qemu-doc.texi 90.5 KB
Newer Older
B
bellard 已提交
1
\input texinfo @c -*- texinfo -*-
B
bellard 已提交
2 3
@c %**start of header
@setfilename qemu-doc.info
4 5 6 7

@documentlanguage en
@documentencoding UTF-8

B
update  
bellard 已提交
8
@settitle QEMU Emulator User Documentation
B
bellard 已提交
9 10 11
@exampleindent 0
@paragraphindent 0
@c %**end of header
B
bellard 已提交
12

13 14 15 16 17 18
@ifinfo
@direntry
* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
@end direntry
@end ifinfo

B
updated  
bellard 已提交
19
@iftex
B
bellard 已提交
20 21
@titlepage
@sp 7
B
update  
bellard 已提交
22
@center @titlefont{QEMU Emulator}
B
bellard 已提交
23 24
@sp 1
@center @titlefont{User Documentation}
B
bellard 已提交
25 26
@sp 3
@end titlepage
B
updated  
bellard 已提交
27
@end iftex
B
bellard 已提交
28

B
bellard 已提交
29 30 31 32 33 34 35 36
@ifnottex
@node Top
@top

@menu
* Introduction::
* QEMU PC System emulator::
* QEMU System emulator for non PC targets::
B
bellard 已提交
37
* QEMU User space emulator::
38
* Implementation notes::
39
* License::
B
bellard 已提交
40 41 42 43 44 45 46
* Index::
@end menu
@end ifnottex

@contents

@node Introduction
B
bellard 已提交
47 48
@chapter Introduction

B
bellard 已提交
49 50 51 52 53
@menu
* intro_features:: Features
@end menu

@node intro_features
B
update  
bellard 已提交
54
@section Features
B
bellard 已提交
55

B
bellard 已提交
56 57
QEMU is a FAST! processor emulator using dynamic translation to
achieve good emulation speed.
B
update  
bellard 已提交
58

59
@cindex operating modes
B
update  
bellard 已提交
60
QEMU has two operating modes:
B
updated  
bellard 已提交
61

S
Stefan Weil 已提交
62
@itemize
63
@cindex system emulation
64
@item Full system emulation. In this mode, QEMU emulates a full system (for
B
bellard 已提交
65 66 67
example a PC), including one or several processors and various
peripherals. It can be used to launch different Operating Systems
without rebooting the PC or to debug system code.
B
update  
bellard 已提交
68

69
@cindex user mode emulation
70
@item User mode emulation. In this mode, QEMU can launch
B
bellard 已提交
71
processes compiled for one CPU on another CPU. It can be used to
B
bellard 已提交
72 73
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
to ease cross-compilation and cross-debugging.
B
update  
bellard 已提交
74 75 76

@end itemize

77 78 79 80 81 82 83 84 85 86 87 88
QEMU has the following features:

@itemize
@item QEMU can run without a host kernel driver and yet gives acceptable
performance.  It uses dynamic translation to native code for reasonable speed,
with support for self-modifying code and precise exceptions.

@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
Windows) and architectures.

@item It performs accurate software emulation of the FPU.
@end itemize
B
update  
bellard 已提交
89

90
QEMU user mode emulation has the following features:
B
update  
bellard 已提交
91
@itemize
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
@item Generic Linux system call converter, including most ioctls.

@item clone() emulation using native CPU clone() to use Linux scheduler for threads.

@item Accurate signal handling by remapping host signals to target signals.
@end itemize

QEMU full system emulation has the following features:
@itemize
@item
QEMU uses a full software MMU for maximum portability.

@item
QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators 
execute most of the guest code natively, while
continuing to emulate the rest of the machine.

@item
Various hardware devices can be emulated and in some cases, host
devices (e.g. serial and parallel ports, USB, drives) can be used
transparently by the guest Operating System. Host device passthrough
can be used for talking to external physical peripherals (e.g. a
webcam, modem or tape drive).

@item
Symmetric multiprocessing (SMP) support.  Currently, an in-kernel
accelerator is required to use more than one host CPU for emulation.

B
update  
bellard 已提交
120
@end itemize
B
bellard 已提交
121

B
updated  
bellard 已提交
122

B
bellard 已提交
123
@node QEMU PC System emulator
B
bellard 已提交
124
@chapter QEMU PC System emulator
125
@cindex system emulation (PC)
B
update  
bellard 已提交
126

B
bellard 已提交
127 128 129 130
@menu
* pcsys_introduction:: Introduction
* pcsys_quickstart::   Quick Start
* sec_invocation::     Invocation
131 132
* pcsys_keys::         Keys in the graphical frontends
* mux_keys::           Keys in the character backend multiplexer
B
bellard 已提交
133 134 135
* pcsys_monitor::      QEMU Monitor
* disk_images::        Disk Images
* pcsys_network::      Network emulation
S
Stefan Weil 已提交
136
* pcsys_other_devs::   Other Devices
B
bellard 已提交
137 138
* direct_linux_boot::  Direct Linux Boot
* pcsys_usb::          USB emulation
139
* vnc_security::       VNC security
B
bellard 已提交
140 141 142 143 144
* gdb_usage::          GDB usage
* pcsys_os_specific::  Target OS specific information
@end menu

@node pcsys_introduction
B
updated  
bellard 已提交
145 146 147 148
@section Introduction

@c man begin DESCRIPTION

B
bellard 已提交
149 150
The QEMU PC System emulator simulates the
following peripherals:
B
updated  
bellard 已提交
151 152

@itemize @minus
153
@item
B
bellard 已提交
154
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
B
updated  
bellard 已提交
155
@item
B
bellard 已提交
156 157
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
extensions (hardware level, including all non standard modes).
B
updated  
bellard 已提交
158 159
@item
PS/2 mouse and keyboard
160
@item
B
bellard 已提交
161
2 PCI IDE interfaces with hard disk and CD-ROM support
B
bellard 已提交
162 163
@item
Floppy disk
164
@item
165
PCI and ISA network adapters
B
updated  
bellard 已提交
166
@item
B
update  
bellard 已提交
167 168
Serial ports
@item
C
Corey Minyard 已提交
169 170
IPMI BMC, either and internal or external one
@item
B
bellard 已提交
171 172 173 174
Creative SoundBlaster 16 sound card
@item
ENSONIQ AudioPCI ES1370 sound card
@item
B
balrog 已提交
175 176
Intel 82801AA AC97 Audio compatible sound card
@item
G
Gerd Hoffmann 已提交
177 178
Intel HD Audio Controller and HDA codec
@item
S
Stefan Weil 已提交
179
Adlib (OPL2) - Yamaha YM3812 compatible chip
B
bellard 已提交
180
@item
181 182
Gravis Ultrasound GF1 sound card
@item
M
malc 已提交
183 184
CS4231A compatible sound card
@item
B
bellard 已提交
185
PCI UHCI USB controller and a virtual USB hub.
B
updated  
bellard 已提交
186 187
@end itemize

B
bellard 已提交
188 189
SMP is supported with up to 255 CPUs.

190
QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
B
bellard 已提交
191 192
VGA BIOS.

B
bellard 已提交
193 194
QEMU uses YM3812 emulation by Tatsuyuki Satoh.

S
Stefan Weil 已提交
195
QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
196
by Tibor "TS" Schütz.
197

B
Bernhard Reutner-Fischer 已提交
198
Note that, by default, GUS shares IRQ(7) with parallel ports and so
199
QEMU must be told to not have parallel ports to have working GUS.
200 201

@example
202
qemu-system-i386 dos.img -soundhw gus -parallel none
203 204 205 206
@end example

Alternatively:
@example
207
qemu-system-i386 dos.img -device gus,irq=5
208 209 210 211
@end example

Or some other unclaimed IRQ.

M
malc 已提交
212 213
CS4231A is the chip used in Windows Sound System and GUSMAX products

B
updated  
bellard 已提交
214 215
@c man end

B
bellard 已提交
216
@node pcsys_quickstart
B
update  
bellard 已提交
217
@section Quick Start
218
@cindex quick start
B
update  
bellard 已提交
219

B
update  
bellard 已提交
220
Download and uncompress the linux image (@file{linux.img}) and type:
B
updated  
bellard 已提交
221 222

@example
223
qemu-system-i386 linux.img
B
updated  
bellard 已提交
224 225 226 227
@end example

Linux should boot and give you a prompt.

B
update  
bellard 已提交
228
@node sec_invocation
B
update  
bellard 已提交
229 230 231
@section Invocation

@example
B
updated  
bellard 已提交
232
@c man begin SYNOPSIS
233
@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
B
updated  
bellard 已提交
234
@c man end
B
update  
bellard 已提交
235 236
@end example

B
updated  
bellard 已提交
237
@c man begin OPTIONS
B
blueswir1 已提交
238 239
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
targets do not need a disk image.
B
update  
bellard 已提交
240

241
@include qemu-options.texi
B
update  
bellard 已提交
242

B
update  
bellard 已提交
243 244
@c man end

B
bellard 已提交
245
@node pcsys_keys
246
@section Keys in the graphical frontends
B
update  
bellard 已提交
247 248 249

@c man begin OPTIONS

250 251 252 253 254
During the graphical emulation, you can use special key combinations to change
modes. The default key mappings are shown below, but if you use @code{-alt-grab}
then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):

B
update  
bellard 已提交
255
@table @key
B
update  
bellard 已提交
256
@item Ctrl-Alt-f
257
@kindex Ctrl-Alt-f
B
update  
bellard 已提交
258
Toggle full screen
B
update  
bellard 已提交
259

J
Jan Kiszka 已提交
260 261 262 263 264 265 266 267
@item Ctrl-Alt-+
@kindex Ctrl-Alt-+
Enlarge the screen

@item Ctrl-Alt--
@kindex Ctrl-Alt--
Shrink the screen

268
@item Ctrl-Alt-u
269
@kindex Ctrl-Alt-u
270 271
Restore the screen's un-scaled dimensions

B
update  
bellard 已提交
272
@item Ctrl-Alt-n
273
@kindex Ctrl-Alt-n
B
update  
bellard 已提交
274 275 276 277 278 279 280 281
Switch to virtual console 'n'. Standard console mappings are:
@table @emph
@item 1
Target system display
@item 2
Monitor
@item 3
Serial port
B
update  
bellard 已提交
282 283
@end table

B
update  
bellard 已提交
284
@item Ctrl-Alt
285
@kindex Ctrl-Alt
B
update  
bellard 已提交
286 287 288
Toggle mouse and keyboard grab.
@end table

289 290 291 292
@kindex Ctrl-Up
@kindex Ctrl-Down
@kindex Ctrl-PageUp
@kindex Ctrl-PageDown
B
update  
bellard 已提交
293 294 295
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.

296 297 298 299 300 301 302 303 304 305 306 307 308
@c man end

@node mux_keys
@section Keys in the character backend multiplexer

@c man begin OPTIONS

During emulation, if you are using a character backend multiplexer
(which is the default if you are using @option{-nographic}) then
several commands are available via an escape sequence. These
key sequences all start with an escape character, which is @key{Ctrl-a}
by default, but can be changed with @option{-echr}. The list below assumes
you're using the default.
B
update  
bellard 已提交
309 310

@table @key
B
update  
bellard 已提交
311
@item Ctrl-a h
312
@kindex Ctrl-a h
B
update  
bellard 已提交
313
Print this help
314
@item Ctrl-a x
315
@kindex Ctrl-a x
T
ths 已提交
316
Exit emulator
317
@item Ctrl-a s
318
@kindex Ctrl-a s
B
bellard 已提交
319
Save disk data back to file (if -snapshot)
T
ths 已提交
320
@item Ctrl-a t
321
@kindex Ctrl-a t
B
blueswir1 已提交
322
Toggle console timestamps
B
update  
bellard 已提交
323
@item Ctrl-a b
324
@kindex Ctrl-a b
B
bellard 已提交
325
Send break (magic sysrq in Linux)
B
update  
bellard 已提交
326
@item Ctrl-a c
327
@kindex Ctrl-a c
328 329
Rotate between the frontends connected to the multiplexer (usually
this switches between the monitor and the console)
B
update  
bellard 已提交
330
@item Ctrl-a Ctrl-a
331 332
@kindex Ctrl-a Ctrl-a
Send the escape character to the frontend
B
update  
bellard 已提交
333
@end table
B
updated  
bellard 已提交
334 335 336 337
@c man end

@ignore

B
bellard 已提交
338 339 340 341 342 343 344 345 346 347 348
@c man begin SEEALSO
The HTML documentation of QEMU for more precise information and Linux
user mode emulator invocation.
@c man end

@c man begin AUTHOR
Fabrice Bellard
@c man end

@end ignore

B
bellard 已提交
349
@node pcsys_monitor
B
bellard 已提交
350
@section QEMU Monitor
351
@cindex QEMU monitor
B
bellard 已提交
352 353 354 355 356 357 358

The QEMU monitor is used to give complex commands to the QEMU
emulator. You can use it to:

@itemize @minus

@item
T
ths 已提交
359
Remove or insert removable media images
360
(such as CD-ROM or floppies).
B
bellard 已提交
361

362
@item
B
bellard 已提交
363 364 365 366 367 368 369 370 371 372 373
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
from a disk file.

@item Inspect the VM state without an external debugger.

@end itemize

@subsection Commands

The following commands are available:

374
@include qemu-monitor.texi
B
updated  
bellard 已提交
375

376 377
@include qemu-monitor-info.texi

B
bellard 已提交
378 379 380 381 382
@subsection Integer expressions

The monitor understands integers expressions for every integer
argument. You can use register names to get the value of specifics
CPU registers by prefixing them with @emph{$}.
B
update  
bellard 已提交
383

B
bellard 已提交
384 385 386
@node disk_images
@section Disk Images

B
bellard 已提交
387 388
Since version 0.6.1, QEMU supports many disk image formats, including
growable disk images (their size increase as non empty sectors are
B
bellard 已提交
389 390 391
written), compressed and encrypted disk images. Version 0.8.3 added
the new qcow2 disk image format which is essential to support VM
snapshots.
B
bellard 已提交
392

B
bellard 已提交
393 394 395
@menu
* disk_images_quickstart::    Quick start for disk image creation
* disk_images_snapshot_mode:: Snapshot mode
B
bellard 已提交
396
* vm_snapshots::              VM snapshots
B
bellard 已提交
397
* qemu_img_invocation::       qemu-img Invocation
398
* qemu_nbd_invocation::       qemu-nbd Invocation
M
Marc-André Lureau 已提交
399
* qemu_ga_invocation::        qemu-ga Invocation
400
* disk_images_formats::       Disk image file formats
B
bellard 已提交
401
* host_drives::               Using host drives
B
bellard 已提交
402
* disk_images_fat_images::    Virtual FAT disk images
403
* disk_images_nbd::           NBD access
404
* disk_images_sheepdog::      Sheepdog disk images
405
* disk_images_iscsi::         iSCSI LUNs
406
* disk_images_gluster::       GlusterFS disk images
407
* disk_images_ssh::           Secure Shell (ssh) disk images
B
bellard 已提交
408 409 410
@end menu

@node disk_images_quickstart
B
bellard 已提交
411 412 413
@subsection Quick start for disk image creation

You can create a disk image with the command:
B
bellard 已提交
414
@example
B
bellard 已提交
415
qemu-img create myimage.img mysize
B
bellard 已提交
416
@end example
B
bellard 已提交
417 418 419 420
where @var{myimage.img} is the disk image filename and @var{mysize} is its
size in kilobytes. You can add an @code{M} suffix to give the size in
megabytes and a @code{G} suffix for gigabytes.

B
bellard 已提交
421
See @ref{qemu_img_invocation} for more information.
B
bellard 已提交
422

B
bellard 已提交
423
@node disk_images_snapshot_mode
B
bellard 已提交
424 425 426 427 428
@subsection Snapshot mode

If you use the option @option{-snapshot}, all disk images are
considered as read only. When sectors in written, they are written in
a temporary file created in @file{/tmp}. You can however force the
B
bellard 已提交
429 430
write back to the raw disk images by using the @code{commit} monitor
command (or @key{C-a s} in the serial console).
B
bellard 已提交
431

B
bellard 已提交
432 433 434 435 436 437 438 439 440 441 442
@node vm_snapshots
@subsection VM snapshots

VM snapshots are snapshots of the complete virtual machine including
CPU state, RAM, device state and the content of all the writable
disks. In order to use VM snapshots, you must have at least one non
removable and writable block device using the @code{qcow2} disk image
format. Normally this device is the first virtual hard drive.

Use the monitor command @code{savevm} to create a new VM snapshot or
replace an existing one. A human readable name can be assigned to each
B
update  
bellard 已提交
443
snapshot in addition to its numerical ID.
B
bellard 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465

Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
a VM snapshot. @code{info snapshots} lists the available snapshots
with their associated information:

@example
(qemu) info snapshots
Snapshot devices: hda
Snapshot list (from hda):
ID        TAG                 VM SIZE                DATE       VM CLOCK
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
2                                 40M 2006-08-06 12:43:29   00:00:18.633
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
@end example

A VM snapshot is made of a VM state info (its size is shown in
@code{info snapshots}) and a snapshot of every writable disk image.
The VM state info is stored in the first @code{qcow2} non removable
and writable block device. The disk image snapshots are stored in
every disk image. The size of a snapshot in a disk image is difficult
to evaluate and is not shown by @code{info snapshots} because the
associated disk sectors are shared among all the snapshots to save
B
update  
bellard 已提交
466 467
disk space (otherwise each snapshot would need a full copy of all the
disk images).
B
bellard 已提交
468 469 470 471 472 473 474

When using the (unrelated) @code{-snapshot} option
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
but they are deleted as soon as you exit QEMU.

VM snapshots currently have the following known limitations:
@itemize
475
@item
B
bellard 已提交
476 477
They cannot cope with removable devices if they are removed or
inserted after a snapshot is done.
478
@item
B
bellard 已提交
479 480 481 482
A few device drivers still have incomplete snapshot support so their
state is not saved or restored properly (in particular USB).
@end itemize

B
bellard 已提交
483 484
@node qemu_img_invocation
@subsection @code{qemu-img} Invocation
B
bellard 已提交
485

B
bellard 已提交
486
@include qemu-img.texi
B
bellard 已提交
487

488 489 490 491 492
@node qemu_nbd_invocation
@subsection @code{qemu-nbd} Invocation

@include qemu-nbd.texi

M
Marc-André Lureau 已提交
493 494 495 496 497
@node qemu_ga_invocation
@subsection @code{qemu-ga} Invocation

@include qemu-ga.texi

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
@node disk_images_formats
@subsection Disk image file formats

QEMU supports many image file formats that can be used with VMs as well as with
any of the tools (like @code{qemu-img}). This includes the preferred formats
raw and qcow2 as well as formats that are supported for compatibility with
older QEMU versions or other hypervisors.

Depending on the image format, different options can be passed to
@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
This section describes each format and the options that are supported for it.

@table @option
@item raw

Raw disk image format. This format has the advantage of
being simple and easily exportable to all other emulators. If your
file system supports @emph{holes} (for example in ext2 or ext3 on
Linux or NTFS on Windows), then only the written sectors will reserve
space. Use @code{qemu-img info} to know the real size used by the
image or @code{ls -ls} on Unix/Linux.

520 521 522 523 524 525 526 527 528
Supported options:
@table @code
@item preallocation
Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
@code{falloc} mode preallocates space for image by calling posix_fallocate().
@code{full} mode preallocates space for image by writing zeros to underlying
storage.
@end table

529 530 531
@item qcow2
QEMU image format, the most versatile format. Use it to have smaller
images (useful if your filesystem does not supports holes, for example
532 533
on Windows), zlib based compression and support of multiple VM
snapshots.
534 535 536 537

Supported options:
@table @code
@item compat
538 539
Determines the qcow2 version to use. @code{compat=0.10} uses the
traditional image format that can be read by any QEMU since 0.10.
540
@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
541 542
newer understand (this is the default). Amongst others, this includes
zero clusters, which allow efficient copy-on-read for sparse images.
543 544 545 546 547 548

@item backing_file
File name of a base image (see @option{create} subcommand)
@item backing_fmt
Image format of the base image
@item encryption
549
If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
550

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
The use of encryption in qcow and qcow2 images is considered to be flawed by
modern cryptography standards, suffering from a number of design problems:

@itemize @minus
@item The AES-CBC cipher is used with predictable initialization vectors based
on the sector number. This makes it vulnerable to chosen plaintext attacks
which can reveal the existence of encrypted data.
@item The user passphrase is directly used as the encryption key. A poorly
chosen or short passphrase will compromise the security of the encryption.
@item In the event of the passphrase being compromised there is no way to
change the passphrase to protect data in any qcow images. The files must
be cloned, using a different encryption passphrase in the new file. The
original file must then be securely erased using a program like shred,
though even this is ineffective with many modern storage technologies.
@end itemize

567 568 569 570
Use of qcow / qcow2 encryption with QEMU is deprecated, and support for
it will go away in a future release.  Users are recommended to use an
alternative encryption technology such as the Linux dm-crypt / LUKS
system.
571 572 573 574 575 576 577

@item cluster_size
Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
sizes can improve the image file size whereas larger cluster sizes generally
provide better performance.

@item preallocation
578 579 580 581 582
Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
@code{full}). An image with preallocated metadata is initially larger but can
improve performance when the image needs to grow. @code{falloc} and @code{full}
preallocations are like the same options of @code{raw} format, but sets up
metadata also.
583 584 585 586 587 588 589 590 591 592 593

@item lazy_refcounts
If this option is set to @code{on}, reference count updates are postponed with
the goal of avoiding metadata I/O and improving performance. This is
particularly interesting with @option{cache=writethrough} which doesn't batch
metadata updates. The tradeoff is that after a host crash, the reference count
tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
check -r all} is required, which may take some time.

This option can only be enabled if @code{compat=1.1} is specified.

594
@item nocow
C
Chunyan Liu 已提交
595
If this option is set to @code{on}, it will turn off COW of the file. It's only
596 597 598 599 600 601 602 603 604 605 606 607
valid on btrfs, no effect on other file systems.

Btrfs has low performance when hosting a VM image file, even more when the guest
on the VM also using btrfs as file system. Turning off COW is a way to mitigate
this bad performance. Generally there are two ways to turn off COW on btrfs:
a) Disable it by mounting with nodatacow, then all newly created files will be
NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
does.

Note: this option is only valid to new or empty files. If there is an existing
file which is COW and has data blocks already, it couldn't be changed to NOCOW
by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
C
Chunyan Liu 已提交
608
the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
609

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
@end table

@item qed
Old QEMU image format with support for backing files and compact image files
(when your filesystem or transport medium does not support holes).

When converting QED images to qcow2, you might want to consider using the
@code{lazy_refcounts=on} option to get a more QED-like behaviour.

Supported options:
@table @code
@item backing_file
File name of a base image (see @option{create} subcommand).
@item backing_fmt
Image file format of backing file (optional).  Useful if the format cannot be
autodetected because it has no header, like some vhd/vpc files.
@item cluster_size
Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
cluster sizes can improve the image file size whereas larger cluster sizes
generally provide better performance.
@item table_size
Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
and 16).  There is normally no need to change this value but this option can be
used for performance benchmarking.
@end table

@item qcow
Old QEMU image format with support for backing files, compact image files,
encryption and compression.

Supported options:
@table @code
@item backing_file
File name of a base image (see @option{create} subcommand)
@item encryption
If this option is set to @code{on}, the image is encrypted.
@end table

@item vdi
VirtualBox 1.1 compatible image format.
Supported options:
@table @code
@item static
If this option is set to @code{on}, the image is created with metadata
preallocation.
@end table

@item vmdk
VMware 3 and 4 compatible image format.

Supported options:
@table @code
@item backing_file
File name of a base image (see @option{create} subcommand).
@item compat6
Create a VMDK version 6 image (instead of version 4)
666 667 668
@item hwversion
Specify vmdk virtual hardware version. Compat6 flag cannot be enabled
if hwversion is specified.
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
@item subformat
Specifies which VMDK subformat to use. Valid options are
@code{monolithicSparse} (default),
@code{monolithicFlat},
@code{twoGbMaxExtentSparse},
@code{twoGbMaxExtentFlat} and
@code{streamOptimized}.
@end table

@item vpc
VirtualPC compatible image format (VHD).
Supported options:
@table @code
@item subformat
Specifies which VHD subformat to use. Valid options are
@code{dynamic} (default) and @code{fixed}.
@end table
686 687 688 689 690 691 692 693 694

@item VHDX
Hyper-V compatible image format (VHDX).
Supported options:
@table @code
@item subformat
Specifies which VHDX subformat to use. Valid options are
@code{dynamic} (default) and @code{fixed}.
@item block_state_zero
695 696 697 698 699
Force use of payload blocks of type 'ZERO'.  Can be set to @code{on} (default)
or @code{off}.  When set to @code{off}, new blocks will be created as
@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
arbitrary data for those blocks.  Do not set to @code{off} when using
@code{qemu-img convert} with @code{subformat=dynamic}.
700 701 702 703 704
@item block_size
Block size; min 1 MB, max 256 MB.  0 means auto-calculate based on image size.
@item log_size
Log size; min 1 MB.
@end table
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
@end table

@subsubsection Read-only formats
More disk image file formats are supported in a read-only mode.
@table @option
@item bochs
Bochs images of @code{growing} type.
@item cloop
Linux Compressed Loop image, useful only to reuse directly compressed
CD-ROM images present for example in the Knoppix CD-ROMs.
@item dmg
Apple disk image.
@item parallels
Parallels disk image format.
@end table


B
bellard 已提交
722 723 724 725 726 727 728 729 730
@node host_drives
@subsection Using host drives

In addition to disk image files, QEMU can directly access host
devices. We describe here the usage for QEMU version >= 0.8.3.

@subsubsection Linux

On Linux, you can directly use the host device filename instead of a
731
disk image filename provided you have enough privileges to access
732
it. For example, use @file{/dev/cdrom} to access to the CDROM.
B
bellard 已提交
733

B
bellard 已提交
734
@table @code
B
bellard 已提交
735 736 737 738 739 740 741 742 743
@item CD
You can specify a CDROM device even if no CDROM is loaded. QEMU has
specific code to detect CDROM insertion or removal. CDROM ejection by
the guest OS is supported. Currently only data CDs are supported.
@item Floppy
You can specify a floppy device even if no floppy is loaded. Floppy
removal is currently not detected accurately (if you change floppy
without doing floppy access while the floppy is not loaded, the guest
OS will think that the same floppy is loaded).
744 745
Use of the host's floppy device is deprecated, and support for it will
be removed in a future release.
B
bellard 已提交
746 747 748 749 750 751 752 753 754 755 756
@item Hard disks
Hard disks can be used. Normally you must specify the whole disk
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
see it as a partitioned disk. WARNING: unless you know what you do, it
is better to only make READ-ONLY accesses to the hard disk otherwise
you may corrupt your host data (use the @option{-snapshot} command
line option or modify the device permissions accordingly).
@end table

@subsubsection Windows

757 758
@table @code
@item CD
759
The preferred syntax is the drive letter (e.g. @file{d:}). The
760 761
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
supported as an alias to the first CDROM drive.
B
bellard 已提交
762

T
ths 已提交
763
Currently there is no specific code to handle removable media, so it
B
bellard 已提交
764 765
is better to use the @code{change} or @code{eject} monitor commands to
change or eject media.
766
@item Hard disks
767
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
768 769 770 771 772 773 774 775
where @var{N} is the drive number (0 is the first hard disk).

WARNING: unless you know what you do, it is better to only make
READ-ONLY accesses to the hard disk otherwise you may corrupt your
host data (use the @option{-snapshot} command line so that the
modifications are written in a temporary file).
@end table

B
bellard 已提交
776 777 778

@subsubsection Mac OS X

779
@file{/dev/cdrom} is an alias to the first CDROM.
B
bellard 已提交
780

T
ths 已提交
781
Currently there is no specific code to handle removable media, so it
B
bellard 已提交
782 783 784
is better to use the @code{change} or @code{eject} monitor commands to
change or eject media.

B
bellard 已提交
785
@node disk_images_fat_images
B
update  
bellard 已提交
786 787 788 789 790
@subsection Virtual FAT disk images

QEMU can automatically create a virtual FAT disk image from a
directory tree. In order to use it, just type:

791
@example
792
qemu-system-i386 linux.img -hdb fat:/my_directory
B
update  
bellard 已提交
793 794 795 796 797 798 799 800
@end example

Then you access access to all the files in the @file{/my_directory}
directory without having to copy them in a disk image or to export
them via SAMBA or NFS. The default access is @emph{read-only}.

Floppies can be emulated with the @code{:floppy:} option:

801
@example
802
qemu-system-i386 linux.img -fda fat:floppy:/my_directory
B
update  
bellard 已提交
803 804 805 806 807
@end example

A read/write support is available for testing (beta stage) with the
@code{:rw:} option:

808
@example
809
qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
B
update  
bellard 已提交
810 811 812 813 814 815
@end example

What you should @emph{never} do:
@itemize
@item use non-ASCII filenames ;
@item use "-snapshot" together with ":rw:" ;
B
bellard 已提交
816 817
@item expect it to work when loadvm'ing ;
@item write to the FAT directory on the host system while accessing it with the guest system.
B
update  
bellard 已提交
818 819
@end itemize

820 821 822 823 824 825 826
@node disk_images_nbd
@subsection NBD access

QEMU can access directly to block device exported using the Network Block Device
protocol.

@example
P
Paolo Bonzini 已提交
827
qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
828 829 830 831 832 833
@end example

If the NBD server is located on the same host, you can use an unix socket instead
of an inet socket:

@example
P
Paolo Bonzini 已提交
834
qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
835 836 837 838 839 840 841 842
@end example

In this case, the block device must be exported using qemu-nbd:

@example
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
@end example

M
Michael Tokarev 已提交
843
The use of qemu-nbd allows sharing of a disk between several guests:
844 845 846 847
@example
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
@end example

P
Paolo Bonzini 已提交
848
@noindent
849 850
and then you can use it with two guests:
@example
P
Paolo Bonzini 已提交
851 852
qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
853 854
@end example

P
Paolo Bonzini 已提交
855 856
If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
own embedded NBD server), you must specify an export name in the URI:
857
@example
P
Paolo Bonzini 已提交
858 859 860 861 862 863 864 865 866 867
qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
@end example

The URI syntax for NBD is supported since QEMU 1.3.  An alternative syntax is
also available.  Here are some example of the older syntax:
@example
qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
868 869
@end example

870 871 872 873 874 875 876 877 878
@node disk_images_sheepdog
@subsection Sheepdog disk images

Sheepdog is a distributed storage system for QEMU.  It provides highly
available block level storage volumes that can be attached to
QEMU-based virtual machines.

You can create a Sheepdog disk image with the command:
@example
M
MORITA Kazutaka 已提交
879
qemu-img create sheepdog:///@var{image} @var{size}
880 881 882 883 884 885 886
@end example
where @var{image} is the Sheepdog image name and @var{size} is its
size.

To import the existing @var{filename} to Sheepdog, you can use a
convert command.
@example
M
MORITA Kazutaka 已提交
887
qemu-img convert @var{filename} sheepdog:///@var{image}
888 889 890 891
@end example

You can boot from the Sheepdog disk image with the command:
@example
M
MORITA Kazutaka 已提交
892
qemu-system-i386 sheepdog:///@var{image}
893 894 895 896
@end example

You can also create a snapshot of the Sheepdog image like qcow2.
@example
M
MORITA Kazutaka 已提交
897
qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
898 899 900 901 902 903
@end example
where @var{tag} is a tag name of the newly created snapshot.

To boot from the Sheepdog snapshot, specify the tag name of the
snapshot.
@example
M
MORITA Kazutaka 已提交
904
qemu-system-i386 sheepdog:///@var{image}#@var{tag}
905 906 907 908
@end example

You can create a cloned image from the existing snapshot.
@example
M
MORITA Kazutaka 已提交
909
qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
910 911 912 913
@end example
where @var{base} is a image name of the source snapshot and @var{tag}
is its tag name.

914 915 916 917 918 919
You can use an unix socket instead of an inet socket:

@example
qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
@end example

920 921 922
If the Sheepdog daemon doesn't run on the local host, you need to
specify one of the Sheepdog servers to connect to.
@example
M
MORITA Kazutaka 已提交
923 924
qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
925 926
@end example

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
@node disk_images_iscsi
@subsection iSCSI LUNs

iSCSI is a popular protocol used to access SCSI devices across a computer
network.

There are two different ways iSCSI devices can be used by QEMU.

The first method is to mount the iSCSI LUN on the host, and make it appear as
any other ordinary SCSI device on the host and then to access this device as a
/dev/sd device from QEMU. How to do this differs between host OSes.

The second method involves using the iSCSI initiator that is built into
QEMU. This provides a mechanism that works the same way regardless of which
host OS you are running QEMU on. This section will describe this second method
of using iSCSI together with QEMU.

In QEMU, iSCSI devices are described using special iSCSI URLs

@example
URL syntax:
iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
@end example

Username and password are optional and only used if your target is set up
using CHAP authentication for access control.
Alternatively the username and password can also be set via environment
variables to have these not show up in the process list

@example
export LIBISCSI_CHAP_USERNAME=<username>
export LIBISCSI_CHAP_PASSWORD=<password>
iscsi://<host>/<target-iqn-name>/<lun>
@end example

962 963 964 965
Various session related parameters can be set via special options, either
in a configuration file provided via '-readconfig' or directly on the
command line.

966 967 968 969 970
If the initiator-name is not specified qemu will use a default name
of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
virtual machine.


971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
@example
Setting a specific initiator name to use when logging in to the target
-iscsi initiator-name=iqn.qemu.test:my-initiator
@end example

@example
Controlling which type of header digest to negotiate with the target
-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
@end example

These can also be set via a configuration file
@example
[iscsi]
  user = "CHAP username"
  password = "CHAP password"
  initiator-name = "iqn.qemu.test:my-initiator"
  # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
  header-digest = "CRC32C"
@end example


Setting the target name allows different options for different targets
@example
[iscsi "iqn.target.name"]
  user = "CHAP username"
  password = "CHAP password"
  initiator-name = "iqn.qemu.test:my-initiator"
  # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
  header-digest = "CRC32C"
@end example


Howto use a configuration file to set iSCSI configuration options:
@example
cat >iscsi.conf <<EOF
[iscsi]
  user = "me"
  password = "my password"
  initiator-name = "iqn.qemu.test:my-initiator"
  header-digest = "CRC32C"
EOF

qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
    -readconfig iscsi.conf
@end example


1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
@example
This example shows how to set up an iSCSI target with one CDROM and one DISK
using the Linux STGT software target. This target is available on Red Hat based
systems as the package 'scsi-target-utils'.

tgtd --iscsi portal=127.0.0.1:3260
tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
    -b /IMAGES/disk.img --device-type=disk
tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
    -b /IMAGES/cd.iso --device-type=cd
tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL

1032 1033
qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
    -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1034 1035 1036
    -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
@end example

1037 1038
@node disk_images_gluster
@subsection GlusterFS disk images
1039

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
GlusterFS is an user space distributed file system.

You can boot from the GlusterFS disk image with the command:
@example
qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
@end example

@var{gluster} is the protocol.

@var{transport} specifies the transport type used to connect to gluster
management daemon (glusterd). Valid transport types are
tcp, unix and rdma. If a transport type isn't specified, then tcp
type is assumed.

@var{server} specifies the server where the volume file specification for
the given volume resides. This can be either hostname, ipv4 address
or ipv6 address. ipv6 address needs to be within square brackets [ ].
G
Gonglei 已提交
1057
If transport type is unix, then @var{server} field should not be specified.
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
Instead @var{socket} field needs to be populated with the path to unix domain
socket.

@var{port} is the port number on which glusterd is listening. This is optional
and if not specified, QEMU will send 0 which will make gluster to use the
default port. If the transport type is unix, then @var{port} should not be
specified.

@var{volname} is the name of the gluster volume which contains the disk image.

@var{image} is the path to the actual disk image that resides on gluster volume.

You can create a GlusterFS disk image with the command:
@example
qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
@end example

Examples
@example
qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
@end example
1086

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
@node disk_images_ssh
@subsection Secure Shell (ssh) disk images

You can access disk images located on a remote ssh server
by using the ssh protocol:

@example
qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
@end example

Alternative syntax using properties:

@example
qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
@end example

@var{ssh} is the protocol.

@var{user} is the remote user.  If not specified, then the local
username is tried.

@var{server} specifies the remote ssh server.  Any ssh server can be
used, but it must implement the sftp-server protocol.  Most Unix/Linux
systems should work without requiring any extra configuration.

@var{port} is the port number on which sshd is listening.  By default
the standard ssh port (22) is used.

@var{path} is the path to the disk image.

The optional @var{host_key_check} parameter controls how the remote
host's key is checked.  The default is @code{yes} which means to use
the local @file{.ssh/known_hosts} file.  Setting this to @code{no}
turns off known-hosts checking.  Or you can check that the host key
matches a specific fingerprint:
@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
(@code{sha1:} can also be used as a prefix, but note that OpenSSH
tools only use MD5 to print fingerprints).

Currently authentication must be done using ssh-agent.  Other
authentication methods may be supported in future.

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
Note: Many ssh servers do not support an @code{fsync}-style operation.
The ssh driver cannot guarantee that disk flush requests are
obeyed, and this causes a risk of disk corruption if the remote
server or network goes down during writes.  The driver will
print a warning when @code{fsync} is not supported:

warning: ssh server @code{ssh.example.com:22} does not support fsync

With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
supported.
1139

B
bellard 已提交
1140
@node pcsys_network
B
update  
bellard 已提交
1141 1142
@section Network emulation

1143
QEMU can simulate several network cards (PCI or ISA cards on the PC
B
update  
bellard 已提交
1144 1145 1146
target) and can connect them to an arbitrary number of Virtual Local
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
VLAN. VLAN can be connected between separate instances of QEMU to
1147
simulate large networks. For simpler usage, a non privileged user mode
B
update  
bellard 已提交
1148 1149 1150 1151
network stack can replace the TAP device to have a basic network
connection.

@subsection VLANs
B
update  
bellard 已提交
1152

B
update  
bellard 已提交
1153 1154 1155 1156
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
connection between several network devices. These devices can be for
example QEMU virtual Ethernet cards or virtual Host ethernet devices
(TAP devices).
B
update  
bellard 已提交
1157

B
update  
bellard 已提交
1158 1159 1160 1161 1162
@subsection Using TAP network interfaces

This is the standard way to connect QEMU to a real network. QEMU adds
a virtual network device on your host (called @code{tapN}), and you
can then configure it as if it was a real ethernet card.
B
update  
bellard 已提交
1163

B
update  
bellard 已提交
1164 1165
@subsubsection Linux host

B
update  
bellard 已提交
1166 1167 1168 1169
As an example, you can download the @file{linux-test-xxx.tar.gz}
archive and copy the script @file{qemu-ifup} in @file{/etc} and
configure properly @code{sudo} so that the command @code{ifconfig}
contained in @file{qemu-ifup} can be executed as root. You must verify
B
update  
bellard 已提交
1170
that your host kernel supports the TAP network interfaces: the
B
update  
bellard 已提交
1171 1172
device @file{/dev/net/tun} must be present.

B
bellard 已提交
1173 1174
See @ref{sec_invocation} to have examples of command lines using the
TAP network interfaces.
B
update  
bellard 已提交
1175

B
update  
bellard 已提交
1176 1177 1178 1179 1180 1181 1182
@subsubsection Windows host

There is a virtual ethernet driver for Windows 2000/XP systems, called
TAP-Win32. But it is not included in standard QEMU for Windows,
so you will need to get it separately. It is part of OpenVPN package,
so download OpenVPN from : @url{http://openvpn.net/}.

B
update  
bellard 已提交
1183 1184
@subsection Using the user mode network stack

B
update  
bellard 已提交
1185 1186
By using the option @option{-net user} (default configuration if no
@option{-net} option is specified), QEMU uses a completely user mode
1187
network stack (you don't need root privilege to use the virtual
B
update  
bellard 已提交
1188
network). The virtual network configuration is the following:
B
update  
bellard 已提交
1189 1190 1191

@example

B
update  
bellard 已提交
1192 1193
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
                           |          (10.0.2.2)
B
update  
bellard 已提交
1194
                           |
B
update  
bellard 已提交
1195
                           ---->  DNS server (10.0.2.3)
1196
                           |
B
update  
bellard 已提交
1197
                           ---->  SMB server (10.0.2.4)
B
update  
bellard 已提交
1198 1199 1200 1201
@end example

The QEMU VM behaves as if it was behind a firewall which blocks all
incoming connections. You can use a DHCP client to automatically
B
update  
bellard 已提交
1202 1203
configure the network in the QEMU VM. The DHCP server assign addresses
to the hosts starting from 10.0.2.15.
B
update  
bellard 已提交
1204 1205 1206 1207 1208

In order to check that the user mode network is working, you can ping
the address 10.0.2.2 and verify that you got an address in the range
10.0.2.x from the QEMU virtual DHCP server.

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
Note that ICMP traffic in general does not work with user mode networking.
@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
ping sockets to allow @code{ping} to the Internet. The host admin has to set
the ping_group_range in order to grant access to those sockets. To allow ping
for GID 100 (usually users group):

@example
echo 100 100 > /proc/sys/net/ipv4/ping_group_range
@end example
B
update  
bellard 已提交
1219

B
bellard 已提交
1220 1221 1222
When using the built-in TFTP server, the router is also the TFTP
server.

1223 1224 1225
When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
connections can be redirected from the host to the guest. It allows for
example to redirect X11, telnet or SSH connections.
B
bellard 已提交
1226

B
update  
bellard 已提交
1227 1228 1229 1230 1231 1232
@subsection Connecting VLANs between QEMU instances

Using the @option{-net socket} option, it is possible to make VLANs
that span several QEMU instances. See @ref{sec_invocation} to have a
basic example.

S
Stefan Weil 已提交
1233
@node pcsys_other_devs
1234 1235 1236 1237
@section Other Devices

@subsection Inter-VM Shared Memory device

1238 1239
On Linux hosts, a shared memory device is available.  The basic syntax
is:
1240 1241

@example
1242 1243 1244 1245 1246 1247 1248 1249
qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
@end example

where @var{hostmem} names a host memory backend.  For a POSIX shared
memory backend, use something like

@example
-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
1250 1251 1252 1253 1254 1255 1256 1257 1258
@end example

If desired, interrupts can be sent between guest VMs accessing the same shared
memory region.  Interrupt support requires using a shared memory server and
using a chardev socket to connect to it.  The code for the shared memory server
is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
memory server is:

@example
1259
# First start the ivshmem server once and for all
1260
ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
1261 1262

# Then start your qemu instances with matching arguments
1263
qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
1264
                 -chardev socket,path=@var{path},id=@var{id}
1265 1266 1267 1268
@end example

When using the server, the guest will be assigned a VM ID (>=0) that allows guests
using the same server to communicate via interrupts.  Guests can read their
1269
VM ID from a device register (see ivshmem-spec.txt).
1270

1271 1272
@subsubsection Migration with ivshmem

1273 1274 1275 1276 1277
With device property @option{master=on}, the guest will copy the shared
memory on migration to the destination host.  With @option{master=off},
the guest will not be able to migrate with the device attached.  In the
latter case, the device should be detached and then reattached after
migration using the PCI hotplug support.
1278

1279 1280 1281
At most one of the devices sharing the same memory can be master.  The
master must complete migration before you plug back the other devices.

1282 1283 1284 1285 1286 1287
@subsubsection ivshmem and hugepages

Instead of specifying the <shm size> using POSIX shm, you may specify
a memory backend that has hugepage support:

@example
1288 1289
qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
                 -device ivshmem-plain,memdev=mb1
1290 1291 1292 1293 1294
@end example

ivshmem-server also supports hugepages mount points with the
@option{-m} memory path argument.

B
update  
bellard 已提交
1295 1296
@node direct_linux_boot
@section Direct Linux Boot
B
bellard 已提交
1297 1298 1299

This section explains how to launch a Linux kernel inside QEMU without
having to make a full bootable image. It is very useful for fast Linux
B
bellard 已提交
1300
kernel testing.
B
bellard 已提交
1301

B
bellard 已提交
1302
The syntax is:
B
bellard 已提交
1303
@example
1304
qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
B
bellard 已提交
1305 1306
@end example

B
bellard 已提交
1307 1308 1309
Use @option{-kernel} to provide the Linux kernel image and
@option{-append} to give the kernel command line arguments. The
@option{-initrd} option can be used to provide an INITRD image.
B
bellard 已提交
1310

B
bellard 已提交
1311 1312 1313
When using the direct Linux boot, a disk image for the first hard disk
@file{hda} is required because its boot sector is used to launch the
Linux kernel.
B
bellard 已提交
1314

B
bellard 已提交
1315 1316 1317
If you do not need graphical output, you can disable it and redirect
the virtual serial port and the QEMU monitor to the console with the
@option{-nographic} option. The typical command line is:
B
bellard 已提交
1318
@example
1319 1320
qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
                 -append "root=/dev/hda console=ttyS0" -nographic
B
bellard 已提交
1321 1322
@end example

B
bellard 已提交
1323 1324
Use @key{Ctrl-a c} to switch between the serial console and the
monitor (@pxref{pcsys_keys}).
B
bellard 已提交
1325

B
bellard 已提交
1326
@node pcsys_usb
B
bellard 已提交
1327 1328
@section USB emulation

P
pbrook 已提交
1329 1330
QEMU emulates a PCI UHCI USB controller. You can virtually plug
virtual USB devices or real host USB devices (experimental, works only
1331
on Linux hosts).  QEMU will automatically create and connect virtual USB hubs
B
bellard 已提交
1332
as necessary to connect multiple USB devices.
B
bellard 已提交
1333

P
pbrook 已提交
1334 1335 1336 1337 1338 1339
@menu
* usb_devices::
* host_usb_devices::
@end menu
@node usb_devices
@subsection Connecting USB devices
B
bellard 已提交
1340

P
pbrook 已提交
1341 1342
USB devices can be connected with the @option{-usbdevice} commandline option
or the @code{usb_add} monitor command.  Available devices are:
B
bellard 已提交
1343

1344 1345
@table @code
@item mouse
P
pbrook 已提交
1346
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1347
@item tablet
B
typo  
bellard 已提交
1348
Pointer device that uses absolute coordinates (like a touchscreen).
1349
This means QEMU is able to report the mouse position without having
P
pbrook 已提交
1350
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1351
@item disk:@var{file}
P
pbrook 已提交
1352
Mass storage device based on @var{file} (@pxref{disk_images})
1353
@item host:@var{bus.addr}
P
pbrook 已提交
1354 1355
Pass through the host device identified by @var{bus.addr}
(Linux only)
1356
@item host:@var{vendor_id:product_id}
P
pbrook 已提交
1357 1358
Pass through the host device identified by @var{vendor_id:product_id}
(Linux only)
1359
@item wacom-tablet
1360 1361 1362
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
above but it can be used with the tslib library because in addition to touch
coordinates it reports touch pressure.
1363
@item keyboard
B
balrog 已提交
1364
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1365 1366 1367 1368
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
Serial converter. This emulates an FTDI FT232BM chip connected to host character
device @var{dev}. The available character devices are the same as for the
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
S
Stefan Weil 已提交
1369
used to override the default 0403:6001. For instance,
1370 1371 1372 1373 1374
@example
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
@end example
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
A
aurel32 已提交
1375 1376 1377
@item braille
Braille device.  This will use BrlAPI to display the braille output on a real
or fake device.
1378 1379 1380 1381
@item net:@var{options}
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
specifies NIC options as with @code{-net nic,}@var{options} (see description).
For instance, user-mode networking can be used with
1382
@example
1383
qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1384 1385
@end example
Currently this cannot be used in machines that support PCI NICs.
B
balrog 已提交
1386 1387 1388 1389 1390 1391 1392
@item bt[:@var{hci-type}]
Bluetooth dongle whose type is specified in the same format as with
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
This USB device implements the USB Transport Layer of HCI.  Example
usage:
@example
1393
@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
B
balrog 已提交
1394
@end example
P
pbrook 已提交
1395
@end table
B
bellard 已提交
1396

P
pbrook 已提交
1397
@node host_usb_devices
B
bellard 已提交
1398 1399 1400 1401 1402 1403 1404
@subsection Using host USB devices on a Linux host

WARNING: this is an experimental feature. QEMU will slow down when
using it. USB devices requiring real time streaming (i.e. USB Video
Cameras) are not supported yet.

@enumerate
1405
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
B
bellard 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
is actually using the USB device. A simple way to do that is simply to
disable the corresponding kernel module by renaming it from @file{mydriver.o}
to @file{mydriver.o.disabled}.

@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
@example
ls /proc/bus/usb
001  devices  drivers
@end example

@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
@example
chown -R myuid /proc/bus/usb
@end example

@item Launch QEMU and do in the monitor:
1422
@example
B
bellard 已提交
1423 1424 1425 1426 1427 1428 1429 1430
info usbhost
  Device 1.2, speed 480 Mb/s
    Class 00: USB device 1234:5678, USB DISK
@end example
You should see the list of the devices you can use (Never try to use
hubs, it won't work).

@item Add the device in QEMU by using:
1431
@example
B
bellard 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
usb_add host:1234:5678
@end example

Normally the guest OS should report that a new USB device is
plugged. You can use the option @option{-usbdevice} to do the same.

@item Now you can try to use the host USB device in QEMU.

@end enumerate

When relaunching QEMU, you may have to unplug and plug again the USB
device to make it work again (this is a bug).

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
@node vnc_security
@section VNC security

The VNC server capability provides access to the graphical console
of the guest VM across the network. This has a number of security
considerations depending on the deployment scenarios.

@menu
* vnc_sec_none::
* vnc_sec_password::
* vnc_sec_certificate::
* vnc_sec_certificate_verify::
* vnc_sec_certificate_pw::
1458 1459
* vnc_sec_sasl::
* vnc_sec_certificate_sasl::
1460
* vnc_generate_cert::
1461
* vnc_setup_sasl::
1462 1463 1464 1465 1466 1467 1468 1469 1470
@end menu
@node vnc_sec_none
@subsection Without passwords

The simplest VNC server setup does not include any form of authentication.
For this setup it is recommended to restrict it to listen on a UNIX domain
socket only. For example

@example
1471
qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
@end example

This ensures that only users on local box with read/write access to that
path can access the VNC server. To securely access the VNC server from a
remote machine, a combination of netcat+ssh can be used to provide a secure
tunnel.

@node vnc_sec_password
@subsection With passwords

The VNC protocol has limited support for password based authentication. Since
the protocol limits passwords to 8 characters it should not be considered
to provide high security. The password can be fairly easily brute-forced by
a client making repeat connections. For this reason, a VNC server using password
authentication should be restricted to only listen on the loopback interface
1487 1488 1489 1490 1491
or UNIX domain sockets. Password authentication is not supported when operating
in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
authentication is requested with the @code{password} option, and then once QEMU
is running the password is set with the monitor. Until the monitor is used to
set the password all clients will be rejected.
1492 1493

@example
1494
qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
(qemu) change vnc password
Password: ********
(qemu)
@end example

@node vnc_sec_certificate
@subsection With x509 certificates

The QEMU VNC server also implements the VeNCrypt extension allowing use of
TLS for encryption of the session, and x509 certificates for authentication.
The use of x509 certificates is strongly recommended, because TLS on its
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
support provides a secure session, but no authentication. This allows any
client to connect, and provides an encrypted session.

@example
1511
qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
@end example

In the above example @code{/etc/pki/qemu} should contain at least three files,
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
NB the @code{server-key.pem} file should be protected with file mode 0600 to
only be readable by the user owning it.

@node vnc_sec_certificate_verify
@subsection With x509 certificates and client verification

Certificates can also provide a means to authenticate the client connecting.
The server will request that the client provide a certificate, which it will
then validate against the CA certificate. This is a good choice if deploying
in an environment with a private internal certificate authority.

@example
1529
qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
@end example


@node vnc_sec_certificate_pw
@subsection With x509 certificates, client verification and passwords

Finally, the previous method can be combined with VNC password authentication
to provide two layers of authentication for clients.

@example
1540
qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1541 1542 1543 1544 1545
(qemu) change vnc password
Password: ********
(qemu)
@end example

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562

@node vnc_sec_sasl
@subsection With SASL authentication

The SASL authentication method is a VNC extension, that provides an
easily extendable, pluggable authentication method. This allows for
integration with a wide range of authentication mechanisms, such as
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
The strength of the authentication depends on the exact mechanism
configured. If the chosen mechanism also provides a SSF layer, then
it will encrypt the datastream as well.

Refer to the later docs on how to choose the exact SASL mechanism
used for authentication, but assuming use of one supporting SSF,
then QEMU can be launched with:

@example
1563
qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
@end example

@node vnc_sec_certificate_sasl
@subsection With x509 certificates and SASL authentication

If the desired SASL authentication mechanism does not supported
SSF layers, then it is strongly advised to run it in combination
with TLS and x509 certificates. This provides securely encrypted
data stream, avoiding risk of compromising of the security
credentials. This can be enabled, by combining the 'sasl' option
with the aforementioned TLS + x509 options:

@example
1577
qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1578 1579 1580
@end example


1581 1582 1583 1584 1585
@node vnc_generate_cert
@subsection Generating certificates for VNC

The GNU TLS packages provides a command called @code{certtool} which can
be used to generate certificates and keys in PEM format. At a minimum it
S
Stefan Weil 已提交
1586
is necessary to setup a certificate authority, and issue certificates to
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
each server. If using certificates for authentication, then each client
will also need to be issued a certificate. The recommendation is for the
server to keep its certificates in either @code{/etc/pki/qemu} or for
unprivileged users in @code{$HOME/.pki/qemu}.

@menu
* vnc_generate_ca::
* vnc_generate_server::
* vnc_generate_client::
@end menu
@node vnc_generate_ca
@subsubsection Setup the Certificate Authority

This step only needs to be performed once per organization / organizational
unit. First the CA needs a private key. This key must be kept VERY secret
and secure. If this key is compromised the entire trust chain of the certificates
issued with it is lost.

@example
# certtool --generate-privkey > ca-key.pem
@end example

A CA needs to have a public certificate. For simplicity it can be a self-signed
certificate, or one issue by a commercial certificate issuing authority. To
generate a self-signed certificate requires one core piece of information, the
name of the organization.

@example
# cat > ca.info <<EOF
cn = Name of your organization
ca
cert_signing_key
EOF
# certtool --generate-self-signed \
           --load-privkey ca-key.pem
           --template ca.info \
           --outfile ca-cert.pem
@end example

The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.

@node vnc_generate_server
@subsubsection Issuing server certificates

Each server (or host) needs to be issued with a key and certificate. When connecting
the certificate is sent to the client which validates it against the CA certificate.
The core piece of information for a server certificate is the hostname. This should
be the fully qualified hostname that the client will connect with, since the client
will typically also verify the hostname in the certificate. On the host holding the
secure CA private key:

@example
# cat > server.info <<EOF
organization = Name  of your organization
cn = server.foo.example.com
tls_www_server
encryption_key
signing_key
EOF
# certtool --generate-privkey > server-key.pem
# certtool --generate-certificate \
           --load-ca-certificate ca-cert.pem \
           --load-ca-privkey ca-key.pem \
1651
           --load-privkey server-key.pem \
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
           --template server.info \
           --outfile server-cert.pem
@end example

The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
to the server for which they were generated. The @code{server-key.pem} is security
sensitive and should be kept protected with file mode 0600 to prevent disclosure.

@node vnc_generate_client
@subsubsection Issuing client certificates

If the QEMU VNC server is to use the @code{x509verify} option to validate client
certificates as its authentication mechanism, each client also needs to be issued
a certificate. The client certificate contains enough metadata to uniquely identify
the client, typically organization, state, city, building, etc. On the host holding
the secure CA private key:

@example
# cat > client.info <<EOF
country = GB
state = London
locality = London
1674
organization = Name of your organization
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
cn = client.foo.example.com
tls_www_client
encryption_key
signing_key
EOF
# certtool --generate-privkey > client-key.pem
# certtool --generate-certificate \
           --load-ca-certificate ca-cert.pem \
           --load-ca-privkey ca-key.pem \
           --load-privkey client-key.pem \
           --template client.info \
           --outfile client-cert.pem
@end example

The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
copied to the client for which they were generated.

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728

@node vnc_setup_sasl

@subsection Configuring SASL mechanisms

The following documentation assumes use of the Cyrus SASL implementation on a
Linux host, but the principals should apply to any other SASL impl. When SASL
is enabled, the mechanism configuration will be loaded from system default
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
unprivileged user, an environment variable SASL_CONF_PATH can be used
to make it search alternate locations for the service config.

The default configuration might contain

@example
mech_list: digest-md5
sasldb_path: /etc/qemu/passwd.db
@end example

This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
command. While this mechanism is easy to configure and use, it is not
considered secure by modern standards, so only suitable for developers /
ad-hoc testing.

A more serious deployment might use Kerberos, which is done with the 'gssapi'
mechanism

@example
mech_list: gssapi
keytab: /etc/qemu/krb5.tab
@end example

For this to work the administrator of your KDC must generate a Kerberos
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
replacing 'somehost.example.com' with the fully qualified host name of the
S
Stefan Weil 已提交
1729
machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1730 1731 1732 1733 1734 1735

Other configurations will be left as an exercise for the reader. It should
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
encryption. For all other mechanisms, VNC should always be configured to
use TLS and x509 certificates to protect security credentials from snooping.

B
updated  
bellard 已提交
1736
@node gdb_usage
B
bellard 已提交
1737 1738 1739
@section GDB usage

QEMU has a primitive support to work with gdb, so that you can do
B
updated  
bellard 已提交
1740
'Ctrl-C' while the virtual machine is running and inspect its state.
B
bellard 已提交
1741

1742
In order to use gdb, launch QEMU with the '-s' option. It will wait for a
B
bellard 已提交
1743 1744
gdb connection:
@example
1745 1746
qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
                    -append "root=/dev/hda"
B
bellard 已提交
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
Connected to host network interface: tun0
Waiting gdb connection on port 1234
@end example

Then launch gdb on the 'vmlinux' executable:
@example
> gdb vmlinux
@end example

In gdb, connect to QEMU:
@example
B
update  
bellard 已提交
1758
(gdb) target remote localhost:1234
B
bellard 已提交
1759 1760 1761 1762 1763 1764 1765
@end example

Then you can use gdb normally. For example, type 'c' to launch the kernel:
@example
(gdb) c
@end example

B
updated  
bellard 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774
Here are some useful tips in order to use gdb on system code:

@enumerate
@item
Use @code{info reg} to display all the CPU registers.
@item
Use @code{x/10i $eip} to display the code at the PC position.
@item
Use @code{set architecture i8086} to dump 16 bit code. Then use
B
update  
bellard 已提交
1775
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
B
updated  
bellard 已提交
1776 1777
@end enumerate

1778 1779
Advanced debugging options:

1780
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1781
@table @code
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
@item maintenance packet qqemu.sstepbits

This will display the MASK bits used to control the single stepping IE:
@example
(gdb) maintenance packet qqemu.sstepbits
sending: "qqemu.sstepbits"
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
@end example
@item maintenance packet qqemu.sstep

This will display the current value of the mask used when single stepping IE:
@example
(gdb) maintenance packet qqemu.sstep
sending: "qqemu.sstep"
received: "0x7"
@end example
@item maintenance packet Qqemu.sstep=HEX_VALUE

This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
@example
(gdb) maintenance packet Qqemu.sstep=0x5
sending: "qemu.sstep=0x5"
received: "OK"
@end example
1806
@end table
1807

B
bellard 已提交
1808
@node pcsys_os_specific
B
update  
bellard 已提交
1809 1810 1811 1812
@section Target OS specific information

@subsection Linux

B
bellard 已提交
1813 1814 1815
To have access to SVGA graphic modes under X11, use the @code{vesa} or
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
color depth in the guest and the host OS.
B
update  
bellard 已提交
1816

B
update  
bellard 已提交
1817 1818 1819 1820 1821
When using a 2.6 guest Linux kernel, you should add the option
@code{clock=pit} on the kernel command line because the 2.6 Linux
kernels make very strict real time clock checks by default that QEMU
cannot simulate exactly.

B
update  
bellard 已提交
1822 1823 1824
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
not activated because QEMU is slower with this patch. The QEMU
Accelerator Module is also much slower in this case. Earlier Fedora
1825
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
B
update  
bellard 已提交
1826 1827
patch by default. Newer kernels don't have it.

B
update  
bellard 已提交
1828 1829 1830 1831 1832
@subsection Windows

If you have a slow host, using Windows 95 is better as it gives the
best speed. Windows 2000 is also a good choice.

B
update  
bellard 已提交
1833 1834 1835
@subsubsection SVGA graphic modes support

QEMU emulates a Cirrus Logic GD5446 Video
B
bellard 已提交
1836 1837 1838
card. All Windows versions starting from Windows 95 should recognize
and use this graphic card. For optimal performances, use 16 bit color
depth in the guest and the host OS.
B
update  
bellard 已提交
1839

B
bellard 已提交
1840 1841 1842 1843 1844
If you are using Windows XP as guest OS and if you want to use high
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1280x1024x16), then you should use the VESA VBE virtual graphic card
(option @option{-std-vga}).

B
update  
bellard 已提交
1845 1846 1847
@subsubsection CPU usage reduction

Windows 9x does not correctly use the CPU HLT
B
bellard 已提交
1848 1849 1850 1851
instruction. The result is that it takes host CPU cycles even when
idle. You can install the utility from
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
problem. Note that no such tool is needed for NT, 2000 or XP.
B
update  
bellard 已提交
1852

B
update  
bellard 已提交
1853
@subsubsection Windows 2000 disk full problem
B
update  
bellard 已提交
1854

B
update  
bellard 已提交
1855 1856 1857 1858 1859
Windows 2000 has a bug which gives a disk full problem during its
installation. When installing it, use the @option{-win2k-hack} QEMU
option to enable a specific workaround. After Windows 2000 is
installed, you no longer need this option (this option slows down the
IDE transfers).
B
update  
bellard 已提交
1860

B
update  
bellard 已提交
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
@subsubsection Windows 2000 shutdown

Windows 2000 cannot automatically shutdown in QEMU although Windows 98
can. It comes from the fact that Windows 2000 does not automatically
use the APM driver provided by the BIOS.

In order to correct that, do the following (thanks to Struan
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
Add/Troubleshoot a device => Add a new device & Next => No, select the
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
(again) a few times. Now the driver is installed and Windows 2000 now
1872
correctly instructs QEMU to shutdown at the appropriate moment.
B
update  
bellard 已提交
1873 1874 1875

@subsubsection Share a directory between Unix and Windows

1876 1877
See @ref{sec_invocation} about the help of the option
@option{'-netdev user,smb=...'}.
B
update  
bellard 已提交
1878

B
update  
bellard 已提交
1879
@subsubsection Windows XP security problem
B
update  
bellard 已提交
1880 1881 1882 1883 1884 1885 1886 1887

Some releases of Windows XP install correctly but give a security
error when booting:
@example
A problem is preventing Windows from accurately checking the
license for this computer. Error code: 0x800703e6.
@end example

B
update  
bellard 已提交
1888 1889 1890 1891 1892
The workaround is to install a service pack for XP after a boot in safe
mode. Then reboot, and the problem should go away. Since there is no
network while in safe mode, its recommended to download the full
installation of SP1 or SP2 and transfer that via an ISO or using the
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
B
update  
bellard 已提交
1893

B
update  
bellard 已提交
1894 1895 1896 1897 1898 1899 1900 1901 1902
@subsection MS-DOS and FreeDOS

@subsubsection CPU usage reduction

DOS does not correctly use the CPU HLT instruction. The result is that
it takes host CPU cycles even when idle. You can install the utility
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
problem.

B
bellard 已提交
1903
@node QEMU System emulator for non PC targets
B
bellard 已提交
1904 1905 1906 1907
@chapter QEMU System emulator for non PC targets

QEMU is a generic emulator and it emulates many non PC
machines. Most of the options are similar to the PC emulator. The
1908
differences are mentioned in the following sections.
B
bellard 已提交
1909

B
bellard 已提交
1910
@menu
1911
* PowerPC System emulator::
T
ths 已提交
1912 1913 1914 1915 1916
* Sparc32 System emulator::
* Sparc64 System emulator::
* MIPS System emulator::
* ARM System emulator::
* ColdFire System emulator::
1917 1918 1919
* Cris System emulator::
* Microblaze System emulator::
* SH4 System emulator::
M
Max Filippov 已提交
1920
* Xtensa System emulator::
B
bellard 已提交
1921 1922
@end menu

1923 1924 1925
@node PowerPC System emulator
@section PowerPC System emulator
@cindex system emulation (PowerPC)
B
update  
bellard 已提交
1926

B
bellard 已提交
1927 1928
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
or PowerMac PowerPC system.
B
update  
bellard 已提交
1929

B
typos  
bellard 已提交
1930
QEMU emulates the following PowerMac peripherals:
B
update  
bellard 已提交
1931

B
bellard 已提交
1932
@itemize @minus
1933
@item
B
blueswir1 已提交
1934
UniNorth or Grackle PCI Bridge
B
bellard 已提交
1935 1936
@item
PCI VGA compatible card with VESA Bochs Extensions
1937
@item
B
bellard 已提交
1938
2 PMAC IDE interfaces with hard disk and CD-ROM support
1939
@item
B
bellard 已提交
1940 1941 1942 1943 1944
NE2000 PCI adapters
@item
Non Volatile RAM
@item
VIA-CUDA with ADB keyboard and mouse.
B
update  
bellard 已提交
1945 1946
@end itemize

B
typos  
bellard 已提交
1947
QEMU emulates the following PREP peripherals:
B
update  
bellard 已提交
1948 1949

@itemize @minus
1950
@item
B
bellard 已提交
1951 1952 1953
PCI Bridge
@item
PCI VGA compatible card with VESA Bochs Extensions
1954
@item
B
update  
bellard 已提交
1955 1956 1957
2 IDE interfaces with hard disk and CD-ROM support
@item
Floppy disk
1958
@item
B
bellard 已提交
1959
NE2000 network adapters
B
update  
bellard 已提交
1960 1961 1962 1963
@item
Serial port
@item
PREP Non Volatile RAM
B
bellard 已提交
1964 1965
@item
PC compatible keyboard and mouse.
B
update  
bellard 已提交
1966 1967
@end itemize

B
bellard 已提交
1968
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
B
bellard 已提交
1969
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
B
update  
bellard 已提交
1970

B
blueswir1 已提交
1971
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
B
blueswir1 已提交
1972 1973 1974
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
v2) portable firmware implementation. The goal is to implement a 100%
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
B
blueswir1 已提交
1975

B
bellard 已提交
1976 1977 1978 1979 1980 1981
@c man begin OPTIONS

The following options are specific to the PowerPC emulation:

@table @option

1982
@item -g @var{W}x@var{H}[x@var{DEPTH}]
B
bellard 已提交
1983

1984
Set the initial VGA graphic mode. The default is 800x600x32.
B
bellard 已提交
1985

1986
@item -prom-env @var{string}
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Set OpenBIOS variables in NVRAM, for example:

@example
qemu-system-ppc -prom-env 'auto-boot?=false' \
 -prom-env 'boot-device=hd:2,\yaboot' \
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
@end example

These variables are not used by Open Hack'Ware.

B
bellard 已提交
1998 1999
@end table

2000
@c man end
B
bellard 已提交
2001 2002


B
update  
bellard 已提交
2003
More information is available at
B
bellard 已提交
2004
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
B
update  
bellard 已提交
2005

T
ths 已提交
2006 2007
@node Sparc32 System emulator
@section Sparc32 System emulator
2008
@cindex system emulation (Sparc32)
B
bellard 已提交
2009

B
blueswir1 已提交
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
Use the executable @file{qemu-system-sparc} to simulate the following
Sun4m architecture machines:
@itemize @minus
@item
SPARCstation 4
@item
SPARCstation 5
@item
SPARCstation 10
@item
SPARCstation 20
@item
SPARCserver 600MP
@item
SPARCstation LX
@item
SPARCstation Voyager
@item
SPARCclassic
@item
SPARCbook
@end itemize

The emulation is somewhat complete. SMP up to 16 CPUs is supported,
but Linux limits the number of usable CPUs to 4.
B
bellard 已提交
2035

B
Blue Swirl 已提交
2036
QEMU emulates the following sun4m peripherals:
B
bellard 已提交
2037 2038

@itemize @minus
B
bellard 已提交
2039
@item
B
Blue Swirl 已提交
2040
IOMMU
B
bellard 已提交
2041
@item
2042
TCX or cgthree Frame buffer
2043
@item
B
bellard 已提交
2044 2045
Lance (Am7990) Ethernet
@item
B
blueswir1 已提交
2046
Non Volatile RAM M48T02/M48T08
B
bellard 已提交
2047
@item
B
bellard 已提交
2048 2049 2050 2051 2052
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
and power/reset logic
@item
ESP SCSI controller with hard disk and CD-ROM support
@item
2053
Floppy drive (not on SS-600MP)
2054 2055
@item
CS4231 sound device (only on SS-5, not working yet)
B
bellard 已提交
2056 2057
@end itemize

2058 2059
The number of peripherals is fixed in the architecture.  Maximum
memory size depends on the machine type, for SS-5 it is 256MB and for
2060
others 2047MB.
B
bellard 已提交
2061

B
update  
bellard 已提交
2062
Since version 0.8.2, QEMU uses OpenBIOS
2063 2064 2065
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
firmware implementation. The goal is to implement a 100% IEEE
1275-1994 (referred to as Open Firmware) compliant firmware.
B
bellard 已提交
2066 2067

A sample Linux 2.6 series kernel and ram disk image are available on
B
blueswir1 已提交
2068
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2069
most kernel versions work. Please note that currently older Solaris kernels
B
blueswir1 已提交
2070 2071
don't work probably due to interface issues between OpenBIOS and
Solaris.
B
bellard 已提交
2072 2073 2074

@c man begin OPTIONS

2075
The following options are specific to the Sparc32 emulation:
B
bellard 已提交
2076 2077 2078

@table @option

2079
@item -g @var{W}x@var{H}x[x@var{DEPTH}]
B
bellard 已提交
2080

2081 2082 2083
Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
of 1152x900x8 for people who wish to use OBP.
B
bellard 已提交
2084

2085
@item -prom-env @var{string}
B
blueswir1 已提交
2086 2087 2088 2089 2090 2091 2092 2093

Set OpenBIOS variables in NVRAM, for example:

@example
qemu-system-sparc -prom-env 'auto-boot?=false' \
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
@end example

B
Blue Swirl 已提交
2094
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
2095 2096 2097

Set the emulated machine type. Default is SS-5.

B
bellard 已提交
2098 2099
@end table

2100
@c man end
B
bellard 已提交
2101

T
ths 已提交
2102 2103
@node Sparc64 System emulator
@section Sparc64 System emulator
2104
@cindex system emulation (Sparc64)
B
bellard 已提交
2105

B
blueswir1 已提交
2106 2107
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2108 2109 2110
Niagara (T1) machine. The Sun4u emulator is mostly complete, being
able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
Sun4v and Niagara emulators are still a work in progress.
B
bellard 已提交
2111

2112
QEMU emulates the following peripherals:
B
bellard 已提交
2113 2114 2115

@itemize @minus
@item
2116
UltraSparc IIi APB PCI Bridge
B
bellard 已提交
2117 2118 2119
@item
PCI VGA compatible card with VESA Bochs Extensions
@item
B
blueswir1 已提交
2120 2121
PS/2 mouse and keyboard
@item
B
bellard 已提交
2122 2123 2124
Non Volatile RAM M48T59
@item
PC-compatible serial ports
2125 2126
@item
2 PCI IDE interfaces with hard disk and CD-ROM support
B
blueswir1 已提交
2127 2128
@item
Floppy disk
B
bellard 已提交
2129 2130
@end itemize

2131 2132 2133 2134 2135 2136
@c man begin OPTIONS

The following options are specific to the Sparc64 emulation:

@table @option

2137
@item -prom-env @var{string}
B
blueswir1 已提交
2138 2139 2140 2141 2142 2143 2144 2145

Set OpenBIOS variables in NVRAM, for example:

@example
qemu-system-sparc64 -prom-env 'auto-boot?=false'
@end example

@item -M [sun4u|sun4v|Niagara]
2146 2147 2148 2149 2150 2151 2152

Set the emulated machine type. The default is sun4u.

@end table

@c man end

T
ths 已提交
2153 2154
@node MIPS System emulator
@section MIPS System emulator
2155
@cindex system emulation (MIPS)
B
update  
bellard 已提交
2156

T
ths 已提交
2157 2158 2159
Four executables cover simulation of 32 and 64-bit MIPS systems in
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2160
Five different machine types are emulated:
T
ths 已提交
2161 2162 2163 2164 2165 2166 2167

@itemize @minus
@item
A generic ISA PC-like machine "mips"
@item
The MIPS Malta prototype board "malta"
@item
T
ths 已提交
2168
An ACER Pica "pica61". This machine needs the 64-bit emulator.
T
ths 已提交
2169
@item
2170
MIPS emulator pseudo board "mipssim"
2171 2172
@item
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
T
ths 已提交
2173 2174 2175 2176 2177
@end itemize

The generic emulation is supported by Debian 'Etch' and is able to
install Debian into a virtual disk image. The following devices are
emulated:
B
bellard 已提交
2178 2179

@itemize @minus
2180
@item
T
ths 已提交
2181
A range of MIPS CPUs, default is the 24Kf
B
bellard 已提交
2182 2183 2184
@item
PC style serial port
@item
T
ths 已提交
2185 2186
PC style IDE disk
@item
B
bellard 已提交
2187 2188 2189
NE2000 network card
@end itemize

T
ths 已提交
2190 2191 2192 2193
The Malta emulation supports the following devices:

@itemize @minus
@item
T
ths 已提交
2194
Core board with MIPS 24Kf CPU and Galileo system controller
T
ths 已提交
2195 2196 2197 2198 2199
@item
PIIX4 PCI/USB/SMbus controller
@item
The Multi-I/O chip's serial device
@item
2200
PCI network cards (PCnet32 and others)
T
ths 已提交
2201 2202 2203
@item
Malta FPGA serial device
@item
A
aurel32 已提交
2204
Cirrus (default) or any other PCI VGA graphics card
T
ths 已提交
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
@end itemize

The ACER Pica emulation supports:

@itemize @minus
@item
MIPS R4000 CPU
@item
PC-style IRQ and DMA controllers
@item
PC Keyboard
@item
IDE controller
@end itemize
B
bellard 已提交
2219

2220
The mipssim pseudo board emulation provides an environment similar
2221 2222
to what the proprietary MIPS emulator uses for running Linux.
It supports:
T
ths 已提交
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232

@itemize @minus
@item
A range of MIPS CPUs, default is the 24Kf
@item
PC style serial port
@item
MIPSnet network emulation
@end itemize

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
The MIPS Magnum R4000 emulation supports:

@itemize @minus
@item
MIPS R4000 CPU
@item
PC-style IRQ controller
@item
PC Keyboard
@item
SCSI controller
@item
G364 framebuffer
@end itemize


T
ths 已提交
2249 2250
@node ARM System emulator
@section ARM System emulator
2251
@cindex system emulation (ARM)
B
bellard 已提交
2252 2253 2254 2255 2256 2257 2258

Use the executable @file{qemu-system-arm} to simulate a ARM
machine. The ARM Integrator/CP board is emulated with the following
devices:

@itemize @minus
@item
P
pbrook 已提交
2259
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
B
bellard 已提交
2260 2261
@item
Two PL011 UARTs
2262
@item
B
bellard 已提交
2263
SMC 91c111 Ethernet adapter
P
pbrook 已提交
2264 2265 2266 2267
@item
PL110 LCD controller
@item
PL050 KMI with PS/2 keyboard and mouse.
2268 2269
@item
PL181 MultiMedia Card Interface with SD card.
P
pbrook 已提交
2270 2271 2272 2273 2274 2275
@end itemize

The ARM Versatile baseboard is emulated with the following devices:

@itemize @minus
@item
P
pbrook 已提交
2276
ARM926E, ARM1136 or Cortex-A8 CPU
P
pbrook 已提交
2277 2278 2279 2280
@item
PL190 Vectored Interrupt Controller
@item
Four PL011 UARTs
2281
@item
P
pbrook 已提交
2282 2283 2284 2285 2286 2287 2288 2289
SMC 91c111 Ethernet adapter
@item
PL110 LCD controller
@item
PL050 KMI with PS/2 keyboard and mouse.
@item
PCI host bridge.  Note the emulated PCI bridge only provides access to
PCI memory space.  It does not provide access to PCI IO space.
2290 2291
This means some devices (eg. ne2k_pci NIC) are not usable, and others
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
P
pbrook 已提交
2292
mapped control registers.
P
pbrook 已提交
2293 2294 2295 2296
@item
PCI OHCI USB controller.
@item
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2297 2298
@item
PL181 MultiMedia Card Interface with SD card.
B
bellard 已提交
2299 2300
@end itemize

P
Paul Brook 已提交
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
Several variants of the ARM RealView baseboard are emulated,
including the EB, PB-A8 and PBX-A9.  Due to interactions with the
bootloader, only certain Linux kernel configurations work out
of the box on these boards.

Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
disabled and expect 1024M RAM.

S
Stefan Weil 已提交
2311
The following devices are emulated:
2312 2313 2314

@itemize @minus
@item
P
Paul Brook 已提交
2315
ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
2316 2317 2318 2319
@item
ARM AMBA Generic/Distributed Interrupt Controller
@item
Four PL011 UARTs
2320
@item
P
Paul Brook 已提交
2321
SMC 91c111 or SMSC LAN9118 Ethernet adapter
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
@item
PL110 LCD controller
@item
PL050 KMI with PS/2 keyboard and mouse
@item
PCI host bridge
@item
PCI OHCI USB controller
@item
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2332 2333
@item
PL181 MultiMedia Card Interface with SD card.
2334 2335
@end itemize

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
and "Terrier") emulation includes the following peripherals:

@itemize @minus
@item
Intel PXA270 System-on-chip (ARM V5TE core)
@item
NAND Flash memory
@item
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
@item
On-chip OHCI USB controller
@item
On-chip LCD controller
@item
On-chip Real Time Clock
@item
TI ADS7846 touchscreen controller on SSP bus
@item
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
@item
GPIO-connected keyboard controller and LEDs
@item
2359
Secure Digital card connected to PXA MMC/SD host
2360 2361 2362 2363 2364 2365
@item
Three on-chip UARTs
@item
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
@end itemize

B
balrog 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
following elements:

@itemize @minus
@item
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
@item
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
@item
On-chip LCD controller
@item
On-chip Real Time Clock
@item
TI TSC2102i touchscreen controller / analog-digital converter / Audio
CODEC, connected through MicroWire and I@math{^2}S busses
@item
GPIO-connected matrix keypad
@item
Secure Digital card connected to OMAP MMC/SD host
@item
Three on-chip UARTs
@end itemize

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
emulation supports the following elements:

@itemize @minus
@item
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
@item
RAM and non-volatile OneNAND Flash memories
@item
Display connected to EPSON remote framebuffer chip and OMAP on-chip
display controller and a LS041y3 MIPI DBI-C controller
@item
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
driven through SPI bus
@item
National Semiconductor LM8323-controlled qwerty keyboard driven
through I@math{^2}C bus
@item
Secure Digital card connected to OMAP MMC/SD host
@item
Three OMAP on-chip UARTs and on-chip STI debugging console
@item
S
Stefan Weil 已提交
2411
A Bluetooth(R) transceiver and HCI connected to an UART
B
balrog 已提交
2412
@item
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
TUSB6010 chip - only USB host mode is supported
@item
TI TMP105 temperature sensor driven through I@math{^2}C bus
@item
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
@item
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
through CBUS
@end itemize

P
pbrook 已提交
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
devices:

@itemize @minus
@item
Cortex-M3 CPU core.
@item
64k Flash and 8k SRAM.
@item
Timers, UARTs, ADC and I@math{^2}C interface.
@item
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
@end itemize

The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
devices:

@itemize @minus
@item
Cortex-M3 CPU core.
@item
256k Flash and 64k SRAM.
@item
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
@item
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
@end itemize

2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
The Freecom MusicPal internet radio emulation includes the following
elements:

@itemize @minus
@item
Marvell MV88W8618 ARM core.
@item
32 MB RAM, 256 KB SRAM, 8 MB flash.
@item
Up to 2 16550 UARTs
@item
MV88W8xx8 Ethernet controller
@item
MV88W8618 audio controller, WM8750 CODEC and mixer
@item
2467
128×64 display with brightness control
2468 2469 2470 2471
@item
2 buttons, 2 navigation wheels with button function
@end itemize

2472
The Siemens SX1 models v1 and v2 (default) basic emulation.
S
Stefan Weil 已提交
2473
The emulation includes the following elements:
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493

@itemize @minus
@item
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
@item
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
V1
1 Flash of 16MB and 1 Flash of 8MB
V2
1 Flash of 32MB
@item
On-chip LCD controller
@item
On-chip Real Time Clock
@item
Secure Digital card connected to OMAP MMC/SD host
@item
Three on-chip UARTs
@end itemize

B
bellard 已提交
2494 2495
A Linux 2.6 test image is available on the QEMU web site. More
information is available in the QEMU mailing-list archive.
B
update  
bellard 已提交
2496

B
blueswir1 已提交
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
@c man begin OPTIONS

The following options are specific to the ARM emulation:

@table @option

@item -semihosting
Enable semihosting syscall emulation.

On ARM this implements the "Angel" interface.

Note that this allows guest direct access to the host filesystem,
so should only be used with trusted guest OS.

@end table

T
ths 已提交
2513 2514
@node ColdFire System emulator
@section ColdFire System emulator
2515 2516
@cindex system emulation (ColdFire)
@cindex system emulation (M68K)
P
pbrook 已提交
2517 2518 2519

Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
The emulator is able to boot a uClinux kernel.
2520 2521 2522 2523

The M5208EVB emulation includes the following devices:

@itemize @minus
2524
@item
2525 2526 2527 2528 2529 2530 2531 2532
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
@item
Three Two on-chip UARTs.
@item
Fast Ethernet Controller (FEC)
@end itemize

The AN5206 emulation includes the following devices:
P
pbrook 已提交
2533 2534

@itemize @minus
2535
@item
P
pbrook 已提交
2536 2537 2538 2539 2540
MCF5206 ColdFire V2 Microprocessor.
@item
Two on-chip UARTs.
@end itemize

B
blueswir1 已提交
2541 2542
@c man begin OPTIONS

2543
The following options are specific to the ColdFire emulation:
B
blueswir1 已提交
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556

@table @option

@item -semihosting
Enable semihosting syscall emulation.

On M68K this implements the "ColdFire GDB" interface used by libgloss.

Note that this allows guest direct access to the host filesystem,
so should only be used with trusted guest OS.

@end table

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
@node Cris System emulator
@section Cris System emulator
@cindex system emulation (Cris)

TODO

@node Microblaze System emulator
@section Microblaze System emulator
@cindex system emulation (Microblaze)

TODO

@node SH4 System emulator
@section SH4 System emulator
@cindex system emulation (SH4)

TODO

M
Max Filippov 已提交
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
@node Xtensa System emulator
@section Xtensa System emulator
@cindex system emulation (Xtensa)

Two executables cover simulation of both Xtensa endian options,
@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
Two different machine types are emulated:

@itemize @minus
@item
Xtensa emulator pseudo board "sim"
@item
Avnet LX60/LX110/LX200 board
@end itemize

2590
The sim pseudo board emulation provides an environment similar
M
Max Filippov 已提交
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
to one provided by the proprietary Tensilica ISS.
It supports:

@itemize @minus
@item
A range of Xtensa CPUs, default is the DC232B
@item
Console and filesystem access via semihosting calls
@end itemize

The Avnet LX60/LX110/LX200 emulation supports:

@itemize @minus
@item
A range of Xtensa CPUs, default is the DC232B
@item
16550 UART
@item
OpenCores 10/100 Mbps Ethernet MAC
@end itemize

@c man begin OPTIONS

The following options are specific to the Xtensa emulation:

@table @option

@item -semihosting
Enable semihosting syscall emulation.

Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
Tensilica baremetal libc for ISS and linux platform "sim" use this interface.

Note that this allows guest direct access to the host filesystem,
so should only be used with trusted guest OS.

@end table
2628 2629
@node QEMU User space emulator
@chapter QEMU User space emulator
B
bellard 已提交
2630 2631 2632

@menu
* Supported Operating Systems ::
2633
* Features::
B
bellard 已提交
2634
* Linux User space emulator::
B
blueswir1 已提交
2635
* BSD User space emulator ::
B
bellard 已提交
2636 2637 2638 2639 2640 2641 2642 2643 2644
@end menu

@node Supported Operating Systems
@section Supported Operating Systems

The following OS are supported in user space emulation:

@itemize @minus
@item
2645
Linux (referred as qemu-linux-user)
B
bellard 已提交
2646
@item
B
blueswir1 已提交
2647
BSD (referred as qemu-bsd-user)
B
bellard 已提交
2648 2649
@end itemize

2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
@node Features
@section Features

QEMU user space emulation has the following notable features:

@table @strong
@item System call translation:
QEMU includes a generic system call translator.  This means that
the parameters of the system calls can be converted to fix
endianness and 32/64-bit mismatches between hosts and targets.
IOCTLs can be converted too.

@item POSIX signal handling:
QEMU can redirect to the running program all signals coming from
the host (such as @code{SIGALRM}), as well as synthesize signals from
virtual CPU exceptions (for example @code{SIGFPE} when the program
executes a division by zero).

QEMU relies on the host kernel to emulate most signal system
calls, for example to emulate the signal mask.  On Linux, QEMU
supports both normal and real-time signals.

@item Threading:
On Linux, QEMU can emulate the @code{clone} syscall and create a real
host thread (with a separate virtual CPU) for each emulated thread.
Note that not all targets currently emulate atomic operations correctly.
x86 and ARM use a global lock in order to preserve their semantics.
@end table

QEMU was conceived so that ultimately it can emulate itself. Although
it is not very useful, it is an important test to show the power of the
emulator.

B
bellard 已提交
2683 2684
@node Linux User space emulator
@section Linux User space emulator
B
bellard 已提交
2685

B
bellard 已提交
2686 2687 2688 2689
@menu
* Quick Start::
* Wine launch::
* Command line options::
P
pbrook 已提交
2690
* Other binaries::
B
bellard 已提交
2691 2692 2693
@end menu

@node Quick Start
B
bellard 已提交
2694
@subsection Quick Start
B
update  
bellard 已提交
2695

B
bellard 已提交
2696
In order to launch a Linux process, QEMU needs the process executable
2697
itself and all the target (x86) dynamic libraries used by it.
B
bellard 已提交
2698

B
bellard 已提交
2699
@itemize
B
bellard 已提交
2700

B
bellard 已提交
2701 2702
@item On x86, you can just try to launch any process by using the native
libraries:
B
bellard 已提交
2703

2704
@example
B
bellard 已提交
2705 2706
qemu-i386 -L / /bin/ls
@end example
B
bellard 已提交
2707

B
bellard 已提交
2708 2709
@code{-L /} tells that the x86 dynamic linker must be searched with a
@file{/} prefix.
B
bellard 已提交
2710

2711 2712
@item Since QEMU is also a linux process, you can launch QEMU with
QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
B
bellard 已提交
2713

2714
@example
B
bellard 已提交
2715 2716
qemu-i386 -L / qemu-i386 -L / /bin/ls
@end example
B
bellard 已提交
2717

B
bellard 已提交
2718 2719 2720
@item On non x86 CPUs, you need first to download at least an x86 glibc
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
@code{LD_LIBRARY_PATH} is not set:
B
update  
bellard 已提交
2721

B
bellard 已提交
2722
@example
2723
unset LD_LIBRARY_PATH
B
bellard 已提交
2724
@end example
B
update  
bellard 已提交
2725

B
bellard 已提交
2726
Then you can launch the precompiled @file{ls} x86 executable:
B
update  
bellard 已提交
2727

B
bellard 已提交
2728 2729 2730
@example
qemu-i386 tests/i386/ls
@end example
B
Blue Swirl 已提交
2731
You can look at @file{scripts/qemu-binfmt-conf.sh} so that
B
bellard 已提交
2732 2733 2734
QEMU is automatically launched by the Linux kernel when you try to
launch x86 executables. It requires the @code{binfmt_misc} module in the
Linux kernel.
B
update  
bellard 已提交
2735

B
bellard 已提交
2736 2737
@item The x86 version of QEMU is also included. You can try weird things such as:
@example
B
bellard 已提交
2738 2739
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
          /usr/local/qemu-i386/bin/ls-i386
B
bellard 已提交
2740
@end example
B
update  
bellard 已提交
2741

B
bellard 已提交
2742
@end itemize
B
update  
bellard 已提交
2743

B
bellard 已提交
2744
@node Wine launch
B
bellard 已提交
2745
@subsection Wine launch
B
update  
bellard 已提交
2746

B
bellard 已提交
2747
@itemize
B
bellard 已提交
2748

B
bellard 已提交
2749 2750 2751
@item Ensure that you have a working QEMU with the x86 glibc
distribution (see previous section). In order to verify it, you must be
able to do:
B
bellard 已提交
2752

B
bellard 已提交
2753 2754 2755
@example
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
@end example
B
bellard 已提交
2756

B
bellard 已提交
2757
@item Download the binary x86 Wine install
2758
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
B
bellard 已提交
2759

B
bellard 已提交
2760
@item Configure Wine on your account. Look at the provided script
B
bellard 已提交
2761
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
B
bellard 已提交
2762
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
B
bellard 已提交
2763

B
bellard 已提交
2764
@item Then you can try the example @file{putty.exe}:
B
bellard 已提交
2765

B
bellard 已提交
2766
@example
B
bellard 已提交
2767 2768
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
B
bellard 已提交
2769
@end example
B
bellard 已提交
2770

B
bellard 已提交
2771
@end itemize
B
update  
bellard 已提交
2772

B
bellard 已提交
2773
@node Command line options
B
bellard 已提交
2774
@subsection Command line options
B
update  
bellard 已提交
2775

B
bellard 已提交
2776
@example
2777
@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
B
bellard 已提交
2778
@end example
B
update  
bellard 已提交
2779

B
bellard 已提交
2780 2781 2782
@table @option
@item -h
Print the help
2783
@item -L path
B
bellard 已提交
2784 2785 2786
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
@item -s size
Set the x86 stack size in bytes (default=524288)
B
blueswir1 已提交
2787
@item -cpu model
2788
Select CPU model (-cpu help for list and additional feature selection)
2789 2790 2791 2792
@item -E @var{var}=@var{value}
Set environment @var{var} to @var{value}.
@item -U @var{var}
Remove @var{var} from the environment.
P
Paul Brook 已提交
2793 2794
@item -B offset
Offset guest address by the specified number of bytes.  This is useful when
S
Stefan Weil 已提交
2795 2796
the address region required by guest applications is reserved on the host.
This option is currently only supported on some hosts.
P
Paul Brook 已提交
2797 2798
@item -R size
Pre-allocate a guest virtual address space of the given size (in bytes).
S
Stefan Weil 已提交
2799
"G", "M", and "k" suffixes may be used when specifying the size.
B
bellard 已提交
2800 2801
@end table

B
bellard 已提交
2802
Debug options:
B
bellard 已提交
2803

B
bellard 已提交
2804
@table @option
2805 2806
@item -d item1,...
Activate logging of the specified items (use '-d help' for a list of log items)
B
bellard 已提交
2807 2808
@item -p pagesize
Act as if the host page size was 'pagesize' bytes
B
blueswir1 已提交
2809 2810
@item -g port
Wait gdb connection to port
2811 2812
@item -singlestep
Run the emulation in single step mode.
B
bellard 已提交
2813
@end table
B
bellard 已提交
2814

2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
Environment variables:

@table @env
@item QEMU_STRACE
Print system calls and arguments similar to the 'strace' program
(NOTE: the actual 'strace' program will not work because the user
space emulator hasn't implemented ptrace).  At the moment this is
incomplete.  All system calls that don't have a specific argument
format are printed with information for six arguments.  Many
flag-style arguments don't have decoders and will show up as numbers.
T
ths 已提交
2825
@end table
2826

P
pbrook 已提交
2827
@node Other binaries
B
bellard 已提交
2828
@subsection Other binaries
P
pbrook 已提交
2829

2830 2831 2832 2833 2834 2835 2836
@cindex user mode (Alpha)
@command{qemu-alpha} TODO.

@cindex user mode (ARM)
@command{qemu-armeb} TODO.

@cindex user mode (ARM)
P
pbrook 已提交
2837 2838 2839 2840
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
configurations), and arm-uclinux bFLT format binaries.

2841 2842
@cindex user mode (ColdFire)
@cindex user mode (M68K)
P
pbrook 已提交
2843 2844 2845 2846
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
coldfire uClinux bFLT format binaries.

P
pbrook 已提交
2847 2848
The binary format is detected automatically.

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
@cindex user mode (Cris)
@command{qemu-cris} TODO.

@cindex user mode (i386)
@command{qemu-i386} TODO.
@command{qemu-x86_64} TODO.

@cindex user mode (Microblaze)
@command{qemu-microblaze} TODO.

@cindex user mode (MIPS)
@command{qemu-mips} TODO.
@command{qemu-mipsel} TODO.

@cindex user mode (PowerPC)
@command{qemu-ppc64abi32} TODO.
@command{qemu-ppc64} TODO.
@command{qemu-ppc} TODO.

@cindex user mode (SH4)
@command{qemu-sh4eb} TODO.
@command{qemu-sh4} TODO.

@cindex user mode (SPARC)
B
blueswir1 已提交
2873 2874
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).

B
blueswir1 已提交
2875 2876 2877 2878 2879 2880
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
(Sparc64 CPU, 32 bit ABI).

@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).

B
blueswir1 已提交
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
@node BSD User space emulator
@section BSD User space emulator

@menu
* BSD Status::
* BSD Quick Start::
* BSD Command line options::
@end menu

@node BSD Status
@subsection BSD Status

@itemize @minus
@item
target Sparc64 on Sparc64: Some trivial programs work.
@end itemize

@node BSD Quick Start
@subsection Quick Start

In order to launch a BSD process, QEMU needs the process executable
itself and all the target dynamic libraries used by it.

@itemize

@item On Sparc64, you can just try to launch any process by using the native
libraries:

@example
qemu-sparc64 /bin/ls
@end example

@end itemize

@node BSD Command line options
@subsection Command line options

@example
2919
@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
B
blueswir1 已提交
2920 2921 2922 2923 2924 2925 2926 2927 2928
@end example

@table @option
@item -h
Print the help
@item -L path
Set the library root path (default=/)
@item -s size
Set the stack size in bytes (default=524288)
2929 2930
@item -ignore-environment
Start with an empty environment. Without this option,
S
Stefan Weil 已提交
2931
the initial environment is a copy of the caller's environment.
2932 2933 2934 2935
@item -E @var{var}=@var{value}
Set environment @var{var} to @var{value}.
@item -U @var{var}
Remove @var{var} from the environment.
B
blueswir1 已提交
2936 2937 2938 2939 2940 2941 2942 2943
@item -bsd type
Set the type of the emulated BSD Operating system. Valid values are
FreeBSD, NetBSD and OpenBSD (default).
@end table

Debug options:

@table @option
2944 2945
@item -d item1,...
Activate logging of the specified items (use '-d help' for a list of log items)
B
blueswir1 已提交
2946 2947
@item -p pagesize
Act as if the host page size was 'pagesize' bytes
2948 2949
@item -singlestep
Run the emulation in single step mode.
B
blueswir1 已提交
2950 2951
@end table

2952

2953 2954
@include qemu-tech.texi

2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
@node License
@appendix License

QEMU is a trademark of Fabrice Bellard.

QEMU is released under the GNU General Public License (TODO: add link).
Parts of QEMU have specific licenses, see file LICENSE.

TODO (refer to file LICENSE, include it, include the GPL?)

B
bellard 已提交
2965
@node Index
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
@appendix Index
@menu
* Concept Index::
* Function Index::
* Keystroke Index::
* Program Index::
* Data Type Index::
* Variable Index::
@end menu

@node Concept Index
@section Concept Index
This is the main index. Should we combine all keywords in one index? TODO
B
bellard 已提交
2979 2980
@printindex cp

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
@node Function Index
@section Function Index
This index could be used for command line options and monitor functions.
@printindex fn

@node Keystroke Index
@section Keystroke Index

This is a list of all keystrokes which have a special function
in system emulation.

@printindex ky

@node Program Index
@section Program Index
@printindex pg

@node Data Type Index
@section Data Type Index

This index could be used for qdev device names and options.

@printindex tp

@node Variable Index
@section Variable Index
@printindex vr

B
bellard 已提交
3009
@bye