spapr.c 46.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 *
 * Copyright (c) 2004-2007 Fabrice Bellard
 * Copyright (c) 2007 Jocelyn Mayer
 * Copyright (c) 2010 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 */
27
#include "sysemu/sysemu.h"
28
#include "hw/hw.h"
29
#include "hw/fw-path-provider.h"
30
#include "elf.h"
P
Paolo Bonzini 已提交
31
#include "net/net.h"
32 33 34
#include "sysemu/blockdev.h"
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
35
#include "kvm_ppc.h"
36
#include "mmu-hash64.h"
37 38

#include "hw/boards.h"
P
Paolo Bonzini 已提交
39
#include "hw/ppc/ppc.h"
40 41
#include "hw/loader.h"

P
Paolo Bonzini 已提交
42 43 44 45
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/xics.h"
46
#include "hw/pci/msi.h"
47

48
#include "hw/pci/pci.h"
49 50
#include "hw/scsi/scsi.h"
#include "hw/virtio/virtio-scsi.h"
51

52
#include "exec/address-spaces.h"
53
#include "hw/usb.h"
54
#include "qemu/config-file.h"
55
#include "qemu/error-report.h"
A
Avi Kivity 已提交
56

57 58
#include <libfdt.h>

59 60 61 62 63 64 65 66 67 68
/* SLOF memory layout:
 *
 * SLOF raw image loaded at 0, copies its romfs right below the flat
 * device-tree, then position SLOF itself 31M below that
 *
 * So we set FW_OVERHEAD to 40MB which should account for all of that
 * and more
 *
 * We load our kernel at 4M, leaving space for SLOF initial image
 */
69
#define FDT_MAX_SIZE            0x40000
70
#define RTAS_MAX_SIZE           0x10000
71 72
#define FW_MAX_SIZE             0x400000
#define FW_FILE_NAME            "slof.bin"
73 74
#define FW_OVERHEAD             0x2800000
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
75

76
#define MIN_RMA_SLOF            128UL
77 78 79

#define TIMEBASE_FREQ           512000000ULL

80
#define MAX_CPUS                256
81
#define XICS_IRQS               1024
82

83 84
#define PHANDLE_XICP            0x00001111

85 86
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))

87 88
#define TYPE_SPAPR_MACHINE      "spapr-machine"

89 90
sPAPREnvironment *spapr;

91
int spapr_allocate_irq(int hint, bool lsi)
92
{
93
    int irq;
94 95 96

    if (hint) {
        irq = hint;
97 98 99
        if (hint >= spapr->next_irq) {
            spapr->next_irq = hint + 1;
        }
100 101 102 103 104
        /* FIXME: we should probably check for collisions somehow */
    } else {
        irq = spapr->next_irq++;
    }

105 106 107
    /* Configure irq type */
    if (!xics_get_qirq(spapr->icp, irq)) {
        return 0;
108 109
    }

110
    xics_set_irq_type(spapr->icp, irq, lsi);
111

112
    return irq;
113 114
}

115 116 117 118 119
/*
 * Allocate block of consequtive IRQs, returns a number of the first.
 * If msi==true, aligns the first IRQ number to num.
 */
int spapr_allocate_irq_block(int num, bool lsi, bool msi)
120 121
{
    int first = -1;
122 123 124 125 126 127 128
    int i, hint = 0;

    /*
     * MSIMesage::data is used for storing VIRQ so
     * it has to be aligned to num to support multiple
     * MSI vectors. MSI-X is not affected by this.
     * The hint is used for the first IRQ, the rest should
S
Stefan Weil 已提交
129
     * be allocated continuously.
130 131 132 133 134 135
     */
    if (msi) {
        assert((num == 1) || (num == 2) || (num == 4) ||
               (num == 8) || (num == 16) || (num == 32));
        hint = (spapr->next_irq + num - 1) & ~(num - 1);
    }
136 137 138 139

    for (i = 0; i < num; ++i) {
        int irq;

140
        irq = spapr_allocate_irq(hint, lsi);
141 142 143 144 145 146
        if (!irq) {
            return -1;
        }

        if (0 == i) {
            first = irq;
147
            hint = 0;
148 149 150 151 152 153 154 155 156 157
        }

        /* If the above doesn't create a consecutive block then that's
         * an internal bug */
        assert(irq == (first + i));
    }

    return first;
}

158 159 160 161 162 163 164 165 166 167 168 169
static XICSState *try_create_xics(const char *type, int nr_servers,
                                  int nr_irqs)
{
    DeviceState *dev;

    dev = qdev_create(NULL, type);
    qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
    qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
    if (qdev_init(dev) < 0) {
        return NULL;
    }

170
    return XICS_COMMON(dev);
171 172 173 174 175 176
}

static XICSState *xics_system_init(int nr_servers, int nr_irqs)
{
    XICSState *icp = NULL;

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    if (kvm_enabled()) {
        QemuOpts *machine_opts = qemu_get_machine_opts();
        bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
                                                "kernel_irqchip", true);
        bool irqchip_required = qemu_opt_get_bool(machine_opts,
                                                  "kernel_irqchip", false);
        if (irqchip_allowed) {
            icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
        }

        if (irqchip_required && !icp) {
            perror("Failed to create in-kernel XICS\n");
            abort();
        }
    }

    if (!icp) {
        icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
    }

197 198 199 200 201 202 203 204
    if (!icp) {
        perror("Failed to create XICS\n");
        abort();
    }

    return icp;
}

205
static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
206 207
{
    int ret = 0, offset;
208
    CPUState *cpu;
209 210
    char cpu_model[32];
    int smt = kvmppc_smt_threads();
211
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
212

A
Andreas Färber 已提交
213
    CPU_FOREACH(cpu) {
214
        DeviceClass *dc = DEVICE_GET_CLASS(cpu);
215
        int index = ppc_get_vcpu_dt_id(POWERPC_CPU(cpu));
216 217 218 219
        uint32_t associativity[] = {cpu_to_be32(0x5),
                                    cpu_to_be32(0x0),
                                    cpu_to_be32(0x0),
                                    cpu_to_be32(0x0),
220
                                    cpu_to_be32(cpu->numa_node),
221
                                    cpu_to_be32(index)};
222

223
        if ((index % smt) != 0) {
224 225 226
            continue;
        }

227
        snprintf(cpu_model, 32, "/cpus/%s@%x", dc->fw_name,
228
                 index);
229 230 231 232 233 234

        offset = fdt_path_offset(fdt, cpu_model);
        if (offset < 0) {
            return offset;
        }

235 236 237 238 239 240 241 242 243 244
        if (nb_numa_nodes > 1) {
            ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
                              sizeof(associativity));
            if (ret < 0) {
                return ret;
            }
        }

        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
                          pft_size_prop, sizeof(pft_size_prop));
245 246 247 248 249 250 251
        if (ret < 0) {
            return ret;
        }
    }
    return ret;
}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
                                     size_t maxsize)
{
    size_t maxcells = maxsize / sizeof(uint32_t);
    int i, j, count;
    uint32_t *p = prop;

    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];

        if (!sps->page_shift) {
            break;
        }
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
            if (sps->enc[count].page_shift == 0) {
                break;
            }
        }
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
            break;
        }
        *(p++) = cpu_to_be32(sps->page_shift);
        *(p++) = cpu_to_be32(sps->slb_enc);
        *(p++) = cpu_to_be32(count);
        for (j = 0; j < count; j++) {
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
        }
    }

    return (p - prop) * sizeof(uint32_t);
}

286 287 288 289 290 291 292 293 294 295 296
#define _FDT(exp) \
    do { \
        int ret = (exp);                                           \
        if (ret < 0) {                                             \
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
                    #exp, fdt_strerror(ret));                      \
            exit(1);                                               \
        }                                                          \
    } while (0)


297
static void *spapr_create_fdt_skel(hwaddr initrd_base,
A
Avi Kivity 已提交
298 299
                                   hwaddr initrd_size,
                                   hwaddr kernel_size,
300
                                   bool little_endian,
301
                                   const char *boot_device,
302 303
                                   const char *kernel_cmdline,
                                   uint32_t epow_irq)
304 305
{
    void *fdt;
306
    CPUState *cs;
307 308
    uint32_t start_prop = cpu_to_be32(initrd_base);
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
309
    char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
310
        "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk\0hcall-set-mode";
311
    char qemu_hypertas_prop[] = "hcall-memop1";
312
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
313
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
314
    int i, smt = kvmppc_smt_threads();
315
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
316

317
    fdt = g_malloc0(FDT_MAX_SIZE);
318 319
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));

320 321 322 323 324 325
    if (kernel_size) {
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
    }
    if (initrd_size) {
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
    }
326 327 328 329 330
    _FDT((fdt_finish_reservemap(fdt)));

    /* Root node */
    _FDT((fdt_begin_node(fdt, "")));
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
331
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
332
    _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
333 334 335 336 337 338 339

    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));

    /* /chosen */
    _FDT((fdt_begin_node(fdt, "chosen")));

340 341 342
    /* Set Form1_affinity */
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));

343 344 345 346 347
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
    _FDT((fdt_property(fdt, "linux,initrd-start",
                       &start_prop, sizeof(start_prop))));
    _FDT((fdt_property(fdt, "linux,initrd-end",
                       &end_prop, sizeof(end_prop))));
348 349 350
    if (kernel_size) {
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
                              cpu_to_be64(kernel_size) };
351

352
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
353 354 355
        if (little_endian) {
            _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
        }
356
    }
A
Avik Sil 已提交
357 358 359
    if (boot_device) {
        _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
    }
360 361 362
    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
363

364 365 366 367 368 369 370 371
    _FDT((fdt_end_node(fdt)));

    /* cpus */
    _FDT((fdt_begin_node(fdt, "cpus")));

    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));

A
Andreas Färber 已提交
372
    CPU_FOREACH(cs) {
373 374
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        CPUPPCState *env = &cpu->env;
375
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
376
        PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
377
        int index = ppc_get_vcpu_dt_id(cpu);
378 379
        uint32_t servers_prop[smp_threads];
        uint32_t gservers_prop[smp_threads * 2];
380 381 382
        char *nodename;
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
                           0xffffffff, 0xffffffff};
383 384
        uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
        uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
385 386
        uint32_t page_sizes_prop[64];
        size_t page_sizes_prop_size;
387

388 389 390 391
        if ((index % smt) != 0) {
            continue;
        }

392
        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
393 394 395

        _FDT((fdt_begin_node(fdt, nodename)));

396
        g_free(nodename);
397

D
David Gibson 已提交
398
        _FDT((fdt_property_cell(fdt, "reg", index)));
399 400 401
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));

        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
402
        _FDT((fdt_property_cell(fdt, "d-cache-block-size",
403
                                env->dcache_line_size)));
404 405 406 407 408
        _FDT((fdt_property_cell(fdt, "d-cache-line-size",
                                env->dcache_line_size)));
        _FDT((fdt_property_cell(fdt, "i-cache-block-size",
                                env->icache_line_size)));
        _FDT((fdt_property_cell(fdt, "i-cache-line-size",
409
                                env->icache_line_size)));
410 411 412 413 414 415 416 417 418 419 420 421

        if (pcc->l1_dcache_size) {
            _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
        } else {
            fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
        }
        if (pcc->l1_icache_size) {
            _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
        } else {
            fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
        }

422 423
        _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
        _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
424 425 426
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
        _FDT((fdt_property_string(fdt, "status", "okay")));
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
427 428 429 430 431 432 433 434 435 436

        /* Build interrupt servers and gservers properties */
        for (i = 0; i < smp_threads; i++) {
            servers_prop[i] = cpu_to_be32(index + i);
            /* Hack, direct the group queues back to cpu 0 */
            gservers_prop[i*2] = cpu_to_be32(index + i);
            gservers_prop[i*2 + 1] = 0;
        }
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
                           servers_prop, sizeof(servers_prop))));
437
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
438
                           gservers_prop, sizeof(gservers_prop))));
439

440 441 442 443
        if (env->spr_cb[SPR_PURR].oea_read) {
            _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
        }

D
David Gibson 已提交
444
        if (env->mmu_model & POWERPC_MMU_1TSEG) {
445 446 447 448
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
                               segs, sizeof(segs))));
        }

449 450 451 452
        /* Advertise VMX/VSX (vector extensions) if available
         *   0 / no property == no vector extensions
         *   1               == VMX / Altivec available
         *   2               == VSX available */
453 454 455
        if (env->insns_flags & PPC_ALTIVEC) {
            uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;

456 457 458 459 460 461
            _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
        }

        /* Advertise DFP (Decimal Floating Point) if available
         *   0 / no property == no DFP
         *   1               == DFP available */
462 463
        if (env->insns_flags2 & PPC2_DFP) {
            _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
464 465
        }

466 467 468 469 470 471 472
        page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
                                                      sizeof(page_sizes_prop));
        if (page_sizes_prop_size) {
            _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
                               page_sizes_prop, page_sizes_prop_size)));
        }

473 474 475 476 477
        _FDT((fdt_end_node(fdt)));
    }

    _FDT((fdt_end_node(fdt)));

478 479 480 481 482
    /* RTAS */
    _FDT((fdt_begin_node(fdt, "rtas")));

    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
                       sizeof(hypertas_prop))));
483 484
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
                       sizeof(qemu_hypertas_prop))));
485

486 487 488
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
        refpoints, sizeof(refpoints))));

489 490
    _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));

491 492
    _FDT((fdt_end_node(fdt)));

493
    /* interrupt controller */
494
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
495 496 497 498 499 500 501 502

    _FDT((fdt_property_string(fdt, "device_type",
                              "PowerPC-External-Interrupt-Presentation")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
                       interrupt_server_ranges_prop,
                       sizeof(interrupt_server_ranges_prop))));
503 504 505
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
506 507 508

    _FDT((fdt_end_node(fdt)));

509 510 511 512 513 514 515
    /* vdevice */
    _FDT((fdt_begin_node(fdt, "vdevice")));

    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
516 517
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
518 519 520

    _FDT((fdt_end_node(fdt)));

521 522 523
    /* event-sources */
    spapr_events_fdt_skel(fdt, epow_irq);

524 525 526
    _FDT((fdt_end_node(fdt))); /* close root node */
    _FDT((fdt_finish(fdt)));

527 528 529
    return fdt;
}

530 531 532 533 534 535
static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
{
    uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
                                cpu_to_be32(0x0), cpu_to_be32(0x0),
                                cpu_to_be32(0x0)};
    char mem_name[32];
536
    hwaddr node0_size, mem_start, node_size;
537 538 539 540
    uint64_t mem_reg_property[2];
    int i, off;

    /* memory node(s) */
541 542 543 544 545
    if (nb_numa_nodes > 1 && node_mem[0] < ram_size) {
        node0_size = node_mem[0];
    } else {
        node0_size = ram_size;
    }
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576

    /* RMA */
    mem_reg_property[0] = 0;
    mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
    off = fdt_add_subnode(fdt, 0, "memory@0");
    _FDT(off);
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                      sizeof(mem_reg_property))));
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                      sizeof(associativity))));

    /* RAM: Node 0 */
    if (node0_size > spapr->rma_size) {
        mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
        mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);

        sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
        off = fdt_add_subnode(fdt, 0, mem_name);
        _FDT(off);
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                          sizeof(mem_reg_property))));
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                          sizeof(associativity))));
    }

    /* RAM: Node 1 and beyond */
    mem_start = node0_size;
    for (i = 1; i < nb_numa_nodes; i++) {
        mem_reg_property[0] = cpu_to_be64(mem_start);
577 578 579 580 581 582 583 584 585
        if (mem_start >= ram_size) {
            node_size = 0;
        } else {
            node_size = node_mem[i];
            if (node_size > ram_size - mem_start) {
                node_size = ram_size - mem_start;
            }
        }
        mem_reg_property[1] = cpu_to_be64(node_size);
586 587 588 589 590 591 592 593 594
        associativity[3] = associativity[4] = cpu_to_be32(i);
        sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
        off = fdt_add_subnode(fdt, 0, mem_name);
        _FDT(off);
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                          sizeof(mem_reg_property))));
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                          sizeof(associativity))));
595
        mem_start += node_size;
596 597 598 599 600
    }

    return 0;
}

601
static void spapr_finalize_fdt(sPAPREnvironment *spapr,
A
Avi Kivity 已提交
602 603 604
                               hwaddr fdt_addr,
                               hwaddr rtas_addr,
                               hwaddr rtas_size)
605
{
606 607 608
    int ret, i;
    size_t cb = 0;
    char *bootlist;
609
    void *fdt;
610
    sPAPRPHBState *phb;
611

612
    fdt = g_malloc(FDT_MAX_SIZE);
613 614 615

    /* open out the base tree into a temp buffer for the final tweaks */
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
616

617 618 619 620 621 622
    ret = spapr_populate_memory(spapr, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
        exit(1);
    }

623 624 625 626 627 628
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
        exit(1);
    }

629
    QLIST_FOREACH(phb, &spapr->phbs, list) {
630
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
631 632 633 634 635 636 637
    }

    if (ret < 0) {
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
        exit(1);
    }

638 639 640 641 642 643
    /* RTAS */
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
    if (ret < 0) {
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
    }

644
    /* Advertise NUMA via ibm,associativity */
645 646 647
    ret = spapr_fixup_cpu_dt(fdt, spapr);
    if (ret < 0) {
        fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
648 649
    }

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
    bootlist = get_boot_devices_list(&cb, true);
    if (cb && bootlist) {
        int offset = fdt_path_offset(fdt, "/chosen");
        if (offset < 0) {
            exit(1);
        }
        for (i = 0; i < cb; i++) {
            if (bootlist[i] == '\n') {
                bootlist[i] = ' ';
            }

        }
        ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
    }

665
    if (!spapr->has_graphics) {
666 667
        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
    }
668

669 670
    _FDT((fdt_pack(fdt)));

671 672 673 674 675 676
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
        hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
                 fdt_totalsize(fdt), FDT_MAX_SIZE);
        exit(1);
    }

677
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
678

679
    g_free(fdt);
680 681 682 683 684 685 686
}

static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}

687
static void emulate_spapr_hypercall(PowerPCCPU *cpu)
688
{
689 690
    CPUPPCState *env = &cpu->env;

691 692 693 694
    if (msr_pr) {
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
        env->gpr[3] = H_PRIVILEGE;
    } else {
695
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
696
    }
697 698
}

699 700 701 702 703 704 705 706 707 708 709 710 711
static void spapr_reset_htab(sPAPREnvironment *spapr)
{
    long shift;

    /* allocate hash page table.  For now we always make this 16mb,
     * later we should probably make it scale to the size of guest
     * RAM */

    shift = kvmppc_reset_htab(spapr->htab_shift);

    if (shift > 0) {
        /* Kernel handles htab, we don't need to allocate one */
        spapr->htab_shift = shift;
712
        kvmppc_kern_htab = true;
713 714 715 716 717 718 719 720 721 722 723 724
    } else {
        if (!spapr->htab) {
            /* Allocate an htab if we don't yet have one */
            spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
        }

        /* And clear it */
        memset(spapr->htab, 0, HTAB_SIZE(spapr));
    }

    /* Update the RMA size if necessary */
    if (spapr->vrma_adjust) {
725 726
        hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
        spapr->rma_size = kvmppc_rma_size(node0_size, spapr->htab_shift);
727
    }
728 729
}

730
static void ppc_spapr_reset(void)
731
{
732
    PowerPCCPU *first_ppc_cpu;
733

734 735
    /* Reset the hash table & recalc the RMA */
    spapr_reset_htab(spapr);
736

737
    qemu_devices_reset();
738 739 740 741 742 743

    /* Load the fdt */
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
                       spapr->rtas_size);

    /* Set up the entry state */
744 745 746 747 748
    first_ppc_cpu = POWERPC_CPU(first_cpu);
    first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
    first_ppc_cpu->env.gpr[5] = 0;
    first_cpu->halted = 0;
    first_ppc_cpu->env.nip = spapr->entry_point;
749 750 751

}

752 753
static void spapr_cpu_reset(void *opaque)
{
754
    PowerPCCPU *cpu = opaque;
755
    CPUState *cs = CPU(cpu);
756
    CPUPPCState *env = &cpu->env;
757

758
    cpu_reset(cs);
759 760 761 762

    /* All CPUs start halted.  CPU0 is unhalted from the machine level
     * reset code and the rest are explicitly started up by the guest
     * using an RTAS call */
763
    cs->halted = 1;
764 765

    env->spr[SPR_HIOR] = 0;
766

767
    env->external_htab = (uint8_t *)spapr->htab;
768 769 770 771 772 773 774
    if (kvm_enabled() && !env->external_htab) {
        /*
         * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
         * functions do the right thing.
         */
        env->external_htab = (void *)1;
    }
775
    env->htab_base = -1;
776 777 778 779 780 781 782
    /*
     * htab_mask is the mask used to normalize hash value to PTEG index.
     * htab_shift is log2 of hash table size.
     * We have 8 hpte per group, and each hpte is 16 bytes.
     * ie have 128 bytes per hpte entry.
     */
    env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1;
783
    env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
784
        (spapr->htab_shift - 18);
785 786
}

D
David Gibson 已提交
787 788
static void spapr_create_nvram(sPAPREnvironment *spapr)
{
789
    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
P
Paolo Bonzini 已提交
790
    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
D
David Gibson 已提交
791

P
Paolo Bonzini 已提交
792 793
    if (dinfo) {
        qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv);
D
David Gibson 已提交
794 795 796 797 798 799 800
    }

    qdev_init_nofail(dev);

    spapr->nvram = (struct sPAPRNVRAM *)dev;
}

801
/* Returns whether we want to use VGA or not */
802 803
static int spapr_vga_init(PCIBus *pci_bus)
{
804 805
    switch (vga_interface_type) {
    case VGA_NONE:
806 807 808
        return false;
    case VGA_DEVICE:
        return true;
809 810
    case VGA_STD:
        return pci_vga_init(pci_bus) != NULL;
811
    default:
812 813
        fprintf(stderr, "This vga model is not supported,"
                "currently it only supports -vga std\n");
814
        exit(0);
815 816 817
    }
}

818 819 820 821
static const VMStateDescription vmstate_spapr = {
    .name = "spapr",
    .version_id = 1,
    .minimum_version_id = 1,
822
    .fields = (VMStateField[]) {
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
        VMSTATE_UINT32(next_irq, sPAPREnvironment),

        /* RTC offset */
        VMSTATE_UINT64(rtc_offset, sPAPREnvironment),

        VMSTATE_END_OF_LIST()
    },
};

#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))

static int htab_save_setup(QEMUFile *f, void *opaque)
{
    sPAPREnvironment *spapr = opaque;

    /* "Iteration" header */
    qemu_put_be32(f, spapr->htab_shift);

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
    if (spapr->htab) {
        spapr->htab_save_index = 0;
        spapr->htab_first_pass = true;
    } else {
        assert(kvm_enabled());

        spapr->htab_fd = kvmppc_get_htab_fd(false);
        if (spapr->htab_fd < 0) {
            fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
                    strerror(errno));
            return -1;
        }
    }


859 860 861 862 863 864 865 866
    return 0;
}

static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
                                 int64_t max_ns)
{
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int index = spapr->htab_save_index;
867
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897

    assert(spapr->htab_first_pass);

    do {
        int chunkstart;

        /* Consume invalid HPTEs */
        while ((index < htabslots)
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        /* Consume valid HPTEs */
        chunkstart = index;
        while ((index < htabslots)
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        if (index > chunkstart) {
            int n_valid = index - chunkstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, 0);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);

898
            if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
899 900 901 902 903 904 905 906 907 908 909 910 911
                break;
            }
        }
    } while ((index < htabslots) && !qemu_file_rate_limit(f));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
        spapr->htab_first_pass = false;
    }
    spapr->htab_save_index = index;
}

912 913
static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
                                int64_t max_ns)
914 915 916 917 918
{
    bool final = max_ns < 0;
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int examined = 0, sent = 0;
    int index = spapr->htab_save_index;
919
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963

    assert(!spapr->htab_first_pass);

    do {
        int chunkstart, invalidstart;

        /* Consume non-dirty HPTEs */
        while ((index < htabslots)
               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
            index++;
            examined++;
        }

        chunkstart = index;
        /* Consume valid dirty HPTEs */
        while ((index < htabslots)
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        invalidstart = index;
        /* Consume invalid dirty HPTEs */
        while ((index < htabslots)
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        if (index > chunkstart) {
            int n_valid = invalidstart - chunkstart;
            int n_invalid = index - invalidstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, n_invalid);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);
            sent += index - chunkstart;

964
            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
                break;
            }
        }

        if (examined >= htabslots) {
            break;
        }

        if (index >= htabslots) {
            assert(index == htabslots);
            index = 0;
        }
    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
    }

    spapr->htab_save_index = index;

986
    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
987 988
}

989 990 991
#define MAX_ITERATION_NS    5000000 /* 5 ms */
#define MAX_KVM_BUF_SIZE    2048

992 993 994
static int htab_save_iterate(QEMUFile *f, void *opaque)
{
    sPAPREnvironment *spapr = opaque;
995
    int rc = 0;
996 997 998 999

    /* Iteration header */
    qemu_put_be32(f, 0);

1000 1001 1002 1003 1004 1005 1006 1007 1008
    if (!spapr->htab) {
        assert(kvm_enabled());

        rc = kvmppc_save_htab(f, spapr->htab_fd,
                              MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
        if (rc < 0) {
            return rc;
        }
    } else  if (spapr->htab_first_pass) {
1009 1010
        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
    } else {
1011
        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1012 1013 1014 1015 1016 1017 1018
    }

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

1019
    return rc;
1020 1021 1022 1023 1024 1025 1026 1027 1028
}

static int htab_save_complete(QEMUFile *f, void *opaque)
{
    sPAPREnvironment *spapr = opaque;

    /* Iteration header */
    qemu_put_be32(f, 0);

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    if (!spapr->htab) {
        int rc;

        assert(kvm_enabled());

        rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
        if (rc < 0) {
            return rc;
        }
        close(spapr->htab_fd);
        spapr->htab_fd = -1;
    } else {
        htab_save_later_pass(f, spapr, -1);
    }
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

    return 0;
}

static int htab_load(QEMUFile *f, void *opaque, int version_id)
{
    sPAPREnvironment *spapr = opaque;
    uint32_t section_hdr;
1056
    int fd = -1;
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

    if (version_id < 1 || version_id > 1) {
        fprintf(stderr, "htab_load() bad version\n");
        return -EINVAL;
    }

    section_hdr = qemu_get_be32(f);

    if (section_hdr) {
        /* First section, just the hash shift */
        if (spapr->htab_shift != section_hdr) {
            return -EINVAL;
        }
        return 0;
    }

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
    if (!spapr->htab) {
        assert(kvm_enabled());

        fd = kvmppc_get_htab_fd(true);
        if (fd < 0) {
            fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
                    strerror(errno));
        }
    }

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
    while (true) {
        uint32_t index;
        uint16_t n_valid, n_invalid;

        index = qemu_get_be32(f);
        n_valid = qemu_get_be16(f);
        n_invalid = qemu_get_be16(f);

        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
            /* End of Stream */
            break;
        }

1096
        if ((index + n_valid + n_invalid) >
1097 1098 1099
            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
            /* Bad index in stream */
            fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1100 1101
                    "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
                    spapr->htab_shift);
1102 1103 1104
            return -EINVAL;
        }

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
        if (spapr->htab) {
            if (n_valid) {
                qemu_get_buffer(f, HPTE(spapr->htab, index),
                                HASH_PTE_SIZE_64 * n_valid);
            }
            if (n_invalid) {
                memset(HPTE(spapr->htab, index + n_valid), 0,
                       HASH_PTE_SIZE_64 * n_invalid);
            }
        } else {
            int rc;

            assert(fd >= 0);

            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
            if (rc < 0) {
                return rc;
            }
1123 1124 1125
        }
    }

1126 1127 1128 1129 1130
    if (!spapr->htab) {
        assert(fd >= 0);
        close(fd);
    }

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
    return 0;
}

static SaveVMHandlers savevm_htab_handlers = {
    .save_live_setup = htab_save_setup,
    .save_live_iterate = htab_save_iterate,
    .save_live_complete = htab_save_complete,
    .load_state = htab_load,
};

1141
/* pSeries LPAR / sPAPR hardware init */
1142
static void ppc_spapr_init(MachineState *machine)
1143
{
1144 1145 1146 1147 1148 1149
    ram_addr_t ram_size = machine->ram_size;
    const char *cpu_model = machine->cpu_model;
    const char *kernel_filename = machine->kernel_filename;
    const char *kernel_cmdline = machine->kernel_cmdline;
    const char *initrd_filename = machine->initrd_filename;
    const char *boot_device = machine->boot_order;
1150
    PowerPCCPU *cpu;
A
Andreas Färber 已提交
1151
    CPUPPCState *env;
1152
    PCIHostState *phb;
1153
    int i;
A
Avi Kivity 已提交
1154 1155
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
A
Avi Kivity 已提交
1156
    hwaddr rma_alloc_size;
1157
    hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
1158 1159 1160
    uint32_t initrd_base = 0;
    long kernel_size = 0, initrd_size = 0;
    long load_limit, rtas_limit, fw_size;
1161
    bool kernel_le = false;
1162
    char *filename;
1163

1164 1165
    msi_supported = true;

1166 1167 1168
    spapr = g_malloc0(sizeof(*spapr));
    QLIST_INIT(&spapr->phbs);

1169 1170
    cpu_ppc_hypercall = emulate_spapr_hypercall;

1171 1172 1173 1174 1175 1176 1177
    /* Allocate RMA if necessary */
    rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);

    if (rma_alloc_size == -1) {
        hw_error("qemu: Unable to create RMA\n");
        exit(1);
    }
1178

1179
    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1180
        spapr->rma_size = rma_alloc_size;
1181
    } else {
1182
        spapr->rma_size = node0_size;
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

        /* With KVM, we don't actually know whether KVM supports an
         * unbounded RMA (PR KVM) or is limited by the hash table size
         * (HV KVM using VRMA), so we always assume the latter
         *
         * In that case, we also limit the initial allocations for RTAS
         * etc... to 256M since we have no way to know what the VRMA size
         * is going to be as it depends on the size of the hash table
         * isn't determined yet.
         */
        if (kvm_enabled()) {
            spapr->vrma_adjust = 1;
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
        }
1197 1198
    }

1199 1200 1201 1202 1203 1204
    if (spapr->rma_size > node0_size) {
        fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
                spapr->rma_size);
        exit(1);
    }

1205
    /* We place the device tree and RTAS just below either the top of the RMA,
1206 1207
     * or just below 2GB, whichever is lowere, so that it can be
     * processed with 32-bit real mode code if necessary */
1208
    rtas_limit = MIN(spapr->rma_size, 0x80000000);
1209 1210 1211
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
    load_limit = spapr->fdt_addr - FW_OVERHEAD;
1212

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
    /* We aim for a hash table of size 1/128 the size of RAM.  The
     * normal rule of thumb is 1/64 the size of RAM, but that's much
     * more than needed for the Linux guests we support. */
    spapr->htab_shift = 18; /* Minimum architected size */
    while (spapr->htab_shift <= 46) {
        if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
            break;
        }
        spapr->htab_shift++;
    }
1223

1224 1225 1226 1227 1228
    /* Set up Interrupt Controller before we create the VCPUs */
    spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
                                  XICS_IRQS);
    spapr->next_irq = XICS_IRQ_BASE;

1229 1230
    /* init CPUs */
    if (cpu_model == NULL) {
1231
        cpu_model = kvm_enabled() ? "host" : "POWER7";
1232 1233
    }
    for (i = 0; i < smp_cpus; i++) {
1234 1235
        cpu = cpu_ppc_init(cpu_model);
        if (cpu == NULL) {
1236 1237 1238
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
            exit(1);
        }
1239 1240
        env = &cpu->env;

1241 1242 1243
        /* Set time-base frequency to 512 MHz */
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);

1244 1245 1246 1247
        /* PAPR always has exception vectors in RAM not ROM. To ensure this,
         * MSR[IP] should never be set.
         */
        env->msr_mask &= ~(1 << 6);
1248 1249 1250

        /* Tell KVM that we're in PAPR mode */
        if (kvm_enabled()) {
1251
            kvmppc_set_papr(cpu);
1252 1253
        }

1254 1255
        xics_cpu_setup(spapr->icp, cpu);

1256
        qemu_register_reset(spapr_cpu_reset, cpu);
1257 1258 1259
    }

    /* allocate RAM */
1260
    spapr->ram_limit = ram_size;
1261 1262 1263 1264
    if (spapr->ram_limit > rma_alloc_size) {
        ram_addr_t nonrma_base = rma_alloc_size;
        ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;

1265
        memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size);
1266
        vmstate_register_ram_global(ram);
1267 1268
        memory_region_add_subregion(sysmem, nonrma_base, ram);
    }
1269

1270
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1271
    spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
1272
                                           rtas_limit - spapr->rtas_addr);
1273
    if (spapr->rtas_size < 0) {
1274 1275 1276
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
        exit(1);
    }
1277 1278 1279 1280 1281
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
        hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
                 spapr->rtas_size, RTAS_MAX_SIZE);
        exit(1);
    }
1282
    g_free(filename);
1283

1284 1285 1286
    /* Set up EPOW events infrastructure */
    spapr_events_init(spapr);

1287
    /* Set up VIO bus */
1288 1289
    spapr->vio_bus = spapr_vio_bus_init();

P
Paolo Bonzini 已提交
1290
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1291
        if (serial_hds[i]) {
1292
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1293 1294
        }
    }
1295

D
David Gibson 已提交
1296 1297 1298
    /* We always have at least the nvram device on VIO */
    spapr_create_nvram(spapr);

1299
    /* Set up PCI */
1300
    spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW);
1301 1302
    spapr_pci_rtas_init();

1303
    phb = spapr_create_phb(spapr, 0);
1304

P
Paolo Bonzini 已提交
1305
    for (i = 0; i < nb_nics; i++) {
1306 1307 1308
        NICInfo *nd = &nd_table[i];

        if (!nd->model) {
1309
            nd->model = g_strdup("ibmveth");
1310 1311 1312
        }

        if (strcmp(nd->model, "ibmveth") == 0) {
1313
            spapr_vlan_create(spapr->vio_bus, nd);
1314
        } else {
1315
            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1316 1317 1318
        }
    }

1319
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1320
        spapr_vscsi_create(spapr->vio_bus);
1321 1322
    }

1323
    /* Graphics */
1324
    if (spapr_vga_init(phb->bus)) {
1325
        spapr->has_graphics = true;
1326 1327
    }

1328
    if (usb_enabled(spapr->has_graphics)) {
1329
        pci_create_simple(phb->bus, -1, "pci-ohci");
1330 1331 1332 1333 1334 1335
        if (spapr->has_graphics) {
            usbdevice_create("keyboard");
            usbdevice_create("mouse");
        }
    }

1336
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1337 1338 1339 1340 1341
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
        exit(1);
    }

1342 1343 1344 1345 1346
    if (kernel_filename) {
        uint64_t lowaddr = 0;

        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1347
        if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1348 1349 1350 1351 1352
            kernel_size = load_elf(kernel_filename,
                                   translate_kernel_address, NULL,
                                   NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
            kernel_le = kernel_size > 0;
        }
1353
        if (kernel_size < 0) {
1354 1355
            fprintf(stderr, "qemu: error loading %s: %s\n",
                    kernel_filename, load_elf_strerror(kernel_size));
1356 1357 1358 1359 1360
            exit(1);
        }

        /* load initrd */
        if (initrd_filename) {
1361 1362 1363 1364
            /* Try to locate the initrd in the gap between the kernel
             * and the firmware. Add a bit of space just in case
             */
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1365
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
1366
                                              load_limit - initrd_base);
1367 1368 1369 1370 1371 1372 1373 1374 1375
            if (initrd_size < 0) {
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
                        initrd_filename);
                exit(1);
            }
        } else {
            initrd_base = 0;
            initrd_size = 0;
        }
1376
    }
1377

1378 1379 1380 1381
    if (bios_name == NULL) {
        bios_name = FW_FILE_NAME;
    }
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1382 1383 1384 1385 1386 1387 1388 1389 1390
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
    if (fw_size < 0) {
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
        exit(1);
    }
    g_free(filename);

    spapr->entry_point = 0x100;

1391 1392 1393 1394
    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
    register_savevm_live(NULL, "spapr/htab", -1, 1,
                         &savevm_htab_handlers, spapr);

1395
    /* Prepare the device tree */
1396
    spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1397
                                            kernel_size, kernel_le,
1398 1399
                                            boot_device, kernel_cmdline,
                                            spapr->epow_irq);
1400
    assert(spapr->fdt_skel != NULL);
1401 1402
}

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
static int spapr_kvm_type(const char *vm_type)
{
    if (!vm_type) {
        return 0;
    }

    if (!strcmp(vm_type, "HV")) {
        return 1;
    }

    if (!strcmp(vm_type, "PR")) {
        return 2;
    }

    error_report("Unknown kvm-type specified '%s'", vm_type);
    exit(1);
}

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
/*
 * Implementation of an interface to adjust firmware patch
 * for the bootindex property handling.
 */
static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
                                   DeviceState *dev)
{
#define CAST(type, obj, name) \
    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);

    if (d) {
        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);

        if (spapr) {
            /*
             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
             * in the top 16 bits of the 64-bit LUN
             */
            unsigned id = 0x8000 | (d->id << 8) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 48);
        } else if (virtio) {
            /*
             * We use SRP luns of the form 01000000 | (target << 8) | lun
             * in the top 32 bits of the 64-bit LUN
             * Note: the quote above is from SLOF and it is wrong,
             * the actual binding is:
             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
             */
            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        } else if (usb) {
            /*
             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
             * in the top 32 bits of the 64-bit LUN
             */
            unsigned usb_port = atoi(usb->port->path);
            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        }
    }

    if (phb) {
        /* Replace "pci" with "pci@800000020000000" */
        return g_strdup_printf("pci@%"PRIX64, phb->buid);
    }

    return NULL;
}

1478 1479 1480
static void spapr_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
1481
    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492

    mc->name = "pseries";
    mc->desc = "pSeries Logical Partition (PAPR compliant)";
    mc->is_default = 1;
    mc->init = ppc_spapr_init;
    mc->reset = ppc_spapr_reset;
    mc->block_default_type = IF_SCSI;
    mc->max_cpus = MAX_CPUS;
    mc->no_parallel = 1;
    mc->default_boot_order = NULL;
    mc->kvm_type = spapr_kvm_type;
1493

1494
    fwc->get_dev_path = spapr_get_fw_dev_path;
1495 1496 1497 1498 1499 1500
}

static const TypeInfo spapr_machine_info = {
    .name          = TYPE_SPAPR_MACHINE,
    .parent        = TYPE_MACHINE,
    .class_init    = spapr_machine_class_init,
1501 1502 1503 1504
    .interfaces = (InterfaceInfo[]) {
        { TYPE_FW_PATH_PROVIDER },
        { }
    },
1505 1506 1507
};

static void spapr_machine_register_types(void)
1508
{
1509
    type_register_static(&spapr_machine_info);
1510 1511
}

1512
type_init(spapr_machine_register_types)