exec.c 121.7 KB
Newer Older
B
bellard 已提交
1
/*
2
 *  Virtual page mapping
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
P
Peter Maydell 已提交
19
#include "qemu/osdep.h"
20
#include "qapi/error.h"
B
bellard 已提交
21

22
#include "qemu/cutils.h"
B
bellard 已提交
23
#include "cpu.h"
24
#include "exec/exec-all.h"
25
#include "exec/target_page.h"
B
bellard 已提交
26
#include "tcg.h"
27
#include "hw/qdev-core.h"
F
Fam Zheng 已提交
28
#include "hw/qdev-properties.h"
29
#if !defined(CONFIG_USER_ONLY)
30
#include "hw/boards.h"
31
#include "hw/xen/xen.h"
32
#endif
33
#include "sysemu/kvm.h"
34
#include "sysemu/sysemu.h"
35 36
#include "qemu/timer.h"
#include "qemu/config-file.h"
37
#include "qemu/error-report.h"
38
#if defined(CONFIG_USER_ONLY)
39
#include "qemu.h"
J
Jun Nakajima 已提交
40
#else /* !CONFIG_USER_ONLY */
41 42
#include "hw/hw.h"
#include "exec/memory.h"
P
Paolo Bonzini 已提交
43
#include "exec/ioport.h"
44
#include "sysemu/dma.h"
45
#include "sysemu/numa.h"
46
#include "sysemu/hw_accel.h"
47
#include "exec/address-spaces.h"
48
#include "sysemu/xen-mapcache.h"
49
#include "trace-root.h"
50

51 52 53 54
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
#include <linux/falloc.h>
#endif

55
#endif
M
Mike Day 已提交
56
#include "qemu/rcu_queue.h"
57
#include "qemu/main-loop.h"
58
#include "translate-all.h"
59
#include "sysemu/replay.h"
60

61
#include "exec/memory-internal.h"
62
#include "exec/ram_addr.h"
63
#include "exec/log.h"
64

65 66
#include "migration/vmstate.h"

67
#include "qemu/range.h"
68 69 70
#ifndef _WIN32
#include "qemu/mmap-alloc.h"
#endif
71

72 73
#include "monitor/monitor.h"

74
//#define DEBUG_SUBPAGE
T
ths 已提交
75

76
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
77 78 79
/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
 * are protected by the ramlist lock.
 */
M
Mike Day 已提交
80
RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
A
Avi Kivity 已提交
81 82

static MemoryRegion *system_memory;
83
static MemoryRegion *system_io;
A
Avi Kivity 已提交
84

85 86
AddressSpace address_space_io;
AddressSpace address_space_memory;
87

88
MemoryRegion io_mem_rom, io_mem_notdirty;
89
static MemoryRegion io_mem_unassigned;
90

91 92 93
/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
#define RAM_PREALLOC   (1 << 0)

94 95 96
/* RAM is mmap-ed with MAP_SHARED */
#define RAM_SHARED     (1 << 1)

97 98 99 100 101
/* Only a portion of RAM (used_length) is actually used, and migrated.
 * This used_length size can change across reboots.
 */
#define RAM_RESIZEABLE (1 << 2)

102 103 104 105 106
/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
 * zero the page and wake waiting processes.
 * (Set during postcopy)
 */
#define RAM_UF_ZEROPAGE (1 << 3)
107 108 109

/* RAM can be migrated */
#define RAM_MIGRATABLE (1 << 4)
110
#endif
111

112 113 114 115 116
#ifdef TARGET_PAGE_BITS_VARY
int target_page_bits;
bool target_page_bits_decided;
#endif

A
Andreas Färber 已提交
117
struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
B
bellard 已提交
118 119
/* current CPU in the current thread. It is only valid inside
   cpu_exec() */
P
Paolo Bonzini 已提交
120
__thread CPUState *current_cpu;
P
pbrook 已提交
121
/* 0 = Do not count executed instructions.
T
ths 已提交
122
   1 = Precise instruction counting.
P
pbrook 已提交
123
   2 = Adaptive rate instruction counting.  */
124
int use_icount;
B
bellard 已提交
125

Y
Yang Zhong 已提交
126 127 128
uintptr_t qemu_host_page_size;
intptr_t qemu_host_page_mask;

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
bool set_preferred_target_page_bits(int bits)
{
    /* The target page size is the lowest common denominator for all
     * the CPUs in the system, so we can only make it smaller, never
     * larger. And we can't make it smaller once we've committed to
     * a particular size.
     */
#ifdef TARGET_PAGE_BITS_VARY
    assert(bits >= TARGET_PAGE_BITS_MIN);
    if (target_page_bits == 0 || target_page_bits > bits) {
        if (target_page_bits_decided) {
            return false;
        }
        target_page_bits = bits;
    }
#endif
    return true;
}

148
#if !defined(CONFIG_USER_ONLY)
149

150 151 152 153 154 155 156 157 158 159
static void finalize_target_page_bits(void)
{
#ifdef TARGET_PAGE_BITS_VARY
    if (target_page_bits == 0) {
        target_page_bits = TARGET_PAGE_BITS_MIN;
    }
    target_page_bits_decided = true;
#endif
}

160 161 162
typedef struct PhysPageEntry PhysPageEntry;

struct PhysPageEntry {
M
Michael S. Tsirkin 已提交
163
    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
164
    uint32_t skip : 6;
M
Michael S. Tsirkin 已提交
165
     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
166
    uint32_t ptr : 26;
167 168
};

169 170
#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)

171
/* Size of the L2 (and L3, etc) page tables.  */
172
#define ADDR_SPACE_BITS 64
173

M
Michael S. Tsirkin 已提交
174
#define P_L2_BITS 9
175 176 177 178 179
#define P_L2_SIZE (1 << P_L2_BITS)

#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)

typedef PhysPageEntry Node[P_L2_SIZE];
180

181
typedef struct PhysPageMap {
182 183
    struct rcu_head rcu;

184 185 186 187 188 189 190 191
    unsigned sections_nb;
    unsigned sections_nb_alloc;
    unsigned nodes_nb;
    unsigned nodes_nb_alloc;
    Node *nodes;
    MemoryRegionSection *sections;
} PhysPageMap;

192
struct AddressSpaceDispatch {
193
    MemoryRegionSection *mru_section;
194 195 196 197
    /* This is a multi-level map on the physical address space.
     * The bottom level has pointers to MemoryRegionSections.
     */
    PhysPageEntry phys_map;
198
    PhysPageMap map;
199 200
};

201 202 203
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
typedef struct subpage_t {
    MemoryRegion iomem;
204
    FlatView *fv;
205
    hwaddr base;
206
    uint16_t sub_section[];
207 208
} subpage_t;

209 210 211 212
#define PHYS_SECTION_UNASSIGNED 0
#define PHYS_SECTION_NOTDIRTY 1
#define PHYS_SECTION_ROM 2
#define PHYS_SECTION_WATCH 3
213

214
static void io_mem_init(void);
A
Avi Kivity 已提交
215
static void memory_map_init(void);
216
static void tcg_commit(MemoryListener *listener);
217

218
static MemoryRegion io_mem_watch;
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

/**
 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 * @cpu: the CPU whose AddressSpace this is
 * @as: the AddressSpace itself
 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 * @tcg_as_listener: listener for tracking changes to the AddressSpace
 */
struct CPUAddressSpace {
    CPUState *cpu;
    AddressSpace *as;
    struct AddressSpaceDispatch *memory_dispatch;
    MemoryListener tcg_as_listener;
};

234 235 236 237 238 239
struct DirtyBitmapSnapshot {
    ram_addr_t start;
    ram_addr_t end;
    unsigned long dirty[];
};

240
#endif
B
bellard 已提交
241

242
#if !defined(CONFIG_USER_ONLY)
243

244
static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
245
{
246
    static unsigned alloc_hint = 16;
247
    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
248
        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
249 250
        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
251
        alloc_hint = map->nodes_nb_alloc;
252
    }
253 254
}

255
static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
256 257
{
    unsigned i;
258
    uint32_t ret;
259 260
    PhysPageEntry e;
    PhysPageEntry *p;
261

262
    ret = map->nodes_nb++;
263
    p = map->nodes[ret];
264
    assert(ret != PHYS_MAP_NODE_NIL);
265
    assert(ret != map->nodes_nb_alloc);
266 267 268

    e.skip = leaf ? 0 : 1;
    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
269
    for (i = 0; i < P_L2_SIZE; ++i) {
270
        memcpy(&p[i], &e, sizeof(e));
271
    }
272
    return ret;
273 274
}

275 276
static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
                                hwaddr *index, hwaddr *nb, uint16_t leaf,
277
                                int level)
278 279
{
    PhysPageEntry *p;
280
    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
281

M
Michael S. Tsirkin 已提交
282
    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
283
        lp->ptr = phys_map_node_alloc(map, level == 0);
B
bellard 已提交
284
    }
285
    p = map->nodes[lp->ptr];
286
    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
287

288
    while (*nb && lp < &p[P_L2_SIZE]) {
289
        if ((*index & (step - 1)) == 0 && *nb >= step) {
M
Michael S. Tsirkin 已提交
290
            lp->skip = 0;
291
            lp->ptr = leaf;
292 293
            *index += step;
            *nb -= step;
294
        } else {
295
            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
296 297
        }
        ++lp;
298 299 300
    }
}

A
Avi Kivity 已提交
301
static void phys_page_set(AddressSpaceDispatch *d,
A
Avi Kivity 已提交
302
                          hwaddr index, hwaddr nb,
303
                          uint16_t leaf)
304
{
305
    /* Wildly overreserve - it doesn't matter much. */
306
    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
307

308
    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
B
bellard 已提交
309 310
}

311 312 313
/* Compact a non leaf page entry. Simply detect that the entry has a single child,
 * and update our entry so we can skip it and go directly to the destination.
 */
314
static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
{
    unsigned valid_ptr = P_L2_SIZE;
    int valid = 0;
    PhysPageEntry *p;
    int i;

    if (lp->ptr == PHYS_MAP_NODE_NIL) {
        return;
    }

    p = nodes[lp->ptr];
    for (i = 0; i < P_L2_SIZE; i++) {
        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
            continue;
        }

        valid_ptr = i;
        valid++;
        if (p[i].skip) {
334
            phys_page_compact(&p[i], nodes);
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
        }
    }

    /* We can only compress if there's only one child. */
    if (valid != 1) {
        return;
    }

    assert(valid_ptr < P_L2_SIZE);

    /* Don't compress if it won't fit in the # of bits we have. */
    if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
        return;
    }

    lp->ptr = p[valid_ptr].ptr;
    if (!p[valid_ptr].skip) {
        /* If our only child is a leaf, make this a leaf. */
        /* By design, we should have made this node a leaf to begin with so we
         * should never reach here.
         * But since it's so simple to handle this, let's do it just in case we
         * change this rule.
         */
        lp->skip = 0;
    } else {
        lp->skip += p[valid_ptr].skip;
    }
}

364
void address_space_dispatch_compact(AddressSpaceDispatch *d)
365 366
{
    if (d->phys_map.skip) {
367
        phys_page_compact(&d->phys_map, d->map.nodes);
368 369 370
    }
}

F
Fam Zheng 已提交
371 372 373 374 375 376
static inline bool section_covers_addr(const MemoryRegionSection *section,
                                       hwaddr addr)
{
    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
     * the section must cover the entire address space.
     */
377
    return int128_gethi(section->size) ||
F
Fam Zheng 已提交
378
           range_covers_byte(section->offset_within_address_space,
379
                             int128_getlo(section->size), addr);
F
Fam Zheng 已提交
380 381
}

382
static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
B
bellard 已提交
383
{
384 385 386
    PhysPageEntry lp = d->phys_map, *p;
    Node *nodes = d->map.nodes;
    MemoryRegionSection *sections = d->map.sections;
387
    hwaddr index = addr >> TARGET_PAGE_BITS;
388
    int i;
389

M
Michael S. Tsirkin 已提交
390
    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
391
        if (lp.ptr == PHYS_MAP_NODE_NIL) {
392
            return &sections[PHYS_SECTION_UNASSIGNED];
393
        }
394
        p = nodes[lp.ptr];
395
        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
396
    }
397

F
Fam Zheng 已提交
398
    if (section_covers_addr(&sections[lp.ptr], addr)) {
399 400 401 402
        return &sections[lp.ptr];
    } else {
        return &sections[PHYS_SECTION_UNASSIGNED];
    }
403 404
}

B
Blue Swirl 已提交
405 406
bool memory_region_is_unassigned(MemoryRegion *mr)
{
P
Paolo Bonzini 已提交
407
    return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
408
        && mr != &io_mem_watch;
B
bellard 已提交
409
}
410

411
/* Called from RCU critical section */
412
static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
413 414
                                                        hwaddr addr,
                                                        bool resolve_subpage)
415
{
416
    MemoryRegionSection *section = atomic_read(&d->mru_section);
417 418
    subpage_t *subpage;

419 420
    if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
        !section_covers_addr(section, addr)) {
421
        section = phys_page_find(d, addr);
422
        atomic_set(&d->mru_section, section);
423
    }
424 425
    if (resolve_subpage && section->mr->subpage) {
        subpage = container_of(section->mr, subpage_t, iomem);
426
        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
427 428
    }
    return section;
429 430
}

431
/* Called from RCU critical section */
432
static MemoryRegionSection *
433
address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
434
                                 hwaddr *plen, bool resolve_subpage)
435 436
{
    MemoryRegionSection *section;
437
    MemoryRegion *mr;
438
    Int128 diff;
439

440
    section = address_space_lookup_region(d, addr, resolve_subpage);
441 442 443 444 445 446
    /* Compute offset within MemoryRegionSection */
    addr -= section->offset_within_address_space;

    /* Compute offset within MemoryRegion */
    *xlat = addr + section->offset_within_region;

447
    mr = section->mr;
448 449 450 451 452 453 454 455 456 457 458 459

    /* MMIO registers can be expected to perform full-width accesses based only
     * on their address, without considering adjacent registers that could
     * decode to completely different MemoryRegions.  When such registers
     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
     * regions overlap wildly.  For this reason we cannot clamp the accesses
     * here.
     *
     * If the length is small (as is the case for address_space_ldl/stl),
     * everything works fine.  If the incoming length is large, however,
     * the caller really has to do the clamping through memory_access_size.
     */
460
    if (memory_region_is_ram(mr)) {
461
        diff = int128_sub(section->size, int128_make64(addr));
462 463
        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
    }
464 465
    return section;
}
466

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
/**
 * address_space_translate_iommu - translate an address through an IOMMU
 * memory region and then through the target address space.
 *
 * @iommu_mr: the IOMMU memory region that we start the translation from
 * @addr: the address to be translated through the MMU
 * @xlat: the translated address offset within the destination memory region.
 *        It cannot be %NULL.
 * @plen_out: valid read/write length of the translated address. It
 *            cannot be %NULL.
 * @page_mask_out: page mask for the translated address. This
 *            should only be meaningful for IOMMU translated
 *            addresses, since there may be huge pages that this bit
 *            would tell. It can be %NULL if we don't care about it.
 * @is_write: whether the translation operation is for write
 * @is_mmio: whether this can be MMIO, set true if it can
 * @target_as: the address space targeted by the IOMMU
484
 * @attrs: transaction attributes
485 486 487 488 489 490 491 492 493 494
 *
 * This function is called from RCU critical section.  It is the common
 * part of flatview_do_translate and address_space_translate_cached.
 */
static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
                                                         hwaddr *xlat,
                                                         hwaddr *plen_out,
                                                         hwaddr *page_mask_out,
                                                         bool is_write,
                                                         bool is_mmio,
495 496
                                                         AddressSpace **target_as,
                                                         MemTxAttrs attrs)
497 498 499 500 501 502 503
{
    MemoryRegionSection *section;
    hwaddr page_mask = (hwaddr)-1;

    do {
        hwaddr addr = *xlat;
        IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
504 505 506 507 508 509 510 511 512
        int iommu_idx = 0;
        IOMMUTLBEntry iotlb;

        if (imrc->attrs_to_index) {
            iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
        }

        iotlb = imrc->translate(iommu_mr, addr, is_write ?
                                IOMMU_WO : IOMMU_RO, iommu_idx);
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539

        if (!(iotlb.perm & (1 << is_write))) {
            goto unassigned;
        }

        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
                | (addr & iotlb.addr_mask));
        page_mask &= iotlb.addr_mask;
        *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
        *target_as = iotlb.target_as;

        section = address_space_translate_internal(
                address_space_to_dispatch(iotlb.target_as), addr, xlat,
                plen_out, is_mmio);

        iommu_mr = memory_region_get_iommu(section->mr);
    } while (unlikely(iommu_mr));

    if (page_mask_out) {
        *page_mask_out = page_mask;
    }
    return *section;

unassigned:
    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
/**
 * flatview_do_translate - translate an address in FlatView
 *
 * @fv: the flat view that we want to translate on
 * @addr: the address to be translated in above address space
 * @xlat: the translated address offset within memory region. It
 *        cannot be @NULL.
 * @plen_out: valid read/write length of the translated address. It
 *            can be @NULL when we don't care about it.
 * @page_mask_out: page mask for the translated address. This
 *            should only be meaningful for IOMMU translated
 *            addresses, since there may be huge pages that this bit
 *            would tell. It can be @NULL if we don't care about it.
 * @is_write: whether the translation operation is for write
 * @is_mmio: whether this can be MMIO, set true if it can
555
 * @target_as: the address space targeted by the IOMMU
556
 * @attrs: memory transaction attributes
557 558 559
 *
 * This function is called from RCU critical section
 */
560 561 562
static MemoryRegionSection flatview_do_translate(FlatView *fv,
                                                 hwaddr addr,
                                                 hwaddr *xlat,
563 564
                                                 hwaddr *plen_out,
                                                 hwaddr *page_mask_out,
565 566
                                                 bool is_write,
                                                 bool is_mmio,
567 568
                                                 AddressSpace **target_as,
                                                 MemTxAttrs attrs)
569 570
{
    MemoryRegionSection *section;
571
    IOMMUMemoryRegion *iommu_mr;
572 573
    hwaddr plen = (hwaddr)(-1);

574 575
    if (!plen_out) {
        plen_out = &plen;
576
    }
577

578 579 580
    section = address_space_translate_internal(
            flatview_to_dispatch(fv), addr, xlat,
            plen_out, is_mmio);
581

582 583 584 585 586
    iommu_mr = memory_region_get_iommu(section->mr);
    if (unlikely(iommu_mr)) {
        return address_space_translate_iommu(iommu_mr, xlat,
                                             plen_out, page_mask_out,
                                             is_write, is_mmio,
587
                                             target_as, attrs);
588
    }
589
    if (page_mask_out) {
590 591
        /* Not behind an IOMMU, use default page size. */
        *page_mask_out = ~TARGET_PAGE_MASK;
592 593
    }

594
    return *section;
595 596 597
}

/* Called from RCU critical section */
598
IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
599
                                            bool is_write, MemTxAttrs attrs)
600
{
601
    MemoryRegionSection section;
602
    hwaddr xlat, page_mask;
A
Avi Kivity 已提交
603

604 605 606 607 608
    /*
     * This can never be MMIO, and we don't really care about plen,
     * but page mask.
     */
    section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
609 610
                                    NULL, &page_mask, is_write, false, &as,
                                    attrs);
A
Avi Kivity 已提交
611

612 613 614 615
    /* Illegal translation */
    if (section.mr == &io_mem_unassigned) {
        goto iotlb_fail;
    }
A
Avi Kivity 已提交
616

617 618 619 620 621
    /* Convert memory region offset into address space offset */
    xlat += section.offset_within_address_space -
        section.offset_within_region;

    return (IOMMUTLBEntry) {
622
        .target_as = as,
623 624 625
        .iova = addr & ~page_mask,
        .translated_addr = xlat & ~page_mask,
        .addr_mask = page_mask,
626 627 628 629 630 631 632 633 634
        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
        .perm = IOMMU_RW,
    };

iotlb_fail:
    return (IOMMUTLBEntry) {0};
}

/* Called from RCU critical section */
635
MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
636 637
                                 hwaddr *plen, bool is_write,
                                 MemTxAttrs attrs)
638 639 640
{
    MemoryRegion *mr;
    MemoryRegionSection section;
641
    AddressSpace *as = NULL;
642 643

    /* This can be MMIO, so setup MMIO bit. */
644
    section = flatview_do_translate(fv, addr, xlat, plen, NULL,
645
                                    is_write, true, &as, attrs);
646 647
    mr = section.mr;

648
    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
649
        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
650
        *plen = MIN(page, *plen);
651 652
    }

A
Avi Kivity 已提交
653
    return mr;
654 655
}

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
typedef struct TCGIOMMUNotifier {
    IOMMUNotifier n;
    MemoryRegion *mr;
    CPUState *cpu;
    int iommu_idx;
    bool active;
} TCGIOMMUNotifier;

static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
{
    TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);

    if (!notifier->active) {
        return;
    }
    tlb_flush(notifier->cpu);
    notifier->active = false;
    /* We leave the notifier struct on the list to avoid reallocating it later.
     * Generally the number of IOMMUs a CPU deals with will be small.
     * In any case we can't unregister the iommu notifier from a notify
     * callback.
     */
}

static void tcg_register_iommu_notifier(CPUState *cpu,
                                        IOMMUMemoryRegion *iommu_mr,
                                        int iommu_idx)
{
    /* Make sure this CPU has an IOMMU notifier registered for this
     * IOMMU/IOMMU index combination, so that we can flush its TLB
     * when the IOMMU tells us the mappings we've cached have changed.
     */
    MemoryRegion *mr = MEMORY_REGION(iommu_mr);
    TCGIOMMUNotifier *notifier;
    int i;

    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
        notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
        if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
            break;
        }
    }
    if (i == cpu->iommu_notifiers->len) {
        /* Not found, add a new entry at the end of the array */
        cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
        notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);

        notifier->mr = mr;
        notifier->iommu_idx = iommu_idx;
        notifier->cpu = cpu;
        /* Rather than trying to register interest in the specific part
         * of the iommu's address space that we've accessed and then
         * expand it later as subsequent accesses touch more of it, we
         * just register interest in the whole thing, on the assumption
         * that iommu reconfiguration will be rare.
         */
        iommu_notifier_init(&notifier->n,
                            tcg_iommu_unmap_notify,
                            IOMMU_NOTIFIER_UNMAP,
                            0,
                            HWADDR_MAX,
                            iommu_idx);
        memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
    }

    if (!notifier->active) {
        notifier->active = true;
    }
}

static void tcg_iommu_free_notifier_list(CPUState *cpu)
{
    /* Destroy the CPU's notifier list */
    int i;
    TCGIOMMUNotifier *notifier;

    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
        notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
        memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
    }
    g_array_free(cpu->iommu_notifiers, true);
}

739
/* Called from RCU critical section */
740
MemoryRegionSection *
741
address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
742 743
                                  hwaddr *xlat, hwaddr *plen,
                                  MemTxAttrs attrs, int *prot)
744
{
A
Avi Kivity 已提交
745
    MemoryRegionSection *section;
746 747 748 749
    IOMMUMemoryRegion *iommu_mr;
    IOMMUMemoryRegionClass *imrc;
    IOMMUTLBEntry iotlb;
    int iommu_idx;
750
    AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
751

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
    for (;;) {
        section = address_space_translate_internal(d, addr, &addr, plen, false);

        iommu_mr = memory_region_get_iommu(section->mr);
        if (!iommu_mr) {
            break;
        }

        imrc = memory_region_get_iommu_class_nocheck(iommu_mr);

        iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
        tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
        /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
         * doesn't short-cut its translation table walk.
         */
        iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
                | (addr & iotlb.addr_mask));
        /* Update the caller's prot bits to remove permissions the IOMMU
         * is giving us a failure response for. If we get down to no
         * permissions left at all we can give up now.
         */
        if (!(iotlb.perm & IOMMU_RO)) {
            *prot &= ~(PAGE_READ | PAGE_EXEC);
        }
        if (!(iotlb.perm & IOMMU_WO)) {
            *prot &= ~PAGE_WRITE;
        }

        if (!*prot) {
            goto translate_fail;
        }

        d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
    }
A
Avi Kivity 已提交
787

788
    assert(!memory_region_is_iommu(section->mr));
789
    *xlat = addr;
A
Avi Kivity 已提交
790
    return section;
791 792 793

translate_fail:
    return &d->map.sections[PHYS_SECTION_UNASSIGNED];
794
}
795
#endif
B
bellard 已提交
796

797
#if !defined(CONFIG_USER_ONLY)
798 799

static int cpu_common_post_load(void *opaque, int version_id)
B
bellard 已提交
800
{
801
    CPUState *cpu = opaque;
B
bellard 已提交
802

803 804
    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
       version_id is increased. */
805
    cpu->interrupt_request &= ~0x01;
806
    tlb_flush(cpu);
807

808 809 810 811 812 813 814
    /* loadvm has just updated the content of RAM, bypassing the
     * usual mechanisms that ensure we flush TBs for writes to
     * memory we've translated code from. So we must flush all TBs,
     * which will now be stale.
     */
    tb_flush(cpu);

815
    return 0;
B
bellard 已提交
816
}
B
bellard 已提交
817

818 819 820 821
static int cpu_common_pre_load(void *opaque)
{
    CPUState *cpu = opaque;

822
    cpu->exception_index = -1;
823 824 825 826 827 828 829 830

    return 0;
}

static bool cpu_common_exception_index_needed(void *opaque)
{
    CPUState *cpu = opaque;

831
    return tcg_enabled() && cpu->exception_index != -1;
832 833 834 835 836 837
}

static const VMStateDescription vmstate_cpu_common_exception_index = {
    .name = "cpu_common/exception_index",
    .version_id = 1,
    .minimum_version_id = 1,
838
    .needed = cpu_common_exception_index_needed,
839 840 841 842 843 844
    .fields = (VMStateField[]) {
        VMSTATE_INT32(exception_index, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
static bool cpu_common_crash_occurred_needed(void *opaque)
{
    CPUState *cpu = opaque;

    return cpu->crash_occurred;
}

static const VMStateDescription vmstate_cpu_common_crash_occurred = {
    .name = "cpu_common/crash_occurred",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = cpu_common_crash_occurred_needed,
    .fields = (VMStateField[]) {
        VMSTATE_BOOL(crash_occurred, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

863
const VMStateDescription vmstate_cpu_common = {
864 865 866
    .name = "cpu_common",
    .version_id = 1,
    .minimum_version_id = 1,
867
    .pre_load = cpu_common_pre_load,
868
    .post_load = cpu_common_post_load,
869
    .fields = (VMStateField[]) {
870 871
        VMSTATE_UINT32(halted, CPUState),
        VMSTATE_UINT32(interrupt_request, CPUState),
872
        VMSTATE_END_OF_LIST()
873
    },
874 875
    .subsections = (const VMStateDescription*[]) {
        &vmstate_cpu_common_exception_index,
876
        &vmstate_cpu_common_crash_occurred,
877
        NULL
878 879
    }
};
880

881
#endif
B
bellard 已提交
882

883
CPUState *qemu_get_cpu(int index)
B
bellard 已提交
884
{
A
Andreas Färber 已提交
885
    CPUState *cpu;
B
bellard 已提交
886

A
Andreas Färber 已提交
887
    CPU_FOREACH(cpu) {
888
        if (cpu->cpu_index == index) {
A
Andreas Färber 已提交
889
            return cpu;
890
        }
B
bellard 已提交
891
    }
892

A
Andreas Färber 已提交
893
    return NULL;
B
bellard 已提交
894 895
}

896
#if !defined(CONFIG_USER_ONLY)
P
Peter Xu 已提交
897 898
void cpu_address_space_init(CPUState *cpu, int asidx,
                            const char *prefix, MemoryRegion *mr)
899
{
900
    CPUAddressSpace *newas;
P
Peter Xu 已提交
901
    AddressSpace *as = g_new0(AddressSpace, 1);
902
    char *as_name;
P
Peter Xu 已提交
903 904

    assert(mr);
905 906 907
    as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
    address_space_init(as, mr, as_name);
    g_free(as_name);
908 909 910 911

    /* Target code should have set num_ases before calling us */
    assert(asidx < cpu->num_ases);

912 913 914 915 916
    if (asidx == 0) {
        /* address space 0 gets the convenience alias */
        cpu->as = as;
    }

917 918
    /* KVM cannot currently support multiple address spaces. */
    assert(asidx == 0 || !kvm_enabled());
919

920 921
    if (!cpu->cpu_ases) {
        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
922
    }
923

924 925 926
    newas = &cpu->cpu_ases[asidx];
    newas->cpu = cpu;
    newas->as = as;
927
    if (tcg_enabled()) {
928 929
        newas->tcg_as_listener.commit = tcg_commit;
        memory_listener_register(&newas->tcg_as_listener, as);
930
    }
931
}
932 933 934 935 936 937

AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
{
    /* Return the AddressSpace corresponding to the specified index */
    return cpu->cpu_ases[asidx].as;
}
938 939
#endif

940
void cpu_exec_unrealizefn(CPUState *cpu)
941
{
942 943
    CPUClass *cc = CPU_GET_CLASS(cpu);

944
    cpu_list_remove(cpu);
945 946 947 948 949 950 951

    if (cc->vmsd != NULL) {
        vmstate_unregister(NULL, cc->vmsd, cpu);
    }
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
        vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
    }
952 953 954
#ifndef CONFIG_USER_ONLY
    tcg_iommu_free_notifier_list(cpu);
#endif
955 956
}

F
Fam Zheng 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970
Property cpu_common_props[] = {
#ifndef CONFIG_USER_ONLY
    /* Create a memory property for softmmu CPU object,
     * so users can wire up its memory. (This can't go in qom/cpu.c
     * because that file is compiled only once for both user-mode
     * and system builds.) The default if no link is set up is to use
     * the system address space.
     */
    DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
                     MemoryRegion *),
#endif
    DEFINE_PROP_END_OF_LIST(),
};

L
Laurent Vivier 已提交
971
void cpu_exec_initfn(CPUState *cpu)
B
bellard 已提交
972
{
973
    cpu->as = NULL;
974
    cpu->num_ases = 0;
975

976 977
#ifndef CONFIG_USER_ONLY
    cpu->thread_id = qemu_get_thread_id();
978 979
    cpu->memory = system_memory;
    object_ref(OBJECT(cpu->memory));
980
#endif
L
Laurent Vivier 已提交
981 982
}

983
void cpu_exec_realizefn(CPUState *cpu, Error **errp)
L
Laurent Vivier 已提交
984
{
985
    CPUClass *cc = CPU_GET_CLASS(cpu);
986
    static bool tcg_target_initialized;
987

988
    cpu_list_add(cpu);
989

990 991
    if (tcg_enabled() && !tcg_target_initialized) {
        tcg_target_initialized = true;
992 993 994
        cc->tcg_initialize();
    }

995
#ifndef CONFIG_USER_ONLY
996
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
997
        vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
998
    }
999
    if (cc->vmsd != NULL) {
1000
        vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
1001
    }
1002 1003

    cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier));
1004
#endif
B
bellard 已提交
1005 1006
}

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
const char *parse_cpu_model(const char *cpu_model)
{
    ObjectClass *oc;
    CPUClass *cc;
    gchar **model_pieces;
    const char *cpu_type;

    model_pieces = g_strsplit(cpu_model, ",", 2);

    oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
    if (oc == NULL) {
        error_report("unable to find CPU model '%s'", model_pieces[0]);
        g_strfreev(model_pieces);
        exit(EXIT_FAILURE);
    }

    cpu_type = object_class_get_name(oc);
    cc = CPU_CLASS(oc);
    cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
    g_strfreev(model_pieces);
    return cpu_type;
}

1030
#if defined(CONFIG_USER_ONLY)
1031
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1032
{
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
    mmap_lock();
    tb_invalidate_phys_page_range(pc, pc + 1, 0);
    mmap_unlock();
}
#else
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
    MemTxAttrs attrs;
    hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    if (phys != -1) {
        /* Locks grabbed by tb_invalidate_phys_addr */
        tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1046
                                phys | (pc & ~TARGET_PAGE_MASK), attrs);
1047
    }
1048
}
1049
#endif
B
bellard 已提交
1050

1051
#if defined(CONFIG_USER_ONLY)
1052
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1053 1054 1055 1056

{
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
                          int flags)
{
    return -ENOSYS;
}

void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
{
}

1067
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1068 1069 1070 1071 1072
                          int flags, CPUWatchpoint **watchpoint)
{
    return -ENOSYS;
}
#else
1073
/* Add a watchpoint.  */
1074
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1075
                          int flags, CPUWatchpoint **watchpoint)
1076
{
1077
    CPUWatchpoint *wp;
1078

1079
    /* forbid ranges which are empty or run off the end of the address space */
1080
    if (len == 0 || (addr + len - 1) < addr) {
1081 1082
        error_report("tried to set invalid watchpoint at %"
                     VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1083 1084
        return -EINVAL;
    }
1085
    wp = g_malloc(sizeof(*wp));
1086 1087

    wp->vaddr = addr;
1088
    wp->len = len;
1089 1090
    wp->flags = flags;

1091
    /* keep all GDB-injected watchpoints in front */
1092 1093 1094 1095 1096
    if (flags & BP_GDB) {
        QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
    } else {
        QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
    }
1097

1098
    tlb_flush_page(cpu, addr);
1099 1100 1101 1102

    if (watchpoint)
        *watchpoint = wp;
    return 0;
1103 1104
}

1105
/* Remove a specific watchpoint.  */
1106
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1107
                          int flags)
1108
{
1109
    CPUWatchpoint *wp;
1110

1111
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1112
        if (addr == wp->vaddr && len == wp->len
1113
                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1114
            cpu_watchpoint_remove_by_ref(cpu, wp);
1115 1116 1117
            return 0;
        }
    }
1118
    return -ENOENT;
1119 1120
}

1121
/* Remove a specific watchpoint by reference.  */
1122
void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1123
{
1124
    QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1125

1126
    tlb_flush_page(cpu, watchpoint->vaddr);
1127

1128
    g_free(watchpoint);
1129 1130 1131
}

/* Remove all matching watchpoints.  */
1132
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1133
{
1134
    CPUWatchpoint *wp, *next;
1135

1136
    QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1137 1138 1139
        if (wp->flags & mask) {
            cpu_watchpoint_remove_by_ref(cpu, wp);
        }
1140
    }
1141
}
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162

/* Return true if this watchpoint address matches the specified
 * access (ie the address range covered by the watchpoint overlaps
 * partially or completely with the address range covered by the
 * access).
 */
static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
                                                  vaddr addr,
                                                  vaddr len)
{
    /* We know the lengths are non-zero, but a little caution is
     * required to avoid errors in the case where the range ends
     * exactly at the top of the address space and so addr + len
     * wraps round to zero.
     */
    vaddr wpend = wp->vaddr + wp->len - 1;
    vaddr addrend = addr + len - 1;

    return !(addr > wpend || wp->vaddr > addrend);
}

1163
#endif
1164

1165
/* Add a breakpoint.  */
1166
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1167
                          CPUBreakpoint **breakpoint)
B
bellard 已提交
1168
{
1169
    CPUBreakpoint *bp;
1170

1171
    bp = g_malloc(sizeof(*bp));
B
bellard 已提交
1172

1173 1174 1175
    bp->pc = pc;
    bp->flags = flags;

1176
    /* keep all GDB-injected breakpoints in front */
1177
    if (flags & BP_GDB) {
1178
        QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1179
    } else {
1180
        QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1181
    }
1182

1183
    breakpoint_invalidate(cpu, pc);
1184

1185
    if (breakpoint) {
1186
        *breakpoint = bp;
1187
    }
B
bellard 已提交
1188 1189 1190
    return 0;
}

1191
/* Remove a specific breakpoint.  */
1192
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1193 1194 1195
{
    CPUBreakpoint *bp;

1196
    QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1197
        if (bp->pc == pc && bp->flags == flags) {
1198
            cpu_breakpoint_remove_by_ref(cpu, bp);
1199 1200
            return 0;
        }
1201
    }
1202
    return -ENOENT;
1203 1204
}

1205
/* Remove a specific breakpoint by reference.  */
1206
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
B
bellard 已提交
1207
{
1208 1209 1210
    QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);

    breakpoint_invalidate(cpu, breakpoint->pc);
1211

1212
    g_free(breakpoint);
1213 1214 1215
}

/* Remove all matching breakpoints. */
1216
void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1217
{
1218
    CPUBreakpoint *bp, *next;
1219

1220
    QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1221 1222 1223
        if (bp->flags & mask) {
            cpu_breakpoint_remove_by_ref(cpu, bp);
        }
1224
    }
B
bellard 已提交
1225 1226
}

B
bellard 已提交
1227 1228
/* enable or disable single step mode. EXCP_DEBUG is returned by the
   CPU loop after each instruction */
1229
void cpu_single_step(CPUState *cpu, int enabled)
B
bellard 已提交
1230
{
1231 1232 1233
    if (cpu->singlestep_enabled != enabled) {
        cpu->singlestep_enabled = enabled;
        if (kvm_enabled()) {
1234
            kvm_update_guest_debug(cpu, 0);
1235
        } else {
S
Stuart Brady 已提交
1236
            /* must flush all the translated code to avoid inconsistencies */
1237
            /* XXX: only flush what is necessary */
1238
            tb_flush(cpu);
1239
        }
B
bellard 已提交
1240 1241 1242
    }
}

1243
void cpu_abort(CPUState *cpu, const char *fmt, ...)
B
bellard 已提交
1244 1245
{
    va_list ap;
P
pbrook 已提交
1246
    va_list ap2;
B
bellard 已提交
1247 1248

    va_start(ap, fmt);
P
pbrook 已提交
1249
    va_copy(ap2, ap);
B
bellard 已提交
1250 1251 1252
    fprintf(stderr, "qemu: fatal: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
1253
    cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1254
    if (qemu_log_separate()) {
1255
        qemu_log_lock();
1256 1257 1258
        qemu_log("qemu: fatal: ");
        qemu_log_vprintf(fmt, ap2);
        qemu_log("\n");
1259
        log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1260
        qemu_log_flush();
1261
        qemu_log_unlock();
1262
        qemu_log_close();
1263
    }
P
pbrook 已提交
1264
    va_end(ap2);
1265
    va_end(ap);
1266
    replay_finish();
1267 1268 1269 1270 1271
#if defined(CONFIG_USER_ONLY)
    {
        struct sigaction act;
        sigfillset(&act.sa_mask);
        act.sa_handler = SIG_DFL;
1272
        act.sa_flags = 0;
1273 1274 1275
        sigaction(SIGABRT, &act, NULL);
    }
#endif
B
bellard 已提交
1276 1277 1278
    abort();
}

1279
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
1280
/* Called from RCU critical section */
P
Paolo Bonzini 已提交
1281 1282 1283 1284
static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
{
    RAMBlock *block;

P
Paolo Bonzini 已提交
1285
    block = atomic_rcu_read(&ram_list.mru_block);
1286
    if (block && addr - block->offset < block->max_length) {
1287
        return block;
P
Paolo Bonzini 已提交
1288
    }
P
Peter Xu 已提交
1289
    RAMBLOCK_FOREACH(block) {
1290
        if (addr - block->offset < block->max_length) {
P
Paolo Bonzini 已提交
1291 1292 1293 1294 1295 1296 1297 1298
            goto found;
        }
    }

    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
    abort();

found:
P
Paolo Bonzini 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
    /* It is safe to write mru_block outside the iothread lock.  This
     * is what happens:
     *
     *     mru_block = xxx
     *     rcu_read_unlock()
     *                                        xxx removed from list
     *                  rcu_read_lock()
     *                  read mru_block
     *                                        mru_block = NULL;
     *                                        call_rcu(reclaim_ramblock, xxx);
     *                  rcu_read_unlock()
     *
     * atomic_rcu_set is not needed here.  The block was already published
     * when it was placed into the list.  Here we're just making an extra
     * copy of the pointer.
     */
P
Paolo Bonzini 已提交
1315 1316 1317 1318
    ram_list.mru_block = block;
    return block;
}

1319
static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
J
Juan Quintela 已提交
1320
{
1321
    CPUState *cpu;
P
Paolo Bonzini 已提交
1322
    ram_addr_t start1;
1323 1324 1325 1326 1327
    RAMBlock *block;
    ram_addr_t end;

    end = TARGET_PAGE_ALIGN(start + length);
    start &= TARGET_PAGE_MASK;
J
Juan Quintela 已提交
1328

M
Mike Day 已提交
1329
    rcu_read_lock();
P
Paolo Bonzini 已提交
1330 1331
    block = qemu_get_ram_block(start);
    assert(block == qemu_get_ram_block(end - 1));
1332
    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1333 1334 1335
    CPU_FOREACH(cpu) {
        tlb_reset_dirty(cpu, start1, length);
    }
M
Mike Day 已提交
1336
    rcu_read_unlock();
J
Juan Quintela 已提交
1337 1338
}

P
pbrook 已提交
1339
/* Note: start and end must be within the same ram block.  */
1340 1341 1342
bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
                                              ram_addr_t length,
                                              unsigned client)
1343
{
1344
    DirtyMemoryBlocks *blocks;
1345
    unsigned long end, page;
1346
    bool dirty = false;
1347 1348 1349 1350

    if (length == 0) {
        return false;
    }
B
bellard 已提交
1351

1352 1353
    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
    page = start >> TARGET_PAGE_BITS;
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369

    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);

    while (page < end) {
        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);

        dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
                                              offset, num);
        page += num;
    }

    rcu_read_unlock();
1370 1371

    if (dirty && tcg_enabled()) {
1372
        tlb_reset_dirty_range_all(start, length);
P
pbrook 已提交
1373
    }
1374 1375

    return dirty;
1376 1377
}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
     (ram_addr_t start, ram_addr_t length, unsigned client)
{
    DirtyMemoryBlocks *blocks;
    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
    DirtyBitmapSnapshot *snap;
    unsigned long page, end, dest;

    snap = g_malloc0(sizeof(*snap) +
                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
    snap->start = first;
    snap->end   = last;

    page = first >> TARGET_PAGE_BITS;
    end  = last  >> TARGET_PAGE_BITS;
    dest = 0;

    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);

    while (page < end) {
        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);

        assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
        assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
        offset >>= BITS_PER_LEVEL;

        bitmap_copy_and_clear_atomic(snap->dirty + dest,
                                     blocks->blocks[idx] + offset,
                                     num);
        page += num;
        dest += num >> BITS_PER_LEVEL;
    }

    rcu_read_unlock();

    if (tcg_enabled()) {
        tlb_reset_dirty_range_all(start, length);
    }

    return snap;
}

bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
                                            ram_addr_t start,
                                            ram_addr_t length)
{
    unsigned long page, end;

    assert(start >= snap->start);
    assert(start + length <= snap->end);

    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
    page = (start - snap->start) >> TARGET_PAGE_BITS;

    while (page < end) {
        if (test_bit(page, snap->dirty)) {
            return true;
        }
        page++;
    }
    return false;
}

1447
/* Called from RCU critical section */
1448
hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1449 1450 1451 1452 1453
                                       MemoryRegionSection *section,
                                       target_ulong vaddr,
                                       hwaddr paddr, hwaddr xlat,
                                       int prot,
                                       target_ulong *address)
B
Blue Swirl 已提交
1454
{
A
Avi Kivity 已提交
1455
    hwaddr iotlb;
B
Blue Swirl 已提交
1456 1457
    CPUWatchpoint *wp;

1458
    if (memory_region_is_ram(section->mr)) {
B
Blue Swirl 已提交
1459
        /* Normal RAM.  */
1460
        iotlb = memory_region_get_ram_addr(section->mr) + xlat;
B
Blue Swirl 已提交
1461
        if (!section->readonly) {
1462
            iotlb |= PHYS_SECTION_NOTDIRTY;
B
Blue Swirl 已提交
1463
        } else {
1464
            iotlb |= PHYS_SECTION_ROM;
B
Blue Swirl 已提交
1465 1466
        }
    } else {
1467 1468
        AddressSpaceDispatch *d;

1469
        d = flatview_to_dispatch(section->fv);
1470
        iotlb = section - d->map.sections;
1471
        iotlb += xlat;
B
Blue Swirl 已提交
1472 1473 1474 1475
    }

    /* Make accesses to pages with watchpoints go via the
       watchpoint trap routines.  */
1476
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1477
        if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
B
Blue Swirl 已提交
1478 1479
            /* Avoid trapping reads of pages with a write breakpoint. */
            if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1480
                iotlb = PHYS_SECTION_WATCH + paddr;
B
Blue Swirl 已提交
1481 1482 1483 1484 1485 1486 1487 1488
                *address |= TLB_MMIO;
                break;
            }
        }
    }

    return iotlb;
}
1489 1490
#endif /* defined(CONFIG_USER_ONLY) */

1491
#if !defined(CONFIG_USER_ONLY)
1492

A
Anthony Liguori 已提交
1493
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1494
                             uint16_t section);
1495
static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1496

1497
static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1498
                               qemu_anon_ram_alloc;
1499 1500 1501 1502 1503 1504

/*
 * Set a custom physical guest memory alloator.
 * Accelerators with unusual needs may need this.  Hopefully, we can
 * get rid of it eventually.
 */
1505
void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1506 1507 1508 1509
{
    phys_mem_alloc = alloc;
}

1510 1511
static uint16_t phys_section_add(PhysPageMap *map,
                                 MemoryRegionSection *section)
1512
{
1513 1514 1515 1516
    /* The physical section number is ORed with a page-aligned
     * pointer to produce the iotlb entries.  Thus it should
     * never overflow into the page-aligned value.
     */
1517
    assert(map->sections_nb < TARGET_PAGE_SIZE);
1518

1519 1520 1521 1522
    if (map->sections_nb == map->sections_nb_alloc) {
        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
        map->sections = g_renew(MemoryRegionSection, map->sections,
                                map->sections_nb_alloc);
1523
    }
1524
    map->sections[map->sections_nb] = *section;
P
Paolo Bonzini 已提交
1525
    memory_region_ref(section->mr);
1526
    return map->sections_nb++;
1527 1528
}

1529 1530
static void phys_section_destroy(MemoryRegion *mr)
{
D
Don Slutz 已提交
1531 1532
    bool have_sub_page = mr->subpage;

P
Paolo Bonzini 已提交
1533 1534
    memory_region_unref(mr);

D
Don Slutz 已提交
1535
    if (have_sub_page) {
1536
        subpage_t *subpage = container_of(mr, subpage_t, iomem);
P
Peter Crosthwaite 已提交
1537
        object_unref(OBJECT(&subpage->iomem));
1538 1539 1540 1541
        g_free(subpage);
    }
}

P
Paolo Bonzini 已提交
1542
static void phys_sections_free(PhysPageMap *map)
1543
{
1544 1545
    while (map->sections_nb > 0) {
        MemoryRegionSection *section = &map->sections[--map->sections_nb];
1546 1547
        phys_section_destroy(section->mr);
    }
1548 1549
    g_free(map->sections);
    g_free(map->nodes);
1550 1551
}

1552
static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1553
{
1554
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1555
    subpage_t *subpage;
A
Avi Kivity 已提交
1556
    hwaddr base = section->offset_within_address_space
1557
        & TARGET_PAGE_MASK;
1558
    MemoryRegionSection *existing = phys_page_find(d, base);
1559 1560
    MemoryRegionSection subsection = {
        .offset_within_address_space = base,
1561
        .size = int128_make64(TARGET_PAGE_SIZE),
1562
    };
A
Avi Kivity 已提交
1563
    hwaddr start, end;
1564

1565
    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1566

1567
    if (!(existing->mr->subpage)) {
1568 1569
        subpage = subpage_init(fv, base);
        subsection.fv = fv;
1570
        subsection.mr = &subpage->iomem;
A
Avi Kivity 已提交
1571
        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1572
                      phys_section_add(&d->map, &subsection));
1573
    } else {
1574
        subpage = container_of(existing->mr, subpage_t, iomem);
1575 1576
    }
    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1577
    end = start + int128_get64(section->size) - 1;
1578 1579
    subpage_register(subpage, start, end,
                     phys_section_add(&d->map, section));
1580 1581 1582
}


1583
static void register_multipage(FlatView *fv,
1584
                               MemoryRegionSection *section)
1585
{
1586
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
A
Avi Kivity 已提交
1587
    hwaddr start_addr = section->offset_within_address_space;
1588
    uint16_t section_index = phys_section_add(&d->map, section);
1589 1590
    uint64_t num_pages = int128_get64(int128_rshift(section->size,
                                                    TARGET_PAGE_BITS));
1591

1592 1593
    assert(num_pages);
    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1594 1595
}

1596
void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1597
{
1598
    MemoryRegionSection now = *section, remain = *section;
1599
    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1600

1601 1602 1603 1604
    if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
        uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
                       - now.offset_within_address_space;

1605
        now.size = int128_min(int128_make64(left), now.size);
1606
        register_subpage(fv, &now);
1607
    } else {
1608
        now.size = int128_zero();
1609
    }
1610 1611 1612 1613
    while (int128_ne(remain.size, now.size)) {
        remain.size = int128_sub(remain.size, now.size);
        remain.offset_within_address_space += int128_get64(now.size);
        remain.offset_within_region += int128_get64(now.size);
1614
        now = remain;
1615
        if (int128_lt(remain.size, page_size)) {
1616
            register_subpage(fv, &now);
1617
        } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1618
            now.size = page_size;
1619
            register_subpage(fv, &now);
1620
        } else {
1621
            now.size = int128_and(now.size, int128_neg(page_size));
1622
            register_multipage(fv, &now);
1623
        }
1624 1625 1626
    }
}

1627 1628 1629 1630 1631 1632
void qemu_flush_coalesced_mmio_buffer(void)
{
    if (kvm_enabled())
        kvm_flush_coalesced_mmio_buffer();
}

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
void qemu_mutex_lock_ramlist(void)
{
    qemu_mutex_lock(&ram_list.mutex);
}

void qemu_mutex_unlock_ramlist(void)
{
    qemu_mutex_unlock(&ram_list.mutex);
}

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
void ram_block_dump(Monitor *mon)
{
    RAMBlock *block;
    char *psize;

    rcu_read_lock();
    monitor_printf(mon, "%24s %8s  %18s %18s %18s\n",
                   "Block Name", "PSize", "Offset", "Used", "Total");
    RAMBLOCK_FOREACH(block) {
        psize = size_to_str(block->page_size);
        monitor_printf(mon, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
                       " 0x%016" PRIx64 "\n", block->idstr, psize,
                       (uint64_t)block->offset,
                       (uint64_t)block->used_length,
                       (uint64_t)block->max_length);
        g_free(psize);
    }
    rcu_read_unlock();
}

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
#ifdef __linux__
/*
 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
 * may or may not name the same files / on the same filesystem now as
 * when we actually open and map them.  Iterate over the file
 * descriptors instead, and use qemu_fd_getpagesize().
 */
static int find_max_supported_pagesize(Object *obj, void *opaque)
{
    long *hpsize_min = opaque;

    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1675 1676
        long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));

1677 1678
        if (hpsize < *hpsize_min) {
            *hpsize_min = hpsize;
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
        }
    }

    return 0;
}

long qemu_getrampagesize(void)
{
    long hpsize = LONG_MAX;
    long mainrampagesize;
    Object *memdev_root;

1691
    mainrampagesize = qemu_mempath_getpagesize(mem_path);
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734

    /* it's possible we have memory-backend objects with
     * hugepage-backed RAM. these may get mapped into system
     * address space via -numa parameters or memory hotplug
     * hooks. we want to take these into account, but we
     * also want to make sure these supported hugepage
     * sizes are applicable across the entire range of memory
     * we may boot from, so we take the min across all
     * backends, and assume normal pages in cases where a
     * backend isn't backed by hugepages.
     */
    memdev_root = object_resolve_path("/objects", NULL);
    if (memdev_root) {
        object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
    }
    if (hpsize == LONG_MAX) {
        /* No additional memory regions found ==> Report main RAM page size */
        return mainrampagesize;
    }

    /* If NUMA is disabled or the NUMA nodes are not backed with a
     * memory-backend, then there is at least one node using "normal" RAM,
     * so if its page size is smaller we have got to report that size instead.
     */
    if (hpsize > mainrampagesize &&
        (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
        static bool warned;
        if (!warned) {
            error_report("Huge page support disabled (n/a for main memory).");
            warned = true;
        }
        return mainrampagesize;
    }

    return hpsize;
}
#else
long qemu_getrampagesize(void)
{
    return getpagesize();
}
#endif

1735
#ifdef __linux__
1736 1737 1738 1739 1740 1741 1742 1743 1744
static int64_t get_file_size(int fd)
{
    int64_t size = lseek(fd, 0, SEEK_END);
    if (size < 0) {
        return -errno;
    }
    return size;
}

1745 1746 1747 1748
static int file_ram_open(const char *path,
                         const char *region_name,
                         bool *created,
                         Error **errp)
1749 1750
{
    char *filename;
1751 1752
    char *sanitized_name;
    char *c;
1753
    int fd = -1;
1754

1755
    *created = false;
1756 1757 1758 1759 1760
    for (;;) {
        fd = open(path, O_RDWR);
        if (fd >= 0) {
            /* @path names an existing file, use it */
            break;
1761
        }
1762 1763 1764 1765
        if (errno == ENOENT) {
            /* @path names a file that doesn't exist, create it */
            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
            if (fd >= 0) {
1766
                *created = true;
1767 1768 1769 1770 1771
                break;
            }
        } else if (errno == EISDIR) {
            /* @path names a directory, create a file there */
            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1772
            sanitized_name = g_strdup(region_name);
1773 1774 1775 1776 1777
            for (c = sanitized_name; *c != '\0'; c++) {
                if (*c == '/') {
                    *c = '_';
                }
            }
1778

1779 1780 1781
            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
                                       sanitized_name);
            g_free(sanitized_name);
1782

1783 1784 1785 1786 1787 1788 1789
            fd = mkstemp(filename);
            if (fd >= 0) {
                unlink(filename);
                g_free(filename);
                break;
            }
            g_free(filename);
1790
        }
1791 1792 1793 1794
        if (errno != EEXIST && errno != EINTR) {
            error_setg_errno(errp, errno,
                             "can't open backing store %s for guest RAM",
                             path);
1795
            return -1;
1796 1797 1798 1799 1800
        }
        /*
         * Try again on EINTR and EEXIST.  The latter happens when
         * something else creates the file between our two open().
         */
1801
    }
1802

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
    return fd;
}

static void *file_ram_alloc(RAMBlock *block,
                            ram_addr_t memory,
                            int fd,
                            bool truncate,
                            Error **errp)
{
    void *area;

1814
    block->page_size = qemu_fd_getpagesize(fd);
1815 1816 1817 1818 1819 1820 1821
    if (block->mr->align % block->page_size) {
        error_setg(errp, "alignment 0x%" PRIx64
                   " must be multiples of page size 0x%zx",
                   block->mr->align, block->page_size);
        return NULL;
    }
    block->mr->align = MAX(block->page_size, block->mr->align);
1822 1823 1824 1825 1826
#if defined(__s390x__)
    if (kvm_enabled()) {
        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
    }
#endif
1827

1828
    if (memory < block->page_size) {
1829
        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1830 1831
                   "or larger than page size 0x%zx",
                   memory, block->page_size);
1832
        return NULL;
1833 1834
    }

1835
    memory = ROUND_UP(memory, block->page_size);
1836 1837 1838 1839 1840 1841

    /*
     * ftruncate is not supported by hugetlbfs in older
     * hosts, so don't bother bailing out on errors.
     * If anything goes wrong with it under other filesystems,
     * mmap will fail.
1842 1843 1844 1845 1846 1847 1848 1849
     *
     * Do not truncate the non-empty backend file to avoid corrupting
     * the existing data in the file. Disabling shrinking is not
     * enough. For example, the current vNVDIMM implementation stores
     * the guest NVDIMM labels at the end of the backend file. If the
     * backend file is later extended, QEMU will not be able to find
     * those labels. Therefore, extending the non-empty backend file
     * is disabled as well.
1850
     */
1851
    if (truncate && ftruncate(fd, memory)) {
Y
Yoshiaki Tamura 已提交
1852
        perror("ftruncate");
1853
    }
1854

1855 1856
    area = qemu_ram_mmap(fd, memory, block->mr->align,
                         block->flags & RAM_SHARED);
1857
    if (area == MAP_FAILED) {
1858
        error_setg_errno(errp, errno,
1859
                         "unable to map backing store for guest RAM");
1860
        return NULL;
1861
    }
1862 1863

    if (mem_prealloc) {
1864
        os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1865
        if (errp && *errp) {
1866 1867
            qemu_ram_munmap(area, memory);
            return NULL;
1868
        }
1869 1870
    }

A
Alex Williamson 已提交
1871
    block->fd = fd;
1872 1873 1874 1875
    return area;
}
#endif

1876 1877 1878 1879
/* Allocate space within the ram_addr_t space that governs the
 * dirty bitmaps.
 * Called with the ramlist lock held.
 */
1880
static ram_addr_t find_ram_offset(ram_addr_t size)
A
Alex Williamson 已提交
1881 1882
{
    RAMBlock *block, *next_block;
A
Alex Williamson 已提交
1883
    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1884

1885 1886
    assert(size != 0); /* it would hand out same offset multiple times */

M
Mike Day 已提交
1887
    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
A
Alex Williamson 已提交
1888
        return 0;
M
Mike Day 已提交
1889
    }
A
Alex Williamson 已提交
1890

P
Peter Xu 已提交
1891
    RAMBLOCK_FOREACH(block) {
1892
        ram_addr_t candidate, next = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1893

1894 1895 1896
        /* Align blocks to start on a 'long' in the bitmap
         * which makes the bitmap sync'ing take the fast path.
         */
1897
        candidate = block->offset + block->max_length;
1898
        candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
A
Alex Williamson 已提交
1899

1900 1901 1902
        /* Search for the closest following block
         * and find the gap.
         */
P
Peter Xu 已提交
1903
        RAMBLOCK_FOREACH(next_block) {
1904
            if (next_block->offset >= candidate) {
A
Alex Williamson 已提交
1905 1906 1907
                next = MIN(next, next_block->offset);
            }
        }
1908 1909 1910 1911 1912 1913 1914 1915

        /* If it fits remember our place and remember the size
         * of gap, but keep going so that we might find a smaller
         * gap to fill so avoiding fragmentation.
         */
        if (next - candidate >= size && next - candidate < mingap) {
            offset = candidate;
            mingap = next - candidate;
A
Alex Williamson 已提交
1916
        }
1917 1918

        trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
A
Alex Williamson 已提交
1919
    }
A
Alex Williamson 已提交
1920 1921 1922 1923 1924 1925 1926

    if (offset == RAM_ADDR_MAX) {
        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
                (uint64_t)size);
        abort();
    }

1927 1928
    trace_find_ram_offset(size, offset);

A
Alex Williamson 已提交
1929 1930 1931
    return offset;
}

1932
unsigned long last_ram_page(void)
1933 1934 1935 1936
{
    RAMBlock *block;
    ram_addr_t last = 0;

M
Mike Day 已提交
1937
    rcu_read_lock();
P
Peter Xu 已提交
1938
    RAMBLOCK_FOREACH(block) {
1939
        last = MAX(last, block->offset + block->max_length);
M
Mike Day 已提交
1940
    }
M
Mike Day 已提交
1941
    rcu_read_unlock();
1942
    return last >> TARGET_PAGE_BITS;
1943 1944
}

1945 1946 1947 1948 1949
static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
{
    int ret;

    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1950
    if (!machine_dump_guest_core(current_machine)) {
1951 1952 1953 1954 1955 1956 1957 1958 1959
        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
        if (ret) {
            perror("qemu_madvise");
            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
                            "but dump_guest_core=off specified\n");
        }
    }
}

D
Dr. David Alan Gilbert 已提交
1960 1961 1962 1963 1964
const char *qemu_ram_get_idstr(RAMBlock *rb)
{
    return rb->idstr;
}

1965 1966 1967 1968 1969
bool qemu_ram_is_shared(RAMBlock *rb)
{
    return rb->flags & RAM_SHARED;
}

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
/* Note: Only set at the start of postcopy */
bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
{
    return rb->flags & RAM_UF_ZEROPAGE;
}

void qemu_ram_set_uf_zeroable(RAMBlock *rb)
{
    rb->flags |= RAM_UF_ZEROPAGE;
}

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
bool qemu_ram_is_migratable(RAMBlock *rb)
{
    return rb->flags & RAM_MIGRATABLE;
}

void qemu_ram_set_migratable(RAMBlock *rb)
{
    rb->flags |= RAM_MIGRATABLE;
}

void qemu_ram_unset_migratable(RAMBlock *rb)
{
    rb->flags &= ~RAM_MIGRATABLE;
}

1996
/* Called with iothread lock held.  */
G
Gonglei 已提交
1997
void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1998
{
G
Gonglei 已提交
1999
    RAMBlock *block;
2000

2001 2002
    assert(new_block);
    assert(!new_block->idstr[0]);
2003

2004 2005
    if (dev) {
        char *id = qdev_get_dev_path(dev);
2006 2007
        if (id) {
            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2008
            g_free(id);
2009 2010 2011 2012
        }
    }
    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);

G
Gonglei 已提交
2013
    rcu_read_lock();
P
Peter Xu 已提交
2014
    RAMBLOCK_FOREACH(block) {
G
Gonglei 已提交
2015 2016
        if (block != new_block &&
            !strcmp(block->idstr, new_block->idstr)) {
2017 2018 2019 2020 2021
            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
                    new_block->idstr);
            abort();
        }
    }
M
Mike Day 已提交
2022
    rcu_read_unlock();
2023 2024
}

2025
/* Called with iothread lock held.  */
G
Gonglei 已提交
2026
void qemu_ram_unset_idstr(RAMBlock *block)
2027
{
2028 2029 2030 2031
    /* FIXME: arch_init.c assumes that this is not called throughout
     * migration.  Ignore the problem since hot-unplug during migration
     * does not work anyway.
     */
2032 2033 2034 2035 2036
    if (block) {
        memset(block->idstr, 0, sizeof(block->idstr));
    }
}

2037 2038 2039 2040 2041
size_t qemu_ram_pagesize(RAMBlock *rb)
{
    return rb->page_size;
}

2042 2043 2044 2045 2046 2047
/* Returns the largest size of page in use */
size_t qemu_ram_pagesize_largest(void)
{
    RAMBlock *block;
    size_t largest = 0;

P
Peter Xu 已提交
2048
    RAMBLOCK_FOREACH(block) {
2049 2050 2051 2052 2053 2054
        largest = MAX(largest, qemu_ram_pagesize(block));
    }

    return largest;
}

2055 2056
static int memory_try_enable_merging(void *addr, size_t len)
{
2057
    if (!machine_mem_merge(current_machine)) {
2058 2059 2060 2061 2062 2063 2064
        /* disabled by the user */
        return 0;
    }

    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
}

2065 2066 2067 2068 2069 2070 2071
/* Only legal before guest might have detected the memory size: e.g. on
 * incoming migration, or right after reset.
 *
 * As memory core doesn't know how is memory accessed, it is up to
 * resize callback to update device state and/or add assertions to detect
 * misuse, if necessary.
 */
G
Gonglei 已提交
2072
int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2073 2074 2075
{
    assert(block);

2076
    newsize = HOST_PAGE_ALIGN(newsize);
2077

2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
    if (block->used_length == newsize) {
        return 0;
    }

    if (!(block->flags & RAM_RESIZEABLE)) {
        error_setg_errno(errp, EINVAL,
                         "Length mismatch: %s: 0x" RAM_ADDR_FMT
                         " in != 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->used_length);
        return -EINVAL;
    }

    if (block->max_length < newsize) {
        error_setg_errno(errp, EINVAL,
                         "Length too large: %s: 0x" RAM_ADDR_FMT
                         " > 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->max_length);
        return -EINVAL;
    }

    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
    block->used_length = newsize;
2100 2101
    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
                                        DIRTY_CLIENTS_ALL);
2102 2103 2104 2105 2106 2107 2108
    memory_region_set_size(block->mr, newsize);
    if (block->resized) {
        block->resized(block->idstr, newsize, block->host);
    }
    return 0;
}

2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
/* Called with ram_list.mutex held */
static void dirty_memory_extend(ram_addr_t old_ram_size,
                                ram_addr_t new_ram_size)
{
    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    int i;

    /* Only need to extend if block count increased */
    if (new_num_blocks <= old_num_blocks) {
        return;
    }

    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
        DirtyMemoryBlocks *old_blocks;
        DirtyMemoryBlocks *new_blocks;
        int j;

        old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
        new_blocks = g_malloc(sizeof(*new_blocks) +
                              sizeof(new_blocks->blocks[0]) * new_num_blocks);

        if (old_num_blocks) {
            memcpy(new_blocks->blocks, old_blocks->blocks,
                   old_num_blocks * sizeof(old_blocks->blocks[0]));
        }

        for (j = old_num_blocks; j < new_num_blocks; j++) {
            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
        }

        atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);

        if (old_blocks) {
            g_free_rcu(old_blocks, rcu);
        }
    }
}

2150
static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2151
{
2152
    RAMBlock *block;
M
Mike Day 已提交
2153
    RAMBlock *last_block = NULL;
2154
    ram_addr_t old_ram_size, new_ram_size;
2155
    Error *err = NULL;
2156

2157
    old_ram_size = last_ram_page();
2158

2159
    qemu_mutex_lock_ramlist();
2160
    new_block->offset = find_ram_offset(new_block->max_length);
2161 2162 2163

    if (!new_block->host) {
        if (xen_enabled()) {
2164
            xen_ram_alloc(new_block->offset, new_block->max_length,
2165 2166 2167 2168
                          new_block->mr, &err);
            if (err) {
                error_propagate(errp, err);
                qemu_mutex_unlock_ramlist();
2169
                return;
2170
            }
2171
        } else {
2172
            new_block->host = phys_mem_alloc(new_block->max_length,
2173
                                             &new_block->mr->align, shared);
2174
            if (!new_block->host) {
2175 2176 2177 2178
                error_setg_errno(errp, errno,
                                 "cannot set up guest memory '%s'",
                                 memory_region_name(new_block->mr));
                qemu_mutex_unlock_ramlist();
2179
                return;
2180
            }
2181
            memory_try_enable_merging(new_block->host, new_block->max_length);
2182
        }
2183
    }
P
pbrook 已提交
2184

L
Li Zhijian 已提交
2185 2186 2187
    new_ram_size = MAX(old_ram_size,
              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
    if (new_ram_size > old_ram_size) {
2188
        dirty_memory_extend(old_ram_size, new_ram_size);
L
Li Zhijian 已提交
2189
    }
M
Mike Day 已提交
2190 2191 2192 2193
    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
     * QLIST (which has an RCU-friendly variant) does not have insertion at
     * tail, so save the last element in last_block.
     */
P
Peter Xu 已提交
2194
    RAMBLOCK_FOREACH(block) {
M
Mike Day 已提交
2195
        last_block = block;
2196
        if (block->max_length < new_block->max_length) {
2197 2198 2199 2200
            break;
        }
    }
    if (block) {
M
Mike Day 已提交
2201
        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
M
Mike Day 已提交
2202
    } else if (last_block) {
M
Mike Day 已提交
2203
        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
M
Mike Day 已提交
2204
    } else { /* list is empty */
M
Mike Day 已提交
2205
        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2206
    }
2207
    ram_list.mru_block = NULL;
P
pbrook 已提交
2208

M
Mike Day 已提交
2209 2210
    /* Write list before version */
    smp_wmb();
U
Umesh Deshpande 已提交
2211
    ram_list.version++;
2212
    qemu_mutex_unlock_ramlist();
U
Umesh Deshpande 已提交
2213

2214
    cpu_physical_memory_set_dirty_range(new_block->offset,
2215 2216
                                        new_block->used_length,
                                        DIRTY_CLIENTS_ALL);
P
pbrook 已提交
2217

2218 2219 2220
    if (new_block->host) {
        qemu_ram_setup_dump(new_block->host, new_block->max_length);
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
C
Cao jin 已提交
2221
        /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2222
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
P
Paolo Bonzini 已提交
2223
        ram_block_notify_add(new_block->host, new_block->max_length);
2224
    }
P
pbrook 已提交
2225
}
B
bellard 已提交
2226

2227
#ifdef __linux__
2228 2229 2230
RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
                                 bool share, int fd,
                                 Error **errp)
2231 2232
{
    RAMBlock *new_block;
2233
    Error *local_err = NULL;
2234
    int64_t file_size;
2235 2236

    if (xen_enabled()) {
2237
        error_setg(errp, "-mem-path not supported with Xen");
2238
        return NULL;
2239 2240
    }

2241 2242 2243 2244 2245 2246
    if (kvm_enabled() && !kvm_has_sync_mmu()) {
        error_setg(errp,
                   "host lacks kvm mmu notifiers, -mem-path unsupported");
        return NULL;
    }

2247 2248 2249 2250 2251 2252
    if (phys_mem_alloc != qemu_anon_ram_alloc) {
        /*
         * file_ram_alloc() needs to allocate just like
         * phys_mem_alloc, but we haven't bothered to provide
         * a hook there.
         */
2253 2254
        error_setg(errp,
                   "-mem-path not supported with this accelerator");
2255
        return NULL;
2256 2257
    }

2258
    size = HOST_PAGE_ALIGN(size);
2259 2260 2261 2262 2263 2264 2265 2266
    file_size = get_file_size(fd);
    if (file_size > 0 && file_size < size) {
        error_setg(errp, "backing store %s size 0x%" PRIx64
                   " does not match 'size' option 0x" RAM_ADDR_FMT,
                   mem_path, file_size, size);
        return NULL;
    }

2267 2268
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2269 2270
    new_block->used_length = size;
    new_block->max_length = size;
2271
    new_block->flags = share ? RAM_SHARED : 0;
2272
    new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2273 2274
    if (!new_block->host) {
        g_free(new_block);
2275
        return NULL;
2276 2277
    }

2278
    ram_block_add(new_block, &local_err, share);
2279 2280 2281
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2282
        return NULL;
2283
    }
2284
    return new_block;
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311

}


RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
                                   bool share, const char *mem_path,
                                   Error **errp)
{
    int fd;
    bool created;
    RAMBlock *block;

    fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
    if (fd < 0) {
        return NULL;
    }

    block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
    if (!block) {
        if (created) {
            unlink(mem_path);
        }
        close(fd);
        return NULL;
    }

    return block;
2312
}
2313
#endif
2314

2315
static
2316 2317 2318 2319
RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
                                  void (*resized)(const char*,
                                                  uint64_t length,
                                                  void *host),
2320
                                  void *host, bool resizeable, bool share,
2321
                                  MemoryRegion *mr, Error **errp)
2322 2323
{
    RAMBlock *new_block;
2324
    Error *local_err = NULL;
2325

2326 2327
    size = HOST_PAGE_ALIGN(size);
    max_size = HOST_PAGE_ALIGN(max_size);
2328 2329
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2330
    new_block->resized = resized;
2331 2332
    new_block->used_length = size;
    new_block->max_length = max_size;
2333
    assert(max_size >= size);
2334
    new_block->fd = -1;
2335
    new_block->page_size = getpagesize();
2336 2337
    new_block->host = host;
    if (host) {
2338
        new_block->flags |= RAM_PREALLOC;
2339
    }
2340 2341 2342
    if (resizeable) {
        new_block->flags |= RAM_RESIZEABLE;
    }
2343
    ram_block_add(new_block, &local_err, share);
2344 2345 2346
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2347
        return NULL;
2348
    }
2349
    return new_block;
2350 2351
}

2352
RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2353 2354
                                   MemoryRegion *mr, Error **errp)
{
2355 2356
    return qemu_ram_alloc_internal(size, size, NULL, host, false,
                                   false, mr, errp);
2357 2358
}

2359 2360
RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
                         MemoryRegion *mr, Error **errp)
2361
{
2362 2363
    return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
                                   share, mr, errp);
2364 2365
}

2366
RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2367 2368 2369 2370 2371
                                     void (*resized)(const char*,
                                                     uint64_t length,
                                                     void *host),
                                     MemoryRegion *mr, Error **errp)
{
2372 2373
    return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
                                   false, mr, errp);
2374 2375
}

P
Paolo Bonzini 已提交
2376 2377 2378 2379 2380 2381 2382 2383
static void reclaim_ramblock(RAMBlock *block)
{
    if (block->flags & RAM_PREALLOC) {
        ;
    } else if (xen_enabled()) {
        xen_invalidate_map_cache_entry(block->host);
#ifndef _WIN32
    } else if (block->fd >= 0) {
2384
        qemu_ram_munmap(block->host, block->max_length);
P
Paolo Bonzini 已提交
2385 2386 2387 2388 2389 2390 2391 2392
        close(block->fd);
#endif
    } else {
        qemu_anon_ram_free(block->host, block->max_length);
    }
    g_free(block);
}

2393
void qemu_ram_free(RAMBlock *block)
B
bellard 已提交
2394
{
2395 2396 2397 2398
    if (!block) {
        return;
    }

P
Paolo Bonzini 已提交
2399 2400 2401 2402
    if (block->host) {
        ram_block_notify_remove(block->host, block->max_length);
    }

2403
    qemu_mutex_lock_ramlist();
2404 2405 2406 2407 2408 2409
    QLIST_REMOVE_RCU(block, next);
    ram_list.mru_block = NULL;
    /* Write list before version */
    smp_wmb();
    ram_list.version++;
    call_rcu(block, reclaim_ramblock, rcu);
2410
    qemu_mutex_unlock_ramlist();
B
bellard 已提交
2411 2412
}

H
Huang Ying 已提交
2413 2414 2415 2416 2417 2418 2419 2420
#ifndef _WIN32
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
{
    RAMBlock *block;
    ram_addr_t offset;
    int flags;
    void *area, *vaddr;

P
Peter Xu 已提交
2421
    RAMBLOCK_FOREACH(block) {
H
Huang Ying 已提交
2422
        offset = addr - block->offset;
2423
        if (offset < block->max_length) {
2424
            vaddr = ramblock_ptr(block, offset);
2425
            if (block->flags & RAM_PREALLOC) {
H
Huang Ying 已提交
2426
                ;
2427 2428
            } else if (xen_enabled()) {
                abort();
H
Huang Ying 已提交
2429 2430
            } else {
                flags = MAP_FIXED;
2431
                if (block->fd >= 0) {
2432 2433
                    flags |= (block->flags & RAM_SHARED ?
                              MAP_SHARED : MAP_PRIVATE);
2434 2435
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, block->fd, offset);
H
Huang Ying 已提交
2436
                } else {
2437 2438 2439 2440 2441 2442 2443
                    /*
                     * Remap needs to match alloc.  Accelerators that
                     * set phys_mem_alloc never remap.  If they did,
                     * we'd need a remap hook here.
                     */
                    assert(phys_mem_alloc == qemu_anon_ram_alloc);

H
Huang Ying 已提交
2444 2445 2446 2447 2448
                    flags |= MAP_PRIVATE | MAP_ANONYMOUS;
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, -1, 0);
                }
                if (area != vaddr) {
2449 2450 2451
                    error_report("Could not remap addr: "
                                 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
                                 length, addr);
H
Huang Ying 已提交
2452 2453
                    exit(1);
                }
2454
                memory_try_enable_merging(vaddr, length);
2455
                qemu_ram_setup_dump(vaddr, length);
H
Huang Ying 已提交
2456 2457 2458 2459 2460 2461
            }
        }
    }
}
#endif /* !_WIN32 */

2462
/* Return a host pointer to ram allocated with qemu_ram_alloc.
2463 2464 2465
 * This should not be used for general purpose DMA.  Use address_space_map
 * or address_space_rw instead. For local memory (e.g. video ram) that the
 * device owns, use memory_region_get_ram_ptr.
M
Mike Day 已提交
2466
 *
2467
 * Called within RCU critical section.
2468
 */
2469
void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2470
{
2471 2472 2473 2474
    RAMBlock *block = ram_block;

    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2475
        addr -= block->offset;
2476
    }
2477 2478

    if (xen_enabled() && block->host == NULL) {
2479 2480 2481 2482 2483
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map until the end of the page.
         */
        if (block->offset == 0) {
2484
            return xen_map_cache(addr, 0, 0, false);
2485
        }
2486

2487
        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2488
    }
2489
    return ramblock_ptr(block, addr);
2490 2491
}

2492
/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2493
 * but takes a size argument.
M
Mike Day 已提交
2494
 *
2495
 * Called within RCU critical section.
2496
 */
2497
static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2498
                                 hwaddr *size, bool lock)
2499
{
2500
    RAMBlock *block = ram_block;
2501 2502 2503
    if (*size == 0) {
        return NULL;
    }
2504

2505 2506
    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2507
        addr -= block->offset;
2508
    }
2509
    *size = MIN(*size, block->max_length - addr);
2510 2511 2512 2513 2514 2515 2516

    if (xen_enabled() && block->host == NULL) {
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map the requested area.
         */
        if (block->offset == 0) {
2517
            return xen_map_cache(addr, *size, lock, lock);
2518 2519
        }

2520
        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2521
    }
2522

2523
    return ramblock_ptr(block, addr);
2524 2525
}

2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
/* Return the offset of a hostpointer within a ramblock */
ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
{
    ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
    assert((uintptr_t)host >= (uintptr_t)rb->host);
    assert(res < rb->max_length);

    return res;
}

D
Dr. David Alan Gilbert 已提交
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
/*
 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
 * in that RAMBlock.
 *
 * ptr: Host pointer to look up
 * round_offset: If true round the result offset down to a page boundary
 * *ram_addr: set to result ram_addr
 * *offset: set to result offset within the RAMBlock
 *
 * Returns: RAMBlock (or NULL if not found)
2546 2547 2548 2549 2550 2551 2552
 *
 * By the time this function returns, the returned pointer is not protected
 * by RCU anymore.  If the caller is not within an RCU critical section and
 * does not hold the iothread lock, it must have other means of protecting the
 * pointer, such as a reference to the region that includes the incoming
 * ram_addr_t.
 */
D
Dr. David Alan Gilbert 已提交
2553 2554
RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
                                   ram_addr_t *offset)
P
pbrook 已提交
2555
{
P
pbrook 已提交
2556 2557 2558
    RAMBlock *block;
    uint8_t *host = ptr;

2559
    if (xen_enabled()) {
2560
        ram_addr_t ram_addr;
M
Mike Day 已提交
2561
        rcu_read_lock();
2562 2563
        ram_addr = xen_ram_addr_from_mapcache(ptr);
        block = qemu_get_ram_block(ram_addr);
D
Dr. David Alan Gilbert 已提交
2564
        if (block) {
2565
            *offset = ram_addr - block->offset;
D
Dr. David Alan Gilbert 已提交
2566
        }
M
Mike Day 已提交
2567
        rcu_read_unlock();
D
Dr. David Alan Gilbert 已提交
2568
        return block;
2569 2570
    }

M
Mike Day 已提交
2571 2572
    rcu_read_lock();
    block = atomic_rcu_read(&ram_list.mru_block);
2573
    if (block && block->host && host - block->host < block->max_length) {
2574 2575 2576
        goto found;
    }

P
Peter Xu 已提交
2577
    RAMBLOCK_FOREACH(block) {
J
Jun Nakajima 已提交
2578 2579 2580 2581
        /* This case append when the block is not mapped. */
        if (block->host == NULL) {
            continue;
        }
2582
        if (host - block->host < block->max_length) {
2583
            goto found;
A
Alex Williamson 已提交
2584
        }
P
pbrook 已提交
2585
    }
J
Jun Nakajima 已提交
2586

M
Mike Day 已提交
2587
    rcu_read_unlock();
2588
    return NULL;
2589 2590

found:
D
Dr. David Alan Gilbert 已提交
2591 2592 2593 2594
    *offset = (host - block->host);
    if (round_offset) {
        *offset &= TARGET_PAGE_MASK;
    }
M
Mike Day 已提交
2595
    rcu_read_unlock();
D
Dr. David Alan Gilbert 已提交
2596 2597 2598
    return block;
}

D
Dr. David Alan Gilbert 已提交
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
/*
 * Finds the named RAMBlock
 *
 * name: The name of RAMBlock to find
 *
 * Returns: RAMBlock (or NULL if not found)
 */
RAMBlock *qemu_ram_block_by_name(const char *name)
{
    RAMBlock *block;

P
Peter Xu 已提交
2610
    RAMBLOCK_FOREACH(block) {
D
Dr. David Alan Gilbert 已提交
2611 2612 2613 2614 2615 2616 2617 2618
        if (!strcmp(name, block->idstr)) {
            return block;
        }
    }

    return NULL;
}

D
Dr. David Alan Gilbert 已提交
2619 2620
/* Some of the softmmu routines need to translate from a host pointer
   (typically a TLB entry) back to a ram offset.  */
2621
ram_addr_t qemu_ram_addr_from_host(void *ptr)
D
Dr. David Alan Gilbert 已提交
2622 2623
{
    RAMBlock *block;
2624
    ram_addr_t offset;
D
Dr. David Alan Gilbert 已提交
2625

2626
    block = qemu_ram_block_from_host(ptr, false, &offset);
D
Dr. David Alan Gilbert 已提交
2627
    if (!block) {
2628
        return RAM_ADDR_INVALID;
D
Dr. David Alan Gilbert 已提交
2629 2630
    }

2631
    return block->offset + offset;
M
Marcelo Tosatti 已提交
2632
}
A
Alex Williamson 已提交
2633

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
/* Called within RCU critical section. */
void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
                          CPUState *cpu,
                          vaddr mem_vaddr,
                          ram_addr_t ram_addr,
                          unsigned size)
{
    ndi->cpu = cpu;
    ndi->ram_addr = ram_addr;
    ndi->mem_vaddr = mem_vaddr;
    ndi->size = size;
E
Emilio G. Cota 已提交
2645
    ndi->pages = NULL;
2646

2647
    assert(tcg_enabled());
2648
    if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
E
Emilio G. Cota 已提交
2649 2650
        ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
        tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2651
    }
2652 2653 2654 2655 2656
}

/* Called within RCU critical section. */
void memory_notdirty_write_complete(NotDirtyInfo *ndi)
{
E
Emilio G. Cota 已提交
2657 2658 2659
    if (ndi->pages) {
        page_collection_unlock(ndi->pages);
        ndi->pages = NULL;
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
    }

    /* Set both VGA and migration bits for simplicity and to remove
     * the notdirty callback faster.
     */
    cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
                                        DIRTY_CLIENTS_NOCODE);
    /* we remove the notdirty callback only if the code has been
       flushed */
    if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
        tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
    }
}

/* Called within RCU critical section.  */
static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
                               uint64_t val, unsigned size)
{
    NotDirtyInfo ndi;

    memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
                         ram_addr, size);

2683
    stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2684
    memory_notdirty_write_complete(&ndi);
2685 2686
}

2687
static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2688 2689
                                 unsigned size, bool is_write,
                                 MemTxAttrs attrs)
2690 2691 2692 2693
{
    return is_write;
}

2694 2695
static const MemoryRegionOps notdirty_mem_ops = {
    .write = notdirty_mem_write,
2696
    .valid.accepts = notdirty_mem_accepts,
2697
    .endianness = DEVICE_NATIVE_ENDIAN,
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
    .valid = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
    .impl = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
2708 2709
};

P
pbrook 已提交
2710
/* Generate a debug exception if a watchpoint has been hit.  */
2711
static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
P
pbrook 已提交
2712
{
2713
    CPUState *cpu = current_cpu;
2714
    CPUClass *cc = CPU_GET_CLASS(cpu);
P
pbrook 已提交
2715
    target_ulong vaddr;
2716
    CPUWatchpoint *wp;
P
pbrook 已提交
2717

2718
    assert(tcg_enabled());
2719
    if (cpu->watchpoint_hit) {
2720 2721 2722
        /* We re-entered the check after replacing the TB. Now raise
         * the debug interrupt so that is will trigger after the
         * current instruction. */
2723
        cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2724 2725
        return;
    }
2726
    vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2727
    vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2728
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2729 2730
        if (cpu_watchpoint_address_matches(wp, vaddr, len)
            && (wp->flags & flags)) {
2731 2732 2733 2734 2735 2736
            if (flags == BP_MEM_READ) {
                wp->flags |= BP_WATCHPOINT_HIT_READ;
            } else {
                wp->flags |= BP_WATCHPOINT_HIT_WRITE;
            }
            wp->hitaddr = vaddr;
2737
            wp->hitattrs = attrs;
2738
            if (!cpu->watchpoint_hit) {
2739 2740 2741 2742 2743
                if (wp->flags & BP_CPU &&
                    !cc->debug_check_watchpoint(cpu, wp)) {
                    wp->flags &= ~BP_WATCHPOINT_HIT;
                    continue;
                }
2744
                cpu->watchpoint_hit = wp;
2745

E
Emilio G. Cota 已提交
2746
                mmap_lock();
2747
                tb_check_watchpoint(cpu);
2748
                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2749
                    cpu->exception_index = EXCP_DEBUG;
E
Emilio G. Cota 已提交
2750
                    mmap_unlock();
2751
                    cpu_loop_exit(cpu);
2752
                } else {
2753 2754
                    /* Force execution of one insn next time.  */
                    cpu->cflags_next_tb = 1 | curr_cflags();
E
Emilio G. Cota 已提交
2755
                    mmap_unlock();
2756
                    cpu_loop_exit_noexc(cpu);
2757
                }
2758
            }
2759 2760
        } else {
            wp->flags &= ~BP_WATCHPOINT_HIT;
P
pbrook 已提交
2761 2762 2763 2764
        }
    }
}

2765 2766 2767
/* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
   so these check for a hit then pass through to the normal out-of-line
   phys routines.  */
2768 2769
static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
                                  unsigned size, MemTxAttrs attrs)
2770
{
2771 2772
    MemTxResult res;
    uint64_t data;
2773 2774
    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2775 2776

    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2777
    switch (size) {
2778
    case 1:
2779
        data = address_space_ldub(as, addr, attrs, &res);
2780 2781
        break;
    case 2:
2782
        data = address_space_lduw(as, addr, attrs, &res);
2783 2784
        break;
    case 4:
2785
        data = address_space_ldl(as, addr, attrs, &res);
2786
        break;
2787 2788 2789
    case 8:
        data = address_space_ldq(as, addr, attrs, &res);
        break;
2790 2791
    default: abort();
    }
2792 2793
    *pdata = data;
    return res;
2794 2795
}

2796 2797 2798
static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
                                   uint64_t val, unsigned size,
                                   MemTxAttrs attrs)
2799
{
2800
    MemTxResult res;
2801 2802
    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2803 2804

    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2805
    switch (size) {
2806
    case 1:
2807
        address_space_stb(as, addr, val, attrs, &res);
2808 2809
        break;
    case 2:
2810
        address_space_stw(as, addr, val, attrs, &res);
2811 2812
        break;
    case 4:
2813
        address_space_stl(as, addr, val, attrs, &res);
2814
        break;
2815 2816 2817
    case 8:
        address_space_stq(as, addr, val, attrs, &res);
        break;
2818 2819
    default: abort();
    }
2820
    return res;
2821 2822
}

2823
static const MemoryRegionOps watch_mem_ops = {
2824 2825
    .read_with_attrs = watch_mem_read,
    .write_with_attrs = watch_mem_write,
2826
    .endianness = DEVICE_NATIVE_ENDIAN,
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
    .valid = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
    .impl = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
2837 2838
};

2839 2840
static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
                                      MemTxAttrs attrs, uint8_t *buf, int len);
2841 2842 2843
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
                                  const uint8_t *buf, int len);
static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2844
                                  bool is_write, MemTxAttrs attrs);
2845

2846 2847
static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
                                unsigned len, MemTxAttrs attrs)
2848
{
2849
    subpage_t *subpage = opaque;
2850
    uint8_t buf[8];
2851
    MemTxResult res;
2852

2853
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2854
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2855
           subpage, len, addr);
2856
#endif
2857
    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2858 2859
    if (res) {
        return res;
2860
    }
2861 2862
    *data = ldn_p(buf, len);
    return MEMTX_OK;
2863 2864
}

2865 2866
static MemTxResult subpage_write(void *opaque, hwaddr addr,
                                 uint64_t value, unsigned len, MemTxAttrs attrs)
2867
{
2868
    subpage_t *subpage = opaque;
2869
    uint8_t buf[8];
2870

2871
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2872
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2873 2874
           " value %"PRIx64"\n",
           __func__, subpage, len, addr, value);
2875
#endif
2876
    stn_p(buf, len, value);
2877
    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2878 2879
}

2880
static bool subpage_accepts(void *opaque, hwaddr addr,
2881 2882
                            unsigned len, bool is_write,
                            MemTxAttrs attrs)
2883
{
2884
    subpage_t *subpage = opaque;
2885
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2886
    printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2887
           __func__, subpage, is_write ? 'w' : 'r', len, addr);
2888 2889
#endif

2890
    return flatview_access_valid(subpage->fv, addr + subpage->base,
2891
                                 len, is_write, attrs);
2892 2893
}

2894
static const MemoryRegionOps subpage_ops = {
2895 2896
    .read_with_attrs = subpage_read,
    .write_with_attrs = subpage_write,
2897 2898 2899 2900
    .impl.min_access_size = 1,
    .impl.max_access_size = 8,
    .valid.min_access_size = 1,
    .valid.max_access_size = 8,
2901
    .valid.accepts = subpage_accepts,
2902
    .endianness = DEVICE_NATIVE_ENDIAN,
2903 2904
};

A
Anthony Liguori 已提交
2905
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2906
                             uint16_t section)
2907 2908 2909 2910 2911 2912 2913 2914
{
    int idx, eidx;

    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
        return -1;
    idx = SUBPAGE_IDX(start);
    eidx = SUBPAGE_IDX(end);
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2915 2916
    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
           __func__, mmio, start, end, idx, eidx, section);
2917 2918
#endif
    for (; idx <= eidx; idx++) {
2919
        mmio->sub_section[idx] = section;
2920 2921 2922 2923 2924
    }

    return 0;
}

2925
static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2926
{
A
Anthony Liguori 已提交
2927
    subpage_t *mmio;
2928

2929
    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2930
    mmio->fv = fv;
2931
    mmio->base = base;
2932
    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
P
Peter Crosthwaite 已提交
2933
                          NULL, TARGET_PAGE_SIZE);
A
Avi Kivity 已提交
2934
    mmio->iomem.subpage = true;
2935
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2936 2937
    printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
           mmio, base, TARGET_PAGE_SIZE);
2938
#endif
2939
    subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2940 2941 2942 2943

    return mmio;
}

2944
static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2945
{
2946
    assert(fv);
2947
    MemoryRegionSection section = {
2948
        .fv = fv,
2949 2950 2951
        .mr = mr,
        .offset_within_address_space = 0,
        .offset_within_region = 0,
2952
        .size = int128_2_64(),
2953 2954
    };

2955
    return phys_section_add(map, &section);
2956 2957
}

2958 2959 2960 2961 2962 2963 2964
static void readonly_mem_write(void *opaque, hwaddr addr,
                               uint64_t val, unsigned size)
{
    /* Ignore any write to ROM. */
}

static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2965 2966
                                 unsigned size, bool is_write,
                                 MemTxAttrs attrs)
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
{
    return is_write;
}

/* This will only be used for writes, because reads are special cased
 * to directly access the underlying host ram.
 */
static const MemoryRegionOps readonly_mem_ops = {
    .write = readonly_mem_write,
    .valid.accepts = readonly_mem_accepts,
    .endianness = DEVICE_NATIVE_ENDIAN,
    .valid = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
    .impl = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
};

2990 2991
MemoryRegionSection *iotlb_to_section(CPUState *cpu,
                                      hwaddr index, MemTxAttrs attrs)
2992
{
2993 2994
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2995
    AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2996
    MemoryRegionSection *sections = d->map.sections;
P
Paolo Bonzini 已提交
2997

2998
    return &sections[index & ~TARGET_PAGE_MASK];
2999 3000
}

A
Avi Kivity 已提交
3001 3002
static void io_mem_init(void)
{
3003 3004
    memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
                          NULL, NULL, UINT64_MAX);
3005
    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3006
                          NULL, UINT64_MAX);
3007 3008 3009 3010

    /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
     * which can be called without the iothread mutex.
     */
3011
    memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3012
                          NULL, UINT64_MAX);
3013 3014
    memory_region_clear_global_locking(&io_mem_notdirty);

3015
    memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3016
                          NULL, UINT64_MAX);
A
Avi Kivity 已提交
3017 3018
}

3019
AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3020
{
3021 3022 3023
    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
    uint16_t n;

3024
    n = dummy_section(&d->map, fv, &io_mem_unassigned);
3025
    assert(n == PHYS_SECTION_UNASSIGNED);
3026
    n = dummy_section(&d->map, fv, &io_mem_notdirty);
3027
    assert(n == PHYS_SECTION_NOTDIRTY);
3028
    n = dummy_section(&d->map, fv, &io_mem_rom);
3029
    assert(n == PHYS_SECTION_ROM);
3030
    n = dummy_section(&d->map, fv, &io_mem_watch);
3031
    assert(n == PHYS_SECTION_WATCH);
3032

M
Michael S. Tsirkin 已提交
3033
    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3034 3035

    return d;
3036 3037
}

3038
void address_space_dispatch_free(AddressSpaceDispatch *d)
3039 3040 3041 3042 3043
{
    phys_sections_free(&d->map);
    g_free(d);
}

3044
static void tcg_commit(MemoryListener *listener)
3045
{
3046 3047
    CPUAddressSpace *cpuas;
    AddressSpaceDispatch *d;
3048 3049 3050

    /* since each CPU stores ram addresses in its TLB cache, we must
       reset the modified entries */
3051 3052 3053 3054 3055 3056
    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
    cpu_reloading_memory_map();
    /* The CPU and TLB are protected by the iothread lock.
     * We reload the dispatch pointer now because cpu_reloading_memory_map()
     * may have split the RCU critical section.
     */
3057
    d = address_space_to_dispatch(cpuas->as);
3058
    atomic_rcu_set(&cpuas->memory_dispatch, d);
3059
    tlb_flush(cpuas->cpu);
3060 3061
}

A
Avi Kivity 已提交
3062 3063
static void memory_map_init(void)
{
3064
    system_memory = g_malloc(sizeof(*system_memory));
3065

3066
    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3067
    address_space_init(&address_space_memory, system_memory, "memory");
3068

3069
    system_io = g_malloc(sizeof(*system_io));
3070 3071
    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
                          65536);
3072
    address_space_init(&address_space_io, system_io, "I/O");
A
Avi Kivity 已提交
3073 3074 3075 3076 3077 3078 3079
}

MemoryRegion *get_system_memory(void)
{
    return system_memory;
}

3080 3081 3082 3083 3084
MemoryRegion *get_system_io(void)
{
    return system_io;
}

3085 3086
#endif /* !defined(CONFIG_USER_ONLY) */

B
bellard 已提交
3087 3088
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
3089
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
P
Paul Brook 已提交
3090
                        uint8_t *buf, int len, int is_write)
B
bellard 已提交
3091 3092 3093
{
    int l, flags;
    target_ulong page;
3094
    void * p;
B
bellard 已提交
3095 3096 3097 3098 3099 3100 3101 3102

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        flags = page_get_flags(page);
        if (!(flags & PAGE_VALID))
P
Paul Brook 已提交
3103
            return -1;
B
bellard 已提交
3104 3105
        if (is_write) {
            if (!(flags & PAGE_WRITE))
P
Paul Brook 已提交
3106
                return -1;
3107
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
3108
            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
P
Paul Brook 已提交
3109
                return -1;
A
aurel32 已提交
3110 3111
            memcpy(p, buf, l);
            unlock_user(p, addr, l);
B
bellard 已提交
3112 3113
        } else {
            if (!(flags & PAGE_READ))
P
Paul Brook 已提交
3114
                return -1;
3115
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
3116
            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
P
Paul Brook 已提交
3117
                return -1;
A
aurel32 已提交
3118
            memcpy(buf, p, l);
A
aurel32 已提交
3119
            unlock_user(p, addr, 0);
B
bellard 已提交
3120 3121 3122 3123 3124
        }
        len -= l;
        buf += l;
        addr += l;
    }
P
Paul Brook 已提交
3125
    return 0;
B
bellard 已提交
3126
}
B
bellard 已提交
3127

B
bellard 已提交
3128
#else
3129

3130
static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
A
Avi Kivity 已提交
3131
                                     hwaddr length)
3132
{
3133
    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3134 3135
    addr += memory_region_get_ram_addr(mr);

3136 3137 3138 3139 3140 3141 3142 3143 3144
    /* No early return if dirty_log_mask is or becomes 0, because
     * cpu_physical_memory_set_dirty_range will still call
     * xen_modified_memory.
     */
    if (dirty_log_mask) {
        dirty_log_mask =
            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
    }
    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3145
        assert(tcg_enabled());
E
Emilio G. Cota 已提交
3146
        mmap_lock();
3147
        tb_invalidate_phys_range(addr, addr + length);
E
Emilio G. Cota 已提交
3148
        mmap_unlock();
3149
        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3150
    }
3151
    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3152 3153
}

3154
static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3155
{
3156
    unsigned access_size_max = mr->ops->valid.max_access_size;
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169

    /* Regions are assumed to support 1-4 byte accesses unless
       otherwise specified.  */
    if (access_size_max == 0) {
        access_size_max = 4;
    }

    /* Bound the maximum access by the alignment of the address.  */
    if (!mr->ops->impl.unaligned) {
        unsigned align_size_max = addr & -addr;
        if (align_size_max != 0 && align_size_max < access_size_max) {
            access_size_max = align_size_max;
        }
3170
    }
3171 3172 3173 3174

    /* Don't attempt accesses larger than the maximum.  */
    if (l > access_size_max) {
        l = access_size_max;
3175
    }
3176
    l = pow2floor(l);
3177 3178

    return l;
3179 3180
}

3181
static bool prepare_mmio_access(MemoryRegion *mr)
3182
{
3183 3184 3185 3186 3187 3188 3189 3190
    bool unlocked = !qemu_mutex_iothread_locked();
    bool release_lock = false;

    if (unlocked && mr->global_locking) {
        qemu_mutex_lock_iothread();
        unlocked = false;
        release_lock = true;
    }
3191
    if (mr->flush_coalesced_mmio) {
3192 3193 3194
        if (unlocked) {
            qemu_mutex_lock_iothread();
        }
3195
        qemu_flush_coalesced_mmio_buffer();
3196 3197 3198
        if (unlocked) {
            qemu_mutex_unlock_iothread();
        }
3199
    }
3200 3201

    return release_lock;
3202 3203
}

3204
/* Called within RCU critical section.  */
3205 3206 3207 3208 3209
static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
                                           MemTxAttrs attrs,
                                           const uint8_t *buf,
                                           int len, hwaddr addr1,
                                           hwaddr l, MemoryRegion *mr)
B
bellard 已提交
3210 3211
{
    uint8_t *ptr;
3212
    uint64_t val;
3213
    MemTxResult result = MEMTX_OK;
3214
    bool release_lock = false;
3215

3216
    for (;;) {
3217 3218 3219 3220 3221
        if (!memory_access_is_direct(mr, true)) {
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
            /* XXX: could force current_cpu to NULL to avoid
               potential bugs */
3222 3223
            val = ldn_p(buf, l);
            result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
B
bellard 已提交
3224
        } else {
3225
            /* RAM case */
3226
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3227 3228
            memcpy(ptr, buf, l);
            invalidate_and_set_dirty(mr, addr1, l);
B
bellard 已提交
3229
        }
3230 3231 3232 3233 3234 3235

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

B
bellard 已提交
3236 3237 3238
        len -= l;
        buf += l;
        addr += l;
3239 3240 3241 3242 3243 3244

        if (!len) {
            break;
        }

        l = len;
3245
        mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
B
bellard 已提交
3246
    }
3247

3248
    return result;
B
bellard 已提交
3249
}
B
bellard 已提交
3250

3251
/* Called from RCU critical section.  */
3252 3253
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
                                  const uint8_t *buf, int len)
A
Avi Kivity 已提交
3254
{
3255 3256 3257 3258 3259
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
    MemTxResult result = MEMTX_OK;

3260
    l = len;
3261
    mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3262 3263
    result = flatview_write_continue(fv, addr, attrs, buf, len,
                                     addr1, l, mr);
3264 3265 3266 3267 3268

    return result;
}

/* Called within RCU critical section.  */
3269 3270 3271 3272
MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
                                   MemTxAttrs attrs, uint8_t *buf,
                                   int len, hwaddr addr1, hwaddr l,
                                   MemoryRegion *mr)
3273 3274 3275 3276 3277
{
    uint8_t *ptr;
    uint64_t val;
    MemTxResult result = MEMTX_OK;
    bool release_lock = false;
3278

3279
    for (;;) {
3280 3281 3282 3283
        if (!memory_access_is_direct(mr, false)) {
            /* I/O case */
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
3284 3285
            result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
            stn_p(buf, l, val);
3286 3287
        } else {
            /* RAM case */
3288
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
            memcpy(buf, ptr, l);
        }

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

        len -= l;
        buf += l;
        addr += l;
3300 3301 3302 3303 3304 3305

        if (!len) {
            break;
        }

        l = len;
3306
        mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3307 3308 3309 3310 3311
    }

    return result;
}

3312 3313 3314
/* Called from RCU critical section.  */
static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
                                 MemTxAttrs attrs, uint8_t *buf, int len)
3315 3316 3317 3318
{
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
3319

3320
    l = len;
3321
    mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3322 3323
    return flatview_read_continue(fv, addr, attrs, buf, len,
                                  addr1, l, mr);
A
Avi Kivity 已提交
3324 3325
}

3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
                                    MemTxAttrs attrs, uint8_t *buf, int len)
{
    MemTxResult result = MEMTX_OK;
    FlatView *fv;

    if (len > 0) {
        rcu_read_lock();
        fv = address_space_to_flatview(as);
        result = flatview_read(fv, addr, attrs, buf, len);
        rcu_read_unlock();
    }

    return result;
}

3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
                                MemTxAttrs attrs,
                                const uint8_t *buf, int len)
{
    MemTxResult result = MEMTX_OK;
    FlatView *fv;

    if (len > 0) {
        rcu_read_lock();
        fv = address_space_to_flatview(as);
        result = flatview_write(fv, addr, attrs, buf, len);
        rcu_read_unlock();
    }

    return result;
}

3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
                             uint8_t *buf, int len, bool is_write)
{
    if (is_write) {
        return address_space_write(as, addr, attrs, buf, len);
    } else {
        return address_space_read_full(as, addr, attrs, buf, len);
    }
}

A
Avi Kivity 已提交
3369
void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
A
Avi Kivity 已提交
3370 3371
                            int len, int is_write)
{
3372 3373
    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
                     buf, len, is_write);
A
Avi Kivity 已提交
3374 3375
}

3376 3377 3378 3379 3380
enum write_rom_type {
    WRITE_DATA,
    FLUSH_CACHE,
};

3381
static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3382
    hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
B
bellard 已提交
3383
{
3384
    hwaddr l;
B
bellard 已提交
3385
    uint8_t *ptr;
3386
    hwaddr addr1;
3387
    MemoryRegion *mr;
3388

3389
    rcu_read_lock();
B
bellard 已提交
3390
    while (len > 0) {
3391
        l = len;
3392 3393
        mr = address_space_translate(as, addr, &addr1, &l, true,
                                     MEMTXATTRS_UNSPECIFIED);
3394

3395 3396
        if (!(memory_region_is_ram(mr) ||
              memory_region_is_romd(mr))) {
3397
            l = memory_access_size(mr, l, addr1);
B
bellard 已提交
3398 3399
        } else {
            /* ROM/RAM case */
3400
            ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3401 3402 3403
            switch (type) {
            case WRITE_DATA:
                memcpy(ptr, buf, l);
3404
                invalidate_and_set_dirty(mr, addr1, l);
3405 3406 3407 3408 3409
                break;
            case FLUSH_CACHE:
                flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
                break;
            }
B
bellard 已提交
3410 3411 3412 3413 3414
        }
        len -= l;
        buf += l;
        addr += l;
    }
3415
    rcu_read_unlock();
B
bellard 已提交
3416 3417
}

3418
/* used for ROM loading : can write in RAM and ROM */
3419
void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3420 3421
                                   const uint8_t *buf, int len)
{
3422
    cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
}

void cpu_flush_icache_range(hwaddr start, int len)
{
    /*
     * This function should do the same thing as an icache flush that was
     * triggered from within the guest. For TCG we are always cache coherent,
     * so there is no need to flush anything. For KVM / Xen we need to flush
     * the host's instruction cache at least.
     */
    if (tcg_enabled()) {
        return;
    }

3437 3438
    cpu_physical_memory_write_rom_internal(&address_space_memory,
                                           start, NULL, len, FLUSH_CACHE);
3439 3440
}

3441
typedef struct {
3442
    MemoryRegion *mr;
3443
    void *buffer;
A
Avi Kivity 已提交
3444 3445
    hwaddr addr;
    hwaddr len;
F
Fam Zheng 已提交
3446
    bool in_use;
3447 3448 3449 3450
} BounceBuffer;

static BounceBuffer bounce;

3451
typedef struct MapClient {
3452
    QEMUBH *bh;
B
Blue Swirl 已提交
3453
    QLIST_ENTRY(MapClient) link;
3454 3455
} MapClient;

3456
QemuMutex map_client_list_lock;
B
Blue Swirl 已提交
3457 3458
static QLIST_HEAD(map_client_list, MapClient) map_client_list
    = QLIST_HEAD_INITIALIZER(map_client_list);
3459

3460 3461 3462 3463 3464 3465
static void cpu_unregister_map_client_do(MapClient *client)
{
    QLIST_REMOVE(client, link);
    g_free(client);
}

3466 3467 3468 3469 3470 3471
static void cpu_notify_map_clients_locked(void)
{
    MapClient *client;

    while (!QLIST_EMPTY(&map_client_list)) {
        client = QLIST_FIRST(&map_client_list);
3472 3473
        qemu_bh_schedule(client->bh);
        cpu_unregister_map_client_do(client);
3474 3475 3476
    }
}

3477
void cpu_register_map_client(QEMUBH *bh)
3478
{
3479
    MapClient *client = g_malloc(sizeof(*client));
3480

3481
    qemu_mutex_lock(&map_client_list_lock);
3482
    client->bh = bh;
B
Blue Swirl 已提交
3483
    QLIST_INSERT_HEAD(&map_client_list, client, link);
3484 3485 3486
    if (!atomic_read(&bounce.in_use)) {
        cpu_notify_map_clients_locked();
    }
3487
    qemu_mutex_unlock(&map_client_list_lock);
3488 3489
}

3490
void cpu_exec_init_all(void)
3491
{
3492
    qemu_mutex_init(&ram_list.mutex);
3493 3494 3495 3496 3497 3498 3499 3500
    /* The data structures we set up here depend on knowing the page size,
     * so no more changes can be made after this point.
     * In an ideal world, nothing we did before we had finished the
     * machine setup would care about the target page size, and we could
     * do this much later, rather than requiring board models to state
     * up front what their requirements are.
     */
    finalize_target_page_bits();
3501
    io_mem_init();
3502
    memory_map_init();
3503
    qemu_mutex_init(&map_client_list_lock);
3504 3505
}

3506
void cpu_unregister_map_client(QEMUBH *bh)
3507 3508 3509
{
    MapClient *client;

3510 3511 3512 3513 3514 3515
    qemu_mutex_lock(&map_client_list_lock);
    QLIST_FOREACH(client, &map_client_list, link) {
        if (client->bh == bh) {
            cpu_unregister_map_client_do(client);
            break;
        }
3516
    }
3517
    qemu_mutex_unlock(&map_client_list_lock);
3518 3519 3520 3521
}

static void cpu_notify_map_clients(void)
{
3522
    qemu_mutex_lock(&map_client_list_lock);
3523
    cpu_notify_map_clients_locked();
3524
    qemu_mutex_unlock(&map_client_list_lock);
3525 3526
}

3527
static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3528
                                  bool is_write, MemTxAttrs attrs)
3529
{
3530
    MemoryRegion *mr;
3531 3532 3533 3534
    hwaddr l, xlat;

    while (len > 0) {
        l = len;
3535
        mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3536 3537
        if (!memory_access_is_direct(mr, is_write)) {
            l = memory_access_size(mr, l, addr);
3538
            if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
                return false;
            }
        }

        len -= l;
        addr += l;
    }
    return true;
}

3549
bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3550 3551
                                int len, bool is_write,
                                MemTxAttrs attrs)
3552
{
3553 3554 3555 3556 3557
    FlatView *fv;
    bool result;

    rcu_read_lock();
    fv = address_space_to_flatview(as);
3558
    result = flatview_access_valid(fv, addr, len, is_write, attrs);
3559 3560
    rcu_read_unlock();
    return result;
3561 3562
}

3563
static hwaddr
3564
flatview_extend_translation(FlatView *fv, hwaddr addr,
3565 3566 3567
                            hwaddr target_len,
                            MemoryRegion *mr, hwaddr base, hwaddr len,
                            bool is_write, MemTxAttrs attrs)
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
{
    hwaddr done = 0;
    hwaddr xlat;
    MemoryRegion *this_mr;

    for (;;) {
        target_len -= len;
        addr += len;
        done += len;
        if (target_len == 0) {
            return done;
        }

        len = target_len;
3582
        this_mr = flatview_translate(fv, addr, &xlat,
3583
                                     &len, is_write, attrs);
3584 3585 3586 3587 3588 3589
        if (this_mr != mr || xlat != base + done) {
            return done;
        }
    }
}

3590 3591 3592 3593
/* Map a physical memory region into a host virtual address.
 * May map a subset of the requested range, given by and returned in *plen.
 * May return NULL if resources needed to perform the mapping are exhausted.
 * Use only for reads OR writes - not for read-modify-write operations.
3594 3595
 * Use cpu_register_map_client() to know when retrying the map operation is
 * likely to succeed.
3596
 */
A
Avi Kivity 已提交
3597
void *address_space_map(AddressSpace *as,
A
Avi Kivity 已提交
3598 3599
                        hwaddr addr,
                        hwaddr *plen,
3600 3601
                        bool is_write,
                        MemTxAttrs attrs)
3602
{
A
Avi Kivity 已提交
3603
    hwaddr len = *plen;
3604 3605
    hwaddr l, xlat;
    MemoryRegion *mr;
3606
    void *ptr;
3607
    FlatView *fv;
3608

3609 3610 3611
    if (len == 0) {
        return NULL;
    }
3612

3613
    l = len;
3614
    rcu_read_lock();
3615
    fv = address_space_to_flatview(as);
3616
    mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3617

3618
    if (!memory_access_is_direct(mr, is_write)) {
F
Fam Zheng 已提交
3619
        if (atomic_xchg(&bounce.in_use, true)) {
3620
            rcu_read_unlock();
3621
            return NULL;
3622
        }
3623 3624 3625
        /* Avoid unbounded allocations */
        l = MIN(l, TARGET_PAGE_SIZE);
        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3626 3627
        bounce.addr = addr;
        bounce.len = l;
3628 3629 3630

        memory_region_ref(mr);
        bounce.mr = mr;
3631
        if (!is_write) {
3632
            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3633
                               bounce.buffer, l);
3634
        }
3635

3636
        rcu_read_unlock();
3637 3638 3639 3640 3641
        *plen = l;
        return bounce.buffer;
    }


3642
    memory_region_ref(mr);
3643
    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3644
                                        l, is_write, attrs);
3645
    ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3646 3647 3648
    rcu_read_unlock();

    return ptr;
3649 3650
}

A
Avi Kivity 已提交
3651
/* Unmaps a memory region previously mapped by address_space_map().
3652 3653 3654
 * Will also mark the memory as dirty if is_write == 1.  access_len gives
 * the amount of memory that was actually read or written by the caller.
 */
A
Avi Kivity 已提交
3655 3656
void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
                         int is_write, hwaddr access_len)
3657 3658
{
    if (buffer != bounce.buffer) {
3659 3660 3661
        MemoryRegion *mr;
        ram_addr_t addr1;

3662
        mr = memory_region_from_host(buffer, &addr1);
3663
        assert(mr != NULL);
3664
        if (is_write) {
3665
            invalidate_and_set_dirty(mr, addr1, access_len);
3666
        }
3667
        if (xen_enabled()) {
J
Jan Kiszka 已提交
3668
            xen_invalidate_map_cache_entry(buffer);
A
Anthony PERARD 已提交
3669
        }
3670
        memory_region_unref(mr);
3671 3672 3673
        return;
    }
    if (is_write) {
3674 3675
        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
                            bounce.buffer, access_len);
3676
    }
3677
    qemu_vfree(bounce.buffer);
3678
    bounce.buffer = NULL;
3679
    memory_region_unref(bounce.mr);
F
Fam Zheng 已提交
3680
    atomic_mb_set(&bounce.in_use, false);
3681
    cpu_notify_map_clients();
3682
}
B
bellard 已提交
3683

A
Avi Kivity 已提交
3684 3685
void *cpu_physical_memory_map(hwaddr addr,
                              hwaddr *plen,
A
Avi Kivity 已提交
3686 3687
                              int is_write)
{
3688 3689
    return address_space_map(&address_space_memory, addr, plen, is_write,
                             MEMTXATTRS_UNSPECIFIED);
A
Avi Kivity 已提交
3690 3691
}

A
Avi Kivity 已提交
3692 3693
void cpu_physical_memory_unmap(void *buffer, hwaddr len,
                               int is_write, hwaddr access_len)
A
Avi Kivity 已提交
3694 3695 3696 3697
{
    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
}

P
Paolo Bonzini 已提交
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
#define ARG1_DECL                AddressSpace *as
#define ARG1                     as
#define SUFFIX
#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
#define IS_DIRECT(mr, is_write)  memory_access_is_direct(mr, is_write)
#define MAP_RAM(mr, ofs)         qemu_map_ram_ptr((mr)->ram_block, ofs)
#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
#define RCU_READ_LOCK(...)       rcu_read_lock()
#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
#include "memory_ldst.inc.c"
3708

P
Paolo Bonzini 已提交
3709 3710 3711 3712 3713 3714
int64_t address_space_cache_init(MemoryRegionCache *cache,
                                 AddressSpace *as,
                                 hwaddr addr,
                                 hwaddr len,
                                 bool is_write)
{
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
    AddressSpaceDispatch *d;
    hwaddr l;
    MemoryRegion *mr;

    assert(len > 0);

    l = len;
    cache->fv = address_space_get_flatview(as);
    d = flatview_to_dispatch(cache->fv);
    cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);

    mr = cache->mrs.mr;
    memory_region_ref(mr);
    if (memory_access_is_direct(mr, is_write)) {
3729 3730 3731 3732
        /* We don't care about the memory attributes here as we're only
         * doing this if we found actual RAM, which behaves the same
         * regardless of attributes; so UNSPECIFIED is fine.
         */
3733
        l = flatview_extend_translation(cache->fv, addr, len, mr,
3734 3735
                                        cache->xlat, l, is_write,
                                        MEMTXATTRS_UNSPECIFIED);
3736 3737 3738 3739 3740 3741 3742 3743
        cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
    } else {
        cache->ptr = NULL;
    }

    cache->len = l;
    cache->is_write = is_write;
    return l;
P
Paolo Bonzini 已提交
3744 3745 3746 3747 3748 3749
}

void address_space_cache_invalidate(MemoryRegionCache *cache,
                                    hwaddr addr,
                                    hwaddr access_len)
{
3750 3751 3752 3753
    assert(cache->is_write);
    if (likely(cache->ptr)) {
        invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
    }
P
Paolo Bonzini 已提交
3754 3755 3756 3757
}

void address_space_cache_destroy(MemoryRegionCache *cache)
{
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
    if (!cache->mrs.mr) {
        return;
    }

    if (xen_enabled()) {
        xen_invalidate_map_cache_entry(cache->ptr);
    }
    memory_region_unref(cache->mrs.mr);
    flatview_unref(cache->fv);
    cache->mrs.mr = NULL;
    cache->fv = NULL;
}

/* Called from RCU critical section.  This function has the same
 * semantics as address_space_translate, but it only works on a
 * predefined range of a MemoryRegion that was mapped with
 * address_space_cache_init.
 */
static inline MemoryRegion *address_space_translate_cached(
    MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3778
    hwaddr *plen, bool is_write, MemTxAttrs attrs)
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
{
    MemoryRegionSection section;
    MemoryRegion *mr;
    IOMMUMemoryRegion *iommu_mr;
    AddressSpace *target_as;

    assert(!cache->ptr);
    *xlat = addr + cache->xlat;

    mr = cache->mrs.mr;
    iommu_mr = memory_region_get_iommu(mr);
    if (!iommu_mr) {
        /* MMIO region.  */
        return mr;
    }

    section = address_space_translate_iommu(iommu_mr, xlat, plen,
                                            NULL, is_write, true,
3797
                                            &target_as, attrs);
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
    return section.mr;
}

/* Called from RCU critical section. address_space_read_cached uses this
 * out of line function when the target is an MMIO or IOMMU region.
 */
void
address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
                                   void *buf, int len)
{
    hwaddr addr1, l;
    MemoryRegion *mr;

    l = len;
3812 3813
    mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
                                        MEMTXATTRS_UNSPECIFIED);
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
    flatview_read_continue(cache->fv,
                           addr, MEMTXATTRS_UNSPECIFIED, buf, len,
                           addr1, l, mr);
}

/* Called from RCU critical section. address_space_write_cached uses this
 * out of line function when the target is an MMIO or IOMMU region.
 */
void
address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
                                    const void *buf, int len)
{
    hwaddr addr1, l;
    MemoryRegion *mr;

    l = len;
3830 3831
    mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
                                        MEMTXATTRS_UNSPECIFIED);
3832 3833 3834
    flatview_write_continue(cache->fv,
                            addr, MEMTXATTRS_UNSPECIFIED, buf, len,
                            addr1, l, mr);
P
Paolo Bonzini 已提交
3835 3836 3837 3838
}

#define ARG1_DECL                MemoryRegionCache *cache
#define ARG1                     cache
3839 3840 3841 3842
#define SUFFIX                   _cached_slow
#define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
#define IS_DIRECT(mr, is_write)  memory_access_is_direct(mr, is_write)
#define MAP_RAM(mr, ofs)         (cache->ptr + (ofs - cache->xlat))
P
Paolo Bonzini 已提交
3843
#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3844 3845
#define RCU_READ_LOCK()          ((void)0)
#define RCU_READ_UNLOCK()        ((void)0)
P
Paolo Bonzini 已提交
3846 3847
#include "memory_ldst.inc.c"

3848
/* virtual memory access for debug (includes writing to ROM) */
3849
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3850
                        uint8_t *buf, int len, int is_write)
B
bellard 已提交
3851 3852
{
    int l;
A
Avi Kivity 已提交
3853
    hwaddr phys_addr;
3854
    target_ulong page;
B
bellard 已提交
3855

3856
    cpu_synchronize_state(cpu);
B
bellard 已提交
3857
    while (len > 0) {
3858 3859 3860
        int asidx;
        MemTxAttrs attrs;

B
bellard 已提交
3861
        page = addr & TARGET_PAGE_MASK;
3862 3863
        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
        asidx = cpu_asidx_from_attrs(cpu, attrs);
B
bellard 已提交
3864 3865 3866 3867 3868 3869
        /* if no physical page mapped, return an error */
        if (phys_addr == -1)
            return -1;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
3870
        phys_addr += (addr & ~TARGET_PAGE_MASK);
3871
        if (is_write) {
3872 3873
            cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
                                          phys_addr, buf, l);
3874
        } else {
3875 3876
            address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
                             MEMTXATTRS_UNSPECIFIED,
3877
                             buf, l, 0);
3878
        }
B
bellard 已提交
3879 3880 3881 3882 3883 3884
        len -= l;
        buf += l;
        addr += l;
    }
    return 0;
}
3885 3886 3887 3888 3889

/*
 * Allows code that needs to deal with migration bitmaps etc to still be built
 * target independent.
 */
3890
size_t qemu_target_page_size(void)
3891
{
3892
    return TARGET_PAGE_SIZE;
3893 3894
}

3895 3896 3897 3898 3899 3900 3901 3902 3903
int qemu_target_page_bits(void)
{
    return TARGET_PAGE_BITS;
}

int qemu_target_page_bits_min(void)
{
    return TARGET_PAGE_BITS_MIN;
}
P
Paul Brook 已提交
3904
#endif
B
bellard 已提交
3905

3906 3907 3908 3909
/*
 * A helper function for the _utterly broken_ virtio device model to find out if
 * it's running on a big endian machine. Don't do this at home kids!
 */
3910 3911
bool target_words_bigendian(void);
bool target_words_bigendian(void)
3912 3913 3914 3915 3916 3917 3918 3919
{
#if defined(TARGET_WORDS_BIGENDIAN)
    return true;
#else
    return false;
#endif
}

3920
#ifndef CONFIG_USER_ONLY
A
Avi Kivity 已提交
3921
bool cpu_physical_memory_is_io(hwaddr phys_addr)
3922
{
3923
    MemoryRegion*mr;
3924
    hwaddr l = 1;
3925
    bool res;
3926

3927
    rcu_read_lock();
3928
    mr = address_space_translate(&address_space_memory,
3929 3930
                                 phys_addr, &phys_addr, &l, false,
                                 MEMTXATTRS_UNSPECIFIED);
3931

3932 3933 3934
    res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
    rcu_read_unlock();
    return res;
3935
}
3936

3937
int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3938 3939
{
    RAMBlock *block;
3940
    int ret = 0;
3941

M
Mike Day 已提交
3942
    rcu_read_lock();
P
Peter Xu 已提交
3943
    RAMBLOCK_FOREACH(block) {
3944 3945 3946 3947 3948
        ret = func(block->idstr, block->host, block->offset,
                   block->used_length, opaque);
        if (ret) {
            break;
        }
3949
    }
M
Mike Day 已提交
3950
    rcu_read_unlock();
3951
    return ret;
3952
}
3953

3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func, void *opaque)
{
    RAMBlock *block;
    int ret = 0;

    rcu_read_lock();
    RAMBLOCK_FOREACH(block) {
        if (!qemu_ram_is_migratable(block)) {
            continue;
        }
        ret = func(block->idstr, block->host, block->offset,
                   block->used_length, opaque);
        if (ret) {
            break;
        }
    }
    rcu_read_unlock();
    return ret;
}

3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
/*
 * Unmap pages of memory from start to start+length such that
 * they a) read as 0, b) Trigger whatever fault mechanism
 * the OS provides for postcopy.
 * The pages must be unmapped by the end of the function.
 * Returns: 0 on success, none-0 on failure
 *
 */
int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
{
    int ret = -1;

    uint8_t *host_startaddr = rb->host + start;

    if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
        error_report("ram_block_discard_range: Unaligned start address: %p",
                     host_startaddr);
        goto err;
    }

    if ((start + length) <= rb->used_length) {
3995
        bool need_madvise, need_fallocate;
3996 3997 3998 3999 4000 4001 4002 4003 4004
        uint8_t *host_endaddr = host_startaddr + length;
        if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
            error_report("ram_block_discard_range: Unaligned end address: %p",
                         host_endaddr);
            goto err;
        }

        errno = ENOTSUP; /* If we are missing MADVISE etc */

4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
        /* The logic here is messy;
         *    madvise DONTNEED fails for hugepages
         *    fallocate works on hugepages and shmem
         */
        need_madvise = (rb->page_size == qemu_host_page_size);
        need_fallocate = rb->fd != -1;
        if (need_fallocate) {
            /* For a file, this causes the area of the file to be zero'd
             * if read, and for hugetlbfs also causes it to be unmapped
             * so a userfault will trigger.
4015 4016 4017 4018
             */
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
                            start, length);
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
            if (ret) {
                ret = -errno;
                error_report("ram_block_discard_range: Failed to fallocate "
                             "%s:%" PRIx64 " +%zx (%d)",
                             rb->idstr, start, length, ret);
                goto err;
            }
#else
            ret = -ENOSYS;
            error_report("ram_block_discard_range: fallocate not available/file"
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
            goto err;
4032 4033
#endif
        }
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
        if (need_madvise) {
            /* For normal RAM this causes it to be unmapped,
             * for shared memory it causes the local mapping to disappear
             * and to fall back on the file contents (which we just
             * fallocate'd away).
             */
#if defined(CONFIG_MADVISE)
            ret =  madvise(host_startaddr, length, MADV_DONTNEED);
            if (ret) {
                ret = -errno;
                error_report("ram_block_discard_range: Failed to discard range "
                             "%s:%" PRIx64 " +%zx (%d)",
                             rb->idstr, start, length, ret);
                goto err;
            }
#else
            ret = -ENOSYS;
            error_report("ram_block_discard_range: MADVISE not available"
4052 4053
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
4054 4055
            goto err;
#endif
4056
        }
4057 4058
        trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
                                      need_madvise, need_fallocate, ret);
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
    } else {
        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
                     "/%zx/" RAM_ADDR_FMT")",
                     rb->idstr, start, length, rb->used_length);
    }

err:
    return ret;
}

4069
#endif
Y
Yang Zhong 已提交
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082

void page_size_init(void)
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
}
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166

#if !defined(CONFIG_USER_ONLY)

static void mtree_print_phys_entries(fprintf_function mon, void *f,
                                     int start, int end, int skip, int ptr)
{
    if (start == end - 1) {
        mon(f, "\t%3d      ", start);
    } else {
        mon(f, "\t%3d..%-3d ", start, end - 1);
    }
    mon(f, " skip=%d ", skip);
    if (ptr == PHYS_MAP_NODE_NIL) {
        mon(f, " ptr=NIL");
    } else if (!skip) {
        mon(f, " ptr=#%d", ptr);
    } else {
        mon(f, " ptr=[%d]", ptr);
    }
    mon(f, "\n");
}

#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
                           int128_sub((size), int128_one())) : 0)

void mtree_print_dispatch(fprintf_function mon, void *f,
                          AddressSpaceDispatch *d, MemoryRegion *root)
{
    int i;

    mon(f, "  Dispatch\n");
    mon(f, "    Physical sections\n");

    for (i = 0; i < d->map.sections_nb; ++i) {
        MemoryRegionSection *s = d->map.sections + i;
        const char *names[] = { " [unassigned]", " [not dirty]",
                                " [ROM]", " [watch]" };

        mon(f, "      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
            i,
            s->offset_within_address_space,
            s->offset_within_address_space + MR_SIZE(s->mr->size),
            s->mr->name ? s->mr->name : "(noname)",
            i < ARRAY_SIZE(names) ? names[i] : "",
            s->mr == root ? " [ROOT]" : "",
            s == d->mru_section ? " [MRU]" : "",
            s->mr->is_iommu ? " [iommu]" : "");

        if (s->mr->alias) {
            mon(f, " alias=%s", s->mr->alias->name ?
                    s->mr->alias->name : "noname");
        }
        mon(f, "\n");
    }

    mon(f, "    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
    for (i = 0; i < d->map.nodes_nb; ++i) {
        int j, jprev;
        PhysPageEntry prev;
        Node *n = d->map.nodes + i;

        mon(f, "      [%d]\n", i);

        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
            PhysPageEntry *pe = *n + j;

            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
                continue;
            }

            mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);

            jprev = j;
            prev = *pe;
        }

        if (jprev != ARRAY_SIZE(*n)) {
            mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
        }
    }
}

#endif