1064 1065
static int spurious_fault_check(unsigned long error_code, pte_t *pte)
{
	if ((error_code & PF_WRITE) && !pte_write(*pte))
		return 0;
I
Ingo Molnar 已提交
1066

1067 1068
	if ((error_code & PF_INSTR) && !pte_exec(*pte))
		return 0;
1069 1070 1071 1072 1073 1074
	/*
	 * Note: We do not do lazy flushing on protection key
	 * changes, so no spurious fault will ever set PF_PK.
	 */
	if ((error_code & PF_PK))
		return 1;
1075 1076 1077 1078

	return 1;
}

1079
/*
I
Ingo Molnar 已提交
1080 1081 1082 1083 1084 1085 1086 1087
 * Handle a spurious fault caused by a stale TLB entry.
 *
 * This allows us to lazily refresh the TLB when increasing the
 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 * eagerly is very expensive since that implies doing a full
 * cross-processor TLB flush, even if no stale TLB entries exist
 * on other processors.
 *
1088 1089 1090 1091
 * Spurious faults may only occur if the TLB contains an entry with
 * fewer permission than the page table entry.  Non-present (P = 0)
 * and reserved bit (R = 1) faults are never spurious.
 *
1092 1093
 * There are no security implications to leaving a stale TLB when
 * increasing the permissions on a page.
1094 1095 1096 1097 1098
 *
 * Returns non-zero if a spurious fault was handled, zero otherwise.
 *
 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
 * (Optional Invalidation).
1099
 */
1100
static noinline int
I
Ingo Molnar 已提交
1101
spurious_fault(unsigned long error_code, unsigned long address)
1102 1103
{
	pgd_t *pgd;
1104
	p4d_t *p4d;
1105 1106 1107
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
1108
	int ret;
1109

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	/*
	 * Only writes to RO or instruction fetches from NX may cause
	 * spurious faults.
	 *
	 * These could be from user or supervisor accesses but the TLB
	 * is only lazily flushed after a kernel mapping protection
	 * change, so user accesses are not expected to cause spurious
	 * faults.
	 */
	if (error_code != (PF_WRITE | PF_PROT)
	    && error_code != (PF_INSTR | PF_PROT))
1121 1122 1123 1124 1125 1126
		return 0;

	pgd = init_mm.pgd + pgd_index(address);
	if (!pgd_present(*pgd))
		return 0;

1127 1128 1129 1130 1131 1132 1133 1134
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return 0;

	if (p4d_large(*p4d))
		return spurious_fault_check(error_code, (pte_t *) p4d);

	pud = pud_offset(p4d, address);
1135 1136 1137
	if (!pud_present(*pud))
		return 0;

1138 1139 1140
	if (pud_large(*pud))
		return spurious_fault_check(error_code, (pte_t *) pud);

1141 1142 1143 1144
	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;

1145 1146 1147
	if (pmd_large(*pmd))
		return spurious_fault_check(error_code, (pte_t *) pmd);

1148
	pte = pte_offset_kernel(pmd, address);
1149
	if (!pte_present(*pte))
1150 1151
		return 0;

1152 1153 1154 1155 1156
	ret = spurious_fault_check(error_code, pte);
	if (!ret)
		return 0;

	/*
I
Ingo Molnar 已提交
1157 1158
	 * Make sure we have permissions in PMD.
	 * If not, then there's a bug in the page tables:
1159 1160 1161
	 */
	ret = spurious_fault_check(error_code, (pte_t *) pmd);
	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
I
Ingo Molnar 已提交
1162

1163
	return ret;
1164
}
1165
NOKPROBE_SYMBOL(spurious_fault);
1166

1167
int show_unhandled_signals = 1;
L
Linus Torvalds 已提交
1168

I
Ingo Molnar 已提交
1169
static inline int
M
Michel Lespinasse 已提交
1170
access_error(unsigned long error_code, struct vm_area_struct *vma)
1171
{
1172 1173
	/* This is only called for the current mm, so: */
	bool foreign = false;
1174 1175 1176 1177 1178 1179 1180 1181 1182

	/*
	 * Read or write was blocked by protection keys.  This is
	 * always an unconditional error and can never result in
	 * a follow-up action to resolve the fault, like a COW.
	 */
	if (error_code & PF_PK)
		return 1;

1183 1184 1185 1186 1187
	/*
	 * Make sure to check the VMA so that we do not perform
	 * faults just to hit a PF_PK as soon as we fill in a
	 * page.
	 */
1188 1189
	if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
				(error_code & PF_INSTR), foreign))
1190
		return 1;
1191

M
Michel Lespinasse 已提交
1192
	if (error_code & PF_WRITE) {
I
Ingo Molnar 已提交
1193
		/* write, present and write, not present: */
1194 1195
		if (unlikely(!(vma->vm_flags & VM_WRITE)))
			return 1;
I
Ingo Molnar 已提交
1196
		return 0;
1197 1198
	}

I
Ingo Molnar 已提交
1199 1200 1201 1202 1203 1204 1205 1206
	/* read, present: */
	if (unlikely(error_code & PF_PROT))
		return 1;

	/* read, not present: */
	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
		return 1;

1207 1208 1209
	return 0;
}

1210 1211
static int fault_in_kernel_space(unsigned long address)
{
1212
	return address >= TASK_SIZE_MAX;
1213 1214
}

1215 1216
static inline bool smap_violation(int error_code, struct pt_regs *regs)
{
1217 1218 1219 1220 1221 1222
	if (!IS_ENABLED(CONFIG_X86_SMAP))
		return false;

	if (!static_cpu_has(X86_FEATURE_SMAP))
		return false;

1223 1224 1225
	if (error_code & PF_USER)
		return false;

1226
	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1227 1228 1229 1230 1231
		return false;

	return true;
}

L
Linus Torvalds 已提交
1232 1233 1234 1235
/*
 * This routine handles page faults.  It determines the address,
 * and the problem, and then passes it off to one of the appropriate
 * routines.
1236 1237 1238 1239
 *
 * This function must have noinline because both callers
 * {,trace_}do_page_fault() have notrace on. Having this an actual function
 * guarantees there's a function trace entry.
L
Linus Torvalds 已提交
1240
 */
1241
static noinline void
1242 1243
__do_page_fault(struct pt_regs *regs, unsigned long error_code,
		unsigned long address)
L
Linus Torvalds 已提交
1244
{
I
Ingo Molnar 已提交
1245
	struct vm_area_struct *vma;
L
Linus Torvalds 已提交
1246 1247
	struct task_struct *tsk;
	struct mm_struct *mm;
1248
	int fault, major = 0;
1249
	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
L
Linus Torvalds 已提交
1250

1251 1252
	tsk = current;
	mm = tsk->mm;
I
Ingo Molnar 已提交
1253

V
Vegard Nossum 已提交
1254 1255 1256 1257 1258 1259
	/*
	 * Detect and handle instructions that would cause a page fault for
	 * both a tracked kernel page and a userspace page.
	 */
	if (kmemcheck_active(regs))
		kmemcheck_hide(regs);
1260
	prefetchw(&mm->mmap_sem);
V
Vegard Nossum 已提交
1261

1262
	if (unlikely(kmmio_fault(regs, address)))
1263
		return;
L
Linus Torvalds 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275

	/*
	 * We fault-in kernel-space virtual memory on-demand. The
	 * 'reference' page table is init_mm.pgd.
	 *
	 * NOTE! We MUST NOT take any locks for this case. We may
	 * be in an interrupt or a critical region, and should
	 * only copy the information from the master page table,
	 * nothing more.
	 *
	 * This verifies that the fault happens in kernel space
	 * (error_code & 4) == 0, and that the fault was not a
1276
	 * protection error (error_code & 9) == 0.
L
Linus Torvalds 已提交
1277
	 */
1278
	if (unlikely(fault_in_kernel_space(address))) {
V
Vegard Nossum 已提交
1279 1280 1281 1282 1283 1284 1285
		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
			if (vmalloc_fault(address) >= 0)
				return;

			if (kmemcheck_fault(regs, address, error_code))
				return;
		}
1286

I
Ingo Molnar 已提交
1287
		/* Can handle a stale RO->RW TLB: */
1288
		if (spurious_fault(error_code, address))
1289 1290
			return;

I
Ingo Molnar 已提交
1291
		/* kprobes don't want to hook the spurious faults: */
1292
		if (kprobes_fault(regs))
1293
			return;
1294 1295
		/*
		 * Don't take the mm semaphore here. If we fixup a prefetch
I
Ingo Molnar 已提交
1296
		 * fault we could otherwise deadlock:
1297
		 */
1298
		bad_area_nosemaphore(regs, error_code, address, NULL);
I
Ingo Molnar 已提交
1299

1300
		return;
1301 1302
	}

I
Ingo Molnar 已提交
1303
	/* kprobes don't want to hook the spurious faults: */
1304
	if (unlikely(kprobes_fault(regs)))
1305
		return;
1306

1307
	if (unlikely(error_code & PF_RSVD))
1308
		pgtable_bad(regs, error_code, address);
L
Linus Torvalds 已提交
1309

1310
	if (unlikely(smap_violation(error_code, regs))) {
1311
		bad_area_nosemaphore(regs, error_code, address, NULL);
1312
		return;
1313 1314
	}

L
Linus Torvalds 已提交
1315
	/*
I
Ingo Molnar 已提交
1316
	 * If we're in an interrupt, have no user context or are running
1317
	 * in a region with pagefaults disabled then we must not take the fault
L
Linus Torvalds 已提交
1318
	 */
1319
	if (unlikely(faulthandler_disabled() || !mm)) {
1320
		bad_area_nosemaphore(regs, error_code, address, NULL);
1321 1322
		return;
	}
L
Linus Torvalds 已提交
1323

1324 1325 1326 1327 1328 1329 1330
	/*
	 * It's safe to allow irq's after cr2 has been saved and the
	 * vmalloc fault has been handled.
	 *
	 * User-mode registers count as a user access even for any
	 * potential system fault or CPU buglet:
	 */
1331
	if (user_mode(regs)) {
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
		local_irq_enable();
		error_code |= PF_USER;
		flags |= FAULT_FLAG_USER;
	} else {
		if (regs->flags & X86_EFLAGS_IF)
			local_irq_enable();
	}

	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);

1342 1343
	if (error_code & PF_WRITE)
		flags |= FAULT_FLAG_WRITE;
1344 1345
	if (error_code & PF_INSTR)
		flags |= FAULT_FLAG_INSTRUCTION;
1346

I
Ingo Molnar 已提交
1347 1348
	/*
	 * When running in the kernel we expect faults to occur only to
I
Ingo Molnar 已提交
1349 1350 1351 1352 1353 1354 1355
	 * addresses in user space.  All other faults represent errors in
	 * the kernel and should generate an OOPS.  Unfortunately, in the
	 * case of an erroneous fault occurring in a code path which already
	 * holds mmap_sem we will deadlock attempting to validate the fault
	 * against the address space.  Luckily the kernel only validly
	 * references user space from well defined areas of code, which are
	 * listed in the exceptions table.
L
Linus Torvalds 已提交
1356 1357
	 *
	 * As the vast majority of faults will be valid we will only perform
I
Ingo Molnar 已提交
1358 1359 1360 1361
	 * the source reference check when there is a possibility of a
	 * deadlock. Attempt to lock the address space, if we cannot we then
	 * validate the source. If this is invalid we can skip the address
	 * space check, thus avoiding the deadlock:
L
Linus Torvalds 已提交
1362
	 */
1363
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1364
		if ((error_code & PF_USER) == 0 &&
1365
		    !search_exception_tables(regs->ip)) {
1366
			bad_area_nosemaphore(regs, error_code, address, NULL);
1367 1368
			return;
		}
1369
retry:
L
Linus Torvalds 已提交
1370
		down_read(&mm->mmap_sem);
1371 1372
	} else {
		/*
I
Ingo Molnar 已提交
1373 1374 1375
		 * The above down_read_trylock() might have succeeded in
		 * which case we'll have missed the might_sleep() from
		 * down_read():
1376 1377
		 */
		might_sleep();
L
Linus Torvalds 已提交
1378 1379 1380
	}

	vma = find_vma(mm, address);
1381 1382 1383 1384 1385
	if (unlikely(!vma)) {
		bad_area(regs, error_code, address);
		return;
	}
	if (likely(vma->vm_start <= address))
L
Linus Torvalds 已提交
1386
		goto good_area;
1387 1388 1389 1390
	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
		bad_area(regs, error_code, address);
		return;
	}
1391
	if (error_code & PF_USER) {
1392 1393 1394
		/*
		 * Accessing the stack below %sp is always a bug.
		 * The large cushion allows instructions like enter
I
Ingo Molnar 已提交
1395
		 * and pusha to work. ("enter $65535, $31" pushes
1396
		 * 32 pointers and then decrements %sp by 65535.)
1397
		 */
1398 1399 1400 1401
		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
			bad_area(regs, error_code, address);
			return;
		}
L
Linus Torvalds 已提交
1402
	}
1403 1404 1405 1406 1407 1408 1409 1410 1411
	if (unlikely(expand_stack(vma, address))) {
		bad_area(regs, error_code, address);
		return;
	}

	/*
	 * Ok, we have a good vm_area for this memory access, so
	 * we can handle it..
	 */
L
Linus Torvalds 已提交
1412
good_area:
M
Michel Lespinasse 已提交
1413
	if (unlikely(access_error(error_code, vma))) {
1414
		bad_area_access_error(regs, error_code, address, vma);
1415
		return;
L
Linus Torvalds 已提交
1416 1417 1418 1419 1420
	}

	/*
	 * If for any reason at all we couldn't handle the fault,
	 * make sure we exit gracefully rather than endlessly redo
1421 1422
	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
L
Linus Torvalds 已提交
1423
	 */
1424
	fault = handle_mm_fault(vma, address, flags);
1425
	major |= fault & VM_FAULT_MAJOR;
I
Ingo Molnar 已提交
1426

1427
	/*
1428 1429 1430
	 * If we need to retry the mmap_sem has already been released,
	 * and if there is a fatal signal pending there is no guarantee
	 * that we made any progress. Handle this case first.
1431
	 */
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	if (unlikely(fault & VM_FAULT_RETRY)) {
		/* Retry at most once */
		if (flags & FAULT_FLAG_ALLOW_RETRY) {
			flags &= ~FAULT_FLAG_ALLOW_RETRY;
			flags |= FAULT_FLAG_TRIED;
			if (!fatal_signal_pending(tsk))
				goto retry;
		}

		/* User mode? Just return to handle the fatal exception */
1442
		if (flags & FAULT_FLAG_USER)
1443 1444 1445 1446
			return;

		/* Not returning to user mode? Handle exceptions or die: */
		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1447
		return;
1448
	}
1449

1450
	up_read(&mm->mmap_sem);
1451
	if (unlikely(fault & VM_FAULT_ERROR)) {
1452
		mm_fault_error(regs, error_code, address, vma, fault);
1453
		return;
1454 1455
	}

1456
	/*
1457 1458
	 * Major/minor page fault accounting. If any of the events
	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1459
	 */
1460 1461 1462 1463 1464 1465
	if (major) {
		tsk->maj_flt++;
		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
	} else {
		tsk->min_flt++;
		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1466
	}
1467

1468
	check_v8086_mode(regs, address, tsk);
L
Linus Torvalds 已提交
1469
}
1470
NOKPROBE_SYMBOL(__do_page_fault);
1471

1472
dotraplinkage void notrace
1473 1474
do_page_fault(struct pt_regs *regs, unsigned long error_code)
{
1475
	unsigned long address = read_cr2(); /* Get the faulting address */
1476
	enum ctx_state prev_state;
1477 1478 1479 1480 1481 1482 1483 1484

	/*
	 * We must have this function tagged with __kprobes, notrace and call
	 * read_cr2() before calling anything else. To avoid calling any kind
	 * of tracing machinery before we've observed the CR2 value.
	 *
	 * exception_{enter,exit}() contain all sorts of tracepoints.
	 */
1485 1486

	prev_state = exception_enter();
1487
	__do_page_fault(regs, error_code, address);
1488
	exception_exit(prev_state);
1489
}
1490
NOKPROBE_SYMBOL(do_page_fault);
1491

1492
#ifdef CONFIG_TRACING
1493 1494 1495
static nokprobe_inline void
trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
			 unsigned long error_code)
1496 1497
{
	if (user_mode(regs))
1498
		trace_page_fault_user(address, regs, error_code);
1499
	else
1500
		trace_page_fault_kernel(address, regs, error_code);
1501 1502
}

1503
dotraplinkage void notrace
1504 1505
trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
{
1506 1507 1508 1509 1510 1511 1512
	/*
	 * The exception_enter and tracepoint processing could
	 * trigger another page faults (user space callchain
	 * reading) and destroy the original cr2 value, so read
	 * the faulting address now.
	 */
	unsigned long address = read_cr2();
1513
	enum ctx_state prev_state;
1514 1515

	prev_state = exception_enter();
1516
	trace_page_fault_entries(address, regs, error_code);
1517
	__do_page_fault(regs, error_code, address);
1518 1519
	exception_exit(prev_state);
}
1520
NOKPROBE_SYMBOL(trace_do_page_fault);
1521
#endif /* CONFIG_TRACING */