fault.c 38.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 *  Copyright (C) 1995  Linus Torvalds
I
Ingo Molnar 已提交
3
 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4
 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
L
Linus Torvalds 已提交
5
 */
6
#include <linux/sched.h>		/* test_thread_flag(), ...	*/
7
#include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
8
#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
9
#include <linux/extable.h>		/* search_exception_tables	*/
10
#include <linux/bootmem.h>		/* max_low_pfn			*/
11
#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
12
#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
13
#include <linux/perf_event.h>		/* perf_sw_event		*/
14
#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
15
#include <linux/prefetch.h>		/* prefetchw			*/
16
#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
17
#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
I
Ingo Molnar 已提交
18

19
#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
20 21
#include <asm/traps.h>			/* dotraplinkage, ...		*/
#include <asm/pgalloc.h>		/* pgd_*(), ...			*/
V
Vegard Nossum 已提交
22
#include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
23 24
#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
B
Brian Gerst 已提交
25
#include <asm/vm86.h>			/* struct vm86			*/
26
#include <asm/mmu_context.h>		/* vma_pkey()			*/
L
Linus Torvalds 已提交
27

28 29 30
#define CREATE_TRACE_POINTS
#include <asm/trace/exceptions.h>

31
/*
I
Ingo Molnar 已提交
32 33 34 35 36 37 38
 * Page fault error code bits:
 *
 *   bit 0 ==	 0: no page found	1: protection fault
 *   bit 1 ==	 0: read access		1: write access
 *   bit 2 ==	 0: kernel-mode access	1: user-mode access
 *   bit 3 ==				1: use of reserved bit detected
 *   bit 4 ==				1: fault was an instruction fetch
39
 *   bit 5 ==				1: protection keys block access
40
 */
I
Ingo Molnar 已提交
41 42 43 44 45 46 47
enum x86_pf_error_code {

	PF_PROT		=		1 << 0,
	PF_WRITE	=		1 << 1,
	PF_USER		=		1 << 2,
	PF_RSVD		=		1 << 3,
	PF_INSTR	=		1 << 4,
48
	PF_PK		=		1 << 5,
I
Ingo Molnar 已提交
49
};
50

51
/*
52 53
 * Returns 0 if mmiotrace is disabled, or if the fault is not
 * handled by mmiotrace:
54
 */
55
static nokprobe_inline int
56
kmmio_fault(struct pt_regs *regs, unsigned long addr)
57
{
58 59 60 61
	if (unlikely(is_kmmio_active()))
		if (kmmio_handler(regs, addr) == 1)
			return -1;
	return 0;
62 63
}

64
static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
65
{
66 67 68
	int ret = 0;

	/* kprobe_running() needs smp_processor_id() */
69
	if (kprobes_built_in() && !user_mode(regs)) {
70 71 72 73 74
		preempt_disable();
		if (kprobe_running() && kprobe_fault_handler(regs, 14))
			ret = 1;
		preempt_enable();
	}
75

76
	return ret;
77
}
78

79
/*
I
Ingo Molnar 已提交
80 81 82 83 84 85
 * Prefetch quirks:
 *
 * 32-bit mode:
 *
 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
 *   Check that here and ignore it.
86
 *
I
Ingo Molnar 已提交
87
 * 64-bit mode:
88
 *
I
Ingo Molnar 已提交
89 90 91 92
 *   Sometimes the CPU reports invalid exceptions on prefetch.
 *   Check that here and ignore it.
 *
 * Opcode checker based on code by Richard Brunner.
93
 */
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
static inline int
check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
		      unsigned char opcode, int *prefetch)
{
	unsigned char instr_hi = opcode & 0xf0;
	unsigned char instr_lo = opcode & 0x0f;

	switch (instr_hi) {
	case 0x20:
	case 0x30:
		/*
		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
		 * In X86_64 long mode, the CPU will signal invalid
		 * opcode if some of these prefixes are present so
		 * X86_64 will never get here anyway
		 */
		return ((instr_lo & 7) == 0x6);
#ifdef CONFIG_X86_64
	case 0x40:
		/*
		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
		 * Need to figure out under what instruction mode the
		 * instruction was issued. Could check the LDT for lm,
		 * but for now it's good enough to assume that long
		 * mode only uses well known segments or kernel.
		 */
120
		return (!user_mode(regs) || user_64bit_mode(regs));
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
#endif
	case 0x60:
		/* 0x64 thru 0x67 are valid prefixes in all modes. */
		return (instr_lo & 0xC) == 0x4;
	case 0xF0:
		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
		return !instr_lo || (instr_lo>>1) == 1;
	case 0x00:
		/* Prefetch instruction is 0x0F0D or 0x0F18 */
		if (probe_kernel_address(instr, opcode))
			return 0;

		*prefetch = (instr_lo == 0xF) &&
			(opcode == 0x0D || opcode == 0x18);
		return 0;
	default:
		return 0;
	}
}

I
Ingo Molnar 已提交
141 142
static int
is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
143
{
I
Ingo Molnar 已提交
144
	unsigned char *max_instr;
145
	unsigned char *instr;
146
	int prefetch = 0;
L
Linus Torvalds 已提交
147

I
Ingo Molnar 已提交
148 149 150 151
	/*
	 * If it was a exec (instruction fetch) fault on NX page, then
	 * do not ignore the fault:
	 */
152
	if (error_code & PF_INSTR)
L
Linus Torvalds 已提交
153
		return 0;
154

155
	instr = (void *)convert_ip_to_linear(current, regs);
156
	max_instr = instr + 15;
L
Linus Torvalds 已提交
157

158
	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
L
Linus Torvalds 已提交
159 160
		return 0;

161
	while (instr < max_instr) {
I
Ingo Molnar 已提交
162
		unsigned char opcode;
L
Linus Torvalds 已提交
163

164
		if (probe_kernel_address(instr, opcode))
165
			break;
L
Linus Torvalds 已提交
166 167 168

		instr++;

169
		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
L
Linus Torvalds 已提交
170 171 172 173 174
			break;
	}
	return prefetch;
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
/*
 * A protection key fault means that the PKRU value did not allow
 * access to some PTE.  Userspace can figure out what PKRU was
 * from the XSAVE state, and this function fills out a field in
 * siginfo so userspace can discover which protection key was set
 * on the PTE.
 *
 * If we get here, we know that the hardware signaled a PF_PK
 * fault and that there was a VMA once we got in the fault
 * handler.  It does *not* guarantee that the VMA we find here
 * was the one that we faulted on.
 *
 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 * 2. T1   : set PKRU to deny access to pkey=4, touches page
 * 3. T1   : faults...
 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 * 5. T1   : enters fault handler, takes mmap_sem, etc...
 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 *	     faulted on a pte with its pkey=4.
 */
static void fill_sig_info_pkey(int si_code, siginfo_t *info,
		struct vm_area_struct *vma)
{
	/* This is effectively an #ifdef */
	if (!boot_cpu_has(X86_FEATURE_OSPKE))
		return;

	/* Fault not from Protection Keys: nothing to do */
	if (si_code != SEGV_PKUERR)
		return;
	/*
	 * force_sig_info_fault() is called from a number of
	 * contexts, some of which have a VMA and some of which
	 * do not.  The PF_PK handing happens after we have a
	 * valid VMA, so we should never reach this without a
	 * valid VMA.
	 */
	if (!vma) {
		WARN_ONCE(1, "PKU fault with no VMA passed in");
		info->si_pkey = 0;
		return;
	}
	/*
	 * si_pkey should be thought of as a strong hint, but not
	 * absolutely guranteed to be 100% accurate because of
	 * the race explained above.
	 */
	info->si_pkey = vma_pkey(vma);
}

I
Ingo Molnar 已提交
225 226
static void
force_sig_info_fault(int si_signo, int si_code, unsigned long address,
227 228
		     struct task_struct *tsk, struct vm_area_struct *vma,
		     int fault)
229
{
230
	unsigned lsb = 0;
231 232
	siginfo_t info;

I
Ingo Molnar 已提交
233 234 235 236
	info.si_signo	= si_signo;
	info.si_errno	= 0;
	info.si_code	= si_code;
	info.si_addr	= (void __user *)address;
237 238 239 240 241
	if (fault & VM_FAULT_HWPOISON_LARGE)
		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 
	if (fault & VM_FAULT_HWPOISON)
		lsb = PAGE_SHIFT;
	info.si_addr_lsb = lsb;
I
Ingo Molnar 已提交
242

243 244
	fill_sig_info_pkey(si_code, &info, vma);

245 246 247
	force_sig_info(si_signo, &info, tsk);
}

248 249 250 251 252
DEFINE_SPINLOCK(pgd_lock);
LIST_HEAD(pgd_list);

#ifdef CONFIG_X86_32
static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
253
{
254 255
	unsigned index = pgd_index(address);
	pgd_t *pgd_k;
256
	p4d_t *p4d, *p4d_k;
257 258
	pud_t *pud, *pud_k;
	pmd_t *pmd, *pmd_k;
I
Ingo Molnar 已提交
259

260 261 262 263 264 265 266 267 268
	pgd += index;
	pgd_k = init_mm.pgd + index;

	if (!pgd_present(*pgd_k))
		return NULL;

	/*
	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
	 * and redundant with the set_pmd() on non-PAE. As would
269
	 * set_p4d/set_pud.
270
	 */
271 272 273 274 275 276 277
	p4d = p4d_offset(pgd, address);
	p4d_k = p4d_offset(pgd_k, address);
	if (!p4d_present(*p4d_k))
		return NULL;

	pud = pud_offset(p4d, address);
	pud_k = pud_offset(p4d_k, address);
278 279 280 281 282 283 284 285
	if (!pud_present(*pud_k))
		return NULL;

	pmd = pmd_offset(pud, address);
	pmd_k = pmd_offset(pud_k, address);
	if (!pmd_present(*pmd_k))
		return NULL;

286
	if (!pmd_present(*pmd))
287
		set_pmd(pmd, *pmd_k);
288
	else
289 290 291 292 293 294 295 296 297 298 299 300 301
		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));

	return pmd_k;
}

void vmalloc_sync_all(void)
{
	unsigned long address;

	if (SHARED_KERNEL_PMD)
		return;

	for (address = VMALLOC_START & PMD_MASK;
302
	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
303 304 305
	     address += PMD_SIZE) {
		struct page *page;

A
Andrea Arcangeli 已提交
306
		spin_lock(&pgd_lock);
307
		list_for_each_entry(page, &pgd_list, lru) {
308
			spinlock_t *pgt_lock;
309
			pmd_t *ret;
310

A
Andrea Arcangeli 已提交
311
			/* the pgt_lock only for Xen */
312 313 314 315 316 317 318
			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;

			spin_lock(pgt_lock);
			ret = vmalloc_sync_one(page_address(page), address);
			spin_unlock(pgt_lock);

			if (!ret)
319 320
				break;
		}
A
Andrea Arcangeli 已提交
321
		spin_unlock(&pgd_lock);
322 323 324 325 326 327 328 329
	}
}

/*
 * 32-bit:
 *
 *   Handle a fault on the vmalloc or module mapping area
 */
330
static noinline int vmalloc_fault(unsigned long address)
331 332 333 334 335 336 337 338 339
{
	unsigned long pgd_paddr;
	pmd_t *pmd_k;
	pte_t *pte_k;

	/* Make sure we are in vmalloc area: */
	if (!(address >= VMALLOC_START && address < VMALLOC_END))
		return -1;

340 341
	WARN_ON_ONCE(in_nmi());

342 343 344 345 346 347 348
	/*
	 * Synchronize this task's top level page-table
	 * with the 'reference' page table.
	 *
	 * Do _not_ use "current" here. We might be inside
	 * an interrupt in the middle of a task switch..
	 */
349
	pgd_paddr = read_cr3_pa();
350 351 352 353
	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
	if (!pmd_k)
		return -1;

354 355 356
	if (pmd_huge(*pmd_k))
		return 0;

357 358 359 360 361 362
	pte_k = pte_offset_kernel(pmd_k, address);
	if (!pte_present(*pte_k))
		return -1;

	return 0;
}
363
NOKPROBE_SYMBOL(vmalloc_fault);
364 365 366 367 368 369 370 371

/*
 * Did it hit the DOS screen memory VA from vm86 mode?
 */
static inline void
check_v8086_mode(struct pt_regs *regs, unsigned long address,
		 struct task_struct *tsk)
{
372
#ifdef CONFIG_VM86
373 374
	unsigned long bit;

375
	if (!v8086_mode(regs) || !tsk->thread.vm86)
376 377 378 379
		return;

	bit = (address - 0xA0000) >> PAGE_SHIFT;
	if (bit < 32)
380 381
		tsk->thread.vm86->screen_bitmap |= 1 << bit;
#endif
382
}
L
Linus Torvalds 已提交
383

A
Akinobu Mita 已提交
384
static bool low_pfn(unsigned long pfn)
L
Linus Torvalds 已提交
385
{
A
Akinobu Mita 已提交
386 387
	return pfn < max_low_pfn;
}
388

A
Akinobu Mita 已提交
389 390
static void dump_pagetable(unsigned long address)
{
391
	pgd_t *base = __va(read_cr3_pa());
A
Akinobu Mita 已提交
392
	pgd_t *pgd = &base[pgd_index(address)];
393 394
	p4d_t *p4d;
	pud_t *pud;
A
Akinobu Mita 已提交
395 396
	pmd_t *pmd;
	pte_t *pte;
I
Ingo Molnar 已提交
397

398
#ifdef CONFIG_X86_PAE
A
Akinobu Mita 已提交
399 400 401
	printk("*pdpt = %016Lx ", pgd_val(*pgd));
	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
		goto out;
402
#endif
403 404 405
	p4d = p4d_offset(pgd, address);
	pud = pud_offset(p4d, address);
	pmd = pmd_offset(pud, address);
A
Akinobu Mita 已提交
406
	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
407 408 409 410 411

	/*
	 * We must not directly access the pte in the highpte
	 * case if the page table is located in highmem.
	 * And let's rather not kmap-atomic the pte, just in case
I
Ingo Molnar 已提交
412
	 * it's allocated already:
413
	 */
A
Akinobu Mita 已提交
414 415
	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
		goto out;
416

A
Akinobu Mita 已提交
417 418 419
	pte = pte_offset_kernel(pmd, address);
	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
out:
420
	printk("\n");
421 422 423 424 425 426
}

#else /* CONFIG_X86_64: */

void vmalloc_sync_all(void)
{
427
	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
428 429 430 431 432 433 434
}

/*
 * 64-bit:
 *
 *   Handle a fault on the vmalloc area
 */
435
static noinline int vmalloc_fault(unsigned long address)
436 437
{
	pgd_t *pgd, *pgd_ref;
438
	p4d_t *p4d, *p4d_ref;
439 440 441 442 443 444 445 446
	pud_t *pud, *pud_ref;
	pmd_t *pmd, *pmd_ref;
	pte_t *pte, *pte_ref;

	/* Make sure we are in vmalloc area: */
	if (!(address >= VMALLOC_START && address < VMALLOC_END))
		return -1;

447 448
	WARN_ON_ONCE(in_nmi());

449 450 451 452 453
	/*
	 * Copy kernel mappings over when needed. This can also
	 * happen within a race in page table update. In the later
	 * case just flush:
	 */
454
	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
455 456 457 458
	pgd_ref = pgd_offset_k(address);
	if (pgd_none(*pgd_ref))
		return -1;

459
	if (pgd_none(*pgd)) {
460
		set_pgd(pgd, *pgd_ref);
461
		arch_flush_lazy_mmu_mode();
462 463 464 465 466 467 468 469
	} else if (CONFIG_PGTABLE_LEVELS > 4) {
		/*
		 * With folded p4d, pgd_none() is always false, so the pgd may
		 * point to an empty page table entry and pgd_page_vaddr()
		 * will return garbage.
		 *
		 * We will do the correct sanity check on the p4d level.
		 */
470
		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
471
	}
472

473 474 475 476 477 478 479 480 481 482 483 484 485
	/* With 4-level paging, copying happens on the p4d level. */
	p4d = p4d_offset(pgd, address);
	p4d_ref = p4d_offset(pgd_ref, address);
	if (p4d_none(*p4d_ref))
		return -1;

	if (p4d_none(*p4d)) {
		set_p4d(p4d, *p4d_ref);
		arch_flush_lazy_mmu_mode();
	} else {
		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_ref));
	}

486 487 488 489 490
	/*
	 * Below here mismatches are bugs because these lower tables
	 * are shared:
	 */

491 492
	pud = pud_offset(p4d, address);
	pud_ref = pud_offset(p4d_ref, address);
493 494 495
	if (pud_none(*pud_ref))
		return -1;

496
	if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
497 498
		BUG();

499 500 501
	if (pud_huge(*pud))
		return 0;

502 503 504 505 506
	pmd = pmd_offset(pud, address);
	pmd_ref = pmd_offset(pud_ref, address);
	if (pmd_none(*pmd_ref))
		return -1;

507
	if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
508 509
		BUG();

510 511 512
	if (pmd_huge(*pmd))
		return 0;

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
	pte_ref = pte_offset_kernel(pmd_ref, address);
	if (!pte_present(*pte_ref))
		return -1;

	pte = pte_offset_kernel(pmd, address);

	/*
	 * Don't use pte_page here, because the mappings can point
	 * outside mem_map, and the NUMA hash lookup cannot handle
	 * that:
	 */
	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
		BUG();

	return 0;
}
529
NOKPROBE_SYMBOL(vmalloc_fault);
530

531
#ifdef CONFIG_CPU_SUP_AMD
532
static const char errata93_warning[] =
533 534 535 536 537
KERN_ERR 
"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
"******* Working around it, but it may cause SEGVs or burn power.\n"
"******* Please consider a BIOS update.\n"
"******* Disabling USB legacy in the BIOS may also help.\n";
538
#endif
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

/*
 * No vm86 mode in 64-bit mode:
 */
static inline void
check_v8086_mode(struct pt_regs *regs, unsigned long address,
		 struct task_struct *tsk)
{
}

static int bad_address(void *p)
{
	unsigned long dummy;

	return probe_kernel_address((unsigned long *)p, dummy);
}

static void dump_pagetable(unsigned long address)
{
558
	pgd_t *base = __va(read_cr3_pa());
A
Akinobu Mita 已提交
559
	pgd_t *pgd = base + pgd_index(address);
560
	p4d_t *p4d;
L
Linus Torvalds 已提交
561 562 563 564
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

I
Ingo Molnar 已提交
565 566 567
	if (bad_address(pgd))
		goto bad;

568
	printk("PGD %lx ", pgd_val(*pgd));
I
Ingo Molnar 已提交
569 570 571

	if (!pgd_present(*pgd))
		goto out;
L
Linus Torvalds 已提交
572

573 574 575 576 577 578 579 580 581
	p4d = p4d_offset(pgd, address);
	if (bad_address(p4d))
		goto bad;

	printk("P4D %lx ", p4d_val(*p4d));
	if (!p4d_present(*p4d) || p4d_large(*p4d))
		goto out;

	pud = pud_offset(p4d, address);
I
Ingo Molnar 已提交
582 583 584
	if (bad_address(pud))
		goto bad;

L
Linus Torvalds 已提交
585
	printk("PUD %lx ", pud_val(*pud));
586
	if (!pud_present(*pud) || pud_large(*pud))
I
Ingo Molnar 已提交
587
		goto out;
L
Linus Torvalds 已提交
588 589

	pmd = pmd_offset(pud, address);
I
Ingo Molnar 已提交
590 591 592
	if (bad_address(pmd))
		goto bad;

L
Linus Torvalds 已提交
593
	printk("PMD %lx ", pmd_val(*pmd));
I
Ingo Molnar 已提交
594 595
	if (!pmd_present(*pmd) || pmd_large(*pmd))
		goto out;
L
Linus Torvalds 已提交
596 597

	pte = pte_offset_kernel(pmd, address);
I
Ingo Molnar 已提交
598 599 600
	if (bad_address(pte))
		goto bad;

601
	printk("PTE %lx", pte_val(*pte));
I
Ingo Molnar 已提交
602
out:
L
Linus Torvalds 已提交
603 604 605 606
	printk("\n");
	return;
bad:
	printk("BAD\n");
607 608
}

609
#endif /* CONFIG_X86_64 */
L
Linus Torvalds 已提交
610

I
Ingo Molnar 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623
/*
 * Workaround for K8 erratum #93 & buggy BIOS.
 *
 * BIOS SMM functions are required to use a specific workaround
 * to avoid corruption of the 64bit RIP register on C stepping K8.
 *
 * A lot of BIOS that didn't get tested properly miss this.
 *
 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 * Try to work around it here.
 *
 * Note we only handle faults in kernel here.
 * Does nothing on 32-bit.
624
 */
625
static int is_errata93(struct pt_regs *regs, unsigned long address)
L
Linus Torvalds 已提交
626
{
627 628 629 630 631
#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
	    || boot_cpu_data.x86 != 0xf)
		return 0;

632
	if (address != regs->ip)
L
Linus Torvalds 已提交
633
		return 0;
I
Ingo Molnar 已提交
634

635
	if ((address >> 32) != 0)
L
Linus Torvalds 已提交
636
		return 0;
I
Ingo Molnar 已提交
637

L
Linus Torvalds 已提交
638
	address |= 0xffffffffUL << 32;
639 640
	if ((address >= (u64)_stext && address <= (u64)_etext) ||
	    (address >= MODULES_VADDR && address <= MODULES_END)) {
641
		printk_once(errata93_warning);
642
		regs->ip = address;
L
Linus Torvalds 已提交
643 644
		return 1;
	}
645
#endif
L
Linus Torvalds 已提交
646
	return 0;
647
}
L
Linus Torvalds 已提交
648

649
/*
I
Ingo Molnar 已提交
650 651 652 653 654
 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 * to illegal addresses >4GB.
 *
 * We catch this in the page fault handler because these addresses
 * are not reachable. Just detect this case and return.  Any code
655 656 657 658 659
 * segment in LDT is compatibility mode.
 */
static int is_errata100(struct pt_regs *regs, unsigned long address)
{
#ifdef CONFIG_X86_64
I
Ingo Molnar 已提交
660
	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
661 662 663 664 665
		return 1;
#endif
	return 0;
}

666 667 668 669
static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
{
#ifdef CONFIG_X86_F00F_BUG
	unsigned long nr;
I
Ingo Molnar 已提交
670

671
	/*
I
Ingo Molnar 已提交
672
	 * Pentium F0 0F C7 C8 bug workaround:
673
	 */
674
	if (boot_cpu_has_bug(X86_BUG_F00F)) {
675 676 677 678 679 680 681 682 683 684 685
		nr = (address - idt_descr.address) >> 3;

		if (nr == 6) {
			do_invalid_op(regs, 0);
			return 1;
		}
	}
#endif
	return 0;
}

686 687
static const char nx_warning[] = KERN_CRIT
"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
688 689
static const char smep_warning[] = KERN_CRIT
"unable to execute userspace code (SMEP?) (uid: %d)\n";
690

I
Ingo Molnar 已提交
691 692 693
static void
show_fault_oops(struct pt_regs *regs, unsigned long error_code,
		unsigned long address)
694
{
695 696 697 698
	if (!oops_may_print())
		return;

	if (error_code & PF_INSTR) {
699
		unsigned int level;
700 701
		pgd_t *pgd;
		pte_t *pte;
I
Ingo Molnar 已提交
702

703
		pgd = __va(read_cr3_pa());
704 705 706
		pgd += pgd_index(address);

		pte = lookup_address_in_pgd(pgd, address, &level);
707

708
		if (pte && pte_present(*pte) && !pte_exec(*pte))
709
			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
710 711
		if (pte && pte_present(*pte) && pte_exec(*pte) &&
				(pgd_flags(*pgd) & _PAGE_USER) &&
712
				(__read_cr4() & X86_CR4_SMEP))
713
			printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
714 715
	}

716
	printk(KERN_ALERT "BUG: unable to handle kernel ");
717
	if (address < PAGE_SIZE)
718
		printk(KERN_CONT "NULL pointer dereference");
719
	else
720
		printk(KERN_CONT "paging request");
I
Ingo Molnar 已提交
721

722
	printk(KERN_CONT " at %p\n", (void *) address);
723
	printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
I
Ingo Molnar 已提交
724

725 726 727
	dump_pagetable(address);
}

I
Ingo Molnar 已提交
728 729 730
static noinline void
pgtable_bad(struct pt_regs *regs, unsigned long error_code,
	    unsigned long address)
L
Linus Torvalds 已提交
731
{
I
Ingo Molnar 已提交
732 733 734 735 736 737 738
	struct task_struct *tsk;
	unsigned long flags;
	int sig;

	flags = oops_begin();
	tsk = current;
	sig = SIGKILL;
739

L
Linus Torvalds 已提交
740
	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
741
	       tsk->comm, address);
L
Linus Torvalds 已提交
742
	dump_pagetable(address);
I
Ingo Molnar 已提交
743 744

	tsk->thread.cr2		= address;
745
	tsk->thread.trap_nr	= X86_TRAP_PF;
I
Ingo Molnar 已提交
746 747
	tsk->thread.error_code	= error_code;

748
	if (__die("Bad pagetable", regs, error_code))
749
		sig = 0;
I
Ingo Molnar 已提交
750

751
	oops_end(flags, regs, sig);
L
Linus Torvalds 已提交
752 753
}

I
Ingo Molnar 已提交
754 755
static noinline void
no_context(struct pt_regs *regs, unsigned long error_code,
756
	   unsigned long address, int signal, int si_code)
757 758 759 760
{
	struct task_struct *tsk = current;
	unsigned long flags;
	int sig;
761 762
	/* No context means no VMA to pass down */
	struct vm_area_struct *vma = NULL;
763

I
Ingo Molnar 已提交
764
	/* Are we prepared to handle this kernel fault? */
765
	if (fixup_exception(regs, X86_TRAP_PF)) {
766 767 768 769 770 771 772 773 774 775 776 777 778 779
		/*
		 * Any interrupt that takes a fault gets the fixup. This makes
		 * the below recursive fault logic only apply to a faults from
		 * task context.
		 */
		if (in_interrupt())
			return;

		/*
		 * Per the above we're !in_interrupt(), aka. task context.
		 *
		 * In this case we need to make sure we're not recursively
		 * faulting through the emulate_vsyscall() logic.
		 */
780
		if (current->thread.sig_on_uaccess_err && signal) {
781
			tsk->thread.trap_nr = X86_TRAP_PF;
782 783 784 785
			tsk->thread.error_code = error_code | PF_USER;
			tsk->thread.cr2 = address;

			/* XXX: hwpoison faults will set the wrong code. */
786 787
			force_sig_info_fault(signal, si_code, address,
					     tsk, vma, 0);
788
		}
789 790 791 792

		/*
		 * Barring that, we can do the fixup and be happy.
		 */
793
		return;
794
	}
795

796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
#ifdef CONFIG_VMAP_STACK
	/*
	 * Stack overflow?  During boot, we can fault near the initial
	 * stack in the direct map, but that's not an overflow -- check
	 * that we're in vmalloc space to avoid this.
	 */
	if (is_vmalloc_addr((void *)address) &&
	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
		register void *__sp asm("rsp");
		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
		/*
		 * We're likely to be running with very little stack space
		 * left.  It's plausible that we'd hit this condition but
		 * double-fault even before we get this far, in which case
		 * we're fine: the double-fault handler will deal with it.
		 *
		 * We don't want to make it all the way into the oops code
		 * and then double-fault, though, because we're likely to
		 * break the console driver and lose most of the stack dump.
		 */
		asm volatile ("movq %[stack], %%rsp\n\t"
			      "call handle_stack_overflow\n\t"
			      "1: jmp 1b"
			      : "+r" (__sp)
			      : "D" ("kernel stack overflow (page fault)"),
				"S" (regs), "d" (address),
				[stack] "rm" (stack));
		unreachable();
	}
#endif

828
	/*
I
Ingo Molnar 已提交
829 830 831 832 833 834 835
	 * 32-bit:
	 *
	 *   Valid to do another page fault here, because if this fault
	 *   had been triggered by is_prefetch fixup_exception would have
	 *   handled it.
	 *
	 * 64-bit:
836
	 *
I
Ingo Molnar 已提交
837
	 *   Hall of shame of CPU/BIOS bugs.
838 839 840 841 842 843 844 845 846
	 */
	if (is_prefetch(regs, error_code, address))
		return;

	if (is_errata93(regs, address))
		return;

	/*
	 * Oops. The kernel tried to access some bad page. We'll have to
I
Ingo Molnar 已提交
847
	 * terminate things with extreme prejudice:
848 849 850 851 852
	 */
	flags = oops_begin();

	show_fault_oops(regs, error_code, address);

853
	if (task_stack_end_corrupted(tsk))
854
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
855

856
	tsk->thread.cr2		= address;
857
	tsk->thread.trap_nr	= X86_TRAP_PF;
858
	tsk->thread.error_code	= error_code;
859 860 861 862

	sig = SIGKILL;
	if (__die("Oops", regs, error_code))
		sig = 0;
I
Ingo Molnar 已提交
863

864
	/* Executive summary in case the body of the oops scrolled away */
865
	printk(KERN_DEFAULT "CR2: %016lx\n", address);
I
Ingo Molnar 已提交
866

867 868 869
	oops_end(flags, regs, sig);
}

I
Ingo Molnar 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882 883
/*
 * Print out info about fatal segfaults, if the show_unhandled_signals
 * sysctl is set:
 */
static inline void
show_signal_msg(struct pt_regs *regs, unsigned long error_code,
		unsigned long address, struct task_struct *tsk)
{
	if (!unhandled_signal(tsk, SIGSEGV))
		return;

	if (!printk_ratelimit())
		return;

884
	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
I
Ingo Molnar 已提交
885 886 887 888 889 890 891 892 893 894 895
		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
		tsk->comm, task_pid_nr(tsk), address,
		(void *)regs->ip, (void *)regs->sp, error_code);

	print_vma_addr(KERN_CONT " in ", regs->ip);

	printk(KERN_CONT "\n");
}

static void
__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
896 897
		       unsigned long address, struct vm_area_struct *vma,
		       int si_code)
898 899 900 901 902 903
{
	struct task_struct *tsk = current;

	/* User mode accesses just cause a SIGSEGV */
	if (error_code & PF_USER) {
		/*
I
Ingo Molnar 已提交
904
		 * It's possible to have interrupts off here:
905 906 907 908 909
		 */
		local_irq_enable();

		/*
		 * Valid to do another page fault here because this one came
I
Ingo Molnar 已提交
910
		 * from user space:
911 912 913 914 915 916 917
		 */
		if (is_prefetch(regs, error_code, address))
			return;

		if (is_errata100(regs, address))
			return;

918 919 920 921 922 923
#ifdef CONFIG_X86_64
		/*
		 * Instruction fetch faults in the vsyscall page might need
		 * emulation.
		 */
		if (unlikely((error_code & PF_INSTR) &&
924
			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
925 926 927 928
			if (emulate_vsyscall(regs, address))
				return;
		}
#endif
929 930 931 932 933 934 935

		/*
		 * To avoid leaking information about the kernel page table
		 * layout, pretend that user-mode accesses to kernel addresses
		 * are always protection faults.
		 */
		if (address >= TASK_SIZE_MAX)
936
			error_code |= PF_PROT;
937

938
		if (likely(show_unhandled_signals))
I
Ingo Molnar 已提交
939 940 941
			show_signal_msg(regs, error_code, address, tsk);

		tsk->thread.cr2		= address;
942
		tsk->thread.error_code	= error_code;
943
		tsk->thread.trap_nr	= X86_TRAP_PF;
944

945
		force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0);
I
Ingo Molnar 已提交
946

947 948 949 950 951 952
		return;
	}

	if (is_f00f_bug(regs, address))
		return;

953
	no_context(regs, error_code, address, SIGSEGV, si_code);
954 955
}

I
Ingo Molnar 已提交
956 957
static noinline void
bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
958
		     unsigned long address, struct vm_area_struct *vma)
959
{
960
	__bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR);
961 962
}

I
Ingo Molnar 已提交
963 964
static void
__bad_area(struct pt_regs *regs, unsigned long error_code,
965
	   unsigned long address,  struct vm_area_struct *vma, int si_code)
966 967 968 969 970 971 972 973 974
{
	struct mm_struct *mm = current->mm;

	/*
	 * Something tried to access memory that isn't in our memory map..
	 * Fix it, but check if it's kernel or user first..
	 */
	up_read(&mm->mmap_sem);

975
	__bad_area_nosemaphore(regs, error_code, address, vma, si_code);
976 977
}

I
Ingo Molnar 已提交
978 979
static noinline void
bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
980
{
981
	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
982 983
}

984 985 986
static inline bool bad_area_access_from_pkeys(unsigned long error_code,
		struct vm_area_struct *vma)
{
987 988 989
	/* This code is always called on the current mm */
	bool foreign = false;

990 991 992 993
	if (!boot_cpu_has(X86_FEATURE_OSPKE))
		return false;
	if (error_code & PF_PK)
		return true;
994
	/* this checks permission keys on the VMA: */
995 996
	if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
				(error_code & PF_INSTR), foreign))
997
		return true;
998
	return false;
999 1000
}

I
Ingo Molnar 已提交
1001 1002
static noinline void
bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
1003
		      unsigned long address, struct vm_area_struct *vma)
1004
{
1005 1006 1007 1008 1009
	/*
	 * This OSPKE check is not strictly necessary at runtime.
	 * But, doing it this way allows compiler optimizations
	 * if pkeys are compiled out.
	 */
1010
	if (bad_area_access_from_pkeys(error_code, vma))
1011 1012 1013
		__bad_area(regs, error_code, address, vma, SEGV_PKUERR);
	else
		__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
1014 1015
}

I
Ingo Molnar 已提交
1016
static void
1017
do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
1018
	  struct vm_area_struct *vma, unsigned int fault)
1019 1020
{
	struct task_struct *tsk = current;
1021
	int code = BUS_ADRERR;
1022

I
Ingo Molnar 已提交
1023
	/* Kernel mode? Handle exceptions or die: */
1024
	if (!(error_code & PF_USER)) {
1025
		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1026 1027
		return;
	}
I
Ingo Molnar 已提交
1028

1029
	/* User-space => ok to do another page fault: */
1030 1031
	if (is_prefetch(regs, error_code, address))
		return;
I
Ingo Molnar 已提交
1032 1033 1034

	tsk->thread.cr2		= address;
	tsk->thread.error_code	= error_code;
1035
	tsk->thread.trap_nr	= X86_TRAP_PF;
I
Ingo Molnar 已提交
1036

1037
#ifdef CONFIG_MEMORY_FAILURE
1038
	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1039 1040 1041 1042 1043 1044
		printk(KERN_ERR
	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
			tsk->comm, tsk->pid, address);
		code = BUS_MCEERR_AR;
	}
#endif
1045
	force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault);
1046 1047
}

1048
static noinline void
I
Ingo Molnar 已提交
1049
mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1050 1051
	       unsigned long address, struct vm_area_struct *vma,
	       unsigned int fault)
1052
{
1053 1054 1055
	if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
		no_context(regs, error_code, address, 0, 0);
		return;
1056 1057
	}

I
Ingo Molnar 已提交
1058
	if (fault & VM_FAULT_OOM) {
1059 1060
		/* Kernel mode? Handle exceptions or die: */
		if (!(error_code & PF_USER)) {
1061 1062
			no_context(regs, error_code, address,
				   SIGSEGV, SEGV_MAPERR);
1063
			return;
1064 1065
		}

1066 1067 1068 1069 1070 1071
		/*
		 * We ran out of memory, call the OOM killer, and return the
		 * userspace (which will retry the fault, or kill us if we got
		 * oom-killed):
		 */
		pagefault_out_of_memory();
I
Ingo Molnar 已提交
1072
	} else {
1073 1074
		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
			     VM_FAULT_HWPOISON_LARGE))
1075
			do_sigbus(regs, error_code, address, vma, fault);
1076
		else if (fault & VM_FAULT_SIGSEGV)
1077
			bad_area_nosemaphore(regs, error_code, address, vma);
I
Ingo Molnar 已提交
1078 1079 1080
		else
			BUG();
	}
1081 1082
}

1083 1084 1085 1086
static int spurious_fault_check(unsigned long error_code, pte_t *pte)
{
	if ((error_code & PF_WRITE) && !pte_write(*pte))
		return 0;
I
Ingo Molnar 已提交
1087

1088 1089
	if ((error_code & PF_INSTR) && !pte_exec(*pte))
		return 0;
1090 1091 1092 1093 1094 1095
	/*
	 * Note: We do not do lazy flushing on protection key
	 * changes, so no spurious fault will ever set PF_PK.
	 */
	if ((error_code & PF_PK))
		return 1;
1096 1097 1098 1099

	return 1;
}

1100
/*
I
Ingo Molnar 已提交
1101 1102 1103 1104 1105 1106 1107 1108
 * Handle a spurious fault caused by a stale TLB entry.
 *
 * This allows us to lazily refresh the TLB when increasing the
 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 * eagerly is very expensive since that implies doing a full
 * cross-processor TLB flush, even if no stale TLB entries exist
 * on other processors.
 *
1109 1110 1111 1112
 * Spurious faults may only occur if the TLB contains an entry with
 * fewer permission than the page table entry.  Non-present (P = 0)
 * and reserved bit (R = 1) faults are never spurious.
 *
1113 1114
 * There are no security implications to leaving a stale TLB when
 * increasing the permissions on a page.
1115 1116 1117 1118 1119
 *
 * Returns non-zero if a spurious fault was handled, zero otherwise.
 *
 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
 * (Optional Invalidation).
1120
 */
1121
static noinline int
I
Ingo Molnar 已提交
1122
spurious_fault(unsigned long error_code, unsigned long address)
1123 1124
{
	pgd_t *pgd;
1125
	p4d_t *p4d;
1126 1127 1128
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
1129
	int ret;
1130

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	/*
	 * Only writes to RO or instruction fetches from NX may cause
	 * spurious faults.
	 *
	 * These could be from user or supervisor accesses but the TLB
	 * is only lazily flushed after a kernel mapping protection
	 * change, so user accesses are not expected to cause spurious
	 * faults.
	 */
	if (error_code != (PF_WRITE | PF_PROT)
	    && error_code != (PF_INSTR | PF_PROT))
1142 1143 1144 1145 1146 1147
		return 0;

	pgd = init_mm.pgd + pgd_index(address);
	if (!pgd_present(*pgd))
		return 0;

1148 1149 1150 1151 1152 1153 1154 1155
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return 0;

	if (p4d_large(*p4d))
		return spurious_fault_check(error_code, (pte_t *) p4d);

	pud = pud_offset(p4d, address);
1156 1157 1158
	if (!pud_present(*pud))
		return 0;

1159 1160 1161
	if (pud_large(*pud))
		return spurious_fault_check(error_code, (pte_t *) pud);

1162 1163 1164 1165
	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;

1166 1167 1168
	if (pmd_large(*pmd))
		return spurious_fault_check(error_code, (pte_t *) pmd);

1169
	pte = pte_offset_kernel(pmd, address);
1170
	if (!pte_present(*pte))
1171 1172
		return 0;

1173 1174 1175 1176 1177
	ret = spurious_fault_check(error_code, pte);
	if (!ret)
		return 0;

	/*
I
Ingo Molnar 已提交
1178 1179
	 * Make sure we have permissions in PMD.
	 * If not, then there's a bug in the page tables:
1180 1181 1182
	 */
	ret = spurious_fault_check(error_code, (pte_t *) pmd);
	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
I
Ingo Molnar 已提交
1183

1184
	return ret;
1185
}
1186
NOKPROBE_SYMBOL(spurious_fault);
1187

1188
int show_unhandled_signals = 1;
L
Linus Torvalds 已提交
1189

I
Ingo Molnar 已提交
1190
static inline int
M
Michel Lespinasse 已提交
1191
access_error(unsigned long error_code, struct vm_area_struct *vma)
1192
{
1193 1194
	/* This is only called for the current mm, so: */
	bool foreign = false;
1195 1196 1197 1198 1199 1200 1201 1202 1203

	/*
	 * Read or write was blocked by protection keys.  This is
	 * always an unconditional error and can never result in
	 * a follow-up action to resolve the fault, like a COW.
	 */
	if (error_code & PF_PK)
		return 1;

1204 1205 1206 1207 1208
	/*
	 * Make sure to check the VMA so that we do not perform
	 * faults just to hit a PF_PK as soon as we fill in a
	 * page.
	 */
1209 1210
	if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
				(error_code & PF_INSTR), foreign))
1211
		return 1;
1212

M
Michel Lespinasse 已提交
1213
	if (error_code & PF_WRITE) {
I
Ingo Molnar 已提交
1214
		/* write, present and write, not present: */
1215 1216
		if (unlikely(!(vma->vm_flags & VM_WRITE)))
			return 1;
I
Ingo Molnar 已提交
1217
		return 0;
1218 1219
	}

I
Ingo Molnar 已提交
1220 1221 1222 1223 1224 1225 1226 1227
	/* read, present: */
	if (unlikely(error_code & PF_PROT))
		return 1;

	/* read, not present: */
	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
		return 1;

1228 1229 1230
	return 0;
}

1231 1232
static int fault_in_kernel_space(unsigned long address)
{
1233
	return address >= TASK_SIZE_MAX;
1234 1235
}

1236 1237
static inline bool smap_violation(int error_code, struct pt_regs *regs)
{
1238 1239 1240 1241 1242 1243
	if (!IS_ENABLED(CONFIG_X86_SMAP))
		return false;

	if (!static_cpu_has(X86_FEATURE_SMAP))
		return false;

1244 1245 1246
	if (error_code & PF_USER)
		return false;

1247
	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1248 1249 1250 1251 1252
		return false;

	return true;
}

L
Linus Torvalds 已提交
1253 1254 1255 1256 1257
/*
 * This routine handles page faults.  It determines the address,
 * and the problem, and then passes it off to one of the appropriate
 * routines.
 */
1258
static noinline void
1259 1260
__do_page_fault(struct pt_regs *regs, unsigned long error_code,
		unsigned long address)
L
Linus Torvalds 已提交
1261
{
I
Ingo Molnar 已提交
1262
	struct vm_area_struct *vma;
L
Linus Torvalds 已提交
1263 1264
	struct task_struct *tsk;
	struct mm_struct *mm;
1265
	int fault, major = 0;
1266
	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
L
Linus Torvalds 已提交
1267

1268 1269
	tsk = current;
	mm = tsk->mm;
I
Ingo Molnar 已提交
1270

V
Vegard Nossum 已提交
1271 1272 1273 1274 1275 1276
	/*
	 * Detect and handle instructions that would cause a page fault for
	 * both a tracked kernel page and a userspace page.
	 */
	if (kmemcheck_active(regs))
		kmemcheck_hide(regs);
1277
	prefetchw(&mm->mmap_sem);
V
Vegard Nossum 已提交
1278

1279
	if (unlikely(kmmio_fault(regs, address)))
1280
		return;
L
Linus Torvalds 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

	/*
	 * We fault-in kernel-space virtual memory on-demand. The
	 * 'reference' page table is init_mm.pgd.
	 *
	 * NOTE! We MUST NOT take any locks for this case. We may
	 * be in an interrupt or a critical region, and should
	 * only copy the information from the master page table,
	 * nothing more.
	 *
	 * This verifies that the fault happens in kernel space
	 * (error_code & 4) == 0, and that the fault was not a
1293
	 * protection error (error_code & 9) == 0.
L
Linus Torvalds 已提交
1294
	 */
1295
	if (unlikely(fault_in_kernel_space(address))) {
V
Vegard Nossum 已提交
1296 1297 1298 1299 1300 1301 1302
		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
			if (vmalloc_fault(address) >= 0)
				return;

			if (kmemcheck_fault(regs, address, error_code))
				return;
		}
1303

I
Ingo Molnar 已提交
1304
		/* Can handle a stale RO->RW TLB: */
1305
		if (spurious_fault(error_code, address))
1306 1307
			return;

I
Ingo Molnar 已提交
1308
		/* kprobes don't want to hook the spurious faults: */
1309
		if (kprobes_fault(regs))
1310
			return;
1311 1312
		/*
		 * Don't take the mm semaphore here. If we fixup a prefetch
I
Ingo Molnar 已提交
1313
		 * fault we could otherwise deadlock:
1314
		 */
1315
		bad_area_nosemaphore(regs, error_code, address, NULL);
I
Ingo Molnar 已提交
1316

1317
		return;
1318 1319
	}

I
Ingo Molnar 已提交
1320
	/* kprobes don't want to hook the spurious faults: */
1321
	if (unlikely(kprobes_fault(regs)))
1322
		return;
1323

1324
	if (unlikely(error_code & PF_RSVD))
1325
		pgtable_bad(regs, error_code, address);
L
Linus Torvalds 已提交
1326

1327
	if (unlikely(smap_violation(error_code, regs))) {
1328
		bad_area_nosemaphore(regs, error_code, address, NULL);
1329
		return;
1330 1331
	}

L
Linus Torvalds 已提交
1332
	/*
I
Ingo Molnar 已提交
1333
	 * If we're in an interrupt, have no user context or are running
1334
	 * in a region with pagefaults disabled then we must not take the fault
L
Linus Torvalds 已提交
1335
	 */
1336
	if (unlikely(faulthandler_disabled() || !mm)) {
1337
		bad_area_nosemaphore(regs, error_code, address, NULL);
1338 1339
		return;
	}
L
Linus Torvalds 已提交
1340

1341 1342 1343 1344 1345 1346 1347
	/*
	 * It's safe to allow irq's after cr2 has been saved and the
	 * vmalloc fault has been handled.
	 *
	 * User-mode registers count as a user access even for any
	 * potential system fault or CPU buglet:
	 */
1348
	if (user_mode(regs)) {
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
		local_irq_enable();
		error_code |= PF_USER;
		flags |= FAULT_FLAG_USER;
	} else {
		if (regs->flags & X86_EFLAGS_IF)
			local_irq_enable();
	}

	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);

1359 1360
	if (error_code & PF_WRITE)
		flags |= FAULT_FLAG_WRITE;
1361 1362
	if (error_code & PF_INSTR)
		flags |= FAULT_FLAG_INSTRUCTION;
1363

I
Ingo Molnar 已提交
1364 1365
	/*
	 * When running in the kernel we expect faults to occur only to
I
Ingo Molnar 已提交
1366 1367 1368 1369 1370 1371 1372
	 * addresses in user space.  All other faults represent errors in
	 * the kernel and should generate an OOPS.  Unfortunately, in the
	 * case of an erroneous fault occurring in a code path which already
	 * holds mmap_sem we will deadlock attempting to validate the fault
	 * against the address space.  Luckily the kernel only validly
	 * references user space from well defined areas of code, which are
	 * listed in the exceptions table.
L
Linus Torvalds 已提交
1373 1374
	 *
	 * As the vast majority of faults will be valid we will only perform
I
Ingo Molnar 已提交
1375 1376 1377 1378
	 * the source reference check when there is a possibility of a
	 * deadlock. Attempt to lock the address space, if we cannot we then
	 * validate the source. If this is invalid we can skip the address
	 * space check, thus avoiding the deadlock:
L
Linus Torvalds 已提交
1379
	 */
1380
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1381
		if ((error_code & PF_USER) == 0 &&
1382
		    !search_exception_tables(regs->ip)) {
1383
			bad_area_nosemaphore(regs, error_code, address, NULL);
1384 1385
			return;
		}
1386
retry:
L
Linus Torvalds 已提交
1387
		down_read(&mm->mmap_sem);
1388 1389
	} else {
		/*
I
Ingo Molnar 已提交
1390 1391 1392
		 * The above down_read_trylock() might have succeeded in
		 * which case we'll have missed the might_sleep() from
		 * down_read():
1393 1394
		 */
		might_sleep();
L
Linus Torvalds 已提交
1395 1396 1397
	}

	vma = find_vma(mm, address);
1398 1399 1400 1401 1402
	if (unlikely(!vma)) {
		bad_area(regs, error_code, address);
		return;
	}
	if (likely(vma->vm_start <= address))
L
Linus Torvalds 已提交
1403
		goto good_area;
1404 1405 1406 1407
	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
		bad_area(regs, error_code, address);
		return;
	}
1408
	if (error_code & PF_USER) {
1409 1410 1411
		/*
		 * Accessing the stack below %sp is always a bug.
		 * The large cushion allows instructions like enter
I
Ingo Molnar 已提交
1412
		 * and pusha to work. ("enter $65535, $31" pushes
1413
		 * 32 pointers and then decrements %sp by 65535.)
1414
		 */
1415 1416 1417 1418
		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
			bad_area(regs, error_code, address);
			return;
		}
L
Linus Torvalds 已提交
1419
	}
1420 1421 1422 1423 1424 1425 1426 1427 1428
	if (unlikely(expand_stack(vma, address))) {
		bad_area(regs, error_code, address);
		return;
	}

	/*
	 * Ok, we have a good vm_area for this memory access, so
	 * we can handle it..
	 */
L
Linus Torvalds 已提交
1429
good_area:
M
Michel Lespinasse 已提交
1430
	if (unlikely(access_error(error_code, vma))) {
1431
		bad_area_access_error(regs, error_code, address, vma);
1432
		return;
L
Linus Torvalds 已提交
1433 1434 1435 1436 1437
	}

	/*
	 * If for any reason at all we couldn't handle the fault,
	 * make sure we exit gracefully rather than endlessly redo
1438 1439
	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
L
Linus Torvalds 已提交
1440
	 */
1441
	fault = handle_mm_fault(vma, address, flags);
1442
	major |= fault & VM_FAULT_MAJOR;
I
Ingo Molnar 已提交
1443

1444
	/*
1445 1446 1447
	 * If we need to retry the mmap_sem has already been released,
	 * and if there is a fatal signal pending there is no guarantee
	 * that we made any progress. Handle this case first.
1448
	 */
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
	if (unlikely(fault & VM_FAULT_RETRY)) {
		/* Retry at most once */
		if (flags & FAULT_FLAG_ALLOW_RETRY) {
			flags &= ~FAULT_FLAG_ALLOW_RETRY;
			flags |= FAULT_FLAG_TRIED;
			if (!fatal_signal_pending(tsk))
				goto retry;
		}

		/* User mode? Just return to handle the fatal exception */
1459
		if (flags & FAULT_FLAG_USER)
1460 1461 1462 1463
			return;

		/* Not returning to user mode? Handle exceptions or die: */
		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1464
		return;
1465
	}
1466

1467
	up_read(&mm->mmap_sem);
1468
	if (unlikely(fault & VM_FAULT_ERROR)) {
1469
		mm_fault_error(regs, error_code, address, vma, fault);
1470
		return;
1471 1472
	}

1473
	/*
1474 1475
	 * Major/minor page fault accounting. If any of the events
	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1476
	 */
1477 1478 1479 1480 1481 1482
	if (major) {
		tsk->maj_flt++;
		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
	} else {
		tsk->min_flt++;
		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1483
	}
1484

1485
	check_v8086_mode(regs, address, tsk);
L
Linus Torvalds 已提交
1486
}
1487
NOKPROBE_SYMBOL(__do_page_fault);
1488

1489 1490 1491
static nokprobe_inline void
trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
			 unsigned long error_code)
1492 1493
{
	if (user_mode(regs))
1494
		trace_page_fault_user(address, regs, error_code);
1495
	else
1496
		trace_page_fault_kernel(address, regs, error_code);
1497 1498
}

1499 1500 1501 1502 1503 1504 1505
/*
 * We must have this function blacklisted from kprobes, tagged with notrace
 * and call read_cr2() before calling anything else. To avoid calling any
 * kind of tracing machinery before we've observed the CR2 value.
 *
 * exception_{enter,exit}() contains all sorts of tracepoints.
 */
1506
dotraplinkage void notrace
1507
do_page_fault(struct pt_regs *regs, unsigned long error_code)
1508
{
1509
	unsigned long address = read_cr2(); /* Get the faulting address */
1510
	enum ctx_state prev_state;
1511 1512

	prev_state = exception_enter();
1513 1514 1515
	if (trace_irqvectors_enabled())
		trace_page_fault_entries(address, regs, error_code);

1516
	__do_page_fault(regs, error_code, address);
1517 1518
	exception_exit(prev_state);
}
1519
NOKPROBE_SYMBOL(do_page_fault);