qemu-doc.texi 92.9 KB
Newer Older
B
bellard 已提交
1
\input texinfo @c -*- texinfo -*-
B
bellard 已提交
2 3
@c %**start of header
@setfilename qemu-doc.info
4 5 6 7

@documentlanguage en
@documentencoding UTF-8

B
update  
bellard 已提交
8
@settitle QEMU Emulator User Documentation
B
bellard 已提交
9 10 11
@exampleindent 0
@paragraphindent 0
@c %**end of header
B
bellard 已提交
12

13 14 15 16 17 18
@ifinfo
@direntry
* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
@end direntry
@end ifinfo

B
updated  
bellard 已提交
19
@iftex
B
bellard 已提交
20 21
@titlepage
@sp 7
B
update  
bellard 已提交
22
@center @titlefont{QEMU Emulator}
B
bellard 已提交
23 24
@sp 1
@center @titlefont{User Documentation}
B
bellard 已提交
25 26
@sp 3
@end titlepage
B
updated  
bellard 已提交
27
@end iftex
B
bellard 已提交
28

B
bellard 已提交
29 30 31 32 33 34 35 36 37
@ifnottex
@node Top
@top

@menu
* Introduction::
* Installation::
* QEMU PC System emulator::
* QEMU System emulator for non PC targets::
B
bellard 已提交
38
* QEMU User space emulator::
B
bellard 已提交
39
* compilation:: Compilation from the sources
40
* License::
B
bellard 已提交
41 42 43 44 45 46 47
* Index::
@end menu
@end ifnottex

@contents

@node Introduction
B
bellard 已提交
48 49
@chapter Introduction

B
bellard 已提交
50 51 52 53 54
@menu
* intro_features:: Features
@end menu

@node intro_features
B
update  
bellard 已提交
55
@section Features
B
bellard 已提交
56

B
bellard 已提交
57 58
QEMU is a FAST! processor emulator using dynamic translation to
achieve good emulation speed.
B
update  
bellard 已提交
59 60

QEMU has two operating modes:
B
updated  
bellard 已提交
61

S
Stefan Weil 已提交
62
@itemize
63
@cindex operating modes
B
updated  
bellard 已提交
64

65
@item
66
@cindex system emulation
B
bellard 已提交
67
Full system emulation. In this mode, QEMU emulates a full system (for
B
bellard 已提交
68 69 70
example a PC), including one or several processors and various
peripherals. It can be used to launch different Operating Systems
without rebooting the PC or to debug system code.
B
update  
bellard 已提交
71

72
@item
73
@cindex user mode emulation
B
bellard 已提交
74 75
User mode emulation. In this mode, QEMU can launch
processes compiled for one CPU on another CPU. It can be used to
B
bellard 已提交
76 77
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
to ease cross-compilation and cross-debugging.
B
update  
bellard 已提交
78 79 80

@end itemize

81
QEMU can run without a host kernel driver and yet gives acceptable
82
performance.
B
update  
bellard 已提交
83

B
update  
bellard 已提交
84 85
For system emulation, the following hardware targets are supported:
@itemize
86 87
@cindex emulated target systems
@cindex supported target systems
B
update  
bellard 已提交
88
@item PC (x86 or x86_64 processor)
B
bellard 已提交
89
@item ISA PC (old style PC without PCI bus)
B
update  
bellard 已提交
90
@item PREP (PowerPC processor)
91
@item G3 Beige PowerMac (PowerPC processor)
B
update  
bellard 已提交
92
@item Mac99 PowerMac (PowerPC processor, in progress)
B
blueswir1 已提交
93
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
T
ths 已提交
95
@item Malta board (32-bit and 64-bit MIPS processors)
96
@item MIPS Magnum (64-bit MIPS processor)
P
pbrook 已提交
97 98
@item ARM Integrator/CP (ARM)
@item ARM Versatile baseboard (ARM)
P
Paul Brook 已提交
99
@item ARM RealView Emulation/Platform baseboard (ARM)
100
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
P
pbrook 已提交
101 102
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103
@item Freescale MCF5208EVB (ColdFire V2).
P
pbrook 已提交
104
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
B
balrog 已提交
105
@item Palm Tungsten|E PDA (OMAP310 processor)
106
@item N800 and N810 tablets (OMAP2420 processor)
107
@item MusicPal (MV88W8618 ARM processor)
108 109
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
@item Siemens SX1 smartphone (OMAP310 processor)
110 111
@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
M
Max Filippov 已提交
112
@item Avnet LX60/LX110/LX200 boards (Xtensa)
B
update  
bellard 已提交
113
@end itemize
B
bellard 已提交
114

115 116 117 118
@cindex supported user mode targets
For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
B
updated  
bellard 已提交
119

B
bellard 已提交
120
@node Installation
B
update  
bellard 已提交
121 122
@chapter Installation

B
bellard 已提交
123 124
If you want to compile QEMU yourself, see @ref{compilation}.

B
bellard 已提交
125 126 127 128 129 130 131
@menu
* install_linux::   Linux
* install_windows:: Windows
* install_mac::     Macintosh
@end menu

@node install_linux
B
bellard 已提交
132
@section Linux
133
@cindex installation (Linux)
B
bellard 已提交
134

B
update  
bellard 已提交
135 136
If a precompiled package is available for your distribution - you just
have to install it. Otherwise, see @ref{compilation}.
B
update  
bellard 已提交
137

B
bellard 已提交
138
@node install_windows
B
bellard 已提交
139
@section Windows
140
@cindex installation (Windows)
B
update  
bellard 已提交
141

B
bellard 已提交
142
Download the experimental binary installer at
B
bellard 已提交
143
@url{http://www.free.oszoo.org/@/download.html}.
144
TODO (no longer available)
145

B
bellard 已提交
146
@node install_mac
B
bellard 已提交
147
@section Mac OS X
148

B
bellard 已提交
149
Download the experimental binary installer at
B
bellard 已提交
150
@url{http://www.free.oszoo.org/@/download.html}.
151
TODO (no longer available)
B
update  
bellard 已提交
152

B
bellard 已提交
153
@node QEMU PC System emulator
B
bellard 已提交
154
@chapter QEMU PC System emulator
155
@cindex system emulation (PC)
B
update  
bellard 已提交
156

B
bellard 已提交
157 158 159 160 161 162 163 164
@menu
* pcsys_introduction:: Introduction
* pcsys_quickstart::   Quick Start
* sec_invocation::     Invocation
* pcsys_keys::         Keys
* pcsys_monitor::      QEMU Monitor
* disk_images::        Disk Images
* pcsys_network::      Network emulation
S
Stefan Weil 已提交
165
* pcsys_other_devs::   Other Devices
B
bellard 已提交
166 167
* direct_linux_boot::  Direct Linux Boot
* pcsys_usb::          USB emulation
168
* vnc_security::       VNC security
B
bellard 已提交
169 170 171 172 173
* gdb_usage::          GDB usage
* pcsys_os_specific::  Target OS specific information
@end menu

@node pcsys_introduction
B
updated  
bellard 已提交
174 175 176 177
@section Introduction

@c man begin DESCRIPTION

B
bellard 已提交
178 179
The QEMU PC System emulator simulates the
following peripherals:
B
updated  
bellard 已提交
180 181

@itemize @minus
182
@item
B
bellard 已提交
183
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
B
updated  
bellard 已提交
184
@item
B
bellard 已提交
185 186
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
extensions (hardware level, including all non standard modes).
B
updated  
bellard 已提交
187 188
@item
PS/2 mouse and keyboard
189
@item
B
bellard 已提交
190
2 PCI IDE interfaces with hard disk and CD-ROM support
B
bellard 已提交
191 192
@item
Floppy disk
193
@item
194
PCI and ISA network adapters
B
updated  
bellard 已提交
195
@item
B
update  
bellard 已提交
196 197
Serial ports
@item
B
bellard 已提交
198 199 200 201
Creative SoundBlaster 16 sound card
@item
ENSONIQ AudioPCI ES1370 sound card
@item
B
balrog 已提交
202 203
Intel 82801AA AC97 Audio compatible sound card
@item
G
Gerd Hoffmann 已提交
204 205
Intel HD Audio Controller and HDA codec
@item
S
Stefan Weil 已提交
206
Adlib (OPL2) - Yamaha YM3812 compatible chip
B
bellard 已提交
207
@item
208 209
Gravis Ultrasound GF1 sound card
@item
M
malc 已提交
210 211
CS4231A compatible sound card
@item
B
bellard 已提交
212
PCI UHCI USB controller and a virtual USB hub.
B
updated  
bellard 已提交
213 214
@end itemize

B
bellard 已提交
215 216
SMP is supported with up to 255 CPUs.

217
QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
B
bellard 已提交
218 219
VGA BIOS.

B
bellard 已提交
220 221
QEMU uses YM3812 emulation by Tatsuyuki Satoh.

S
Stefan Weil 已提交
222
QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
223
by Tibor "TS" Schütz.
224

B
Bernhard Reutner-Fischer 已提交
225
Note that, by default, GUS shares IRQ(7) with parallel ports and so
226
QEMU must be told to not have parallel ports to have working GUS.
227 228

@example
229
qemu-system-i386 dos.img -soundhw gus -parallel none
230 231 232 233
@end example

Alternatively:
@example
234
qemu-system-i386 dos.img -device gus,irq=5
235 236 237 238
@end example

Or some other unclaimed IRQ.

M
malc 已提交
239 240
CS4231A is the chip used in Windows Sound System and GUSMAX products

B
updated  
bellard 已提交
241 242
@c man end

B
bellard 已提交
243
@node pcsys_quickstart
B
update  
bellard 已提交
244
@section Quick Start
245
@cindex quick start
B
update  
bellard 已提交
246

B
update  
bellard 已提交
247
Download and uncompress the linux image (@file{linux.img}) and type:
B
updated  
bellard 已提交
248 249

@example
250
qemu-system-i386 linux.img
B
updated  
bellard 已提交
251 252 253 254
@end example

Linux should boot and give you a prompt.

B
update  
bellard 已提交
255
@node sec_invocation
B
update  
bellard 已提交
256 257 258
@section Invocation

@example
B
updated  
bellard 已提交
259
@c man begin SYNOPSIS
260
usage: qemu-system-i386 [options] [@var{disk_image}]
B
updated  
bellard 已提交
261
@c man end
B
update  
bellard 已提交
262 263
@end example

B
updated  
bellard 已提交
264
@c man begin OPTIONS
B
blueswir1 已提交
265 266
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
targets do not need a disk image.
B
update  
bellard 已提交
267

268
@include qemu-options.texi
B
update  
bellard 已提交
269

B
update  
bellard 已提交
270 271
@c man end

B
bellard 已提交
272
@node pcsys_keys
B
update  
bellard 已提交
273 274 275 276
@section Keys

@c man begin OPTIONS

277 278 279 280 281
During the graphical emulation, you can use special key combinations to change
modes. The default key mappings are shown below, but if you use @code{-alt-grab}
then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):

B
update  
bellard 已提交
282
@table @key
B
update  
bellard 已提交
283
@item Ctrl-Alt-f
284
@kindex Ctrl-Alt-f
B
update  
bellard 已提交
285
Toggle full screen
B
update  
bellard 已提交
286

J
Jan Kiszka 已提交
287 288 289 290 291 292 293 294
@item Ctrl-Alt-+
@kindex Ctrl-Alt-+
Enlarge the screen

@item Ctrl-Alt--
@kindex Ctrl-Alt--
Shrink the screen

295
@item Ctrl-Alt-u
296
@kindex Ctrl-Alt-u
297 298
Restore the screen's un-scaled dimensions

B
update  
bellard 已提交
299
@item Ctrl-Alt-n
300
@kindex Ctrl-Alt-n
B
update  
bellard 已提交
301 302 303 304 305 306 307 308
Switch to virtual console 'n'. Standard console mappings are:
@table @emph
@item 1
Target system display
@item 2
Monitor
@item 3
Serial port
B
update  
bellard 已提交
309 310
@end table

B
update  
bellard 已提交
311
@item Ctrl-Alt
312
@kindex Ctrl-Alt
B
update  
bellard 已提交
313 314 315
Toggle mouse and keyboard grab.
@end table

316 317 318 319
@kindex Ctrl-Up
@kindex Ctrl-Down
@kindex Ctrl-PageUp
@kindex Ctrl-PageDown
B
update  
bellard 已提交
320 321 322
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.

323
@kindex Ctrl-a h
B
update  
bellard 已提交
324 325
During emulation, if you are using the @option{-nographic} option, use
@key{Ctrl-a h} to get terminal commands:
B
update  
bellard 已提交
326 327

@table @key
B
update  
bellard 已提交
328
@item Ctrl-a h
329
@kindex Ctrl-a h
B
blueswir1 已提交
330
@item Ctrl-a ?
331
@kindex Ctrl-a ?
B
update  
bellard 已提交
332
Print this help
333
@item Ctrl-a x
334
@kindex Ctrl-a x
T
ths 已提交
335
Exit emulator
336
@item Ctrl-a s
337
@kindex Ctrl-a s
B
bellard 已提交
338
Save disk data back to file (if -snapshot)
T
ths 已提交
339
@item Ctrl-a t
340
@kindex Ctrl-a t
B
blueswir1 已提交
341
Toggle console timestamps
B
update  
bellard 已提交
342
@item Ctrl-a b
343
@kindex Ctrl-a b
B
bellard 已提交
344
Send break (magic sysrq in Linux)
B
update  
bellard 已提交
345
@item Ctrl-a c
346
@kindex Ctrl-a c
B
bellard 已提交
347
Switch between console and monitor
B
update  
bellard 已提交
348
@item Ctrl-a Ctrl-a
349
@kindex Ctrl-a a
B
update  
bellard 已提交
350
Send Ctrl-a
B
update  
bellard 已提交
351
@end table
B
updated  
bellard 已提交
352 353 354 355
@c man end

@ignore

B
bellard 已提交
356 357 358 359 360 361 362 363 364 365 366
@c man begin SEEALSO
The HTML documentation of QEMU for more precise information and Linux
user mode emulator invocation.
@c man end

@c man begin AUTHOR
Fabrice Bellard
@c man end

@end ignore

B
bellard 已提交
367
@node pcsys_monitor
B
bellard 已提交
368
@section QEMU Monitor
369
@cindex QEMU monitor
B
bellard 已提交
370 371 372 373 374 375 376

The QEMU monitor is used to give complex commands to the QEMU
emulator. You can use it to:

@itemize @minus

@item
T
ths 已提交
377
Remove or insert removable media images
378
(such as CD-ROM or floppies).
B
bellard 已提交
379

380
@item
B
bellard 已提交
381 382 383 384 385 386 387 388 389 390 391
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
from a disk file.

@item Inspect the VM state without an external debugger.

@end itemize

@subsection Commands

The following commands are available:

392
@include qemu-monitor.texi
B
updated  
bellard 已提交
393

B
bellard 已提交
394 395 396 397 398
@subsection Integer expressions

The monitor understands integers expressions for every integer
argument. You can use register names to get the value of specifics
CPU registers by prefixing them with @emph{$}.
B
update  
bellard 已提交
399

B
bellard 已提交
400 401 402
@node disk_images
@section Disk Images

B
bellard 已提交
403 404
Since version 0.6.1, QEMU supports many disk image formats, including
growable disk images (their size increase as non empty sectors are
B
bellard 已提交
405 406 407
written), compressed and encrypted disk images. Version 0.8.3 added
the new qcow2 disk image format which is essential to support VM
snapshots.
B
bellard 已提交
408

B
bellard 已提交
409 410 411
@menu
* disk_images_quickstart::    Quick start for disk image creation
* disk_images_snapshot_mode:: Snapshot mode
B
bellard 已提交
412
* vm_snapshots::              VM snapshots
B
bellard 已提交
413
* qemu_img_invocation::       qemu-img Invocation
414
* qemu_nbd_invocation::       qemu-nbd Invocation
415
* disk_images_formats::       Disk image file formats
B
bellard 已提交
416
* host_drives::               Using host drives
B
bellard 已提交
417
* disk_images_fat_images::    Virtual FAT disk images
418
* disk_images_nbd::           NBD access
419
* disk_images_sheepdog::      Sheepdog disk images
420
* disk_images_iscsi::         iSCSI LUNs
421
* disk_images_gluster::       GlusterFS disk images
422
* disk_images_ssh::           Secure Shell (ssh) disk images
B
bellard 已提交
423 424 425
@end menu

@node disk_images_quickstart
B
bellard 已提交
426 427 428
@subsection Quick start for disk image creation

You can create a disk image with the command:
B
bellard 已提交
429
@example
B
bellard 已提交
430
qemu-img create myimage.img mysize
B
bellard 已提交
431
@end example
B
bellard 已提交
432 433 434 435
where @var{myimage.img} is the disk image filename and @var{mysize} is its
size in kilobytes. You can add an @code{M} suffix to give the size in
megabytes and a @code{G} suffix for gigabytes.

B
bellard 已提交
436
See @ref{qemu_img_invocation} for more information.
B
bellard 已提交
437

B
bellard 已提交
438
@node disk_images_snapshot_mode
B
bellard 已提交
439 440 441 442 443
@subsection Snapshot mode

If you use the option @option{-snapshot}, all disk images are
considered as read only. When sectors in written, they are written in
a temporary file created in @file{/tmp}. You can however force the
B
bellard 已提交
444 445
write back to the raw disk images by using the @code{commit} monitor
command (or @key{C-a s} in the serial console).
B
bellard 已提交
446

B
bellard 已提交
447 448 449 450 451 452 453 454 455 456 457
@node vm_snapshots
@subsection VM snapshots

VM snapshots are snapshots of the complete virtual machine including
CPU state, RAM, device state and the content of all the writable
disks. In order to use VM snapshots, you must have at least one non
removable and writable block device using the @code{qcow2} disk image
format. Normally this device is the first virtual hard drive.

Use the monitor command @code{savevm} to create a new VM snapshot or
replace an existing one. A human readable name can be assigned to each
B
update  
bellard 已提交
458
snapshot in addition to its numerical ID.
B
bellard 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
a VM snapshot. @code{info snapshots} lists the available snapshots
with their associated information:

@example
(qemu) info snapshots
Snapshot devices: hda
Snapshot list (from hda):
ID        TAG                 VM SIZE                DATE       VM CLOCK
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
2                                 40M 2006-08-06 12:43:29   00:00:18.633
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
@end example

A VM snapshot is made of a VM state info (its size is shown in
@code{info snapshots}) and a snapshot of every writable disk image.
The VM state info is stored in the first @code{qcow2} non removable
and writable block device. The disk image snapshots are stored in
every disk image. The size of a snapshot in a disk image is difficult
to evaluate and is not shown by @code{info snapshots} because the
associated disk sectors are shared among all the snapshots to save
B
update  
bellard 已提交
481 482
disk space (otherwise each snapshot would need a full copy of all the
disk images).
B
bellard 已提交
483 484 485 486 487 488 489

When using the (unrelated) @code{-snapshot} option
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
but they are deleted as soon as you exit QEMU.

VM snapshots currently have the following known limitations:
@itemize
490
@item
B
bellard 已提交
491 492
They cannot cope with removable devices if they are removed or
inserted after a snapshot is done.
493
@item
B
bellard 已提交
494 495 496 497
A few device drivers still have incomplete snapshot support so their
state is not saved or restored properly (in particular USB).
@end itemize

B
bellard 已提交
498 499
@node qemu_img_invocation
@subsection @code{qemu-img} Invocation
B
bellard 已提交
500

B
bellard 已提交
501
@include qemu-img.texi
B
bellard 已提交
502

503 504 505 506 507
@node qemu_nbd_invocation
@subsection @code{qemu-nbd} Invocation

@include qemu-nbd.texi

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
@node disk_images_formats
@subsection Disk image file formats

QEMU supports many image file formats that can be used with VMs as well as with
any of the tools (like @code{qemu-img}). This includes the preferred formats
raw and qcow2 as well as formats that are supported for compatibility with
older QEMU versions or other hypervisors.

Depending on the image format, different options can be passed to
@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
This section describes each format and the options that are supported for it.

@table @option
@item raw

Raw disk image format. This format has the advantage of
being simple and easily exportable to all other emulators. If your
file system supports @emph{holes} (for example in ext2 or ext3 on
Linux or NTFS on Windows), then only the written sectors will reserve
space. Use @code{qemu-img info} to know the real size used by the
image or @code{ls -ls} on Unix/Linux.

530 531 532 533 534 535 536 537 538
Supported options:
@table @code
@item preallocation
Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
@code{falloc} mode preallocates space for image by calling posix_fallocate().
@code{full} mode preallocates space for image by writing zeros to underlying
storage.
@end table

539 540 541 542 543 544 545 546 547
@item qcow2
QEMU image format, the most versatile format. Use it to have smaller
images (useful if your filesystem does not supports holes, for example
on Windows), optional AES encryption, zlib based compression and
support of multiple VM snapshots.

Supported options:
@table @code
@item compat
548 549
Determines the qcow2 version to use. @code{compat=0.10} uses the
traditional image format that can be read by any QEMU since 0.10.
550
@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
551 552
newer understand (this is the default). Amongst others, this includes
zero clusters, which allow efficient copy-on-read for sparse images.
553 554 555 556 557 558

@item backing_file
File name of a base image (see @option{create} subcommand)
@item backing_fmt
Image format of the base image
@item encryption
559
If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
560

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
The use of encryption in qcow and qcow2 images is considered to be flawed by
modern cryptography standards, suffering from a number of design problems:

@itemize @minus
@item The AES-CBC cipher is used with predictable initialization vectors based
on the sector number. This makes it vulnerable to chosen plaintext attacks
which can reveal the existence of encrypted data.
@item The user passphrase is directly used as the encryption key. A poorly
chosen or short passphrase will compromise the security of the encryption.
@item In the event of the passphrase being compromised there is no way to
change the passphrase to protect data in any qcow images. The files must
be cloned, using a different encryption passphrase in the new file. The
original file must then be securely erased using a program like shred,
though even this is ineffective with many modern storage technologies.
@end itemize

Use of qcow / qcow2 encryption is thus strongly discouraged. Users are
recommended to use an alternative encryption technology such as the
Linux dm-crypt / LUKS system.
580 581 582 583 584 585 586

@item cluster_size
Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
sizes can improve the image file size whereas larger cluster sizes generally
provide better performance.

@item preallocation
587 588 589 590 591
Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
@code{full}). An image with preallocated metadata is initially larger but can
improve performance when the image needs to grow. @code{falloc} and @code{full}
preallocations are like the same options of @code{raw} format, but sets up
metadata also.
592 593 594 595 596 597 598 599 600 601 602

@item lazy_refcounts
If this option is set to @code{on}, reference count updates are postponed with
the goal of avoiding metadata I/O and improving performance. This is
particularly interesting with @option{cache=writethrough} which doesn't batch
metadata updates. The tradeoff is that after a host crash, the reference count
tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
check -r all} is required, which may take some time.

This option can only be enabled if @code{compat=1.1} is specified.

603
@item nocow
C
Chunyan Liu 已提交
604
If this option is set to @code{on}, it will turn off COW of the file. It's only
605 606 607 608 609 610 611 612 613 614 615 616
valid on btrfs, no effect on other file systems.

Btrfs has low performance when hosting a VM image file, even more when the guest
on the VM also using btrfs as file system. Turning off COW is a way to mitigate
this bad performance. Generally there are two ways to turn off COW on btrfs:
a) Disable it by mounting with nodatacow, then all newly created files will be
NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
does.

Note: this option is only valid to new or empty files. If there is an existing
file which is COW and has data blocks already, it couldn't be changed to NOCOW
by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
C
Chunyan Liu 已提交
617
the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
618

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
@end table

@item qed
Old QEMU image format with support for backing files and compact image files
(when your filesystem or transport medium does not support holes).

When converting QED images to qcow2, you might want to consider using the
@code{lazy_refcounts=on} option to get a more QED-like behaviour.

Supported options:
@table @code
@item backing_file
File name of a base image (see @option{create} subcommand).
@item backing_fmt
Image file format of backing file (optional).  Useful if the format cannot be
autodetected because it has no header, like some vhd/vpc files.
@item cluster_size
Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
cluster sizes can improve the image file size whereas larger cluster sizes
generally provide better performance.
@item table_size
Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
and 16).  There is normally no need to change this value but this option can be
used for performance benchmarking.
@end table

@item qcow
Old QEMU image format with support for backing files, compact image files,
encryption and compression.

Supported options:
@table @code
@item backing_file
File name of a base image (see @option{create} subcommand)
@item encryption
If this option is set to @code{on}, the image is encrypted.
@end table

@item vdi
VirtualBox 1.1 compatible image format.
Supported options:
@table @code
@item static
If this option is set to @code{on}, the image is created with metadata
preallocation.
@end table

@item vmdk
VMware 3 and 4 compatible image format.

Supported options:
@table @code
@item backing_file
File name of a base image (see @option{create} subcommand).
@item compat6
Create a VMDK version 6 image (instead of version 4)
@item subformat
Specifies which VMDK subformat to use. Valid options are
@code{monolithicSparse} (default),
@code{monolithicFlat},
@code{twoGbMaxExtentSparse},
@code{twoGbMaxExtentFlat} and
@code{streamOptimized}.
@end table

@item vpc
VirtualPC compatible image format (VHD).
Supported options:
@table @code
@item subformat
Specifies which VHD subformat to use. Valid options are
@code{dynamic} (default) and @code{fixed}.
@end table
692 693 694 695 696 697 698 699 700

@item VHDX
Hyper-V compatible image format (VHDX).
Supported options:
@table @code
@item subformat
Specifies which VHDX subformat to use. Valid options are
@code{dynamic} (default) and @code{fixed}.
@item block_state_zero
701 702 703 704 705
Force use of payload blocks of type 'ZERO'.  Can be set to @code{on} (default)
or @code{off}.  When set to @code{off}, new blocks will be created as
@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
arbitrary data for those blocks.  Do not set to @code{off} when using
@code{qemu-img convert} with @code{subformat=dynamic}.
706 707 708 709 710
@item block_size
Block size; min 1 MB, max 256 MB.  0 means auto-calculate based on image size.
@item log_size
Log size; min 1 MB.
@end table
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
@end table

@subsubsection Read-only formats
More disk image file formats are supported in a read-only mode.
@table @option
@item bochs
Bochs images of @code{growing} type.
@item cloop
Linux Compressed Loop image, useful only to reuse directly compressed
CD-ROM images present for example in the Knoppix CD-ROMs.
@item dmg
Apple disk image.
@item parallels
Parallels disk image format.
@end table


B
bellard 已提交
728 729 730 731 732 733 734 735 736
@node host_drives
@subsection Using host drives

In addition to disk image files, QEMU can directly access host
devices. We describe here the usage for QEMU version >= 0.8.3.

@subsubsection Linux

On Linux, you can directly use the host device filename instead of a
737
disk image filename provided you have enough privileges to access
B
bellard 已提交
738 739 740
it. For example, use @file{/dev/cdrom} to access to the CDROM or
@file{/dev/fd0} for the floppy.

B
bellard 已提交
741
@table @code
B
bellard 已提交
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
@item CD
You can specify a CDROM device even if no CDROM is loaded. QEMU has
specific code to detect CDROM insertion or removal. CDROM ejection by
the guest OS is supported. Currently only data CDs are supported.
@item Floppy
You can specify a floppy device even if no floppy is loaded. Floppy
removal is currently not detected accurately (if you change floppy
without doing floppy access while the floppy is not loaded, the guest
OS will think that the same floppy is loaded).
@item Hard disks
Hard disks can be used. Normally you must specify the whole disk
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
see it as a partitioned disk. WARNING: unless you know what you do, it
is better to only make READ-ONLY accesses to the hard disk otherwise
you may corrupt your host data (use the @option{-snapshot} command
line option or modify the device permissions accordingly).
@end table

@subsubsection Windows

762 763
@table @code
@item CD
764
The preferred syntax is the drive letter (e.g. @file{d:}). The
765 766
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
supported as an alias to the first CDROM drive.
B
bellard 已提交
767

T
ths 已提交
768
Currently there is no specific code to handle removable media, so it
B
bellard 已提交
769 770
is better to use the @code{change} or @code{eject} monitor commands to
change or eject media.
771
@item Hard disks
772
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
773 774 775 776 777 778 779 780
where @var{N} is the drive number (0 is the first hard disk).

WARNING: unless you know what you do, it is better to only make
READ-ONLY accesses to the hard disk otherwise you may corrupt your
host data (use the @option{-snapshot} command line so that the
modifications are written in a temporary file).
@end table

B
bellard 已提交
781 782 783

@subsubsection Mac OS X

784
@file{/dev/cdrom} is an alias to the first CDROM.
B
bellard 已提交
785

T
ths 已提交
786
Currently there is no specific code to handle removable media, so it
B
bellard 已提交
787 788 789
is better to use the @code{change} or @code{eject} monitor commands to
change or eject media.

B
bellard 已提交
790
@node disk_images_fat_images
B
update  
bellard 已提交
791 792 793 794 795
@subsection Virtual FAT disk images

QEMU can automatically create a virtual FAT disk image from a
directory tree. In order to use it, just type:

796
@example
797
qemu-system-i386 linux.img -hdb fat:/my_directory
B
update  
bellard 已提交
798 799 800 801 802 803 804 805
@end example

Then you access access to all the files in the @file{/my_directory}
directory without having to copy them in a disk image or to export
them via SAMBA or NFS. The default access is @emph{read-only}.

Floppies can be emulated with the @code{:floppy:} option:

806
@example
807
qemu-system-i386 linux.img -fda fat:floppy:/my_directory
B
update  
bellard 已提交
808 809 810 811 812
@end example

A read/write support is available for testing (beta stage) with the
@code{:rw:} option:

813
@example
814
qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
B
update  
bellard 已提交
815 816 817 818 819 820
@end example

What you should @emph{never} do:
@itemize
@item use non-ASCII filenames ;
@item use "-snapshot" together with ":rw:" ;
B
bellard 已提交
821 822
@item expect it to work when loadvm'ing ;
@item write to the FAT directory on the host system while accessing it with the guest system.
B
update  
bellard 已提交
823 824
@end itemize

825 826 827 828 829 830 831
@node disk_images_nbd
@subsection NBD access

QEMU can access directly to block device exported using the Network Block Device
protocol.

@example
P
Paolo Bonzini 已提交
832
qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
833 834 835 836 837 838
@end example

If the NBD server is located on the same host, you can use an unix socket instead
of an inet socket:

@example
P
Paolo Bonzini 已提交
839
qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
840 841 842 843 844 845 846 847
@end example

In this case, the block device must be exported using qemu-nbd:

@example
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
@end example

M
Michael Tokarev 已提交
848
The use of qemu-nbd allows sharing of a disk between several guests:
849 850 851 852
@example
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
@end example

P
Paolo Bonzini 已提交
853
@noindent
854 855
and then you can use it with two guests:
@example
P
Paolo Bonzini 已提交
856 857
qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
858 859
@end example

P
Paolo Bonzini 已提交
860 861
If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
own embedded NBD server), you must specify an export name in the URI:
862
@example
P
Paolo Bonzini 已提交
863 864 865 866 867 868 869 870 871 872
qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
@end example

The URI syntax for NBD is supported since QEMU 1.3.  An alternative syntax is
also available.  Here are some example of the older syntax:
@example
qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
873 874
@end example

875 876 877 878 879 880 881 882 883
@node disk_images_sheepdog
@subsection Sheepdog disk images

Sheepdog is a distributed storage system for QEMU.  It provides highly
available block level storage volumes that can be attached to
QEMU-based virtual machines.

You can create a Sheepdog disk image with the command:
@example
M
MORITA Kazutaka 已提交
884
qemu-img create sheepdog:///@var{image} @var{size}
885 886 887 888 889 890 891
@end example
where @var{image} is the Sheepdog image name and @var{size} is its
size.

To import the existing @var{filename} to Sheepdog, you can use a
convert command.
@example
M
MORITA Kazutaka 已提交
892
qemu-img convert @var{filename} sheepdog:///@var{image}
893 894 895 896
@end example

You can boot from the Sheepdog disk image with the command:
@example
M
MORITA Kazutaka 已提交
897
qemu-system-i386 sheepdog:///@var{image}
898 899 900 901
@end example

You can also create a snapshot of the Sheepdog image like qcow2.
@example
M
MORITA Kazutaka 已提交
902
qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
903 904 905 906 907 908
@end example
where @var{tag} is a tag name of the newly created snapshot.

To boot from the Sheepdog snapshot, specify the tag name of the
snapshot.
@example
M
MORITA Kazutaka 已提交
909
qemu-system-i386 sheepdog:///@var{image}#@var{tag}
910 911 912 913
@end example

You can create a cloned image from the existing snapshot.
@example
M
MORITA Kazutaka 已提交
914
qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
915 916 917 918
@end example
where @var{base} is a image name of the source snapshot and @var{tag}
is its tag name.

919 920 921 922 923 924
You can use an unix socket instead of an inet socket:

@example
qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
@end example

925 926 927
If the Sheepdog daemon doesn't run on the local host, you need to
specify one of the Sheepdog servers to connect to.
@example
M
MORITA Kazutaka 已提交
928 929
qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
930 931
@end example

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
@node disk_images_iscsi
@subsection iSCSI LUNs

iSCSI is a popular protocol used to access SCSI devices across a computer
network.

There are two different ways iSCSI devices can be used by QEMU.

The first method is to mount the iSCSI LUN on the host, and make it appear as
any other ordinary SCSI device on the host and then to access this device as a
/dev/sd device from QEMU. How to do this differs between host OSes.

The second method involves using the iSCSI initiator that is built into
QEMU. This provides a mechanism that works the same way regardless of which
host OS you are running QEMU on. This section will describe this second method
of using iSCSI together with QEMU.

In QEMU, iSCSI devices are described using special iSCSI URLs

@example
URL syntax:
iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
@end example

Username and password are optional and only used if your target is set up
using CHAP authentication for access control.
Alternatively the username and password can also be set via environment
variables to have these not show up in the process list

@example
export LIBISCSI_CHAP_USERNAME=<username>
export LIBISCSI_CHAP_PASSWORD=<password>
iscsi://<host>/<target-iqn-name>/<lun>
@end example

967 968 969 970
Various session related parameters can be set via special options, either
in a configuration file provided via '-readconfig' or directly on the
command line.

971 972 973 974 975
If the initiator-name is not specified qemu will use a default name
of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
virtual machine.


976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
@example
Setting a specific initiator name to use when logging in to the target
-iscsi initiator-name=iqn.qemu.test:my-initiator
@end example

@example
Controlling which type of header digest to negotiate with the target
-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
@end example

These can also be set via a configuration file
@example
[iscsi]
  user = "CHAP username"
  password = "CHAP password"
  initiator-name = "iqn.qemu.test:my-initiator"
  # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
  header-digest = "CRC32C"
@end example


Setting the target name allows different options for different targets
@example
[iscsi "iqn.target.name"]
  user = "CHAP username"
  password = "CHAP password"
  initiator-name = "iqn.qemu.test:my-initiator"
  # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
  header-digest = "CRC32C"
@end example


Howto use a configuration file to set iSCSI configuration options:
@example
cat >iscsi.conf <<EOF
[iscsi]
  user = "me"
  password = "my password"
  initiator-name = "iqn.qemu.test:my-initiator"
  header-digest = "CRC32C"
EOF

qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
    -readconfig iscsi.conf
@end example


1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
@example
This example shows how to set up an iSCSI target with one CDROM and one DISK
using the Linux STGT software target. This target is available on Red Hat based
systems as the package 'scsi-target-utils'.

tgtd --iscsi portal=127.0.0.1:3260
tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
    -b /IMAGES/disk.img --device-type=disk
tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
    -b /IMAGES/cd.iso --device-type=cd
tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL

1037 1038
qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
    -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1039 1040 1041
    -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
@end example

1042 1043
@node disk_images_gluster
@subsection GlusterFS disk images
1044

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
GlusterFS is an user space distributed file system.

You can boot from the GlusterFS disk image with the command:
@example
qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
@end example

@var{gluster} is the protocol.

@var{transport} specifies the transport type used to connect to gluster
management daemon (glusterd). Valid transport types are
tcp, unix and rdma. If a transport type isn't specified, then tcp
type is assumed.

@var{server} specifies the server where the volume file specification for
the given volume resides. This can be either hostname, ipv4 address
or ipv6 address. ipv6 address needs to be within square brackets [ ].
If transport type is unix, then @var{server} field should not be specifed.
Instead @var{socket} field needs to be populated with the path to unix domain
socket.

@var{port} is the port number on which glusterd is listening. This is optional
and if not specified, QEMU will send 0 which will make gluster to use the
default port. If the transport type is unix, then @var{port} should not be
specified.

@var{volname} is the name of the gluster volume which contains the disk image.

@var{image} is the path to the actual disk image that resides on gluster volume.

You can create a GlusterFS disk image with the command:
@example
qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
@end example

Examples
@example
qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
@end example
1091

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
@node disk_images_ssh
@subsection Secure Shell (ssh) disk images

You can access disk images located on a remote ssh server
by using the ssh protocol:

@example
qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
@end example

Alternative syntax using properties:

@example
qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
@end example

@var{ssh} is the protocol.

@var{user} is the remote user.  If not specified, then the local
username is tried.

@var{server} specifies the remote ssh server.  Any ssh server can be
used, but it must implement the sftp-server protocol.  Most Unix/Linux
systems should work without requiring any extra configuration.

@var{port} is the port number on which sshd is listening.  By default
the standard ssh port (22) is used.

@var{path} is the path to the disk image.

The optional @var{host_key_check} parameter controls how the remote
host's key is checked.  The default is @code{yes} which means to use
the local @file{.ssh/known_hosts} file.  Setting this to @code{no}
turns off known-hosts checking.  Or you can check that the host key
matches a specific fingerprint:
@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
(@code{sha1:} can also be used as a prefix, but note that OpenSSH
tools only use MD5 to print fingerprints).

Currently authentication must be done using ssh-agent.  Other
authentication methods may be supported in future.

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
Note: Many ssh servers do not support an @code{fsync}-style operation.
The ssh driver cannot guarantee that disk flush requests are
obeyed, and this causes a risk of disk corruption if the remote
server or network goes down during writes.  The driver will
print a warning when @code{fsync} is not supported:

warning: ssh server @code{ssh.example.com:22} does not support fsync

With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
supported.
1144

B
bellard 已提交
1145
@node pcsys_network
B
update  
bellard 已提交
1146 1147
@section Network emulation

1148
QEMU can simulate several network cards (PCI or ISA cards on the PC
B
update  
bellard 已提交
1149 1150 1151
target) and can connect them to an arbitrary number of Virtual Local
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
VLAN. VLAN can be connected between separate instances of QEMU to
1152
simulate large networks. For simpler usage, a non privileged user mode
B
update  
bellard 已提交
1153 1154 1155 1156
network stack can replace the TAP device to have a basic network
connection.

@subsection VLANs
B
update  
bellard 已提交
1157

B
update  
bellard 已提交
1158 1159 1160 1161
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
connection between several network devices. These devices can be for
example QEMU virtual Ethernet cards or virtual Host ethernet devices
(TAP devices).
B
update  
bellard 已提交
1162

B
update  
bellard 已提交
1163 1164 1165 1166 1167
@subsection Using TAP network interfaces

This is the standard way to connect QEMU to a real network. QEMU adds
a virtual network device on your host (called @code{tapN}), and you
can then configure it as if it was a real ethernet card.
B
update  
bellard 已提交
1168

B
update  
bellard 已提交
1169 1170
@subsubsection Linux host

B
update  
bellard 已提交
1171 1172 1173 1174
As an example, you can download the @file{linux-test-xxx.tar.gz}
archive and copy the script @file{qemu-ifup} in @file{/etc} and
configure properly @code{sudo} so that the command @code{ifconfig}
contained in @file{qemu-ifup} can be executed as root. You must verify
B
update  
bellard 已提交
1175
that your host kernel supports the TAP network interfaces: the
B
update  
bellard 已提交
1176 1177
device @file{/dev/net/tun} must be present.

B
bellard 已提交
1178 1179
See @ref{sec_invocation} to have examples of command lines using the
TAP network interfaces.
B
update  
bellard 已提交
1180

B
update  
bellard 已提交
1181 1182 1183 1184 1185 1186 1187
@subsubsection Windows host

There is a virtual ethernet driver for Windows 2000/XP systems, called
TAP-Win32. But it is not included in standard QEMU for Windows,
so you will need to get it separately. It is part of OpenVPN package,
so download OpenVPN from : @url{http://openvpn.net/}.

B
update  
bellard 已提交
1188 1189
@subsection Using the user mode network stack

B
update  
bellard 已提交
1190 1191
By using the option @option{-net user} (default configuration if no
@option{-net} option is specified), QEMU uses a completely user mode
1192
network stack (you don't need root privilege to use the virtual
B
update  
bellard 已提交
1193
network). The virtual network configuration is the following:
B
update  
bellard 已提交
1194 1195 1196

@example

B
update  
bellard 已提交
1197 1198
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
                           |          (10.0.2.2)
B
update  
bellard 已提交
1199
                           |
B
update  
bellard 已提交
1200
                           ---->  DNS server (10.0.2.3)
1201
                           |
B
update  
bellard 已提交
1202
                           ---->  SMB server (10.0.2.4)
B
update  
bellard 已提交
1203 1204 1205 1206
@end example

The QEMU VM behaves as if it was behind a firewall which blocks all
incoming connections. You can use a DHCP client to automatically
B
update  
bellard 已提交
1207 1208
configure the network in the QEMU VM. The DHCP server assign addresses
to the hosts starting from 10.0.2.15.
B
update  
bellard 已提交
1209 1210 1211 1212 1213

In order to check that the user mode network is working, you can ping
the address 10.0.2.2 and verify that you got an address in the range
10.0.2.x from the QEMU virtual DHCP server.

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
Note that ICMP traffic in general does not work with user mode networking.
@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
ping sockets to allow @code{ping} to the Internet. The host admin has to set
the ping_group_range in order to grant access to those sockets. To allow ping
for GID 100 (usually users group):

@example
echo 100 100 > /proc/sys/net/ipv4/ping_group_range
@end example
B
update  
bellard 已提交
1224

B
bellard 已提交
1225 1226 1227 1228 1229 1230
When using the built-in TFTP server, the router is also the TFTP
server.

When using the @option{-redir} option, TCP or UDP connections can be
redirected from the host to the guest. It allows for example to
redirect X11, telnet or SSH connections.
B
bellard 已提交
1231

B
update  
bellard 已提交
1232 1233 1234 1235 1236 1237
@subsection Connecting VLANs between QEMU instances

Using the @option{-net socket} option, it is possible to make VLANs
that span several QEMU instances. See @ref{sec_invocation} to have a
basic example.

S
Stefan Weil 已提交
1238
@node pcsys_other_devs
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
@section Other Devices

@subsection Inter-VM Shared Memory device

With KVM enabled on a Linux host, a shared memory device is available.  Guests
map a POSIX shared memory region into the guest as a PCI device that enables
zero-copy communication to the application level of the guests.  The basic
syntax is:

@example
1249
qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
1250 1251 1252 1253 1254 1255 1256 1257 1258
@end example

If desired, interrupts can be sent between guest VMs accessing the same shared
memory region.  Interrupt support requires using a shared memory server and
using a chardev socket to connect to it.  The code for the shared memory server
is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
memory server is:

@example
1259 1260 1261
qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
                 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
qemu-system-i386 -chardev socket,path=<path>,id=<id>
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
@end example

When using the server, the guest will be assigned a VM ID (>=0) that allows guests
using the same server to communicate via interrupts.  Guests can read their
VM ID from a device register (see example code).  Since receiving the shared
memory region from the server is asynchronous, there is a (small) chance the
guest may boot before the shared memory is attached.  To allow an application
to ensure shared memory is attached, the VM ID register will return -1 (an
invalid VM ID) until the memory is attached.  Once the shared memory is
attached, the VM ID will return the guest's valid VM ID.  With these semantics,
the guest application can check to ensure the shared memory is attached to the
guest before proceeding.

The @option{role} argument can be set to either master or peer and will affect
how the shared memory is migrated.  With @option{role=master}, the guest will
copy the shared memory on migration to the destination host.  With
@option{role=peer}, the guest will not be able to migrate with the device attached.
With the @option{peer} case, the device should be detached and then reattached
after migration using the PCI hotplug support.

B
update  
bellard 已提交
1282 1283
@node direct_linux_boot
@section Direct Linux Boot
B
bellard 已提交
1284 1285 1286

This section explains how to launch a Linux kernel inside QEMU without
having to make a full bootable image. It is very useful for fast Linux
B
bellard 已提交
1287
kernel testing.
B
bellard 已提交
1288

B
bellard 已提交
1289
The syntax is:
B
bellard 已提交
1290
@example
1291
qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
B
bellard 已提交
1292 1293
@end example

B
bellard 已提交
1294 1295 1296
Use @option{-kernel} to provide the Linux kernel image and
@option{-append} to give the kernel command line arguments. The
@option{-initrd} option can be used to provide an INITRD image.
B
bellard 已提交
1297

B
bellard 已提交
1298 1299 1300
When using the direct Linux boot, a disk image for the first hard disk
@file{hda} is required because its boot sector is used to launch the
Linux kernel.
B
bellard 已提交
1301

B
bellard 已提交
1302 1303 1304
If you do not need graphical output, you can disable it and redirect
the virtual serial port and the QEMU monitor to the console with the
@option{-nographic} option. The typical command line is:
B
bellard 已提交
1305
@example
1306 1307
qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
                 -append "root=/dev/hda console=ttyS0" -nographic
B
bellard 已提交
1308 1309
@end example

B
bellard 已提交
1310 1311
Use @key{Ctrl-a c} to switch between the serial console and the
monitor (@pxref{pcsys_keys}).
B
bellard 已提交
1312

B
bellard 已提交
1313
@node pcsys_usb
B
bellard 已提交
1314 1315
@section USB emulation

P
pbrook 已提交
1316 1317
QEMU emulates a PCI UHCI USB controller. You can virtually plug
virtual USB devices or real host USB devices (experimental, works only
1318
on Linux hosts).  QEMU will automatically create and connect virtual USB hubs
B
bellard 已提交
1319
as necessary to connect multiple USB devices.
B
bellard 已提交
1320

P
pbrook 已提交
1321 1322 1323 1324 1325 1326
@menu
* usb_devices::
* host_usb_devices::
@end menu
@node usb_devices
@subsection Connecting USB devices
B
bellard 已提交
1327

P
pbrook 已提交
1328 1329
USB devices can be connected with the @option{-usbdevice} commandline option
or the @code{usb_add} monitor command.  Available devices are:
B
bellard 已提交
1330

1331 1332
@table @code
@item mouse
P
pbrook 已提交
1333
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1334
@item tablet
B
typo  
bellard 已提交
1335
Pointer device that uses absolute coordinates (like a touchscreen).
1336
This means QEMU is able to report the mouse position without having
P
pbrook 已提交
1337
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1338
@item disk:@var{file}
P
pbrook 已提交
1339
Mass storage device based on @var{file} (@pxref{disk_images})
1340
@item host:@var{bus.addr}
P
pbrook 已提交
1341 1342
Pass through the host device identified by @var{bus.addr}
(Linux only)
1343
@item host:@var{vendor_id:product_id}
P
pbrook 已提交
1344 1345
Pass through the host device identified by @var{vendor_id:product_id}
(Linux only)
1346
@item wacom-tablet
1347 1348 1349
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
above but it can be used with the tslib library because in addition to touch
coordinates it reports touch pressure.
1350
@item keyboard
B
balrog 已提交
1351
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1352 1353 1354 1355
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
Serial converter. This emulates an FTDI FT232BM chip connected to host character
device @var{dev}. The available character devices are the same as for the
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
S
Stefan Weil 已提交
1356
used to override the default 0403:6001. For instance,
1357 1358 1359 1360 1361
@example
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
@end example
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
A
aurel32 已提交
1362 1363 1364
@item braille
Braille device.  This will use BrlAPI to display the braille output on a real
or fake device.
1365 1366 1367 1368
@item net:@var{options}
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
specifies NIC options as with @code{-net nic,}@var{options} (see description).
For instance, user-mode networking can be used with
1369
@example
1370
qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1371 1372
@end example
Currently this cannot be used in machines that support PCI NICs.
B
balrog 已提交
1373 1374 1375 1376 1377 1378 1379
@item bt[:@var{hci-type}]
Bluetooth dongle whose type is specified in the same format as with
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
This USB device implements the USB Transport Layer of HCI.  Example
usage:
@example
1380
qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
B
balrog 已提交
1381
@end example
P
pbrook 已提交
1382
@end table
B
bellard 已提交
1383

P
pbrook 已提交
1384
@node host_usb_devices
B
bellard 已提交
1385 1386 1387 1388 1389 1390 1391
@subsection Using host USB devices on a Linux host

WARNING: this is an experimental feature. QEMU will slow down when
using it. USB devices requiring real time streaming (i.e. USB Video
Cameras) are not supported yet.

@enumerate
1392
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
B
bellard 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
is actually using the USB device. A simple way to do that is simply to
disable the corresponding kernel module by renaming it from @file{mydriver.o}
to @file{mydriver.o.disabled}.

@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
@example
ls /proc/bus/usb
001  devices  drivers
@end example

@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
@example
chown -R myuid /proc/bus/usb
@end example

@item Launch QEMU and do in the monitor:
1409
@example
B
bellard 已提交
1410 1411 1412 1413 1414 1415 1416 1417
info usbhost
  Device 1.2, speed 480 Mb/s
    Class 00: USB device 1234:5678, USB DISK
@end example
You should see the list of the devices you can use (Never try to use
hubs, it won't work).

@item Add the device in QEMU by using:
1418
@example
B
bellard 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
usb_add host:1234:5678
@end example

Normally the guest OS should report that a new USB device is
plugged. You can use the option @option{-usbdevice} to do the same.

@item Now you can try to use the host USB device in QEMU.

@end enumerate

When relaunching QEMU, you may have to unplug and plug again the USB
device to make it work again (this is a bug).

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
@node vnc_security
@section VNC security

The VNC server capability provides access to the graphical console
of the guest VM across the network. This has a number of security
considerations depending on the deployment scenarios.

@menu
* vnc_sec_none::
* vnc_sec_password::
* vnc_sec_certificate::
* vnc_sec_certificate_verify::
* vnc_sec_certificate_pw::
1445 1446
* vnc_sec_sasl::
* vnc_sec_certificate_sasl::
1447
* vnc_generate_cert::
1448
* vnc_setup_sasl::
1449 1450 1451 1452 1453 1454 1455 1456 1457
@end menu
@node vnc_sec_none
@subsection Without passwords

The simplest VNC server setup does not include any form of authentication.
For this setup it is recommended to restrict it to listen on a UNIX domain
socket only. For example

@example
1458
qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
@end example

This ensures that only users on local box with read/write access to that
path can access the VNC server. To securely access the VNC server from a
remote machine, a combination of netcat+ssh can be used to provide a secure
tunnel.

@node vnc_sec_password
@subsection With passwords

The VNC protocol has limited support for password based authentication. Since
the protocol limits passwords to 8 characters it should not be considered
to provide high security. The password can be fairly easily brute-forced by
a client making repeat connections. For this reason, a VNC server using password
authentication should be restricted to only listen on the loopback interface
1474 1475 1476 1477 1478
or UNIX domain sockets. Password authentication is not supported when operating
in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
authentication is requested with the @code{password} option, and then once QEMU
is running the password is set with the monitor. Until the monitor is used to
set the password all clients will be rejected.
1479 1480

@example
1481
qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
(qemu) change vnc password
Password: ********
(qemu)
@end example

@node vnc_sec_certificate
@subsection With x509 certificates

The QEMU VNC server also implements the VeNCrypt extension allowing use of
TLS for encryption of the session, and x509 certificates for authentication.
The use of x509 certificates is strongly recommended, because TLS on its
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
support provides a secure session, but no authentication. This allows any
client to connect, and provides an encrypted session.

@example
1498
qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
@end example

In the above example @code{/etc/pki/qemu} should contain at least three files,
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
NB the @code{server-key.pem} file should be protected with file mode 0600 to
only be readable by the user owning it.

@node vnc_sec_certificate_verify
@subsection With x509 certificates and client verification

Certificates can also provide a means to authenticate the client connecting.
The server will request that the client provide a certificate, which it will
then validate against the CA certificate. This is a good choice if deploying
in an environment with a private internal certificate authority.

@example
1516
qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
@end example


@node vnc_sec_certificate_pw
@subsection With x509 certificates, client verification and passwords

Finally, the previous method can be combined with VNC password authentication
to provide two layers of authentication for clients.

@example
1527
qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1528 1529 1530 1531 1532
(qemu) change vnc password
Password: ********
(qemu)
@end example

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549

@node vnc_sec_sasl
@subsection With SASL authentication

The SASL authentication method is a VNC extension, that provides an
easily extendable, pluggable authentication method. This allows for
integration with a wide range of authentication mechanisms, such as
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
The strength of the authentication depends on the exact mechanism
configured. If the chosen mechanism also provides a SSF layer, then
it will encrypt the datastream as well.

Refer to the later docs on how to choose the exact SASL mechanism
used for authentication, but assuming use of one supporting SSF,
then QEMU can be launched with:

@example
1550
qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
@end example

@node vnc_sec_certificate_sasl
@subsection With x509 certificates and SASL authentication

If the desired SASL authentication mechanism does not supported
SSF layers, then it is strongly advised to run it in combination
with TLS and x509 certificates. This provides securely encrypted
data stream, avoiding risk of compromising of the security
credentials. This can be enabled, by combining the 'sasl' option
with the aforementioned TLS + x509 options:

@example
1564
qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1565 1566 1567
@end example


1568 1569 1570 1571 1572
@node vnc_generate_cert
@subsection Generating certificates for VNC

The GNU TLS packages provides a command called @code{certtool} which can
be used to generate certificates and keys in PEM format. At a minimum it
S
Stefan Weil 已提交
1573
is necessary to setup a certificate authority, and issue certificates to
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
each server. If using certificates for authentication, then each client
will also need to be issued a certificate. The recommendation is for the
server to keep its certificates in either @code{/etc/pki/qemu} or for
unprivileged users in @code{$HOME/.pki/qemu}.

@menu
* vnc_generate_ca::
* vnc_generate_server::
* vnc_generate_client::
@end menu
@node vnc_generate_ca
@subsubsection Setup the Certificate Authority

This step only needs to be performed once per organization / organizational
unit. First the CA needs a private key. This key must be kept VERY secret
and secure. If this key is compromised the entire trust chain of the certificates
issued with it is lost.

@example
# certtool --generate-privkey > ca-key.pem
@end example

A CA needs to have a public certificate. For simplicity it can be a self-signed
certificate, or one issue by a commercial certificate issuing authority. To
generate a self-signed certificate requires one core piece of information, the
name of the organization.

@example
# cat > ca.info <<EOF
cn = Name of your organization
ca
cert_signing_key
EOF
# certtool --generate-self-signed \
           --load-privkey ca-key.pem
           --template ca.info \
           --outfile ca-cert.pem
@end example

The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.

@node vnc_generate_server
@subsubsection Issuing server certificates

Each server (or host) needs to be issued with a key and certificate. When connecting
the certificate is sent to the client which validates it against the CA certificate.
The core piece of information for a server certificate is the hostname. This should
be the fully qualified hostname that the client will connect with, since the client
will typically also verify the hostname in the certificate. On the host holding the
secure CA private key:

@example
# cat > server.info <<EOF
organization = Name  of your organization
cn = server.foo.example.com
tls_www_server
encryption_key
signing_key
EOF
# certtool --generate-privkey > server-key.pem
# certtool --generate-certificate \
           --load-ca-certificate ca-cert.pem \
           --load-ca-privkey ca-key.pem \
1638
           --load-privkey server-key.pem \
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
           --template server.info \
           --outfile server-cert.pem
@end example

The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
to the server for which they were generated. The @code{server-key.pem} is security
sensitive and should be kept protected with file mode 0600 to prevent disclosure.

@node vnc_generate_client
@subsubsection Issuing client certificates

If the QEMU VNC server is to use the @code{x509verify} option to validate client
certificates as its authentication mechanism, each client also needs to be issued
a certificate. The client certificate contains enough metadata to uniquely identify
the client, typically organization, state, city, building, etc. On the host holding
the secure CA private key:

@example
# cat > client.info <<EOF
country = GB
state = London
locality = London
1661
organization = Name of your organization
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
cn = client.foo.example.com
tls_www_client
encryption_key
signing_key
EOF
# certtool --generate-privkey > client-key.pem
# certtool --generate-certificate \
           --load-ca-certificate ca-cert.pem \
           --load-ca-privkey ca-key.pem \
           --load-privkey client-key.pem \
           --template client.info \
           --outfile client-cert.pem
@end example

The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
copied to the client for which they were generated.

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715

@node vnc_setup_sasl

@subsection Configuring SASL mechanisms

The following documentation assumes use of the Cyrus SASL implementation on a
Linux host, but the principals should apply to any other SASL impl. When SASL
is enabled, the mechanism configuration will be loaded from system default
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
unprivileged user, an environment variable SASL_CONF_PATH can be used
to make it search alternate locations for the service config.

The default configuration might contain

@example
mech_list: digest-md5
sasldb_path: /etc/qemu/passwd.db
@end example

This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
command. While this mechanism is easy to configure and use, it is not
considered secure by modern standards, so only suitable for developers /
ad-hoc testing.

A more serious deployment might use Kerberos, which is done with the 'gssapi'
mechanism

@example
mech_list: gssapi
keytab: /etc/qemu/krb5.tab
@end example

For this to work the administrator of your KDC must generate a Kerberos
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
replacing 'somehost.example.com' with the fully qualified host name of the
S
Stefan Weil 已提交
1716
machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1717 1718 1719 1720 1721 1722

Other configurations will be left as an exercise for the reader. It should
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
encryption. For all other mechanisms, VNC should always be configured to
use TLS and x509 certificates to protect security credentials from snooping.

B
updated  
bellard 已提交
1723
@node gdb_usage
B
bellard 已提交
1724 1725 1726
@section GDB usage

QEMU has a primitive support to work with gdb, so that you can do
B
updated  
bellard 已提交
1727
'Ctrl-C' while the virtual machine is running and inspect its state.
B
bellard 已提交
1728

1729
In order to use gdb, launch QEMU with the '-s' option. It will wait for a
B
bellard 已提交
1730 1731
gdb connection:
@example
1732 1733
qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
                    -append "root=/dev/hda"
B
bellard 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
Connected to host network interface: tun0
Waiting gdb connection on port 1234
@end example

Then launch gdb on the 'vmlinux' executable:
@example
> gdb vmlinux
@end example

In gdb, connect to QEMU:
@example
B
update  
bellard 已提交
1745
(gdb) target remote localhost:1234
B
bellard 已提交
1746 1747 1748 1749 1750 1751 1752
@end example

Then you can use gdb normally. For example, type 'c' to launch the kernel:
@example
(gdb) c
@end example

B
updated  
bellard 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761
Here are some useful tips in order to use gdb on system code:

@enumerate
@item
Use @code{info reg} to display all the CPU registers.
@item
Use @code{x/10i $eip} to display the code at the PC position.
@item
Use @code{set architecture i8086} to dump 16 bit code. Then use
B
update  
bellard 已提交
1762
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
B
updated  
bellard 已提交
1763 1764
@end enumerate

1765 1766 1767
Advanced debugging options:

The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1768
@table @code
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
@item maintenance packet qqemu.sstepbits

This will display the MASK bits used to control the single stepping IE:
@example
(gdb) maintenance packet qqemu.sstepbits
sending: "qqemu.sstepbits"
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
@end example
@item maintenance packet qqemu.sstep

This will display the current value of the mask used when single stepping IE:
@example
(gdb) maintenance packet qqemu.sstep
sending: "qqemu.sstep"
received: "0x7"
@end example
@item maintenance packet Qqemu.sstep=HEX_VALUE

This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
@example
(gdb) maintenance packet Qqemu.sstep=0x5
sending: "qemu.sstep=0x5"
received: "OK"
@end example
1793
@end table
1794

B
bellard 已提交
1795
@node pcsys_os_specific
B
update  
bellard 已提交
1796 1797 1798 1799
@section Target OS specific information

@subsection Linux

B
bellard 已提交
1800 1801 1802
To have access to SVGA graphic modes under X11, use the @code{vesa} or
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
color depth in the guest and the host OS.
B
update  
bellard 已提交
1803

B
update  
bellard 已提交
1804 1805 1806 1807 1808
When using a 2.6 guest Linux kernel, you should add the option
@code{clock=pit} on the kernel command line because the 2.6 Linux
kernels make very strict real time clock checks by default that QEMU
cannot simulate exactly.

B
update  
bellard 已提交
1809 1810 1811
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
not activated because QEMU is slower with this patch. The QEMU
Accelerator Module is also much slower in this case. Earlier Fedora
1812
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
B
update  
bellard 已提交
1813 1814
patch by default. Newer kernels don't have it.

B
update  
bellard 已提交
1815 1816 1817 1818 1819
@subsection Windows

If you have a slow host, using Windows 95 is better as it gives the
best speed. Windows 2000 is also a good choice.

B
update  
bellard 已提交
1820 1821 1822
@subsubsection SVGA graphic modes support

QEMU emulates a Cirrus Logic GD5446 Video
B
bellard 已提交
1823 1824 1825
card. All Windows versions starting from Windows 95 should recognize
and use this graphic card. For optimal performances, use 16 bit color
depth in the guest and the host OS.
B
update  
bellard 已提交
1826

B
bellard 已提交
1827 1828 1829 1830 1831
If you are using Windows XP as guest OS and if you want to use high
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1280x1024x16), then you should use the VESA VBE virtual graphic card
(option @option{-std-vga}).

B
update  
bellard 已提交
1832 1833 1834
@subsubsection CPU usage reduction

Windows 9x does not correctly use the CPU HLT
B
bellard 已提交
1835 1836 1837 1838
instruction. The result is that it takes host CPU cycles even when
idle. You can install the utility from
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
problem. Note that no such tool is needed for NT, 2000 or XP.
B
update  
bellard 已提交
1839

B
update  
bellard 已提交
1840
@subsubsection Windows 2000 disk full problem
B
update  
bellard 已提交
1841

B
update  
bellard 已提交
1842 1843 1844 1845 1846
Windows 2000 has a bug which gives a disk full problem during its
installation. When installing it, use the @option{-win2k-hack} QEMU
option to enable a specific workaround. After Windows 2000 is
installed, you no longer need this option (this option slows down the
IDE transfers).
B
update  
bellard 已提交
1847

B
update  
bellard 已提交
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
@subsubsection Windows 2000 shutdown

Windows 2000 cannot automatically shutdown in QEMU although Windows 98
can. It comes from the fact that Windows 2000 does not automatically
use the APM driver provided by the BIOS.

In order to correct that, do the following (thanks to Struan
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
Add/Troubleshoot a device => Add a new device & Next => No, select the
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
(again) a few times. Now the driver is installed and Windows 2000 now
1859
correctly instructs QEMU to shutdown at the appropriate moment.
B
update  
bellard 已提交
1860 1861 1862 1863 1864

@subsubsection Share a directory between Unix and Windows

See @ref{sec_invocation} about the help of the option @option{-smb}.

B
update  
bellard 已提交
1865
@subsubsection Windows XP security problem
B
update  
bellard 已提交
1866 1867 1868 1869 1870 1871 1872 1873

Some releases of Windows XP install correctly but give a security
error when booting:
@example
A problem is preventing Windows from accurately checking the
license for this computer. Error code: 0x800703e6.
@end example

B
update  
bellard 已提交
1874 1875 1876 1877 1878
The workaround is to install a service pack for XP after a boot in safe
mode. Then reboot, and the problem should go away. Since there is no
network while in safe mode, its recommended to download the full
installation of SP1 or SP2 and transfer that via an ISO or using the
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
B
update  
bellard 已提交
1879

B
update  
bellard 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888
@subsection MS-DOS and FreeDOS

@subsubsection CPU usage reduction

DOS does not correctly use the CPU HLT instruction. The result is that
it takes host CPU cycles even when idle. You can install the utility
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
problem.

B
bellard 已提交
1889
@node QEMU System emulator for non PC targets
B
bellard 已提交
1890 1891 1892 1893
@chapter QEMU System emulator for non PC targets

QEMU is a generic emulator and it emulates many non PC
machines. Most of the options are similar to the PC emulator. The
1894
differences are mentioned in the following sections.
B
bellard 已提交
1895

B
bellard 已提交
1896
@menu
1897
* PowerPC System emulator::
T
ths 已提交
1898 1899 1900 1901 1902
* Sparc32 System emulator::
* Sparc64 System emulator::
* MIPS System emulator::
* ARM System emulator::
* ColdFire System emulator::
1903 1904 1905
* Cris System emulator::
* Microblaze System emulator::
* SH4 System emulator::
M
Max Filippov 已提交
1906
* Xtensa System emulator::
B
bellard 已提交
1907 1908
@end menu

1909 1910 1911
@node PowerPC System emulator
@section PowerPC System emulator
@cindex system emulation (PowerPC)
B
update  
bellard 已提交
1912

B
bellard 已提交
1913 1914
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
or PowerMac PowerPC system.
B
update  
bellard 已提交
1915

B
typos  
bellard 已提交
1916
QEMU emulates the following PowerMac peripherals:
B
update  
bellard 已提交
1917

B
bellard 已提交
1918
@itemize @minus
1919
@item
B
blueswir1 已提交
1920
UniNorth or Grackle PCI Bridge
B
bellard 已提交
1921 1922
@item
PCI VGA compatible card with VESA Bochs Extensions
1923
@item
B
bellard 已提交
1924
2 PMAC IDE interfaces with hard disk and CD-ROM support
1925
@item
B
bellard 已提交
1926 1927 1928 1929 1930
NE2000 PCI adapters
@item
Non Volatile RAM
@item
VIA-CUDA with ADB keyboard and mouse.
B
update  
bellard 已提交
1931 1932
@end itemize

B
typos  
bellard 已提交
1933
QEMU emulates the following PREP peripherals:
B
update  
bellard 已提交
1934 1935

@itemize @minus
1936
@item
B
bellard 已提交
1937 1938 1939
PCI Bridge
@item
PCI VGA compatible card with VESA Bochs Extensions
1940
@item
B
update  
bellard 已提交
1941 1942 1943
2 IDE interfaces with hard disk and CD-ROM support
@item
Floppy disk
1944
@item
B
bellard 已提交
1945
NE2000 network adapters
B
update  
bellard 已提交
1946 1947 1948 1949
@item
Serial port
@item
PREP Non Volatile RAM
B
bellard 已提交
1950 1951
@item
PC compatible keyboard and mouse.
B
update  
bellard 已提交
1952 1953
@end itemize

B
bellard 已提交
1954
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
B
bellard 已提交
1955
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
B
update  
bellard 已提交
1956

B
blueswir1 已提交
1957
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
B
blueswir1 已提交
1958 1959 1960
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
v2) portable firmware implementation. The goal is to implement a 100%
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
B
blueswir1 已提交
1961

B
bellard 已提交
1962 1963 1964 1965 1966 1967
@c man begin OPTIONS

The following options are specific to the PowerPC emulation:

@table @option

1968
@item -g @var{W}x@var{H}[x@var{DEPTH}]
B
bellard 已提交
1969

1970
Set the initial VGA graphic mode. The default is 800x600x32.
B
bellard 已提交
1971

1972
@item -prom-env @var{string}
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

Set OpenBIOS variables in NVRAM, for example:

@example
qemu-system-ppc -prom-env 'auto-boot?=false' \
 -prom-env 'boot-device=hd:2,\yaboot' \
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
@end example

These variables are not used by Open Hack'Ware.

B
bellard 已提交
1984 1985
@end table

1986
@c man end
B
bellard 已提交
1987 1988


B
update  
bellard 已提交
1989
More information is available at
B
bellard 已提交
1990
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
B
update  
bellard 已提交
1991

T
ths 已提交
1992 1993
@node Sparc32 System emulator
@section Sparc32 System emulator
1994
@cindex system emulation (Sparc32)
B
bellard 已提交
1995

B
blueswir1 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Use the executable @file{qemu-system-sparc} to simulate the following
Sun4m architecture machines:
@itemize @minus
@item
SPARCstation 4
@item
SPARCstation 5
@item
SPARCstation 10
@item
SPARCstation 20
@item
SPARCserver 600MP
@item
SPARCstation LX
@item
SPARCstation Voyager
@item
SPARCclassic
@item
SPARCbook
@end itemize

The emulation is somewhat complete. SMP up to 16 CPUs is supported,
but Linux limits the number of usable CPUs to 4.
B
bellard 已提交
2021

B
Blue Swirl 已提交
2022
QEMU emulates the following sun4m peripherals:
B
bellard 已提交
2023 2024

@itemize @minus
B
bellard 已提交
2025
@item
B
Blue Swirl 已提交
2026
IOMMU
B
bellard 已提交
2027
@item
2028
TCX or cgthree Frame buffer
2029
@item
B
bellard 已提交
2030 2031
Lance (Am7990) Ethernet
@item
B
blueswir1 已提交
2032
Non Volatile RAM M48T02/M48T08
B
bellard 已提交
2033
@item
B
bellard 已提交
2034 2035 2036 2037 2038
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
and power/reset logic
@item
ESP SCSI controller with hard disk and CD-ROM support
@item
2039
Floppy drive (not on SS-600MP)
2040 2041
@item
CS4231 sound device (only on SS-5, not working yet)
B
bellard 已提交
2042 2043
@end itemize

2044 2045
The number of peripherals is fixed in the architecture.  Maximum
memory size depends on the machine type, for SS-5 it is 256MB and for
2046
others 2047MB.
B
bellard 已提交
2047

B
update  
bellard 已提交
2048
Since version 0.8.2, QEMU uses OpenBIOS
2049 2050 2051
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
firmware implementation. The goal is to implement a 100% IEEE
1275-1994 (referred to as Open Firmware) compliant firmware.
B
bellard 已提交
2052 2053

A sample Linux 2.6 series kernel and ram disk image are available on
B
blueswir1 已提交
2054
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2055
most kernel versions work. Please note that currently older Solaris kernels
B
blueswir1 已提交
2056 2057
don't work probably due to interface issues between OpenBIOS and
Solaris.
B
bellard 已提交
2058 2059 2060

@c man begin OPTIONS

2061
The following options are specific to the Sparc32 emulation:
B
bellard 已提交
2062 2063 2064

@table @option

2065
@item -g @var{W}x@var{H}x[x@var{DEPTH}]
B
bellard 已提交
2066

2067 2068 2069
Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
of 1152x900x8 for people who wish to use OBP.
B
bellard 已提交
2070

2071
@item -prom-env @var{string}
B
blueswir1 已提交
2072 2073 2074 2075 2076 2077 2078 2079

Set OpenBIOS variables in NVRAM, for example:

@example
qemu-system-sparc -prom-env 'auto-boot?=false' \
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
@end example

B
Blue Swirl 已提交
2080
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
2081 2082 2083

Set the emulated machine type. Default is SS-5.

B
bellard 已提交
2084 2085
@end table

2086
@c man end
B
bellard 已提交
2087

T
ths 已提交
2088 2089
@node Sparc64 System emulator
@section Sparc64 System emulator
2090
@cindex system emulation (Sparc64)
B
bellard 已提交
2091

B
blueswir1 已提交
2092 2093
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2094 2095 2096
Niagara (T1) machine. The Sun4u emulator is mostly complete, being
able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
Sun4v and Niagara emulators are still a work in progress.
B
bellard 已提交
2097

2098
QEMU emulates the following peripherals:
B
bellard 已提交
2099 2100 2101

@itemize @minus
@item
2102
UltraSparc IIi APB PCI Bridge
B
bellard 已提交
2103 2104 2105
@item
PCI VGA compatible card with VESA Bochs Extensions
@item
B
blueswir1 已提交
2106 2107
PS/2 mouse and keyboard
@item
B
bellard 已提交
2108 2109 2110
Non Volatile RAM M48T59
@item
PC-compatible serial ports
2111 2112
@item
2 PCI IDE interfaces with hard disk and CD-ROM support
B
blueswir1 已提交
2113 2114
@item
Floppy disk
B
bellard 已提交
2115 2116
@end itemize

2117 2118 2119 2120 2121 2122
@c man begin OPTIONS

The following options are specific to the Sparc64 emulation:

@table @option

2123
@item -prom-env @var{string}
B
blueswir1 已提交
2124 2125 2126 2127 2128 2129 2130 2131

Set OpenBIOS variables in NVRAM, for example:

@example
qemu-system-sparc64 -prom-env 'auto-boot?=false'
@end example

@item -M [sun4u|sun4v|Niagara]
2132 2133 2134 2135 2136 2137 2138

Set the emulated machine type. The default is sun4u.

@end table

@c man end

T
ths 已提交
2139 2140
@node MIPS System emulator
@section MIPS System emulator
2141
@cindex system emulation (MIPS)
B
update  
bellard 已提交
2142

T
ths 已提交
2143 2144 2145
Four executables cover simulation of 32 and 64-bit MIPS systems in
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2146
Five different machine types are emulated:
T
ths 已提交
2147 2148 2149 2150 2151 2152 2153

@itemize @minus
@item
A generic ISA PC-like machine "mips"
@item
The MIPS Malta prototype board "malta"
@item
T
ths 已提交
2154
An ACER Pica "pica61". This machine needs the 64-bit emulator.
T
ths 已提交
2155
@item
2156
MIPS emulator pseudo board "mipssim"
2157 2158
@item
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
T
ths 已提交
2159 2160 2161 2162 2163
@end itemize

The generic emulation is supported by Debian 'Etch' and is able to
install Debian into a virtual disk image. The following devices are
emulated:
B
bellard 已提交
2164 2165

@itemize @minus
2166
@item
T
ths 已提交
2167
A range of MIPS CPUs, default is the 24Kf
B
bellard 已提交
2168 2169 2170
@item
PC style serial port
@item
T
ths 已提交
2171 2172
PC style IDE disk
@item
B
bellard 已提交
2173 2174 2175
NE2000 network card
@end itemize

T
ths 已提交
2176 2177 2178 2179
The Malta emulation supports the following devices:

@itemize @minus
@item
T
ths 已提交
2180
Core board with MIPS 24Kf CPU and Galileo system controller
T
ths 已提交
2181 2182 2183 2184 2185
@item
PIIX4 PCI/USB/SMbus controller
@item
The Multi-I/O chip's serial device
@item
2186
PCI network cards (PCnet32 and others)
T
ths 已提交
2187 2188 2189
@item
Malta FPGA serial device
@item
A
aurel32 已提交
2190
Cirrus (default) or any other PCI VGA graphics card
T
ths 已提交
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
@end itemize

The ACER Pica emulation supports:

@itemize @minus
@item
MIPS R4000 CPU
@item
PC-style IRQ and DMA controllers
@item
PC Keyboard
@item
IDE controller
@end itemize
B
bellard 已提交
2205

2206
The mipssim pseudo board emulation provides an environment similar
2207 2208
to what the proprietary MIPS emulator uses for running Linux.
It supports:
T
ths 已提交
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218

@itemize @minus
@item
A range of MIPS CPUs, default is the 24Kf
@item
PC style serial port
@item
MIPSnet network emulation
@end itemize

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
The MIPS Magnum R4000 emulation supports:

@itemize @minus
@item
MIPS R4000 CPU
@item
PC-style IRQ controller
@item
PC Keyboard
@item
SCSI controller
@item
G364 framebuffer
@end itemize


T
ths 已提交
2235 2236
@node ARM System emulator
@section ARM System emulator
2237
@cindex system emulation (ARM)
B
bellard 已提交
2238 2239 2240 2241 2242 2243 2244

Use the executable @file{qemu-system-arm} to simulate a ARM
machine. The ARM Integrator/CP board is emulated with the following
devices:

@itemize @minus
@item
P
pbrook 已提交
2245
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
B
bellard 已提交
2246 2247
@item
Two PL011 UARTs
2248
@item
B
bellard 已提交
2249
SMC 91c111 Ethernet adapter
P
pbrook 已提交
2250 2251 2252 2253
@item
PL110 LCD controller
@item
PL050 KMI with PS/2 keyboard and mouse.
2254 2255
@item
PL181 MultiMedia Card Interface with SD card.
P
pbrook 已提交
2256 2257 2258 2259 2260 2261
@end itemize

The ARM Versatile baseboard is emulated with the following devices:

@itemize @minus
@item
P
pbrook 已提交
2262
ARM926E, ARM1136 or Cortex-A8 CPU
P
pbrook 已提交
2263 2264 2265 2266
@item
PL190 Vectored Interrupt Controller
@item
Four PL011 UARTs
2267
@item
P
pbrook 已提交
2268 2269 2270 2271 2272 2273 2274 2275
SMC 91c111 Ethernet adapter
@item
PL110 LCD controller
@item
PL050 KMI with PS/2 keyboard and mouse.
@item
PCI host bridge.  Note the emulated PCI bridge only provides access to
PCI memory space.  It does not provide access to PCI IO space.
2276 2277
This means some devices (eg. ne2k_pci NIC) are not usable, and others
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
P
pbrook 已提交
2278
mapped control registers.
P
pbrook 已提交
2279 2280 2281 2282
@item
PCI OHCI USB controller.
@item
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2283 2284
@item
PL181 MultiMedia Card Interface with SD card.
B
bellard 已提交
2285 2286
@end itemize

P
Paul Brook 已提交
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
Several variants of the ARM RealView baseboard are emulated,
including the EB, PB-A8 and PBX-A9.  Due to interactions with the
bootloader, only certain Linux kernel configurations work out
of the box on these boards.

Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
disabled and expect 1024M RAM.

S
Stefan Weil 已提交
2297
The following devices are emulated:
2298 2299 2300

@itemize @minus
@item
P
Paul Brook 已提交
2301
ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
2302 2303 2304 2305
@item
ARM AMBA Generic/Distributed Interrupt Controller
@item
Four PL011 UARTs
2306
@item
P
Paul Brook 已提交
2307
SMC 91c111 or SMSC LAN9118 Ethernet adapter
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
@item
PL110 LCD controller
@item
PL050 KMI with PS/2 keyboard and mouse
@item
PCI host bridge
@item
PCI OHCI USB controller
@item
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2318 2319
@item
PL181 MultiMedia Card Interface with SD card.
2320 2321
@end itemize

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
and "Terrier") emulation includes the following peripherals:

@itemize @minus
@item
Intel PXA270 System-on-chip (ARM V5TE core)
@item
NAND Flash memory
@item
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
@item
On-chip OHCI USB controller
@item
On-chip LCD controller
@item
On-chip Real Time Clock
@item
TI ADS7846 touchscreen controller on SSP bus
@item
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
@item
GPIO-connected keyboard controller and LEDs
@item
2345
Secure Digital card connected to PXA MMC/SD host
2346 2347 2348 2349 2350 2351
@item
Three on-chip UARTs
@item
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
@end itemize

B
balrog 已提交
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
following elements:

@itemize @minus
@item
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
@item
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
@item
On-chip LCD controller
@item
On-chip Real Time Clock
@item
TI TSC2102i touchscreen controller / analog-digital converter / Audio
CODEC, connected through MicroWire and I@math{^2}S busses
@item
GPIO-connected matrix keypad
@item
Secure Digital card connected to OMAP MMC/SD host
@item
Three on-chip UARTs
@end itemize

2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
emulation supports the following elements:

@itemize @minus
@item
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
@item
RAM and non-volatile OneNAND Flash memories
@item
Display connected to EPSON remote framebuffer chip and OMAP on-chip
display controller and a LS041y3 MIPI DBI-C controller
@item
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
driven through SPI bus
@item
National Semiconductor LM8323-controlled qwerty keyboard driven
through I@math{^2}C bus
@item
Secure Digital card connected to OMAP MMC/SD host
@item
Three OMAP on-chip UARTs and on-chip STI debugging console
@item
S
Stefan Weil 已提交
2397
A Bluetooth(R) transceiver and HCI connected to an UART
B
balrog 已提交
2398
@item
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
TUSB6010 chip - only USB host mode is supported
@item
TI TMP105 temperature sensor driven through I@math{^2}C bus
@item
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
@item
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
through CBUS
@end itemize

P
pbrook 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
devices:

@itemize @minus
@item
Cortex-M3 CPU core.
@item
64k Flash and 8k SRAM.
@item
Timers, UARTs, ADC and I@math{^2}C interface.
@item
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
@end itemize

The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
devices:

@itemize @minus
@item
Cortex-M3 CPU core.
@item
256k Flash and 64k SRAM.
@item
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
@item
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
@end itemize

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
The Freecom MusicPal internet radio emulation includes the following
elements:

@itemize @minus
@item
Marvell MV88W8618 ARM core.
@item
32 MB RAM, 256 KB SRAM, 8 MB flash.
@item
Up to 2 16550 UARTs
@item
MV88W8xx8 Ethernet controller
@item
MV88W8618 audio controller, WM8750 CODEC and mixer
@item
2453
128×64 display with brightness control
2454 2455 2456 2457
@item
2 buttons, 2 navigation wheels with button function
@end itemize

2458
The Siemens SX1 models v1 and v2 (default) basic emulation.
S
Stefan Weil 已提交
2459
The emulation includes the following elements:
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479

@itemize @minus
@item
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
@item
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
V1
1 Flash of 16MB and 1 Flash of 8MB
V2
1 Flash of 32MB
@item
On-chip LCD controller
@item
On-chip Real Time Clock
@item
Secure Digital card connected to OMAP MMC/SD host
@item
Three on-chip UARTs
@end itemize

B
bellard 已提交
2480 2481
A Linux 2.6 test image is available on the QEMU web site. More
information is available in the QEMU mailing-list archive.
B
update  
bellard 已提交
2482

B
blueswir1 已提交
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
@c man begin OPTIONS

The following options are specific to the ARM emulation:

@table @option

@item -semihosting
Enable semihosting syscall emulation.

On ARM this implements the "Angel" interface.

Note that this allows guest direct access to the host filesystem,
so should only be used with trusted guest OS.

@end table

T
ths 已提交
2499 2500
@node ColdFire System emulator
@section ColdFire System emulator
2501 2502
@cindex system emulation (ColdFire)
@cindex system emulation (M68K)
P
pbrook 已提交
2503 2504 2505

Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
The emulator is able to boot a uClinux kernel.
2506 2507 2508 2509

The M5208EVB emulation includes the following devices:

@itemize @minus
2510
@item
2511 2512 2513 2514 2515 2516 2517 2518
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
@item
Three Two on-chip UARTs.
@item
Fast Ethernet Controller (FEC)
@end itemize

The AN5206 emulation includes the following devices:
P
pbrook 已提交
2519 2520

@itemize @minus
2521
@item
P
pbrook 已提交
2522 2523 2524 2525 2526
MCF5206 ColdFire V2 Microprocessor.
@item
Two on-chip UARTs.
@end itemize

B
blueswir1 已提交
2527 2528
@c man begin OPTIONS

2529
The following options are specific to the ColdFire emulation:
B
blueswir1 已提交
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542

@table @option

@item -semihosting
Enable semihosting syscall emulation.

On M68K this implements the "ColdFire GDB" interface used by libgloss.

Note that this allows guest direct access to the host filesystem,
so should only be used with trusted guest OS.

@end table

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
@node Cris System emulator
@section Cris System emulator
@cindex system emulation (Cris)

TODO

@node Microblaze System emulator
@section Microblaze System emulator
@cindex system emulation (Microblaze)

TODO

@node SH4 System emulator
@section SH4 System emulator
@cindex system emulation (SH4)

TODO

M
Max Filippov 已提交
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
@node Xtensa System emulator
@section Xtensa System emulator
@cindex system emulation (Xtensa)

Two executables cover simulation of both Xtensa endian options,
@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
Two different machine types are emulated:

@itemize @minus
@item
Xtensa emulator pseudo board "sim"
@item
Avnet LX60/LX110/LX200 board
@end itemize

2576
The sim pseudo board emulation provides an environment similar
M
Max Filippov 已提交
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
to one provided by the proprietary Tensilica ISS.
It supports:

@itemize @minus
@item
A range of Xtensa CPUs, default is the DC232B
@item
Console and filesystem access via semihosting calls
@end itemize

The Avnet LX60/LX110/LX200 emulation supports:

@itemize @minus
@item
A range of Xtensa CPUs, default is the DC232B
@item
16550 UART
@item
OpenCores 10/100 Mbps Ethernet MAC
@end itemize

@c man begin OPTIONS

The following options are specific to the Xtensa emulation:

@table @option

@item -semihosting
Enable semihosting syscall emulation.

Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
Tensilica baremetal libc for ISS and linux platform "sim" use this interface.

Note that this allows guest direct access to the host filesystem,
so should only be used with trusted guest OS.

@end table
2614 2615
@node QEMU User space emulator
@chapter QEMU User space emulator
B
bellard 已提交
2616 2617 2618 2619

@menu
* Supported Operating Systems ::
* Linux User space emulator::
B
blueswir1 已提交
2620
* BSD User space emulator ::
B
bellard 已提交
2621 2622 2623 2624 2625 2626 2627 2628 2629
@end menu

@node Supported Operating Systems
@section Supported Operating Systems

The following OS are supported in user space emulation:

@itemize @minus
@item
2630
Linux (referred as qemu-linux-user)
B
bellard 已提交
2631
@item
B
blueswir1 已提交
2632
BSD (referred as qemu-bsd-user)
B
bellard 已提交
2633 2634 2635 2636
@end itemize

@node Linux User space emulator
@section Linux User space emulator
B
bellard 已提交
2637

B
bellard 已提交
2638 2639 2640 2641
@menu
* Quick Start::
* Wine launch::
* Command line options::
P
pbrook 已提交
2642
* Other binaries::
B
bellard 已提交
2643 2644 2645
@end menu

@node Quick Start
B
bellard 已提交
2646
@subsection Quick Start
B
update  
bellard 已提交
2647

B
bellard 已提交
2648
In order to launch a Linux process, QEMU needs the process executable
2649
itself and all the target (x86) dynamic libraries used by it.
B
bellard 已提交
2650

B
bellard 已提交
2651
@itemize
B
bellard 已提交
2652

B
bellard 已提交
2653 2654
@item On x86, you can just try to launch any process by using the native
libraries:
B
bellard 已提交
2655

2656
@example
B
bellard 已提交
2657 2658
qemu-i386 -L / /bin/ls
@end example
B
bellard 已提交
2659

B
bellard 已提交
2660 2661
@code{-L /} tells that the x86 dynamic linker must be searched with a
@file{/} prefix.
B
bellard 已提交
2662

2663 2664
@item Since QEMU is also a linux process, you can launch QEMU with
QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
B
bellard 已提交
2665

2666
@example
B
bellard 已提交
2667 2668
qemu-i386 -L / qemu-i386 -L / /bin/ls
@end example
B
bellard 已提交
2669

B
bellard 已提交
2670 2671 2672
@item On non x86 CPUs, you need first to download at least an x86 glibc
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
@code{LD_LIBRARY_PATH} is not set:
B
update  
bellard 已提交
2673

B
bellard 已提交
2674
@example
2675
unset LD_LIBRARY_PATH
B
bellard 已提交
2676
@end example
B
update  
bellard 已提交
2677

B
bellard 已提交
2678
Then you can launch the precompiled @file{ls} x86 executable:
B
update  
bellard 已提交
2679

B
bellard 已提交
2680 2681 2682
@example
qemu-i386 tests/i386/ls
@end example
B
Blue Swirl 已提交
2683
You can look at @file{scripts/qemu-binfmt-conf.sh} so that
B
bellard 已提交
2684 2685 2686
QEMU is automatically launched by the Linux kernel when you try to
launch x86 executables. It requires the @code{binfmt_misc} module in the
Linux kernel.
B
update  
bellard 已提交
2687

B
bellard 已提交
2688 2689
@item The x86 version of QEMU is also included. You can try weird things such as:
@example
B
bellard 已提交
2690 2691
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
          /usr/local/qemu-i386/bin/ls-i386
B
bellard 已提交
2692
@end example
B
update  
bellard 已提交
2693

B
bellard 已提交
2694
@end itemize
B
update  
bellard 已提交
2695

B
bellard 已提交
2696
@node Wine launch
B
bellard 已提交
2697
@subsection Wine launch
B
update  
bellard 已提交
2698

B
bellard 已提交
2699
@itemize
B
bellard 已提交
2700

B
bellard 已提交
2701 2702 2703
@item Ensure that you have a working QEMU with the x86 glibc
distribution (see previous section). In order to verify it, you must be
able to do:
B
bellard 已提交
2704

B
bellard 已提交
2705 2706 2707
@example
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
@end example
B
bellard 已提交
2708

B
bellard 已提交
2709
@item Download the binary x86 Wine install
2710
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
B
bellard 已提交
2711

B
bellard 已提交
2712
@item Configure Wine on your account. Look at the provided script
B
bellard 已提交
2713
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
B
bellard 已提交
2714
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
B
bellard 已提交
2715

B
bellard 已提交
2716
@item Then you can try the example @file{putty.exe}:
B
bellard 已提交
2717

B
bellard 已提交
2718
@example
B
bellard 已提交
2719 2720
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
B
bellard 已提交
2721
@end example
B
bellard 已提交
2722

B
bellard 已提交
2723
@end itemize
B
update  
bellard 已提交
2724

B
bellard 已提交
2725
@node Command line options
B
bellard 已提交
2726
@subsection Command line options
B
update  
bellard 已提交
2727

B
bellard 已提交
2728
@example
P
Paul Brook 已提交
2729
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
B
bellard 已提交
2730
@end example
B
update  
bellard 已提交
2731

B
bellard 已提交
2732 2733 2734
@table @option
@item -h
Print the help
2735
@item -L path
B
bellard 已提交
2736 2737 2738
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
@item -s size
Set the x86 stack size in bytes (default=524288)
B
blueswir1 已提交
2739
@item -cpu model
2740
Select CPU model (-cpu help for list and additional feature selection)
2741 2742 2743 2744
@item -E @var{var}=@var{value}
Set environment @var{var} to @var{value}.
@item -U @var{var}
Remove @var{var} from the environment.
P
Paul Brook 已提交
2745 2746
@item -B offset
Offset guest address by the specified number of bytes.  This is useful when
S
Stefan Weil 已提交
2747 2748
the address region required by guest applications is reserved on the host.
This option is currently only supported on some hosts.
P
Paul Brook 已提交
2749 2750
@item -R size
Pre-allocate a guest virtual address space of the given size (in bytes).
S
Stefan Weil 已提交
2751
"G", "M", and "k" suffixes may be used when specifying the size.
B
bellard 已提交
2752 2753
@end table

B
bellard 已提交
2754
Debug options:
B
bellard 已提交
2755

B
bellard 已提交
2756
@table @option
2757 2758
@item -d item1,...
Activate logging of the specified items (use '-d help' for a list of log items)
B
bellard 已提交
2759 2760
@item -p pagesize
Act as if the host page size was 'pagesize' bytes
B
blueswir1 已提交
2761 2762
@item -g port
Wait gdb connection to port
2763 2764
@item -singlestep
Run the emulation in single step mode.
B
bellard 已提交
2765
@end table
B
bellard 已提交
2766

2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
Environment variables:

@table @env
@item QEMU_STRACE
Print system calls and arguments similar to the 'strace' program
(NOTE: the actual 'strace' program will not work because the user
space emulator hasn't implemented ptrace).  At the moment this is
incomplete.  All system calls that don't have a specific argument
format are printed with information for six arguments.  Many
flag-style arguments don't have decoders and will show up as numbers.
T
ths 已提交
2777
@end table
2778

P
pbrook 已提交
2779
@node Other binaries
B
bellard 已提交
2780
@subsection Other binaries
P
pbrook 已提交
2781

2782 2783 2784 2785 2786 2787 2788
@cindex user mode (Alpha)
@command{qemu-alpha} TODO.

@cindex user mode (ARM)
@command{qemu-armeb} TODO.

@cindex user mode (ARM)
P
pbrook 已提交
2789 2790 2791 2792
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
configurations), and arm-uclinux bFLT format binaries.

2793 2794
@cindex user mode (ColdFire)
@cindex user mode (M68K)
P
pbrook 已提交
2795 2796 2797 2798
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
coldfire uClinux bFLT format binaries.

P
pbrook 已提交
2799 2800
The binary format is detected automatically.

2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
@cindex user mode (Cris)
@command{qemu-cris} TODO.

@cindex user mode (i386)
@command{qemu-i386} TODO.
@command{qemu-x86_64} TODO.

@cindex user mode (Microblaze)
@command{qemu-microblaze} TODO.

@cindex user mode (MIPS)
@command{qemu-mips} TODO.
@command{qemu-mipsel} TODO.

@cindex user mode (PowerPC)
@command{qemu-ppc64abi32} TODO.
@command{qemu-ppc64} TODO.
@command{qemu-ppc} TODO.

@cindex user mode (SH4)
@command{qemu-sh4eb} TODO.
@command{qemu-sh4} TODO.

@cindex user mode (SPARC)
B
blueswir1 已提交
2825 2826
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).

B
blueswir1 已提交
2827 2828 2829 2830 2831 2832
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
(Sparc64 CPU, 32 bit ABI).

@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).

B
blueswir1 已提交
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
@node BSD User space emulator
@section BSD User space emulator

@menu
* BSD Status::
* BSD Quick Start::
* BSD Command line options::
@end menu

@node BSD Status
@subsection BSD Status

@itemize @minus
@item
target Sparc64 on Sparc64: Some trivial programs work.
@end itemize

@node BSD Quick Start
@subsection Quick Start

In order to launch a BSD process, QEMU needs the process executable
itself and all the target dynamic libraries used by it.

@itemize

@item On Sparc64, you can just try to launch any process by using the native
libraries:

@example
qemu-sparc64 /bin/ls
@end example

@end itemize

@node BSD Command line options
@subsection Command line options

@example
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
@end example

@table @option
@item -h
Print the help
@item -L path
Set the library root path (default=/)
@item -s size
Set the stack size in bytes (default=524288)
2881 2882
@item -ignore-environment
Start with an empty environment. Without this option,
S
Stefan Weil 已提交
2883
the initial environment is a copy of the caller's environment.
2884 2885 2886 2887
@item -E @var{var}=@var{value}
Set environment @var{var} to @var{value}.
@item -U @var{var}
Remove @var{var} from the environment.
B
blueswir1 已提交
2888 2889 2890 2891 2892 2893 2894 2895
@item -bsd type
Set the type of the emulated BSD Operating system. Valid values are
FreeBSD, NetBSD and OpenBSD (default).
@end table

Debug options:

@table @option
2896 2897
@item -d item1,...
Activate logging of the specified items (use '-d help' for a list of log items)
B
blueswir1 已提交
2898 2899
@item -p pagesize
Act as if the host page size was 'pagesize' bytes
2900 2901
@item -singlestep
Run the emulation in single step mode.
B
blueswir1 已提交
2902 2903
@end table

B
bellard 已提交
2904 2905 2906
@node compilation
@chapter Compilation from the sources

B
bellard 已提交
2907 2908 2909 2910 2911
@menu
* Linux/Unix::
* Windows::
* Cross compilation for Windows with Linux::
* Mac OS X::
2912
* Make targets::
B
bellard 已提交
2913 2914 2915
@end menu

@node Linux/Unix
B
update  
bellard 已提交
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
@section Linux/Unix

@subsection Compilation

First you must decompress the sources:
@example
cd /tmp
tar zxvf qemu-x.y.z.tar.gz
cd qemu-x.y.z
@end example

Then you configure QEMU and build it (usually no options are needed):
@example
./configure
make
@end example

Then type as root user:
@example
make install
@end example
to install QEMU in @file{/usr/local}.

B
bellard 已提交
2939
@node Windows
B
bellard 已提交
2940 2941 2942 2943 2944 2945 2946
@section Windows

@itemize
@item Install the current versions of MSYS and MinGW from
@url{http://www.mingw.org/}. You can find detailed installation
instructions in the download section and the FAQ.

2947
@item Download
B
bellard 已提交
2948
the MinGW development library of SDL 1.2.x
B
bellard 已提交
2949
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2950 2951
@url{http://www.libsdl.org}. Unpack it in a temporary place and
edit the @file{sdl-config} script so that it gives the
B
bellard 已提交
2952 2953
correct SDL directory when invoked.

2954 2955
@item Install the MinGW version of zlib and make sure
@file{zlib.h} and @file{libz.dll.a} are in
S
Stefan Weil 已提交
2956
MinGW's default header and linker search paths.
2957

B
bellard 已提交
2958
@item Extract the current version of QEMU.
2959

B
bellard 已提交
2960 2961
@item Start the MSYS shell (file @file{msys.bat}).

2962
@item Change to the QEMU directory. Launch @file{./configure} and
B
bellard 已提交
2963 2964 2965
@file{make}.  If you have problems using SDL, verify that
@file{sdl-config} can be launched from the MSYS command line.

2966
@item You can install QEMU in @file{Program Files/QEMU} by typing
B
bellard 已提交
2967
@file{make install}. Don't forget to copy @file{SDL.dll} in
2968
@file{Program Files/QEMU}.
B
bellard 已提交
2969 2970 2971

@end itemize

B
bellard 已提交
2972
@node Cross compilation for Windows with Linux
B
bellard 已提交
2973 2974 2975 2976 2977 2978 2979
@section Cross compilation for Windows with Linux

@itemize
@item
Install the MinGW cross compilation tools available at
@url{http://www.mingw.org/}.

2980 2981 2982 2983 2984 2985 2986
@item Download
the MinGW development library of SDL 1.2.x
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
@url{http://www.libsdl.org}. Unpack it in a temporary place and
edit the @file{sdl-config} script so that it gives the
correct SDL directory when invoked.  Set up the @code{PATH} environment
variable so that @file{sdl-config} can be launched by
B
bellard 已提交
2987 2988
the QEMU configuration script.

2989 2990
@item Install the MinGW version of zlib and make sure
@file{zlib.h} and @file{libz.dll.a} are in
S
Stefan Weil 已提交
2991
MinGW's default header and linker search paths.
2992

2993
@item
B
bellard 已提交
2994 2995
Configure QEMU for Windows cross compilation:
@example
2996 2997 2998 2999
PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
@end example
The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
S
Stefan Weil 已提交
3000
We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
3001
use --cross-prefix to specify the name of the cross compiler.
3002
You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
3003 3004 3005 3006

Under Fedora Linux, you can run:
@example
yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
B
bellard 已提交
3007
@end example
3008
to get a suitable cross compilation environment.
B
bellard 已提交
3009

3010
@item You can install QEMU in the installation directory by typing
3011
@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
3012
installation directory.
B
bellard 已提交
3013 3014 3015

@end itemize

3016 3017
Wine can be used to launch the resulting qemu-system-i386.exe
and all other qemu-system-@var{target}.exe compiled for Win32.
B
bellard 已提交
3018

B
bellard 已提交
3019
@node Mac OS X
B
bellard 已提交
3020 3021 3022 3023 3024 3025
@section Mac OS X

The Mac OS X patches are not fully merged in QEMU, so you should look
at the QEMU mailing list archive to have all the necessary
information.

3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
@node Make targets
@section Make targets

@table @code

@item make
@item make all
Make everything which is typically needed.

@item install
TODO

@item install-doc
TODO

@item make clean
Remove most files which were built during make.

@item make distclean
Remove everything which was built during make.

@item make dvi
@item make html
@item make info
@item make pdf
Create documentation in dvi, html, info or pdf format.

@item make cscope
TODO

@item make defconfig
(Re-)create some build configuration files.
User made changes will be overwritten.

@item tar
@item tarbin
TODO

@end table

3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
@node License
@appendix License

QEMU is a trademark of Fabrice Bellard.

QEMU is released under the GNU General Public License (TODO: add link).
Parts of QEMU have specific licenses, see file LICENSE.

TODO (refer to file LICENSE, include it, include the GPL?)

B
bellard 已提交
3076
@node Index
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
@appendix Index
@menu
* Concept Index::
* Function Index::
* Keystroke Index::
* Program Index::
* Data Type Index::
* Variable Index::
@end menu

@node Concept Index
@section Concept Index
This is the main index. Should we combine all keywords in one index? TODO
B
bellard 已提交
3090 3091
@printindex cp

3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
@node Function Index
@section Function Index
This index could be used for command line options and monitor functions.
@printindex fn

@node Keystroke Index
@section Keystroke Index

This is a list of all keystrokes which have a special function
in system emulation.

@printindex ky

@node Program Index
@section Program Index
@printindex pg

@node Data Type Index
@section Data Type Index

This index could be used for qdev device names and options.

@printindex tp

@node Variable Index
@section Variable Index
@printindex vr

B
bellard 已提交
3120
@bye