slub.c 142.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Christoph Lameter 已提交
2 3 4 5
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
6 7
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
8
 *
C
Christoph Lameter 已提交
9
 * (C) 2007 SGI, Christoph Lameter
10
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
11 12 13
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
14
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
15 16 17 18 19
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
20
#include "slab.h"
21
#include <linux/proc_fs.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
23
#include <linux/kasan.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
36
#include <linux/random.h>
C
Christoph Lameter 已提交
37

38 39
#include <trace/events/kmem.h>

40 41
#include "internal.h"

C
Christoph Lameter 已提交
42 43
/*
 * Lock order:
44
 *   1. slab_mutex (Global Mutex)
45 46
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
47
 *
48
 *   slab_mutex
49
 *
50
 *   The role of the slab_mutex is to protect the list of all the slabs
51 52 53
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
54
 *   have the ability to do a cmpxchg_double. It only protects:
55
 *	A. page->freelist	-> List of object free in a page
56 57 58
 *	B. page->inuse		-> Number of objects in use
 *	C. page->objects	-> Number of objects in page
 *	D. page->frozen		-> frozen state
59 60
 *
 *   If a slab is frozen then it is exempt from list management. It is not
61 62 63 64 65
 *   on any list except per cpu partial list. The processor that froze the
 *   slab is the one who can perform list operations on the page. Other
 *   processors may put objects onto the freelist but the processor that
 *   froze the slab is the only one that can retrieve the objects from the
 *   page's freelist.
C
Christoph Lameter 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
86 87
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
88
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
89 90
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
Y
Yu Zhao 已提交
96
 * page->frozen		The slab is frozen and exempt from list processing.
97 98 99 100 101 102 103 104 105 106 107
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111
 *
Y
Yu Zhao 已提交
112
 * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
C
Christoph Lameter 已提交
113
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118 119 120 121 122 123 124
#ifdef CONFIG_SLUB_DEBUG
#ifdef CONFIG_SLUB_DEBUG_ON
DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
#else
DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
#endif
#endif

125 126 127
static inline bool kmem_cache_debug(struct kmem_cache *s)
{
	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
128
}
129

130
void *fixup_red_left(struct kmem_cache *s, void *p)
J
Joonsoo Kim 已提交
131
{
132
	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
J
Joonsoo Kim 已提交
133 134 135 136 137
		p += s->red_left_pad;

	return p;
}

138 139 140 141 142 143 144 145 146
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
147 148 149 150 151 152 153 154 155 156 157
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

158 159 160
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

161 162 163 164
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
165
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
166

167 168 169
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
170
 * sort the partial list by the number of objects in use.
171 172 173
 */
#define MAX_PARTIAL 10

174
#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
C
Christoph Lameter 已提交
175
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
176

177 178 179 180 181 182 183 184
/*
 * These debug flags cannot use CMPXCHG because there might be consistency
 * issues when checking or reading debug information
 */
#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
				SLAB_TRACE)


185
/*
186 187 188
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
189
 */
190
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
191

192 193
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
194
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
195

C
Christoph Lameter 已提交
196
/* Internal SLUB flags */
197
/* Poison object */
198
#define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
199
/* Use cmpxchg_double */
200
#define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
C
Christoph Lameter 已提交
201

202 203 204
/*
 * Tracking user of a slab.
 */
205
#define TRACK_ADDRS_COUNT 16
206
struct track {
207
	unsigned long addr;	/* Called from address */
208 209 210
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
211 212 213 214 215 216 217
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

218
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
219 220 221
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
#else
222 223 224
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
C
Christoph Lameter 已提交
225 226
#endif

227
static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 229
{
#ifdef CONFIG_SLUB_STATS
230 231 232 233 234
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
235 236 237
#endif
}

238 239 240 241 242 243 244 245
/*
 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
 * differ during memory hotplug/hotremove operations.
 * Protected by slab_mutex.
 */
static nodemask_t slab_nodes;

C
Christoph Lameter 已提交
246 247 248 249
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

250 251 252 253 254 255 256 257 258
/*
 * Returns freelist pointer (ptr). With hardening, this is obfuscated
 * with an XOR of the address where the pointer is held and a per-cache
 * random number.
 */
static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
				 unsigned long ptr_addr)
{
#ifdef CONFIG_SLAB_FREELIST_HARDENED
259
	/*
260
	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
261 262 263 264 265 266 267 268 269
	 * Normally, this doesn't cause any issues, as both set_freepointer()
	 * and get_freepointer() are called with a pointer with the same tag.
	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
	 * example, when __free_slub() iterates over objects in a cache, it
	 * passes untagged pointers to check_object(). check_object() in turns
	 * calls get_freepointer() with an untagged pointer, which causes the
	 * freepointer to be restored incorrectly.
	 */
	return (void *)((unsigned long)ptr ^ s->random ^
270
			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
271 272 273 274 275 276 277 278 279 280 281 282 283
#else
	return ptr;
#endif
}

/* Returns the freelist pointer recorded at location ptr_addr. */
static inline void *freelist_dereference(const struct kmem_cache *s,
					 void *ptr_addr)
{
	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
			    (unsigned long)ptr_addr);
}

284 285
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
286
	object = kasan_reset_tag(object);
287
	return freelist_dereference(s, object + s->offset);
288 289
}

290 291
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
292
	prefetch(object + s->offset);
293 294
}

295 296
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
297
	unsigned long freepointer_addr;
298 299
	void *p;

300
	if (!debug_pagealloc_enabled_static())
301 302
		return get_freepointer(s, object);

303
	freepointer_addr = (unsigned long)object + s->offset;
304
	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
305
	return freelist_ptr(s, p, freepointer_addr);
306 307
}

308 309
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
310 311
	unsigned long freeptr_addr = (unsigned long)object + s->offset;

312 313 314 315
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	BUG_ON(object == fp); /* naive detection of double free or corruption */
#endif

316
	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
317
	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
318 319 320
}

/* Loop over all objects in a slab */
321
#define for_each_object(__p, __s, __addr, __objects) \
J
Joonsoo Kim 已提交
322 323 324
	for (__p = fixup_red_left(__s, __addr); \
		__p < (__addr) + (__objects) * (__s)->size; \
		__p += (__s)->size)
325

326
static inline unsigned int order_objects(unsigned int order, unsigned int size)
327
{
328
	return ((unsigned int)PAGE_SIZE << order) / size;
329 330
}

331
static inline struct kmem_cache_order_objects oo_make(unsigned int order,
332
		unsigned int size)
333 334
{
	struct kmem_cache_order_objects x = {
335
		(order << OO_SHIFT) + order_objects(order, size)
336 337 338 339 340
	};

	return x;
}

341
static inline unsigned int oo_order(struct kmem_cache_order_objects x)
342
{
343
	return x.x >> OO_SHIFT;
344 345
}

346
static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
347
{
348
	return x.x & OO_MASK;
349 350
}

351 352 353 354 355
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
356
	VM_BUG_ON_PAGE(PageTail(page), page);
357 358 359 360 361
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
362
	VM_BUG_ON_PAGE(PageTail(page), page);
363 364 365
	__bit_spin_unlock(PG_locked, &page->flags);
}

366 367 368 369 370 371 372
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
373 374
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
375
	if (s->flags & __CMPXCHG_DOUBLE) {
376
		if (cmpxchg_double(&page->freelist, &page->counters,
377 378
				   freelist_old, counters_old,
				   freelist_new, counters_new))
379
			return true;
380 381 382 383
	} else
#endif
	{
		slab_lock(page);
384 385
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
386
			page->freelist = freelist_new;
387
			page->counters = counters_new;
388
			slab_unlock(page);
389
			return true;
390 391 392 393 394 395 396 397
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
398
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
399 400
#endif

401
	return false;
402 403
}

404 405 406 407 408
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
409 410
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
411
	if (s->flags & __CMPXCHG_DOUBLE) {
412
		if (cmpxchg_double(&page->freelist, &page->counters,
413 414
				   freelist_old, counters_old,
				   freelist_new, counters_new))
415
			return true;
416 417 418
	} else
#endif
	{
419 420 421
		unsigned long flags;

		local_irq_save(flags);
422
		slab_lock(page);
423 424
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
425
			page->freelist = freelist_new;
426
			page->counters = counters_new;
427
			slab_unlock(page);
428
			local_irq_restore(flags);
429
			return true;
430
		}
431
		slab_unlock(page);
432
		local_irq_restore(flags);
433 434 435 436 437 438
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
439
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
440 441
#endif

442
	return false;
443 444
}

C
Christoph Lameter 已提交
445
#ifdef CONFIG_SLUB_DEBUG
446 447 448
static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
static DEFINE_SPINLOCK(object_map_lock);

449 450 451
/*
 * Determine a map of object in use on a page.
 *
452
 * Node listlock must be held to guarantee that the page does
453 454
 * not vanish from under us.
 */
455
static unsigned long *get_map(struct kmem_cache *s, struct page *page)
456
	__acquires(&object_map_lock)
457 458 459 460
{
	void *p;
	void *addr = page_address(page);

461 462 463 464 465 466
	VM_BUG_ON(!irqs_disabled());

	spin_lock(&object_map_lock);

	bitmap_zero(object_map, page->objects);

467
	for (p = page->freelist; p; p = get_freepointer(s, p))
468
		set_bit(__obj_to_index(s, addr, p), object_map);
469 470 471 472

	return object_map;
}

473
static void put_map(unsigned long *map) __releases(&object_map_lock)
474 475 476
{
	VM_BUG_ON(map != object_map);
	spin_unlock(&object_map_lock);
477 478
}

479
static inline unsigned int size_from_object(struct kmem_cache *s)
J
Joonsoo Kim 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
{
	if (s->flags & SLAB_RED_ZONE)
		return s->size - s->red_left_pad;

	return s->size;
}

static inline void *restore_red_left(struct kmem_cache *s, void *p)
{
	if (s->flags & SLAB_RED_ZONE)
		p -= s->red_left_pad;

	return p;
}

C
Christoph Lameter 已提交
495 496 497
/*
 * Debug settings:
 */
498
#if defined(CONFIG_SLUB_DEBUG_ON)
499
static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
500
#else
501
static slab_flags_t slub_debug;
502
#endif
C
Christoph Lameter 已提交
503

504
static char *slub_debug_string;
505
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
506

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
/*
 * slub is about to manipulate internal object metadata.  This memory lies
 * outside the range of the allocated object, so accessing it would normally
 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 * to tell kasan that these accesses are OK.
 */
static inline void metadata_access_enable(void)
{
	kasan_disable_current();
}

static inline void metadata_access_disable(void)
{
	kasan_enable_current();
}

C
Christoph Lameter 已提交
523 524 525
/*
 * Object debugging
 */
J
Joonsoo Kim 已提交
526 527 528 529 530 531 532 533 534 535 536

/* Verify that a pointer has an address that is valid within a slab page */
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, void *object)
{
	void *base;

	if (!object)
		return 1;

	base = page_address(page);
537
	object = kasan_reset_tag(object);
J
Joonsoo Kim 已提交
538 539 540 541 542 543 544 545 546
	object = restore_red_left(s, object);
	if (object < base || object >= base + page->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

547 548
static void print_section(char *level, char *text, u8 *addr,
			  unsigned int length)
C
Christoph Lameter 已提交
549
{
550
	metadata_access_enable();
551 552
	print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
			16, 1, addr, length, 1);
553
	metadata_access_disable();
C
Christoph Lameter 已提交
554 555
}

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
/*
 * See comment in calculate_sizes().
 */
static inline bool freeptr_outside_object(struct kmem_cache *s)
{
	return s->offset >= s->inuse;
}

/*
 * Return offset of the end of info block which is inuse + free pointer if
 * not overlapping with object.
 */
static inline unsigned int get_info_end(struct kmem_cache *s)
{
	if (freeptr_outside_object(s))
		return s->inuse + sizeof(void *);
	else
		return s->inuse;
}

C
Christoph Lameter 已提交
576 577 578 579 580
static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

581
	p = object + get_info_end(s);
C
Christoph Lameter 已提交
582

583
	return kasan_reset_tag(p + alloc);
C
Christoph Lameter 已提交
584 585 586
}

static void set_track(struct kmem_cache *s, void *object,
587
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
588
{
A
Akinobu Mita 已提交
589
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
590 591

	if (addr) {
592
#ifdef CONFIG_STACKTRACE
593
		unsigned int nr_entries;
594

595
		metadata_access_enable();
596 597
		nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
					      TRACK_ADDRS_COUNT, 3);
598
		metadata_access_disable();
599

600 601
		if (nr_entries < TRACK_ADDRS_COUNT)
			p->addrs[nr_entries] = 0;
602
#endif
C
Christoph Lameter 已提交
603 604
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
605
		p->pid = current->pid;
C
Christoph Lameter 已提交
606
		p->when = jiffies;
607
	} else {
C
Christoph Lameter 已提交
608
		memset(p, 0, sizeof(struct track));
609
	}
C
Christoph Lameter 已提交
610 611 612 613
}

static void init_tracking(struct kmem_cache *s, void *object)
{
614 615 616
	if (!(s->flags & SLAB_STORE_USER))
		return;

617 618
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
619 620
}

621
static void print_track(const char *s, struct track *t, unsigned long pr_time)
C
Christoph Lameter 已提交
622 623 624 625
{
	if (!t->addr)
		return;

626
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
627
	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
628 629 630 631 632
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
633
				pr_err("\t%pS\n", (void *)t->addrs[i]);
634 635 636 637
			else
				break;
	}
#endif
638 639
}

640
void print_tracking(struct kmem_cache *s, void *object)
641
{
642
	unsigned long pr_time = jiffies;
643 644 645
	if (!(s->flags & SLAB_STORE_USER))
		return;

646 647
	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
648 649 650 651
}

static void print_page_info(struct page *page)
{
652
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
653
	       page, page->objects, page->inuse, page->freelist, page->flags);
654 655 656 657 658

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
659
	struct va_format vaf;
660 661 662
	va_list args;

	va_start(args, fmt);
663 664
	vaf.fmt = fmt;
	vaf.va = &args;
665
	pr_err("=============================================================================\n");
666
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
667
	pr_err("-----------------------------------------------------------------------------\n\n");
668

669
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
670
	va_end(args);
C
Christoph Lameter 已提交
671 672
}

673 674
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
675
	struct va_format vaf;
676 677 678
	va_list args;

	va_start(args, fmt);
679 680 681
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
682 683 684
	va_end(args);
}

685
static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
686
			       void **freelist, void *nextfree)
687 688
{
	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
689 690 691
	    !check_valid_pointer(s, page, nextfree) && freelist) {
		object_err(s, page, *freelist, "Freechain corrupt");
		*freelist = NULL;
692 693 694 695 696 697 698
		slab_fix(s, "Isolate corrupted freechain");
		return true;
	}

	return false;
}

699
static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
700 701
{
	unsigned int off;	/* Offset of last byte */
702
	u8 *addr = page_address(page);
703 704 705 706 707

	print_tracking(s, p);

	print_page_info(page);

708 709
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
710

J
Joonsoo Kim 已提交
711
	if (s->flags & SLAB_RED_ZONE)
712 713
		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
			      s->red_left_pad);
J
Joonsoo Kim 已提交
714
	else if (p > addr + 16)
715
		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
716

717
	print_section(KERN_ERR, "Object ", p,
718
		      min_t(unsigned int, s->object_size, PAGE_SIZE));
C
Christoph Lameter 已提交
719
	if (s->flags & SLAB_RED_ZONE)
720
		print_section(KERN_ERR, "Redzone ", p + s->object_size,
721
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
722

723
	off = get_info_end(s);
C
Christoph Lameter 已提交
724

725
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
726 727
		off += 2 * sizeof(struct track);

728 729
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
730
	if (off != size_from_object(s))
C
Christoph Lameter 已提交
731
		/* Beginning of the filler is the free pointer */
732 733
		print_section(KERN_ERR, "Padding ", p + off,
			      size_from_object(s) - off);
734 735

	dump_stack();
C
Christoph Lameter 已提交
736 737
}

738
void object_err(struct kmem_cache *s, struct page *page,
C
Christoph Lameter 已提交
739 740
			u8 *object, char *reason)
{
741
	slab_bug(s, "%s", reason);
742
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
743 744
}

745
static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
746
			const char *fmt, ...)
C
Christoph Lameter 已提交
747 748 749 750
{
	va_list args;
	char buf[100];

751 752
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
753
	va_end(args);
754
	slab_bug(s, "%s", buf);
755
	print_page_info(page);
C
Christoph Lameter 已提交
756 757 758
	dump_stack();
}

759
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
760
{
761
	u8 *p = kasan_reset_tag(object);
C
Christoph Lameter 已提交
762

J
Joonsoo Kim 已提交
763 764 765
	if (s->flags & SLAB_RED_ZONE)
		memset(p - s->red_left_pad, val, s->red_left_pad);

C
Christoph Lameter 已提交
766
	if (s->flags & __OBJECT_POISON) {
767 768
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
769 770 771
	}

	if (s->flags & SLAB_RED_ZONE)
772
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
773 774
}

775 776 777 778 779 780 781 782 783
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
784
			u8 *start, unsigned int value, unsigned int bytes)
785 786 787
{
	u8 *fault;
	u8 *end;
788
	u8 *addr = page_address(page);
789

790
	metadata_access_enable();
791
	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
792
	metadata_access_disable();
793 794 795 796 797 798 799 800
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
801 802 803
	pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault - addr,
					fault[0], value);
804 805 806 807
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
808 809 810 811 812 813 814 815
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
816
 *	pointer is at the middle of the object.
C
Christoph Lameter 已提交
817
 *
C
Christoph Lameter 已提交
818 819 820
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
821
 * object + s->object_size
C
Christoph Lameter 已提交
822
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
823
 * 	Padding is extended by another word if Redzoning is enabled and
824
 * 	object_size == inuse.
C
Christoph Lameter 已提交
825
 *
C
Christoph Lameter 已提交
826 827 828 829
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
830 831
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
832 833
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
834
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
835
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
836 837 838
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
839 840
 *
 * object + s->size
C
Christoph Lameter 已提交
841
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
842
 *
843
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
844
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
845 846 847 848 849
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
850
	unsigned long off = get_info_end(s);	/* The end of info */
C
Christoph Lameter 已提交
851 852 853 854 855

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

856 857
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
858
	if (size_from_object(s) == off)
C
Christoph Lameter 已提交
859 860
		return 1;

861
	return check_bytes_and_report(s, page, p, "Object padding",
J
Joonsoo Kim 已提交
862
			p + off, POISON_INUSE, size_from_object(s) - off);
C
Christoph Lameter 已提交
863 864
}

865
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
866 867
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
868 869 870
	u8 *start;
	u8 *fault;
	u8 *end;
871
	u8 *pad;
872 873
	int length;
	int remainder;
C
Christoph Lameter 已提交
874 875 876 877

	if (!(s->flags & SLAB_POISON))
		return 1;

878
	start = page_address(page);
879
	length = page_size(page);
880 881
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
882 883 884
	if (!remainder)
		return 1;

885
	pad = end - remainder;
886
	metadata_access_enable();
887
	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
888
	metadata_access_disable();
889 890 891 892 893
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

894 895
	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
			fault, end - 1, fault - start);
896
	print_section(KERN_ERR, "Padding ", pad, remainder);
897

898
	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
899
	return 0;
C
Christoph Lameter 已提交
900 901 902
}

static int check_object(struct kmem_cache *s, struct page *page,
903
					void *object, u8 val)
C
Christoph Lameter 已提交
904 905
{
	u8 *p = object;
906
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
907 908

	if (s->flags & SLAB_RED_ZONE) {
J
Joonsoo Kim 已提交
909 910 911 912
		if (!check_bytes_and_report(s, page, object, "Redzone",
			object - s->red_left_pad, val, s->red_left_pad))
			return 0;

913
		if (!check_bytes_and_report(s, page, object, "Redzone",
914
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
915 916
			return 0;
	} else {
917
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
918
			check_bytes_and_report(s, page, p, "Alignment padding",
919 920
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
921
		}
C
Christoph Lameter 已提交
922 923 924
	}

	if (s->flags & SLAB_POISON) {
925
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
926
			(!check_bytes_and_report(s, page, p, "Poison", p,
927
					POISON_FREE, s->object_size - 1) ||
928
			 !check_bytes_and_report(s, page, p, "Poison",
929
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
930 931 932 933 934 935 936
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

937
	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
938 939 940 941 942 943 944 945 946 947
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
948
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
949
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
950
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
951
		 */
952
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
953 954 955 956 957 958 959
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
960 961
	int maxobj;

C
Christoph Lameter 已提交
962 963 964
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
965
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
966 967
		return 0;
	}
968

969
	maxobj = order_objects(compound_order(page), s->size);
970 971
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
972
			page->objects, maxobj);
973 974 975
		return 0;
	}
	if (page->inuse > page->objects) {
976
		slab_err(s, page, "inuse %u > max %u",
977
			page->inuse, page->objects);
C
Christoph Lameter 已提交
978 979 980 981 982 983 984 985
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
986 987
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
988 989 990 991
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
992
	void *fp;
C
Christoph Lameter 已提交
993
	void *object = NULL;
994
	int max_objects;
C
Christoph Lameter 已提交
995

996
	fp = page->freelist;
997
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
998 999 1000 1001 1002 1003
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
1004
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
1005
			} else {
1006
				slab_err(s, page, "Freepointer corrupt");
1007
				page->freelist = NULL;
1008
				page->inuse = page->objects;
1009
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

1019
	max_objects = order_objects(compound_order(page), s->size);
1020 1021
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
1022 1023

	if (page->objects != max_objects) {
J
Joe Perches 已提交
1024 1025
		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
			 page->objects, max_objects);
1026 1027 1028
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
1029
	if (page->inuse != page->objects - nr) {
J
Joe Perches 已提交
1030 1031
		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
			 page->inuse, page->objects - nr);
1032
		page->inuse = page->objects - nr;
1033
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
1034 1035 1036 1037
	}
	return search == NULL;
}

1038 1039
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
1040 1041
{
	if (s->flags & SLAB_TRACE) {
1042
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
1043 1044 1045 1046 1047 1048
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
1049
			print_section(KERN_INFO, "Object ", (void *)object,
1050
					s->object_size);
C
Christoph Lameter 已提交
1051 1052 1053 1054 1055

		dump_stack();
	}
}

1056
/*
C
Christoph Lameter 已提交
1057
 * Tracking of fully allocated slabs for debugging purposes.
1058
 */
1059 1060
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
1061
{
1062 1063 1064
	if (!(s->flags & SLAB_STORE_USER))
		return;

1065
	lockdep_assert_held(&n->list_lock);
1066
	list_add(&page->slab_list, &n->full);
1067 1068
}

P
Peter Zijlstra 已提交
1069
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1070 1071 1072 1073
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

1074
	lockdep_assert_held(&n->list_lock);
1075
	list_del(&page->slab_list);
1076 1077
}

1078 1079 1080 1081 1082 1083 1084 1085
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1086 1087 1088 1089 1090
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1091
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1092 1093 1094 1095 1096 1097 1098 1099 1100
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1101
	if (likely(n)) {
1102
		atomic_long_inc(&n->nr_slabs);
1103 1104
		atomic_long_add(objects, &n->total_objects);
	}
1105
}
1106
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1107 1108 1109 1110
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1111
	atomic_long_sub(objects, &n->total_objects);
1112 1113 1114
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1115 1116 1117
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
1118
	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
C
Christoph Lameter 已提交
1119 1120
		return;

1121
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1122 1123 1124
	init_tracking(s, object);
}

1125 1126
static
void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1127
{
1128
	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1129 1130 1131
		return;

	metadata_access_enable();
1132
	memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1133 1134 1135
	metadata_access_disable();
}

1136
static inline int alloc_consistency_checks(struct kmem_cache *s,
1137
					struct page *page, void *object)
C
Christoph Lameter 已提交
1138 1139
{
	if (!check_slab(s, page))
1140
		return 0;
C
Christoph Lameter 已提交
1141 1142 1143

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1144
		return 0;
C
Christoph Lameter 已提交
1145 1146
	}

1147
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
		return 0;

	return 1;
}

static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
					void *object, unsigned long addr)
{
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1158
		if (!alloc_consistency_checks(s, page, object))
1159 1160
			goto bad;
	}
C
Christoph Lameter 已提交
1161

C
Christoph Lameter 已提交
1162 1163 1164 1165
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1166
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1167
	return 1;
C
Christoph Lameter 已提交
1168

C
Christoph Lameter 已提交
1169 1170 1171 1172 1173
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1174
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1175
		 */
1176
		slab_fix(s, "Marking all objects used");
1177
		page->inuse = page->objects;
1178
		page->freelist = NULL;
C
Christoph Lameter 已提交
1179 1180 1181 1182
	}
	return 0;
}

1183 1184
static inline int free_consistency_checks(struct kmem_cache *s,
		struct page *page, void *object, unsigned long addr)
C
Christoph Lameter 已提交
1185 1186
{
	if (!check_valid_pointer(s, page, object)) {
1187
		slab_err(s, page, "Invalid object pointer 0x%p", object);
1188
		return 0;
C
Christoph Lameter 已提交
1189 1190 1191
	}

	if (on_freelist(s, page, object)) {
1192
		object_err(s, page, object, "Object already free");
1193
		return 0;
C
Christoph Lameter 已提交
1194 1195
	}

1196
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1197
		return 0;
C
Christoph Lameter 已提交
1198

1199
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1200
		if (!PageSlab(page)) {
J
Joe Perches 已提交
1201 1202
			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
				 object);
1203
		} else if (!page->slab_cache) {
1204 1205
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1206
			dump_stack();
P
Pekka Enberg 已提交
1207
		} else
1208 1209
			object_err(s, page, object,
					"page slab pointer corrupt.");
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
		return 0;
	}
	return 1;
}

/* Supports checking bulk free of a constructed freelist */
static noinline int free_debug_processing(
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
	unsigned long addr)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	void *object = head;
	int cnt = 0;
1224
	unsigned long flags;
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	int ret = 0;

	spin_lock_irqsave(&n->list_lock, flags);
	slab_lock(page);

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!check_slab(s, page))
			goto out;
	}

next_object:
	cnt++;

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!free_consistency_checks(s, page, object, addr))
			goto out;
C
Christoph Lameter 已提交
1241
	}
C
Christoph Lameter 已提交
1242 1243 1244 1245

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1246
	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1247
	init_object(s, object, SLUB_RED_INACTIVE);
1248 1249 1250 1251 1252 1253

	/* Reached end of constructed freelist yet? */
	if (object != tail) {
		object = get_freepointer(s, object);
		goto next_object;
	}
1254 1255
	ret = 1;

1256
out:
1257 1258 1259 1260
	if (cnt != bulk_cnt)
		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
			 bulk_cnt, cnt);

1261
	slab_unlock(page);
1262
	spin_unlock_irqrestore(&n->list_lock, flags);
1263 1264 1265
	if (!ret)
		slab_fix(s, "Object at 0x%p not freed", object);
	return ret;
C
Christoph Lameter 已提交
1266 1267
}

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
/*
 * Parse a block of slub_debug options. Blocks are delimited by ';'
 *
 * @str:    start of block
 * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
 * @slabs:  return start of list of slabs, or NULL when there's no list
 * @init:   assume this is initial parsing and not per-kmem-create parsing
 *
 * returns the start of next block if there's any, or NULL
 */
static char *
parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
C
Christoph Lameter 已提交
1280
{
1281
	bool higher_order_disable = false;
1282

1283 1284 1285 1286 1287
	/* Skip any completely empty blocks */
	while (*str && *str == ';')
		str++;

	if (*str == ',') {
1288 1289 1290 1291
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
1292
		*flags = DEBUG_DEFAULT_FLAGS;
1293
		goto check_slabs;
1294 1295
	}
	*flags = 0;
1296

1297 1298
	/* Determine which debug features should be switched on */
	for (; *str && *str != ',' && *str != ';'; str++) {
1299
		switch (tolower(*str)) {
1300 1301 1302
		case '-':
			*flags = 0;
			break;
1303
		case 'f':
1304
			*flags |= SLAB_CONSISTENCY_CHECKS;
1305 1306
			break;
		case 'z':
1307
			*flags |= SLAB_RED_ZONE;
1308 1309
			break;
		case 'p':
1310
			*flags |= SLAB_POISON;
1311 1312
			break;
		case 'u':
1313
			*flags |= SLAB_STORE_USER;
1314 1315
			break;
		case 't':
1316
			*flags |= SLAB_TRACE;
1317
			break;
1318
		case 'a':
1319
			*flags |= SLAB_FAILSLAB;
1320
			break;
1321 1322 1323 1324 1325
		case 'o':
			/*
			 * Avoid enabling debugging on caches if its minimum
			 * order would increase as a result.
			 */
1326
			higher_order_disable = true;
1327
			break;
1328
		default:
1329 1330
			if (init)
				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1331
		}
C
Christoph Lameter 已提交
1332
	}
1333
check_slabs:
C
Christoph Lameter 已提交
1334
	if (*str == ',')
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
		*slabs = ++str;
	else
		*slabs = NULL;

	/* Skip over the slab list */
	while (*str && *str != ';')
		str++;

	/* Skip any completely empty blocks */
	while (*str && *str == ';')
		str++;

	if (init && higher_order_disable)
		disable_higher_order_debug = 1;

	if (*str)
		return str;
	else
		return NULL;
}

static int __init setup_slub_debug(char *str)
{
	slab_flags_t flags;
	char *saved_str;
	char *slab_list;
	bool global_slub_debug_changed = false;
	bool slab_list_specified = false;

	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	saved_str = str;
	while (str) {
		str = parse_slub_debug_flags(str, &flags, &slab_list, true);

		if (!slab_list) {
			slub_debug = flags;
			global_slub_debug_changed = true;
		} else {
			slab_list_specified = true;
		}
	}

	/*
	 * For backwards compatibility, a single list of flags with list of
	 * slabs means debugging is only enabled for those slabs, so the global
	 * slub_debug should be 0. We can extended that to multiple lists as
	 * long as there is no option specifying flags without a slab list.
	 */
	if (slab_list_specified) {
		if (!global_slub_debug_changed)
			slub_debug = 0;
		slub_debug_string = saved_str;
	}
1394
out:
1395 1396
	if (slub_debug != 0 || slub_debug_string)
		static_branch_enable(&slub_debug_enabled);
1397 1398 1399 1400
	if ((static_branch_unlikely(&init_on_alloc) ||
	     static_branch_unlikely(&init_on_free)) &&
	    (slub_debug & SLAB_POISON))
		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
C
Christoph Lameter 已提交
1401 1402 1403 1404 1405
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
/*
 * kmem_cache_flags - apply debugging options to the cache
 * @object_size:	the size of an object without meta data
 * @flags:		flags to set
 * @name:		name of the cache
 *
 * Debug option(s) are applied to @flags. In addition to the debug
 * option(s), if a slab name (or multiple) is specified i.e.
 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
 * then only the select slabs will receive the debug option(s).
 */
1417
slab_flags_t kmem_cache_flags(unsigned int object_size,
1418
	slab_flags_t flags, const char *name)
C
Christoph Lameter 已提交
1419
{
1420 1421
	char *iter;
	size_t len;
1422 1423
	char *next_block;
	slab_flags_t block_flags;
1424 1425 1426 1427 1428 1429 1430 1431 1432
	slab_flags_t slub_debug_local = slub_debug;

	/*
	 * If the slab cache is for debugging (e.g. kmemleak) then
	 * don't store user (stack trace) information by default,
	 * but let the user enable it via the command line below.
	 */
	if (flags & SLAB_NOLEAKTRACE)
		slub_debug_local &= ~SLAB_STORE_USER;
1433 1434

	len = strlen(name);
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	next_block = slub_debug_string;
	/* Go through all blocks of debug options, see if any matches our slab's name */
	while (next_block) {
		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
		if (!iter)
			continue;
		/* Found a block that has a slab list, search it */
		while (*iter) {
			char *end, *glob;
			size_t cmplen;

			end = strchrnul(iter, ',');
			if (next_block && next_block < end)
				end = next_block - 1;

			glob = strnchr(iter, end - iter, '*');
			if (glob)
				cmplen = glob - iter;
			else
				cmplen = max_t(size_t, len, (end - iter));
1455

1456 1457 1458 1459
			if (!strncmp(name, iter, cmplen)) {
				flags |= block_flags;
				return flags;
			}
1460

1461 1462 1463
			if (!*end || *end == ';')
				break;
			iter = end + 1;
1464 1465
		}
	}
1466

1467
	return flags | slub_debug_local;
C
Christoph Lameter 已提交
1468
}
1469
#else /* !CONFIG_SLUB_DEBUG */
C
Christoph Lameter 已提交
1470 1471
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
1472 1473
static inline
void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
C
Christoph Lameter 已提交
1474

C
Christoph Lameter 已提交
1475
static inline int alloc_debug_processing(struct kmem_cache *s,
1476
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1477

1478
static inline int free_debug_processing(
1479 1480
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
1481
	unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1482 1483 1484 1485

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1486
			void *object, u8 val) { return 1; }
1487 1488
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1489 1490
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1491
slab_flags_t kmem_cache_flags(unsigned int object_size,
1492
	slab_flags_t flags, const char *name)
1493 1494 1495
{
	return flags;
}
C
Christoph Lameter 已提交
1496
#define slub_debug 0
1497

1498 1499
#define disable_higher_order_debug 0

1500 1501
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1502 1503
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1504 1505 1506 1507
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1508

1509
static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1510
			       void **freelist, void *nextfree)
1511 1512 1513
{
	return false;
}
1514 1515 1516 1517 1518 1519
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1520
static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1521
{
1522
	ptr = kasan_kmalloc_large(ptr, size, flags);
1523
	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1524
	kmemleak_alloc(ptr, size, 1, flags);
1525
	return ptr;
1526 1527
}

1528
static __always_inline void kfree_hook(void *x)
1529 1530
{
	kmemleak_free(x);
1531
	kasan_kfree_large(x, _RET_IP_);
1532 1533
}

1534
static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1535 1536
{
	kmemleak_free_recursive(x, s->flags);
1537

1538 1539 1540 1541 1542
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
1543
#ifdef CONFIG_LOCKDEP
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
	{
		unsigned long flags;

		local_irq_save(flags);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
1554

1555 1556 1557 1558 1559
	/* Use KCSAN to help debug racy use-after-free. */
	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
		__kcsan_check_access(x, s->object_size,
				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);

1560 1561
	/* KASAN might put x into memory quarantine, delaying its reuse */
	return kasan_slab_free(s, x, _RET_IP_);
1562
}
1563

1564 1565
static inline bool slab_free_freelist_hook(struct kmem_cache *s,
					   void **head, void **tail)
1566
{
1567 1568 1569 1570 1571 1572

	void *object;
	void *next = *head;
	void *old_tail = *tail ? *tail : *head;
	int rsize;

1573 1574 1575
	/* Head and tail of the reconstructed freelist */
	*head = NULL;
	*tail = NULL;
1576

1577 1578 1579 1580 1581
	do {
		object = next;
		next = get_freepointer(s, object);

		if (slab_want_init_on_free(s)) {
1582 1583 1584 1585
			/*
			 * Clear the object and the metadata, but don't touch
			 * the redzone.
			 */
1586
			memset(kasan_reset_tag(object), 0, s->object_size);
1587 1588
			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
							   : 0;
1589
			memset((char *)kasan_reset_tag(object) + s->inuse, 0,
1590
			       s->size - s->inuse - rsize);
1591

1592
		}
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
		/* If object's reuse doesn't have to be delayed */
		if (!slab_free_hook(s, object)) {
			/* Move object to the new freelist */
			set_freepointer(s, object, *head);
			*head = object;
			if (!*tail)
				*tail = object;
		}
	} while (object != old_tail);

	if (*head == *tail)
		*tail = NULL;

	return *head != NULL;
1607 1608
}

1609
static void *setup_object(struct kmem_cache *s, struct page *page,
1610 1611 1612
				void *object)
{
	setup_object_debug(s, page, object);
1613
	object = kasan_init_slab_obj(s, object);
1614 1615 1616 1617 1618
	if (unlikely(s->ctor)) {
		kasan_unpoison_object_data(s, object);
		s->ctor(object);
		kasan_poison_object_data(s, object);
	}
1619
	return object;
1620 1621
}

C
Christoph Lameter 已提交
1622 1623 1624
/*
 * Slab allocation and freeing
 */
1625 1626
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1627
{
1628
	struct page *page;
1629
	unsigned int order = oo_order(oo);
1630

1631
	if (node == NUMA_NO_NODE)
1632
		page = alloc_pages(flags, order);
1633
	else
1634
		page = __alloc_pages_node(node, flags, order);
1635 1636

	return page;
1637 1638
}

T
Thomas Garnier 已提交
1639 1640 1641 1642
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Pre-initialize the random sequence cache */
static int init_cache_random_seq(struct kmem_cache *s)
{
1643
	unsigned int count = oo_objects(s->oo);
T
Thomas Garnier 已提交
1644 1645
	int err;

1646 1647 1648 1649
	/* Bailout if already initialised */
	if (s->random_seq)
		return 0;

T
Thomas Garnier 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658
	err = cache_random_seq_create(s, count, GFP_KERNEL);
	if (err) {
		pr_err("SLUB: Unable to initialize free list for %s\n",
			s->name);
		return err;
	}

	/* Transform to an offset on the set of pages */
	if (s->random_seq) {
1659 1660
		unsigned int i;

T
Thomas Garnier 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
		for (i = 0; i < count; i++)
			s->random_seq[i] *= s->size;
	}
	return 0;
}

/* Initialize each random sequence freelist per cache */
static void __init init_freelist_randomization(void)
{
	struct kmem_cache *s;

	mutex_lock(&slab_mutex);

	list_for_each_entry(s, &slab_caches, list)
		init_cache_random_seq(s);

	mutex_unlock(&slab_mutex);
}

/* Get the next entry on the pre-computed freelist randomized */
static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
				unsigned long *pos, void *start,
				unsigned long page_limit,
				unsigned long freelist_count)
{
	unsigned int idx;

	/*
	 * If the target page allocation failed, the number of objects on the
	 * page might be smaller than the usual size defined by the cache.
	 */
	do {
		idx = s->random_seq[*pos];
		*pos += 1;
		if (*pos >= freelist_count)
			*pos = 0;
	} while (unlikely(idx >= page_limit));

	return (char *)start + idx;
}

/* Shuffle the single linked freelist based on a random pre-computed sequence */
static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	void *start;
	void *cur;
	void *next;
	unsigned long idx, pos, page_limit, freelist_count;

	if (page->objects < 2 || !s->random_seq)
		return false;

	freelist_count = oo_objects(s->oo);
	pos = get_random_int() % freelist_count;

	page_limit = page->objects * s->size;
	start = fixup_red_left(s, page_address(page));

	/* First entry is used as the base of the freelist */
	cur = next_freelist_entry(s, page, &pos, start, page_limit,
				freelist_count);
1722
	cur = setup_object(s, page, cur);
T
Thomas Garnier 已提交
1723 1724 1725 1726 1727
	page->freelist = cur;

	for (idx = 1; idx < page->objects; idx++) {
		next = next_freelist_entry(s, page, &pos, start, page_limit,
			freelist_count);
1728
		next = setup_object(s, page, next);
T
Thomas Garnier 已提交
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
		set_freepointer(s, cur, next);
		cur = next;
	}
	set_freepointer(s, cur, NULL);

	return true;
}
#else
static inline int init_cache_random_seq(struct kmem_cache *s)
{
	return 0;
}
static inline void init_freelist_randomization(void) { }
static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

C
Christoph Lameter 已提交
1748 1749
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1750
	struct page *page;
1751
	struct kmem_cache_order_objects oo = s->oo;
1752
	gfp_t alloc_gfp;
1753
	void *start, *p, *next;
1754
	int idx;
T
Thomas Garnier 已提交
1755
	bool shuffle;
C
Christoph Lameter 已提交
1756

1757 1758
	flags &= gfp_allowed_mask;

1759
	if (gfpflags_allow_blocking(flags))
1760 1761
		local_irq_enable();

1762
	flags |= s->allocflags;
1763

1764 1765 1766 1767 1768
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1769
	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1770
		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1771

1772
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1773 1774
	if (unlikely(!page)) {
		oo = s->min;
1775
		alloc_gfp = flags;
1776 1777 1778 1779
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1780
		page = alloc_slab_page(s, alloc_gfp, node, oo);
1781 1782 1783
		if (unlikely(!page))
			goto out;
		stat(s, ORDER_FALLBACK);
1784
	}
V
Vegard Nossum 已提交
1785

1786
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1787

1788 1789
	account_slab_page(page, oo_order(oo), s);

1790
	page->slab_cache = s;
1791
	__SetPageSlab(page);
1792
	if (page_is_pfmemalloc(page))
1793
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1794

1795
	kasan_poison_slab(page);
C
Christoph Lameter 已提交
1796

1797
	start = page_address(page);
C
Christoph Lameter 已提交
1798

1799
	setup_page_debug(s, page, start);
1800

T
Thomas Garnier 已提交
1801 1802 1803
	shuffle = shuffle_freelist(s, page);

	if (!shuffle) {
1804 1805 1806
		start = fixup_red_left(s, start);
		start = setup_object(s, page, start);
		page->freelist = start;
1807 1808 1809 1810 1811 1812 1813
		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
			next = p + s->size;
			next = setup_object(s, page, next);
			set_freepointer(s, p, next);
			p = next;
		}
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
1814 1815
	}

1816
	page->inuse = page->objects;
1817
	page->frozen = 1;
1818

C
Christoph Lameter 已提交
1819
out:
1820
	if (gfpflags_allow_blocking(flags))
1821 1822 1823 1824 1825 1826
		local_irq_disable();
	if (!page)
		return NULL;

	inc_slabs_node(s, page_to_nid(page), page->objects);

C
Christoph Lameter 已提交
1827 1828 1829
	return page;
}

1830 1831
static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
1832 1833
	if (unlikely(flags & GFP_SLAB_BUG_MASK))
		flags = kmalloc_fix_flags(flags);
1834 1835 1836 1837 1838

	return allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
}

C
Christoph Lameter 已提交
1839 1840
static void __free_slab(struct kmem_cache *s, struct page *page)
{
1841 1842
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1843

1844
	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
C
Christoph Lameter 已提交
1845 1846 1847
		void *p;

		slab_pad_check(s, page);
1848 1849
		for_each_object(p, s, page_address(page),
						page->objects)
1850
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1851 1852
	}

1853
	__ClearPageSlabPfmemalloc(page);
1854
	__ClearPageSlab(page);
1855 1856
	/* In union with page->mapping where page allocator expects NULL */
	page->slab_cache = NULL;
N
Nick Piggin 已提交
1857 1858
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1859
	unaccount_slab_page(page, order, s);
1860
	__free_pages(page, order);
C
Christoph Lameter 已提交
1861 1862 1863 1864
}

static void rcu_free_slab(struct rcu_head *h)
{
1865
	struct page *page = container_of(h, struct page, rcu_head);
1866

1867
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1868 1869 1870 1871
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
1872
	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1873
		call_rcu(&page->rcu_head, rcu_free_slab);
C
Christoph Lameter 已提交
1874 1875 1876 1877 1878 1879
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1880
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1881 1882 1883 1884
	free_slab(s, page);
}

/*
1885
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1886
 */
1887 1888
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1889
{
C
Christoph Lameter 已提交
1890
	n->nr_partial++;
1891
	if (tail == DEACTIVATE_TO_TAIL)
1892
		list_add_tail(&page->slab_list, &n->partial);
1893
	else
1894
		list_add(&page->slab_list, &n->partial);
C
Christoph Lameter 已提交
1895 1896
}

1897 1898
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1899
{
P
Peter Zijlstra 已提交
1900
	lockdep_assert_held(&n->list_lock);
1901 1902
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1903

1904 1905 1906 1907
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
1908
	list_del(&page->slab_list);
1909
	n->nr_partial--;
1910 1911
}

C
Christoph Lameter 已提交
1912
/*
1913 1914
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1915
 *
1916
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1917
 */
1918
static inline void *acquire_slab(struct kmem_cache *s,
1919
		struct kmem_cache_node *n, struct page *page,
1920
		int mode, int *objects)
C
Christoph Lameter 已提交
1921
{
1922 1923 1924 1925
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1926 1927
	lockdep_assert_held(&n->list_lock);

1928 1929 1930 1931 1932
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1933 1934 1935
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1936
	*objects = new.objects - new.inuse;
1937
	if (mode) {
1938
		new.inuse = page->objects;
1939 1940 1941 1942
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1943

1944
	VM_BUG_ON(new.frozen);
1945
	new.frozen = 1;
1946

1947
	if (!__cmpxchg_double_slab(s, page,
1948
			freelist, counters,
1949
			new.freelist, new.counters,
1950 1951
			"acquire_slab"))
		return NULL;
1952 1953

	remove_partial(n, page);
1954
	WARN_ON(!freelist);
1955
	return freelist;
C
Christoph Lameter 已提交
1956 1957
}

1958
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1959
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1960

C
Christoph Lameter 已提交
1961
/*
C
Christoph Lameter 已提交
1962
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1963
 */
1964 1965
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1966
{
1967 1968
	struct page *page, *page2;
	void *object = NULL;
1969
	unsigned int available = 0;
1970
	int objects;
C
Christoph Lameter 已提交
1971 1972 1973 1974

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Chen Tao 已提交
1975
	 * partial slab and there is none available then get_partial()
C
Christoph Lameter 已提交
1976
	 * will return NULL.
C
Christoph Lameter 已提交
1977 1978 1979 1980 1981
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1982
	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1983
		void *t;
1984

1985 1986 1987
		if (!pfmemalloc_match(page, flags))
			continue;

1988
		t = acquire_slab(s, n, page, object == NULL, &objects);
1989
		if (!t)
1990
			continue; /* cmpxchg raced */
1991

1992
		available += objects;
1993
		if (!object) {
1994 1995 1996 1997
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1998
			put_cpu_partial(s, page, 0);
1999
			stat(s, CPU_PARTIAL_NODE);
2000
		}
2001
		if (!kmem_cache_has_cpu_partial(s)
2002
			|| available > slub_cpu_partial(s) / 2)
2003 2004
			break;

2005
	}
C
Christoph Lameter 已提交
2006
	spin_unlock(&n->list_lock);
2007
	return object;
C
Christoph Lameter 已提交
2008 2009 2010
}

/*
C
Christoph Lameter 已提交
2011
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
2012
 */
2013
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2014
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2015 2016 2017
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
2018
	struct zoneref *z;
2019
	struct zone *zone;
2020
	enum zone_type highest_zoneidx = gfp_zone(flags);
2021
	void *object;
2022
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
2023 2024

	/*
C
Christoph Lameter 已提交
2025 2026 2027 2028
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
2029
	 *
C
Christoph Lameter 已提交
2030 2031 2032 2033
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
2034
	 *
2035 2036 2037 2038 2039
	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
	 * (which makes defrag_ratio = 1000) then every (well almost)
	 * allocation will first attempt to defrag slab caches on other nodes.
	 * This means scanning over all nodes to look for partial slabs which
	 * may be expensive if we do it every time we are trying to find a slab
C
Christoph Lameter 已提交
2040
	 * with available objects.
C
Christoph Lameter 已提交
2041
	 */
2042 2043
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
2044 2045
		return NULL;

2046
	do {
2047
		cpuset_mems_cookie = read_mems_allowed_begin();
2048
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
2049
		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2050 2051 2052 2053
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

2054
			if (n && cpuset_zone_allowed(zone, flags) &&
2055
					n->nr_partial > s->min_partial) {
2056
				object = get_partial_node(s, n, c, flags);
2057 2058
				if (object) {
					/*
2059 2060 2061 2062 2063
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
2064 2065 2066
					 */
					return object;
				}
2067
			}
C
Christoph Lameter 已提交
2068
		}
2069
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2070
#endif	/* CONFIG_NUMA */
C
Christoph Lameter 已提交
2071 2072 2073 2074 2075 2076
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
2077
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2078
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2079
{
2080
	void *object;
2081 2082 2083 2084
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
C
Christoph Lameter 已提交
2085

2086
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
2087 2088
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
2089

2090
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
2091 2092
}

2093
#ifdef CONFIG_PREEMPTION
2094
/*
2095
 * Calculate the next globally unique transaction for disambiguation
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

2113
#ifdef SLUB_DEBUG_CMPXCHG
2114 2115 2116 2117 2118 2119 2120 2121 2122
static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}
2123
#endif
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

2136
	pr_info("%s %s: cmpxchg redo ", n, s->name);
2137

2138
#ifdef CONFIG_PREEMPTION
2139
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2140
		pr_warn("due to cpu change %d -> %d\n",
2141 2142 2143 2144
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
2145
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2146 2147
			tid_to_event(tid), tid_to_event(actual_tid));
	else
2148
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2149 2150
			actual_tid, tid, next_tid(tid));
#endif
2151
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2152 2153
}

2154
static void init_kmem_cache_cpus(struct kmem_cache *s)
2155 2156 2157 2158 2159 2160
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
2161

C
Christoph Lameter 已提交
2162 2163 2164
/*
 * Remove the cpu slab
 */
2165
static void deactivate_slab(struct kmem_cache *s, struct page *page,
2166
				void *freelist, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2167
{
2168 2169
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2170
	int lock = 0, free_delta = 0;
2171
	enum slab_modes l = M_NONE, m = M_NONE;
2172
	void *nextfree, *freelist_iter, *freelist_tail;
2173
	int tail = DEACTIVATE_TO_HEAD;
2174 2175 2176 2177
	struct page new;
	struct page old;

	if (page->freelist) {
2178
		stat(s, DEACTIVATE_REMOTE_FREES);
2179
		tail = DEACTIVATE_TO_TAIL;
2180 2181
	}

2182
	/*
2183 2184
	 * Stage one: Count the objects on cpu's freelist as free_delta and
	 * remember the last object in freelist_tail for later splicing.
2185
	 */
2186 2187 2188 2189
	freelist_tail = NULL;
	freelist_iter = freelist;
	while (freelist_iter) {
		nextfree = get_freepointer(s, freelist_iter);
2190

2191 2192
		/*
		 * If 'nextfree' is invalid, it is possible that the object at
2193 2194
		 * 'freelist_iter' is already corrupted.  So isolate all objects
		 * starting at 'freelist_iter' by skipping them.
2195
		 */
2196
		if (freelist_corrupted(s, page, &freelist_iter, nextfree))
2197 2198
			break;

2199 2200
		freelist_tail = freelist_iter;
		free_delta++;
2201

2202
		freelist_iter = nextfree;
2203 2204
	}

2205
	/*
2206 2207 2208 2209 2210
	 * Stage two: Unfreeze the page while splicing the per-cpu
	 * freelist to the head of page's freelist.
	 *
	 * Ensure that the page is unfrozen while the list presence
	 * reflects the actual number of objects during unfreeze.
2211 2212 2213 2214 2215 2216 2217 2218 2219
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
2220
	 */
2221
redo:
2222

2223 2224
	old.freelist = READ_ONCE(page->freelist);
	old.counters = READ_ONCE(page->counters);
2225
	VM_BUG_ON(!old.frozen);
2226

2227 2228
	/* Determine target state of the slab */
	new.counters = old.counters;
2229 2230 2231
	if (freelist_tail) {
		new.inuse -= free_delta;
		set_freepointer(s, freelist_tail, old.freelist);
2232 2233 2234 2235 2236 2237
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

2238
	if (!new.inuse && n->nr_partial >= s->min_partial)
2239 2240 2241 2242 2243 2244
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
W
Wei Yang 已提交
2245
			 * Taking the spinlock removes the possibility
2246 2247 2248 2249 2250 2251 2252
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
2253
		if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {
		if (l == M_PARTIAL)
			remove_partial(n, page);
		else if (l == M_FULL)
P
Peter Zijlstra 已提交
2268
			remove_full(s, n, page);
2269

2270
		if (m == M_PARTIAL)
2271
			add_partial(n, page, tail);
2272
		else if (m == M_FULL)
2273 2274 2275 2276
			add_full(s, n, page);
	}

	l = m;
2277
	if (!__cmpxchg_double_slab(s, page,
2278 2279 2280 2281 2282 2283 2284 2285
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

2286 2287 2288 2289 2290
	if (m == M_PARTIAL)
		stat(s, tail);
	else if (m == M_FULL)
		stat(s, DEACTIVATE_FULL);
	else if (m == M_FREE) {
2291 2292 2293
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
2294
	}
2295 2296 2297

	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2298 2299
}

2300 2301 2302
/*
 * Unfreeze all the cpu partial slabs.
 *
2303 2304 2305
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
2306
 */
2307 2308
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
2309
{
2310
#ifdef CONFIG_SLUB_CPU_PARTIAL
2311
	struct kmem_cache_node *n = NULL, *n2 = NULL;
2312
	struct page *page, *discard_page = NULL;
2313

2314
	while ((page = slub_percpu_partial(c))) {
2315 2316 2317
		struct page new;
		struct page old;

2318
		slub_set_percpu_partial(c, page);
2319 2320 2321 2322 2323 2324 2325 2326 2327

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
2328 2329 2330 2331 2332

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
2333
			VM_BUG_ON(!old.frozen);
2334 2335 2336 2337 2338 2339

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

2340
		} while (!__cmpxchg_double_slab(s, page,
2341 2342 2343 2344
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

2345
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2346 2347
			page->next = discard_page;
			discard_page = page;
2348 2349 2350
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
2351 2352 2353 2354 2355
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
2356 2357 2358 2359 2360 2361 2362 2363 2364

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2365
#endif	/* CONFIG_SLUB_CPU_PARTIAL */
2366 2367 2368
}

/*
2369 2370
 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
 * partial page slot if available.
2371 2372 2373 2374
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2375
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2376
{
2377
#ifdef CONFIG_SLUB_CPU_PARTIAL
2378 2379 2380 2381
	struct page *oldpage;
	int pages;
	int pobjects;

2382
	preempt_disable();
2383 2384 2385 2386 2387 2388 2389 2390
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
2391
			if (drain && pobjects > slub_cpu_partial(s)) {
2392 2393 2394 2395 2396 2397
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2398
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2399
				local_irq_restore(flags);
2400
				oldpage = NULL;
2401 2402
				pobjects = 0;
				pages = 0;
2403
				stat(s, CPU_PARTIAL_DRAIN);
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2414 2415
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2416
	if (unlikely(!slub_cpu_partial(s))) {
2417 2418 2419 2420 2421 2422 2423
		unsigned long flags;

		local_irq_save(flags);
		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
		local_irq_restore(flags);
	}
	preempt_enable();
2424
#endif	/* CONFIG_SLUB_CPU_PARTIAL */
2425 2426
}

2427
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2428
{
2429
	stat(s, CPUSLAB_FLUSH);
2430
	deactivate_slab(s, c->page, c->freelist, c);
2431 2432

	c->tid = next_tid(c->tid);
C
Christoph Lameter 已提交
2433 2434 2435 2436
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2437
 *
C
Christoph Lameter 已提交
2438 2439
 * Called from IPI handler with interrupts disabled.
 */
2440
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2441
{
2442
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2443

2444 2445
	if (c->page)
		flush_slab(s, c);
2446

2447
	unfreeze_partials(s, c);
C
Christoph Lameter 已提交
2448 2449 2450 2451 2452 2453
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2454
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2455 2456
}

2457 2458 2459 2460 2461
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2462
	return c->page || slub_percpu_partial(c);
2463 2464
}

C
Christoph Lameter 已提交
2465 2466
static void flush_all(struct kmem_cache *s)
{
2467
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
C
Christoph Lameter 已提交
2468 2469
}

2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
/*
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
 */
static int slub_cpu_dead(unsigned int cpu)
{
	struct kmem_cache *s;
	unsigned long flags;

	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		local_irq_save(flags);
		__flush_cpu_slab(s, cpu);
		local_irq_restore(flags);
	}
	mutex_unlock(&slab_mutex);
	return 0;
}

2489 2490 2491 2492
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2493
static inline int node_match(struct page *page, int node)
2494 2495
{
#ifdef CONFIG_NUMA
2496
	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2497 2498 2499 2500 2501
		return 0;
#endif
	return 1;
}

2502
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2503 2504 2505 2506 2507
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2508 2509 2510 2511 2512 2513 2514
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2515 2516 2517 2518 2519 2520 2521 2522
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
2523
	list_for_each_entry(page, &n->partial, slab_list)
P
Pekka Enberg 已提交
2524 2525 2526 2527
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2528
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2529

P
Pekka Enberg 已提交
2530 2531 2532
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2533 2534 2535
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2536
	int node;
C
Christoph Lameter 已提交
2537
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2538

2539 2540 2541
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2542 2543
	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nid, gfpflags, &gfpflags);
2544
	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2545 2546
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2547

2548
	if (oo_order(s->min) > get_order(s->object_size))
2549 2550
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2551

C
Christoph Lameter 已提交
2552
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2553 2554 2555 2556
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2557 2558 2559
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2560

2561
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2562 2563
			node, nr_slabs, nr_objs, nr_free);
	}
2564
#endif
P
Pekka Enberg 已提交
2565 2566
}

2567 2568 2569
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2570
	void *freelist;
2571 2572
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2573

2574 2575
	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));

2576
	freelist = get_partial(s, flags, node, c);
2577

2578 2579 2580 2581
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2582
	if (page) {
2583
		c = raw_cpu_ptr(s->cpu_slab);
2584 2585 2586 2587 2588 2589 2590
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2591
		freelist = page->freelist;
2592 2593 2594 2595 2596
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
2597
	}
2598

2599
	return freelist;
2600 2601
}

2602 2603 2604 2605 2606 2607 2608 2609
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2610
/*
2611 2612
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2613 2614 2615 2616
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2617 2618
 *
 * This function must be called with interrupt disabled.
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2629

2630
		new.counters = counters;
2631
		VM_BUG_ON(!new.frozen);
2632 2633 2634 2635

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2636
	} while (!__cmpxchg_double_slab(s, page,
2637 2638 2639 2640 2641 2642 2643
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2644
/*
2645 2646 2647 2648 2649 2650
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2651
 *
2652 2653 2654
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2655
 *
2656
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2657 2658
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
2659 2660 2661
 *
 * Version of __slab_alloc to use when we know that interrupts are
 * already disabled (which is the case for bulk allocation).
C
Christoph Lameter 已提交
2662
 */
2663
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2664
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2665
{
2666
	void *freelist;
2667
	struct page *page;
C
Christoph Lameter 已提交
2668

2669 2670
	stat(s, ALLOC_SLOWPATH);

2671
	page = c->page;
2672 2673 2674 2675 2676 2677
	if (!page) {
		/*
		 * if the node is not online or has no normal memory, just
		 * ignore the node constraint
		 */
		if (unlikely(node != NUMA_NO_NODE &&
2678
			     !node_isset(node, slab_nodes)))
2679
			node = NUMA_NO_NODE;
C
Christoph Lameter 已提交
2680
		goto new_slab;
2681
	}
2682
redo:
2683

2684
	if (unlikely(!node_match(page, node))) {
2685 2686 2687 2688
		/*
		 * same as above but node_match() being false already
		 * implies node != NUMA_NO_NODE
		 */
2689
		if (!node_isset(node, slab_nodes)) {
2690 2691 2692
			node = NUMA_NO_NODE;
			goto redo;
		} else {
2693
			stat(s, ALLOC_NODE_MISMATCH);
2694
			deactivate_slab(s, page, c->freelist, c);
2695 2696
			goto new_slab;
		}
2697
	}
C
Christoph Lameter 已提交
2698

2699 2700 2701 2702 2703 2704
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2705
		deactivate_slab(s, page, c->freelist, c);
2706 2707 2708
		goto new_slab;
	}

2709
	/* must check again c->freelist in case of cpu migration or IRQ */
2710 2711
	freelist = c->freelist;
	if (freelist)
2712
		goto load_freelist;
2713

2714
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2715

2716
	if (!freelist) {
2717 2718
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2719
		goto new_slab;
2720
	}
C
Christoph Lameter 已提交
2721

2722
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2723

2724
load_freelist:
2725 2726 2727 2728 2729
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2730
	VM_BUG_ON(!c->page->frozen);
2731
	c->freelist = get_freepointer(s, freelist);
2732
	c->tid = next_tid(c->tid);
2733
	return freelist;
C
Christoph Lameter 已提交
2734 2735

new_slab:
2736

2737 2738 2739
	if (slub_percpu_partial(c)) {
		page = c->page = slub_percpu_partial(c);
		slub_set_percpu_partial(c, page);
2740 2741
		stat(s, CPU_PARTIAL_ALLOC);
		goto redo;
C
Christoph Lameter 已提交
2742 2743
	}

2744
	freelist = new_slab_objects(s, gfpflags, node, &c);
2745

2746
	if (unlikely(!freelist)) {
2747
		slab_out_of_memory(s, gfpflags, node);
2748
		return NULL;
C
Christoph Lameter 已提交
2749
	}
2750

2751
	page = c->page;
2752
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2753
		goto load_freelist;
2754

2755
	/* Only entered in the debug case */
2756 2757
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2758
		goto new_slab;	/* Slab failed checks. Next slab needed */
2759

2760
	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2761
	return freelist;
2762 2763
}

2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
/*
 * Another one that disabled interrupt and compensates for possible
 * cpu changes by refetching the per cpu area pointer.
 */
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
{
	void *p;
	unsigned long flags;

	local_irq_save(flags);
2775
#ifdef CONFIG_PREEMPTION
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif

	p = ___slab_alloc(s, gfpflags, node, addr, c);
	local_irq_restore(flags);
	return p;
}

2789 2790 2791 2792 2793 2794 2795 2796
/*
 * If the object has been wiped upon free, make sure it's fully initialized by
 * zeroing out freelist pointer.
 */
static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
						   void *obj)
{
	if (unlikely(slab_want_init_on_free(s)) && obj)
2797 2798
		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
			0, sizeof(void *));
2799 2800
}

2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2811
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2812
		gfp_t gfpflags, int node, unsigned long addr)
2813
{
2814
	void *object;
2815
	struct kmem_cache_cpu *c;
2816
	struct page *page;
2817
	unsigned long tid;
2818
	struct obj_cgroup *objcg = NULL;
2819

2820
	s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2821
	if (!s)
A
Akinobu Mita 已提交
2822
		return NULL;
2823 2824 2825 2826 2827 2828
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2829
	 *
2830
	 * We should guarantee that tid and kmem_cache are retrieved on
2831
	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2832
	 * to check if it is matched or not.
2833
	 */
2834 2835 2836
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2837
	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
2838
		 unlikely(tid != READ_ONCE(c->tid)));
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();
2849 2850 2851 2852 2853 2854 2855 2856

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

2857
	object = c->freelist;
2858
	page = c->page;
2859
	if (unlikely(!object || !page || !node_match(page, node))) {
2860
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2861
	} else {
2862 2863
		void *next_object = get_freepointer_safe(s, object);

2864
		/*
L
Lucas De Marchi 已提交
2865
		 * The cmpxchg will only match if there was no additional
2866 2867
		 * operation and if we are on the right processor.
		 *
2868 2869
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2870 2871 2872 2873
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2874 2875 2876
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2877
		 */
2878
		if (unlikely(!this_cpu_cmpxchg_double(
2879 2880
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2881
				next_object, next_tid(tid)))) {
2882 2883 2884 2885

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2886
		prefetch_freepointer(s, next_object);
2887
		stat(s, ALLOC_FASTPATH);
2888
	}
2889

2890
	maybe_wipe_obj_freeptr(s, object);
2891

2892
	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2893
		memset(kasan_reset_tag(object), 0, s->object_size);
2894

2895
	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
V
Vegard Nossum 已提交
2896

2897
	return object;
C
Christoph Lameter 已提交
2898 2899
}

2900 2901 2902 2903 2904 2905
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2906 2907
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2908
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2909

2910 2911
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2912 2913

	return ret;
C
Christoph Lameter 已提交
2914 2915 2916
}
EXPORT_SYMBOL(kmem_cache_alloc);

2917
#ifdef CONFIG_TRACING
2918 2919
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2920
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2921
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2922
	ret = kasan_kmalloc(s, ret, size, gfpflags);
2923 2924 2925
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2926 2927
#endif

C
Christoph Lameter 已提交
2928 2929 2930
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2931
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2932

2933
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2934
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2935 2936

	return ret;
C
Christoph Lameter 已提交
2937 2938 2939
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2940
#ifdef CONFIG_TRACING
2941
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2942
				    gfp_t gfpflags,
2943
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2944
{
2945
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2946 2947 2948

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
2949

2950
	ret = kasan_kmalloc(s, ret, size, gfpflags);
2951
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2952
}
2953
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2954
#endif
2955
#endif	/* CONFIG_NUMA */
E
Eduard - Gabriel Munteanu 已提交
2956

C
Christoph Lameter 已提交
2957
/*
K
Kim Phillips 已提交
2958
 * Slow path handling. This may still be called frequently since objects
2959
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2960
 *
2961 2962 2963
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2964
 */
2965
static void __slab_free(struct kmem_cache *s, struct page *page,
2966 2967 2968
			void *head, void *tail, int cnt,
			unsigned long addr)

C
Christoph Lameter 已提交
2969 2970
{
	void *prior;
2971 2972 2973 2974
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2975
	unsigned long flags;
C
Christoph Lameter 已提交
2976

2977
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2978

2979
	if (kmem_cache_debug(s) &&
2980
	    !free_debug_processing(s, page, head, tail, cnt, addr))
2981
		return;
C
Christoph Lameter 已提交
2982

2983
	do {
2984 2985 2986 2987
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2988 2989
		prior = page->freelist;
		counters = page->counters;
2990
		set_freepointer(s, tail, prior);
2991 2992
		new.counters = counters;
		was_frozen = new.frozen;
2993
		new.inuse -= cnt;
2994
		if ((!new.inuse || !prior) && !was_frozen) {
2995

P
Peter Zijlstra 已提交
2996
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2997 2998

				/*
2999 3000 3001 3002
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
3003 3004 3005
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
3006
			} else { /* Needs to be taken off a list */
3007

3008
				n = get_node(s, page_to_nid(page));
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
3020
		}
C
Christoph Lameter 已提交
3021

3022 3023
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
3024
		head, new.counters,
3025
		"__slab_free"));
C
Christoph Lameter 已提交
3026

3027
	if (likely(!n)) {
3028

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
		if (likely(was_frozen)) {
			/*
			 * The list lock was not taken therefore no list
			 * activity can be necessary.
			 */
			stat(s, FREE_FROZEN);
		} else if (new.frozen) {
			/*
			 * If we just froze the page then put it onto the
			 * per cpu partial list.
			 */
3040
			put_cpu_partial(s, page, 1);
3041 3042
			stat(s, CPU_PARTIAL_FREE);
		}
3043

3044 3045
		return;
	}
C
Christoph Lameter 已提交
3046

3047
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3048 3049
		goto slab_empty;

C
Christoph Lameter 已提交
3050
	/*
3051 3052
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
3053
	 */
3054
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3055
		remove_full(s, n, page);
3056 3057
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
3058
	}
3059
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
3060 3061 3062
	return;

slab_empty:
3063
	if (prior) {
C
Christoph Lameter 已提交
3064
		/*
3065
		 * Slab on the partial list.
C
Christoph Lameter 已提交
3066
		 */
3067
		remove_partial(n, page);
3068
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
3069
	} else {
3070
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
3071 3072
		remove_full(s, n, page);
	}
3073

3074
	spin_unlock_irqrestore(&n->list_lock, flags);
3075
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
3076 3077 3078
	discard_slab(s, page);
}

3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
3089 3090 3091 3092
 *
 * Bulk free of a freelist with several objects (all pointing to the
 * same page) possible by specifying head and tail ptr, plus objects
 * count (cnt). Bulk free indicated by tail pointer being set.
3093
 */
3094 3095 3096
static __always_inline void do_slab_free(struct kmem_cache *s,
				struct page *page, void *head, void *tail,
				int cnt, unsigned long addr)
3097
{
3098
	void *tail_obj = tail ? : head;
3099
	struct kmem_cache_cpu *c;
3100
	unsigned long tid;
3101

3102
	memcg_slab_free_hook(s, &head, 1);
3103 3104 3105 3106 3107
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
3108
	 * during the cmpxchg then the free will succeed.
3109
	 */
3110 3111 3112
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
3113
	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
3114
		 unlikely(tid != READ_ONCE(c->tid)));
3115

3116 3117
	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();
3118

3119
	if (likely(page == c->page)) {
3120 3121 3122
		void **freelist = READ_ONCE(c->freelist);

		set_freepointer(s, tail_obj, freelist);
3123

3124
		if (unlikely(!this_cpu_cmpxchg_double(
3125
				s->cpu_slab->freelist, s->cpu_slab->tid,
3126
				freelist, tid,
3127
				head, next_tid(tid)))) {
3128 3129 3130 3131

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
3132
		stat(s, FREE_FASTPATH);
3133
	} else
3134
		__slab_free(s, page, head, tail_obj, cnt, addr);
3135 3136 3137

}

3138 3139 3140 3141 3142
static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
				      void *head, void *tail, int cnt,
				      unsigned long addr)
{
	/*
3143 3144
	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
	 * to remove objects, whose reuse must be delayed.
3145
	 */
3146 3147
	if (slab_free_freelist_hook(s, &head, &tail))
		do_slab_free(s, page, head, tail, cnt, addr);
3148 3149
}

3150
#ifdef CONFIG_KASAN_GENERIC
3151 3152 3153 3154 3155 3156
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
{
	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
}
#endif

C
Christoph Lameter 已提交
3157 3158
void kmem_cache_free(struct kmem_cache *s, void *x)
{
3159 3160
	s = cache_from_obj(s, x);
	if (!s)
3161
		return;
3162
	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3163
	trace_kmem_cache_free(_RET_IP_, x, s->name);
C
Christoph Lameter 已提交
3164 3165 3166
}
EXPORT_SYMBOL(kmem_cache_free);

3167
struct detached_freelist {
3168
	struct page *page;
3169 3170 3171
	void *tail;
	void *freelist;
	int cnt;
3172
	struct kmem_cache *s;
3173
};
3174

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
/*
 * This function progressively scans the array with free objects (with
 * a limited look ahead) and extract objects belonging to the same
 * page.  It builds a detached freelist directly within the given
 * page/objects.  This can happen without any need for
 * synchronization, because the objects are owned by running process.
 * The freelist is build up as a single linked list in the objects.
 * The idea is, that this detached freelist can then be bulk
 * transferred to the real freelist(s), but only requiring a single
 * synchronization primitive.  Look ahead in the array is limited due
 * to performance reasons.
 */
3187 3188 3189
static inline
int build_detached_freelist(struct kmem_cache *s, size_t size,
			    void **p, struct detached_freelist *df)
3190 3191 3192 3193
{
	size_t first_skipped_index = 0;
	int lookahead = 3;
	void *object;
3194
	struct page *page;
3195

3196 3197
	/* Always re-init detached_freelist */
	df->page = NULL;
3198

3199 3200
	do {
		object = p[--size];
3201
		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3202
	} while (!object && size);
3203

3204 3205
	if (!object)
		return 0;
3206

3207 3208 3209 3210 3211 3212
	page = virt_to_head_page(object);
	if (!s) {
		/* Handle kalloc'ed objects */
		if (unlikely(!PageSlab(page))) {
			BUG_ON(!PageCompound(page));
			kfree_hook(object);
3213
			__free_pages(page, compound_order(page));
3214 3215 3216 3217 3218 3219 3220 3221
			p[size] = NULL; /* mark object processed */
			return size;
		}
		/* Derive kmem_cache from object */
		df->s = page->slab_cache;
	} else {
		df->s = cache_from_obj(s, object); /* Support for memcg */
	}
3222

3223
	/* Start new detached freelist */
3224
	df->page = page;
3225
	set_freepointer(df->s, object, NULL);
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
	df->tail = object;
	df->freelist = object;
	p[size] = NULL; /* mark object processed */
	df->cnt = 1;

	while (size) {
		object = p[--size];
		if (!object)
			continue; /* Skip processed objects */

		/* df->page is always set at this point */
		if (df->page == virt_to_head_page(object)) {
			/* Opportunity build freelist */
3239
			set_freepointer(df->s, object, df->freelist);
3240 3241 3242 3243 3244
			df->freelist = object;
			df->cnt++;
			p[size] = NULL; /* mark object processed */

			continue;
3245
		}
3246 3247 3248 3249 3250 3251 3252

		/* Limit look ahead search */
		if (!--lookahead)
			break;

		if (!first_skipped_index)
			first_skipped_index = size + 1;
3253
	}
3254 3255 3256 3257 3258

	return first_skipped_index;
}

/* Note that interrupts must be enabled when calling this function. */
3259
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3260 3261 3262 3263
{
	if (WARN_ON(!size))
		return;

3264
	memcg_slab_free_hook(s, p, size);
3265 3266 3267 3268
	do {
		struct detached_freelist df;

		size = build_detached_freelist(s, size, p, &df);
A
Arnd Bergmann 已提交
3269
		if (!df.page)
3270 3271
			continue;

3272
		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3273
	} while (likely(size));
3274 3275 3276
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

3277
/* Note that interrupts must be enabled when calling this function. */
3278 3279
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
			  void **p)
3280
{
3281 3282
	struct kmem_cache_cpu *c;
	int i;
3283
	struct obj_cgroup *objcg = NULL;
3284

3285
	/* memcg and kmem_cache debug support */
3286
	s = slab_pre_alloc_hook(s, &objcg, size, flags);
3287 3288
	if (unlikely(!s))
		return false;
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
	/*
	 * Drain objects in the per cpu slab, while disabling local
	 * IRQs, which protects against PREEMPT and interrupts
	 * handlers invoking normal fastpath.
	 */
	local_irq_disable();
	c = this_cpu_ptr(s->cpu_slab);

	for (i = 0; i < size; i++) {
		void *object = c->freelist;

3300
		if (unlikely(!object)) {
3301 3302 3303 3304 3305 3306 3307 3308 3309
			/*
			 * We may have removed an object from c->freelist using
			 * the fastpath in the previous iteration; in that case,
			 * c->tid has not been bumped yet.
			 * Since ___slab_alloc() may reenable interrupts while
			 * allocating memory, we should bump c->tid now.
			 */
			c->tid = next_tid(c->tid);

3310 3311 3312 3313
			/*
			 * Invoking slow path likely have side-effect
			 * of re-populating per CPU c->freelist
			 */
3314
			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3315
					    _RET_IP_, c);
3316 3317 3318
			if (unlikely(!p[i]))
				goto error;

3319
			c = this_cpu_ptr(s->cpu_slab);
3320 3321
			maybe_wipe_obj_freeptr(s, p[i]);

3322 3323
			continue; /* goto for-loop */
		}
3324 3325
		c->freelist = get_freepointer(s, object);
		p[i] = object;
3326
		maybe_wipe_obj_freeptr(s, p[i]);
3327 3328 3329 3330 3331
	}
	c->tid = next_tid(c->tid);
	local_irq_enable();

	/* Clear memory outside IRQ disabled fastpath loop */
3332
	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3333 3334 3335
		int j;

		for (j = 0; j < i; j++)
3336
			memset(kasan_reset_tag(p[j]), 0, s->object_size);
3337 3338
	}

3339
	/* memcg and kmem_cache debug support */
3340
	slab_post_alloc_hook(s, objcg, flags, size, p);
3341
	return i;
3342 3343
error:
	local_irq_enable();
3344
	slab_post_alloc_hook(s, objcg, flags, i, p);
3345
	__kmem_cache_free_bulk(s, i, p);
3346
	return 0;
3347 3348 3349 3350
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);


C
Christoph Lameter 已提交
3351
/*
C
Christoph Lameter 已提交
3352 3353 3354 3355
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
3356 3357 3358 3359
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
3360
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
3361 3362 3363 3364 3365 3366 3367 3368 3369
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
3370 3371 3372
static unsigned int slub_min_order;
static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
static unsigned int slub_min_objects;
C
Christoph Lameter 已提交
3373 3374 3375 3376

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
3377 3378 3379 3380
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
3381
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
3382 3383 3384 3385 3386 3387
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
3388
 *
C
Christoph Lameter 已提交
3389 3390 3391 3392
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
3393
 *
C
Christoph Lameter 已提交
3394 3395 3396 3397
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
3398
 */
3399 3400
static inline unsigned int slab_order(unsigned int size,
		unsigned int min_objects, unsigned int max_order,
3401
		unsigned int fract_leftover)
C
Christoph Lameter 已提交
3402
{
3403 3404
	unsigned int min_order = slub_min_order;
	unsigned int order;
C
Christoph Lameter 已提交
3405

3406
	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3407
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3408

3409
	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3410
			order <= max_order; order++) {
C
Christoph Lameter 已提交
3411

3412 3413
		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
		unsigned int rem;
C
Christoph Lameter 已提交
3414

3415
		rem = slab_size % size;
C
Christoph Lameter 已提交
3416

3417
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
3418 3419
			break;
	}
C
Christoph Lameter 已提交
3420

C
Christoph Lameter 已提交
3421 3422 3423
	return order;
}

3424
static inline int calculate_order(unsigned int size)
3425
{
3426 3427 3428
	unsigned int order;
	unsigned int min_objects;
	unsigned int max_objects;
3429
	unsigned int nr_cpus;
3430 3431 3432 3433 3434 3435

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
3436
	 * First we increase the acceptable waste in a slab. Then
3437 3438 3439
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
	if (!min_objects) {
		/*
		 * Some architectures will only update present cpus when
		 * onlining them, so don't trust the number if it's just 1. But
		 * we also don't want to use nr_cpu_ids always, as on some other
		 * architectures, there can be many possible cpus, but never
		 * onlined. Here we compromise between trying to avoid too high
		 * order on systems that appear larger than they are, and too
		 * low order on systems that appear smaller than they are.
		 */
		nr_cpus = num_present_cpus();
		if (nr_cpus <= 1)
			nr_cpus = nr_cpu_ids;
		min_objects = 4 * (fls(nr_cpus) + 1);
	}
3455
	max_objects = order_objects(slub_max_order, size);
3456 3457
	min_objects = min(min_objects, max_objects);

3458
	while (min_objects > 1) {
3459 3460
		unsigned int fraction;

C
Christoph Lameter 已提交
3461
		fraction = 16;
3462 3463
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
3464
					slub_max_order, fraction);
3465 3466 3467 3468
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
3469
		min_objects--;
3470 3471 3472 3473 3474 3475
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
3476
	order = slab_order(size, 1, slub_max_order, 1);
3477 3478 3479 3480 3481 3482
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
3483
	order = slab_order(size, 1, MAX_ORDER, 1);
D
David Rientjes 已提交
3484
	if (order < MAX_ORDER)
3485 3486 3487 3488
		return order;
	return -ENOSYS;
}

3489
static void
3490
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3491 3492 3493 3494
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
3495
#ifdef CONFIG_SLUB_DEBUG
3496
	atomic_long_set(&n->nr_slabs, 0);
3497
	atomic_long_set(&n->total_objects, 0);
3498
	INIT_LIST_HEAD(&n->full);
3499
#endif
C
Christoph Lameter 已提交
3500 3501
}

3502
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3503
{
3504
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3505
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3506

3507
	/*
3508 3509
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
3510
	 */
3511 3512
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
3513 3514 3515 3516 3517

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
3518

3519
	return 1;
3520 3521
}

3522 3523
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
3524 3525 3526 3527 3528
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
3529 3530
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
3531
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
3532
 */
3533
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
3534 3535 3536 3537
{
	struct page *page;
	struct kmem_cache_node *n;

3538
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
3539

3540
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
3541 3542

	BUG_ON(!page);
3543
	if (page_to_nid(page) != node) {
3544 3545
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3546 3547
	}

C
Christoph Lameter 已提交
3548 3549
	n = page->freelist;
	BUG_ON(!n);
3550
#ifdef CONFIG_SLUB_DEBUG
3551
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3552
	init_tracking(kmem_cache_node, n);
3553
#endif
3554
	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3555
		      GFP_KERNEL);
3556 3557 3558 3559
	page->freelist = get_freepointer(kmem_cache_node, n);
	page->inuse = 1;
	page->frozen = 0;
	kmem_cache_node->node[node] = n;
3560
	init_kmem_cache_node(n);
3561
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
3562

3563
	/*
3564 3565
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
3566
	 */
3567
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
3568 3569 3570 3571 3572
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
3573
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3574

C
Christoph Lameter 已提交
3575
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3576
		s->node[node] = NULL;
3577
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
3578 3579 3580
	}
}

3581 3582
void __kmem_cache_release(struct kmem_cache *s)
{
T
Thomas Garnier 已提交
3583
	cache_random_seq_destroy(s);
3584 3585 3586 3587
	free_percpu(s->cpu_slab);
	free_kmem_cache_nodes(s);
}

3588
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
3589 3590 3591
{
	int node;

3592
	for_each_node_mask(node, slab_nodes) {
C
Christoph Lameter 已提交
3593 3594
		struct kmem_cache_node *n;

3595
		if (slab_state == DOWN) {
3596
			early_kmem_cache_node_alloc(node);
3597 3598
			continue;
		}
3599
		n = kmem_cache_alloc_node(kmem_cache_node,
3600
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
3601

3602 3603 3604
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
3605
		}
3606

3607
		init_kmem_cache_node(n);
3608
		s->node[node] = n;
C
Christoph Lameter 已提交
3609 3610 3611 3612
	}
	return 1;
}

3613
static void set_min_partial(struct kmem_cache *s, unsigned long min)
3614 3615 3616 3617 3618 3619 3620 3621
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
static void set_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
	 * B) The number of objects in cpu partial slabs to extract from the
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
	 */
	if (!kmem_cache_has_cpu_partial(s))
3643
		slub_set_cpu_partial(s, 0);
3644
	else if (s->size >= PAGE_SIZE)
3645
		slub_set_cpu_partial(s, 2);
3646
	else if (s->size >= 1024)
3647
		slub_set_cpu_partial(s, 6);
3648
	else if (s->size >= 256)
3649
		slub_set_cpu_partial(s, 13);
3650
	else
3651
		slub_set_cpu_partial(s, 30);
3652 3653 3654
#endif
}

C
Christoph Lameter 已提交
3655 3656 3657 3658
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
3659
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
3660
{
3661
	slab_flags_t flags = s->flags;
3662
	unsigned int size = s->object_size;
3663
	unsigned int freepointer_area;
3664
	unsigned int order;
C
Christoph Lameter 已提交
3665

3666 3667 3668 3669 3670 3671
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));
3672 3673 3674 3675 3676 3677 3678
	/*
	 * This is the area of the object where a freepointer can be
	 * safely written. If redzoning adds more to the inuse size, we
	 * can't use that portion for writing the freepointer, so
	 * s->offset must be limited within this for the general case.
	 */
	freepointer_area = size;
3679 3680

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3681 3682 3683 3684 3685
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
3686
	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3687
			!s->ctor)
C
Christoph Lameter 已提交
3688 3689 3690 3691 3692 3693
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3694
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3695
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3696
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3697
	 */
3698
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3699
		size += sizeof(void *);
C
Christoph Lameter 已提交
3700
#endif
C
Christoph Lameter 已提交
3701 3702

	/*
C
Christoph Lameter 已提交
3703 3704
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3705 3706 3707
	 */
	s->inuse = size;

3708
	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3709
		s->ctor)) {
C
Christoph Lameter 已提交
3710 3711 3712 3713 3714 3715 3716
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
3717 3718 3719 3720 3721
		 *
		 * The assumption that s->offset >= s->inuse means free
		 * pointer is outside of the object is used in the
		 * freeptr_outside_object() function. If that is no
		 * longer true, the function needs to be modified.
C
Christoph Lameter 已提交
3722 3723 3724
		 */
		s->offset = size;
		size += sizeof(void *);
3725
	} else if (freepointer_area > sizeof(void *)) {
3726 3727 3728 3729 3730
		/*
		 * Store freelist pointer near middle of object to keep
		 * it away from the edges of the object to avoid small
		 * sized over/underflows from neighboring allocations.
		 */
3731
		s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
C
Christoph Lameter 已提交
3732 3733
	}

3734
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3735 3736 3737 3738 3739 3740
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);
3741
#endif
C
Christoph Lameter 已提交
3742

3743 3744
	kasan_cache_create(s, &size, &s->flags);
#ifdef CONFIG_SLUB_DEBUG
J
Joonsoo Kim 已提交
3745
	if (flags & SLAB_RED_ZONE) {
C
Christoph Lameter 已提交
3746 3747 3748 3749
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3750
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3751 3752 3753
		 * of the object.
		 */
		size += sizeof(void *);
J
Joonsoo Kim 已提交
3754 3755 3756 3757 3758

		s->red_left_pad = sizeof(void *);
		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
		size += s->red_left_pad;
	}
C
Christoph Lameter 已提交
3759
#endif
C
Christoph Lameter 已提交
3760

C
Christoph Lameter 已提交
3761 3762 3763 3764 3765
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3766
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3767
	s->size = size;
3768
	s->reciprocal_size = reciprocal_value(size);
3769 3770 3771
	if (forced_order >= 0)
		order = forced_order;
	else
3772
		order = calculate_order(size);
C
Christoph Lameter 已提交
3773

3774
	if ((int)order < 0)
C
Christoph Lameter 已提交
3775 3776
		return 0;

3777
	s->allocflags = 0;
3778
	if (order)
3779 3780 3781
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3782
		s->allocflags |= GFP_DMA;
3783

3784 3785 3786
	if (s->flags & SLAB_CACHE_DMA32)
		s->allocflags |= GFP_DMA32;

3787 3788 3789
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3790 3791 3792
	/*
	 * Determine the number of objects per slab
	 */
3793 3794
	s->oo = oo_make(order, size);
	s->min = oo_make(get_order(size), size);
3795 3796
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3797

3798
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3799 3800
}

3801
static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
C
Christoph Lameter 已提交
3802
{
3803
	s->flags = kmem_cache_flags(s->size, flags, s->name);
3804 3805 3806
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	s->random = get_random_long();
#endif
C
Christoph Lameter 已提交
3807

3808
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3809
		goto error;
3810 3811 3812 3813 3814
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3815
		if (get_order(s->size) > get_order(s->object_size)) {
3816 3817 3818 3819 3820 3821
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3822

3823 3824
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3825
	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3826 3827 3828 3829
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3830 3831 3832 3833
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3834 3835
	set_min_partial(s, ilog2(s->size) / 2);

3836
	set_cpu_partial(s);
3837

C
Christoph Lameter 已提交
3838
#ifdef CONFIG_NUMA
3839
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3840
#endif
T
Thomas Garnier 已提交
3841 3842 3843 3844 3845 3846 3847

	/* Initialize the pre-computed randomized freelist if slab is up */
	if (slab_state >= UP) {
		if (init_cache_random_seq(s))
			goto error;
	}

3848
	if (!init_kmem_cache_nodes(s))
3849
		goto error;
C
Christoph Lameter 已提交
3850

3851
	if (alloc_kmem_cache_cpus(s))
3852
		return 0;
3853

3854
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3855
error:
3856
	return -EINVAL;
C
Christoph Lameter 已提交
3857 3858
}

3859
static void list_slab_objects(struct kmem_cache *s, struct page *page,
3860
			      const char *text)
3861 3862 3863
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
3864
	unsigned long *map;
3865
	void *p;
3866

3867
	slab_err(s, page, text, s->name);
3868 3869
	slab_lock(page);

3870
	map = get_map(s, page);
3871 3872
	for_each_object(p, s, addr, page->objects) {

3873
		if (!test_bit(__obj_to_index(s, addr, p), map)) {
3874
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3875 3876 3877
			print_tracking(s, p);
		}
	}
3878
	put_map(map);
3879 3880 3881 3882
	slab_unlock(page);
#endif
}

C
Christoph Lameter 已提交
3883
/*
C
Christoph Lameter 已提交
3884
 * Attempt to free all partial slabs on a node.
3885 3886
 * This is called from __kmem_cache_shutdown(). We must take list_lock
 * because sysfs file might still access partial list after the shutdowning.
C
Christoph Lameter 已提交
3887
 */
C
Christoph Lameter 已提交
3888
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3889
{
3890
	LIST_HEAD(discard);
C
Christoph Lameter 已提交
3891 3892
	struct page *page, *h;

3893 3894
	BUG_ON(irqs_disabled());
	spin_lock_irq(&n->list_lock);
3895
	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
C
Christoph Lameter 已提交
3896
		if (!page->inuse) {
3897
			remove_partial(n, page);
3898
			list_add(&page->slab_list, &discard);
3899 3900
		} else {
			list_slab_objects(s, page,
3901
			  "Objects remaining in %s on __kmem_cache_shutdown()");
C
Christoph Lameter 已提交
3902
		}
3903
	}
3904
	spin_unlock_irq(&n->list_lock);
3905

3906
	list_for_each_entry_safe(page, h, &discard, slab_list)
3907
		discard_slab(s, page);
C
Christoph Lameter 已提交
3908 3909
}

3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
bool __kmem_cache_empty(struct kmem_cache *s)
{
	int node;
	struct kmem_cache_node *n;

	for_each_kmem_cache_node(s, node, n)
		if (n->nr_partial || slabs_node(s, node))
			return false;
	return true;
}

C
Christoph Lameter 已提交
3921
/*
C
Christoph Lameter 已提交
3922
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3923
 */
3924
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3925 3926
{
	int node;
C
Christoph Lameter 已提交
3927
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3928 3929 3930

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3931
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3932 3933
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3934 3935 3936 3937 3938
			return 1;
	}
	return 0;
}

3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
{
	void *base;
	int __maybe_unused i;
	unsigned int objnr;
	void *objp;
	void *objp0;
	struct kmem_cache *s = page->slab_cache;
	struct track __maybe_unused *trackp;

	kpp->kp_ptr = object;
	kpp->kp_page = page;
	kpp->kp_slab_cache = s;
	base = page_address(page);
	objp0 = kasan_reset_tag(object);
#ifdef CONFIG_SLUB_DEBUG
	objp = restore_red_left(s, objp0);
#else
	objp = objp0;
#endif
	objnr = obj_to_index(s, page, objp);
	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
	objp = base + s->size * objnr;
	kpp->kp_objp = objp;
	if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
	    !(s->flags & SLAB_STORE_USER))
		return;
#ifdef CONFIG_SLUB_DEBUG
	trackp = get_track(s, objp, TRACK_ALLOC);
	kpp->kp_ret = (void *)trackp->addr;
#ifdef CONFIG_STACKTRACE
	for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
		kpp->kp_stack[i] = (void *)trackp->addrs[i];
		if (!kpp->kp_stack[i])
			break;
	}
#endif
#endif
}

C
Christoph Lameter 已提交
3979 3980 3981 3982 3983 3984
/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
3985
	get_option(&str, (int *)&slub_min_order);
C
Christoph Lameter 已提交
3986 3987 3988 3989 3990 3991 3992 3993

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
3994 3995
	get_option(&str, (int *)&slub_max_order);
	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
C
Christoph Lameter 已提交
3996 3997 3998 3999 4000 4001 4002 4003

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
4004
	get_option(&str, (int *)&slub_min_objects);
C
Christoph Lameter 已提交
4005 4006 4007 4008 4009 4010 4011 4012

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
4013
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
4014
	void *ret;
C
Christoph Lameter 已提交
4015

4016
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4017
		return kmalloc_large(size, flags);
4018

4019
	s = kmalloc_slab(size, flags);
4020 4021

	if (unlikely(ZERO_OR_NULL_PTR(s)))
4022 4023
		return s;

4024
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
4025

4026
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
4027

4028
	ret = kasan_kmalloc(s, ret, size, flags);
4029

E
Eduard - Gabriel Munteanu 已提交
4030
	return ret;
C
Christoph Lameter 已提交
4031 4032 4033
}
EXPORT_SYMBOL(__kmalloc);

4034
#ifdef CONFIG_NUMA
4035 4036
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
4037
	struct page *page;
4038
	void *ptr = NULL;
4039
	unsigned int order = get_order(size);
4040

4041
	flags |= __GFP_COMP;
4042 4043
	page = alloc_pages_node(node, flags, order);
	if (page) {
4044
		ptr = page_address(page);
4045 4046
		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
				    PAGE_SIZE << order);
4047
	}
4048

4049
	return kmalloc_large_node_hook(ptr, size, flags);
4050 4051
}

C
Christoph Lameter 已提交
4052 4053
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
4054
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
4055
	void *ret;
C
Christoph Lameter 已提交
4056

4057
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
4058 4059
		ret = kmalloc_large_node(size, flags, node);

4060 4061 4062
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
4063 4064 4065

		return ret;
	}
4066

4067
	s = kmalloc_slab(size, flags);
4068 4069

	if (unlikely(ZERO_OR_NULL_PTR(s)))
4070 4071
		return s;

4072
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
4073

4074
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
4075

4076
	ret = kasan_kmalloc(s, ret, size, flags);
4077

E
Eduard - Gabriel Munteanu 已提交
4078
	return ret;
C
Christoph Lameter 已提交
4079 4080
}
EXPORT_SYMBOL(__kmalloc_node);
4081
#endif	/* CONFIG_NUMA */
C
Christoph Lameter 已提交
4082

K
Kees Cook 已提交
4083 4084
#ifdef CONFIG_HARDENED_USERCOPY
/*
4085 4086 4087
 * Rejects incorrectly sized objects and objects that are to be copied
 * to/from userspace but do not fall entirely within the containing slab
 * cache's usercopy region.
K
Kees Cook 已提交
4088 4089 4090 4091
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
4092 4093
void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
			 bool to_user)
K
Kees Cook 已提交
4094 4095
{
	struct kmem_cache *s;
A
Alexey Dobriyan 已提交
4096
	unsigned int offset;
K
Kees Cook 已提交
4097 4098
	size_t object_size;

4099 4100
	ptr = kasan_reset_tag(ptr);

K
Kees Cook 已提交
4101 4102 4103 4104 4105
	/* Find object and usable object size. */
	s = page->slab_cache;

	/* Reject impossible pointers. */
	if (ptr < page_address(page))
4106 4107
		usercopy_abort("SLUB object not in SLUB page?!", NULL,
			       to_user, 0, n);
K
Kees Cook 已提交
4108 4109 4110 4111 4112

	/* Find offset within object. */
	offset = (ptr - page_address(page)) % s->size;

	/* Adjust for redzone and reject if within the redzone. */
4113
	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
K
Kees Cook 已提交
4114
		if (offset < s->red_left_pad)
4115 4116
			usercopy_abort("SLUB object in left red zone",
				       s->name, to_user, offset, n);
K
Kees Cook 已提交
4117 4118 4119
		offset -= s->red_left_pad;
	}

4120 4121 4122 4123
	/* Allow address range falling entirely within usercopy region. */
	if (offset >= s->useroffset &&
	    offset - s->useroffset <= s->usersize &&
	    n <= s->useroffset - offset + s->usersize)
4124
		return;
K
Kees Cook 已提交
4125

4126 4127 4128 4129 4130 4131 4132
	/*
	 * If the copy is still within the allocated object, produce
	 * a warning instead of rejecting the copy. This is intended
	 * to be a temporary method to find any missing usercopy
	 * whitelists.
	 */
	object_size = slab_ksize(s);
4133 4134
	if (usercopy_fallback &&
	    offset <= object_size && n <= object_size - offset) {
4135 4136 4137
		usercopy_warn("SLUB object", s->name, to_user, offset, n);
		return;
	}
K
Kees Cook 已提交
4138

4139
	usercopy_abort("SLUB object", s->name, to_user, offset, n);
K
Kees Cook 已提交
4140 4141 4142
}
#endif /* CONFIG_HARDENED_USERCOPY */

4143
size_t __ksize(const void *object)
C
Christoph Lameter 已提交
4144
{
4145
	struct page *page;
C
Christoph Lameter 已提交
4146

4147
	if (unlikely(object == ZERO_SIZE_PTR))
4148 4149
		return 0;

4150 4151
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
4152 4153
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
4154
		return page_size(page);
P
Pekka Enberg 已提交
4155
	}
C
Christoph Lameter 已提交
4156

4157
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
4158
}
4159
EXPORT_SYMBOL(__ksize);
C
Christoph Lameter 已提交
4160 4161 4162 4163

void kfree(const void *x)
{
	struct page *page;
4164
	void *object = (void *)x;
C
Christoph Lameter 已提交
4165

4166 4167
	trace_kfree(_RET_IP_, x);

4168
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
4169 4170
		return;

4171
	page = virt_to_head_page(x);
4172
	if (unlikely(!PageSlab(page))) {
4173 4174
		unsigned int order = compound_order(page);

4175
		BUG_ON(!PageCompound(page));
4176
		kfree_hook(object);
4177 4178
		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
				    -(PAGE_SIZE << order));
4179
		__free_pages(page, order);
4180 4181
		return;
	}
4182
	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
C
Christoph Lameter 已提交
4183 4184 4185
}
EXPORT_SYMBOL(kfree);

4186 4187
#define SHRINK_PROMOTE_MAX 32

4188
/*
4189 4190 4191
 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 * up most to the head of the partial lists. New allocations will then
 * fill those up and thus they can be removed from the partial lists.
C
Christoph Lameter 已提交
4192 4193 4194 4195
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
4196
 */
4197
int __kmem_cache_shrink(struct kmem_cache *s)
4198 4199 4200 4201 4202 4203
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
4204 4205
	struct list_head discard;
	struct list_head promote[SHRINK_PROMOTE_MAX];
4206
	unsigned long flags;
4207
	int ret = 0;
4208 4209

	flush_all(s);
C
Christoph Lameter 已提交
4210
	for_each_kmem_cache_node(s, node, n) {
4211 4212 4213
		INIT_LIST_HEAD(&discard);
		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
			INIT_LIST_HEAD(promote + i);
4214 4215 4216 4217

		spin_lock_irqsave(&n->list_lock, flags);

		/*
4218
		 * Build lists of slabs to discard or promote.
4219
		 *
C
Christoph Lameter 已提交
4220 4221
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
4222
		 */
4223
		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4224 4225 4226 4227 4228 4229 4230 4231 4232
			int free = page->objects - page->inuse;

			/* Do not reread page->inuse */
			barrier();

			/* We do not keep full slabs on the list */
			BUG_ON(free <= 0);

			if (free == page->objects) {
4233
				list_move(&page->slab_list, &discard);
4234
				n->nr_partial--;
4235
			} else if (free <= SHRINK_PROMOTE_MAX)
4236
				list_move(&page->slab_list, promote + free - 1);
4237 4238 4239
		}

		/*
4240 4241
		 * Promote the slabs filled up most to the head of the
		 * partial list.
4242
		 */
4243 4244
		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
			list_splice(promote + i, &n->partial);
4245 4246

		spin_unlock_irqrestore(&n->list_lock, flags);
4247 4248

		/* Release empty slabs */
4249
		list_for_each_entry_safe(page, t, &discard, slab_list)
4250
			discard_slab(s, page);
4251 4252 4253

		if (slabs_node(s, node))
			ret = 1;
4254 4255
	}

4256
	return ret;
4257 4258
}

4259 4260 4261 4262
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

4263
	mutex_lock(&slab_mutex);
4264
	list_for_each_entry(s, &slab_caches, list)
4265
		__kmem_cache_shrink(s);
4266
	mutex_unlock(&slab_mutex);
4267 4268 4269 4270 4271 4272 4273 4274 4275

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct memory_notify *marg = arg;
	int offline_node;

4276
	offline_node = marg->status_change_nid_normal;
4277 4278 4279 4280 4281 4282 4283 4284

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

4285
	mutex_lock(&slab_mutex);
4286
	node_clear(offline_node, slab_nodes);
4287 4288 4289 4290 4291
	/*
	 * We no longer free kmem_cache_node structures here, as it would be
	 * racy with all get_node() users, and infeasible to protect them with
	 * slab_mutex.
	 */
4292
	mutex_unlock(&slab_mutex);
4293 4294 4295 4296 4297 4298 4299
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
4300
	int nid = marg->status_change_nid_normal;
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
4311
	 * We are bringing a node online. No memory is available yet. We must
4312 4313 4314
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
4315
	mutex_lock(&slab_mutex);
4316
	list_for_each_entry(s, &slab_caches, list) {
4317 4318 4319 4320 4321 4322
		/*
		 * The structure may already exist if the node was previously
		 * onlined and offlined.
		 */
		if (get_node(s, nid))
			continue;
4323 4324 4325 4326 4327
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
4328
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4329 4330 4331 4332
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
4333
		init_kmem_cache_node(n);
4334 4335
		s->node[nid] = n;
	}
4336 4337 4338 4339 4340
	/*
	 * Any cache created after this point will also have kmem_cache_node
	 * initialized for the new node.
	 */
	node_set(nid, slab_nodes);
4341
out:
4342
	mutex_unlock(&slab_mutex);
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
4366 4367 4368 4369
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
4370 4371 4372
	return ret;
}

4373 4374 4375 4376
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
4377

C
Christoph Lameter 已提交
4378 4379 4380 4381
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

4382 4383
/*
 * Used for early kmem_cache structures that were allocated using
4384 4385
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
4386 4387
 */

4388
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4389 4390
{
	int node;
4391
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
4392
	struct kmem_cache_node *n;
4393

4394
	memcpy(s, static_cache, kmem_cache->object_size);
4395

4396 4397 4398 4399 4400 4401
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
4402
	for_each_kmem_cache_node(s, node, n) {
4403 4404
		struct page *p;

4405
		list_for_each_entry(p, &n->partial, slab_list)
C
Christoph Lameter 已提交
4406
			p->slab_cache = s;
4407

L
Li Zefan 已提交
4408
#ifdef CONFIG_SLUB_DEBUG
4409
		list_for_each_entry(p, &n->full, slab_list)
C
Christoph Lameter 已提交
4410
			p->slab_cache = s;
4411 4412
#endif
	}
4413 4414
	list_add(&s->list, &slab_caches);
	return s;
4415 4416
}

C
Christoph Lameter 已提交
4417 4418
void __init kmem_cache_init(void)
{
4419 4420
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
4421
	int node;
4422

4423 4424 4425
	if (debug_guardpage_minorder())
		slub_max_order = 0;

4426 4427
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
4428

4429 4430 4431 4432 4433 4434 4435
	/*
	 * Initialize the nodemask for which we will allocate per node
	 * structures. Here we don't need taking slab_mutex yet.
	 */
	for_each_node_state(node, N_NORMAL_MEMORY)
		node_set(node, slab_nodes);

4436
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4437
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4438

4439
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
4440 4441 4442 4443

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

4444 4445 4446
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
4447
		       SLAB_HWCACHE_ALIGN, 0, 0);
4448

4449 4450
	kmem_cache = bootstrap(&boot_kmem_cache);
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4451 4452

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4453
	setup_kmalloc_cache_index_table();
4454
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
4455

T
Thomas Garnier 已提交
4456 4457 4458
	/* Setup random freelists for each cache */
	init_freelist_randomization();

4459 4460
	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
				  slub_cpu_dead);
C
Christoph Lameter 已提交
4461

4462
	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4463
		cache_line_size(),
C
Christoph Lameter 已提交
4464 4465 4466 4467
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

4468 4469 4470 4471
void __init kmem_cache_init_late(void)
{
}

4472
struct kmem_cache *
4473
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4474
		   slab_flags_t flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
4475
{
4476
	struct kmem_cache *s;
C
Christoph Lameter 已提交
4477

4478
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
4479 4480
	if (s) {
		s->refcount++;
4481

C
Christoph Lameter 已提交
4482 4483 4484 4485
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
4486
		s->object_size = max(s->object_size, size);
4487
		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
4488

4489 4490
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
4491
			s = NULL;
4492
		}
4493
	}
C
Christoph Lameter 已提交
4494

4495 4496
	return s;
}
P
Pekka Enberg 已提交
4497

4498
int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4499
{
4500 4501 4502 4503 4504
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
4505

4506 4507 4508 4509
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

4510 4511
	err = sysfs_slab_add(s);
	if (err)
4512
		__kmem_cache_release(s);
4513

4514
	return err;
C
Christoph Lameter 已提交
4515 4516
}

4517
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
4518
{
4519
	struct kmem_cache *s;
4520
	void *ret;
4521

4522
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4523 4524
		return kmalloc_large(size, gfpflags);

4525
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4526

4527
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4528
		return s;
C
Christoph Lameter 已提交
4529

4530
	ret = slab_alloc(s, gfpflags, caller);
4531

L
Lucas De Marchi 已提交
4532
	/* Honor the call site pointer we received. */
4533
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4534 4535

	return ret;
C
Christoph Lameter 已提交
4536
}
4537
EXPORT_SYMBOL(__kmalloc_track_caller);
C
Christoph Lameter 已提交
4538

4539
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4540
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4541
					int node, unsigned long caller)
C
Christoph Lameter 已提交
4542
{
4543
	struct kmem_cache *s;
4544
	void *ret;
4545

4546
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4547 4548 4549 4550 4551 4552 4553 4554
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
4555

4556
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4557

4558
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4559
		return s;
C
Christoph Lameter 已提交
4560

4561
	ret = slab_alloc_node(s, gfpflags, node, caller);
4562

L
Lucas De Marchi 已提交
4563
	/* Honor the call site pointer we received. */
4564
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4565 4566

	return ret;
C
Christoph Lameter 已提交
4567
}
4568
EXPORT_SYMBOL(__kmalloc_node_track_caller);
4569
#endif
C
Christoph Lameter 已提交
4570

4571
#ifdef CONFIG_SYSFS
4572 4573 4574 4575 4576 4577 4578 4579 4580
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
4581
#endif
4582

4583
#ifdef CONFIG_SLUB_DEBUG
4584
static void validate_slab(struct kmem_cache *s, struct page *page)
4585 4586
{
	void *p;
4587
	void *addr = page_address(page);
4588 4589 4590
	unsigned long *map;

	slab_lock(page);
4591

Y
Yu Zhao 已提交
4592
	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4593
		goto unlock;
4594 4595

	/* Now we know that a valid freelist exists */
4596
	map = get_map(s, page);
4597
	for_each_object(p, s, addr, page->objects) {
4598
		u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
Y
Yu Zhao 已提交
4599
			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4600

Y
Yu Zhao 已提交
4601 4602 4603
		if (!check_object(s, page, p, val))
			break;
	}
4604 4605
	put_map(map);
unlock:
4606
	slab_unlock(page);
4607 4608
}

4609
static int validate_slab_node(struct kmem_cache *s,
4610
		struct kmem_cache_node *n)
4611 4612 4613 4614 4615 4616 4617
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

4618
	list_for_each_entry(page, &n->partial, slab_list) {
4619
		validate_slab(s, page);
4620 4621 4622
		count++;
	}
	if (count != n->nr_partial)
4623 4624
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
4625 4626 4627 4628

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

4629
	list_for_each_entry(page, &n->full, slab_list) {
4630
		validate_slab(s, page);
4631 4632 4633
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
4634 4635
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
4636 4637 4638 4639 4640 4641

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

4642
static long validate_slab_cache(struct kmem_cache *s)
4643 4644 4645
{
	int node;
	unsigned long count = 0;
C
Christoph Lameter 已提交
4646
	struct kmem_cache_node *n;
4647 4648

	flush_all(s);
C
Christoph Lameter 已提交
4649
	for_each_kmem_cache_node(s, node, n)
4650 4651
		count += validate_slab_node(s, n);

4652 4653
	return count;
}
4654
/*
C
Christoph Lameter 已提交
4655
 * Generate lists of code addresses where slabcache objects are allocated
4656 4657 4658 4659 4660
 * and freed.
 */

struct location {
	unsigned long count;
4661
	unsigned long addr;
4662 4663 4664 4665 4666
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
4667
	DECLARE_BITMAP(cpus, NR_CPUS);
4668
	nodemask_t nodes;
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4684
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4685 4686 4687 4688 4689 4690
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4691
	l = (void *)__get_free_pages(flags, order);
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4705
				const struct track *track)
4706 4707 4708
{
	long start, end, pos;
	struct location *l;
4709
	unsigned long caddr;
4710
	unsigned long age = jiffies - track->when;
4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4742 4743
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4744 4745
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4746 4747 4748
			return 1;
		}

4749
		if (track->addr < caddr)
4750 4751 4752 4753 4754 4755
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4756
	 * Not found. Insert new tracking element.
4757
	 */
4758
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4759 4760 4761 4762 4763 4764 4765 4766
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4767 4768 4769 4770 4771 4772
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4773 4774
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4775 4776
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4777 4778 4779 4780
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
4781
		struct page *page, enum track_item alloc)
4782
{
4783
	void *addr = page_address(page);
4784
	void *p;
4785
	unsigned long *map;
4786

4787
	map = get_map(s, page);
4788
	for_each_object(p, s, addr, page->objects)
4789
		if (!test_bit(__obj_to_index(s, addr, p), map))
4790
			add_location(t, s, get_track(s, p, alloc));
4791
	put_map(map);
4792 4793 4794
}

static int list_locations(struct kmem_cache *s, char *buf,
4795
			  enum track_item alloc)
4796
{
4797
	int len = 0;
4798
	unsigned long i;
4799
	struct loc_track t = { 0, 0, NULL };
4800
	int node;
C
Christoph Lameter 已提交
4801
	struct kmem_cache_node *n;
4802

4803 4804
	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
			     GFP_KERNEL)) {
4805
		return sysfs_emit(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4806
	}
4807 4808 4809
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4810
	for_each_kmem_cache_node(s, node, n) {
4811 4812 4813
		unsigned long flags;
		struct page *page;

4814
		if (!atomic_long_read(&n->nr_slabs))
4815 4816 4817
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
4818
		list_for_each_entry(page, &n->partial, slab_list)
4819
			process_slab(&t, s, page, alloc);
4820
		list_for_each_entry(page, &n->full, slab_list)
4821
			process_slab(&t, s, page, alloc);
4822 4823 4824 4825
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4826
		struct location *l = &t.loc[i];
4827

4828
		len += sysfs_emit_at(buf, len, "%7ld ", l->count);
4829 4830

		if (l->addr)
4831
			len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr);
4832
		else
4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
			len += sysfs_emit_at(buf, len, "<not-available>");

		if (l->sum_time != l->min_time)
			len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld",
					     l->min_time,
					     (long)div_u64(l->sum_time,
							   l->count),
					     l->max_time);
		else
			len += sysfs_emit_at(buf, len, " age=%ld", l->min_time);
4843 4844

		if (l->min_pid != l->max_pid)
4845 4846
			len += sysfs_emit_at(buf, len, " pid=%ld-%ld",
					     l->min_pid, l->max_pid);
4847
		else
4848 4849
			len += sysfs_emit_at(buf, len, " pid=%ld",
					     l->min_pid);
4850

R
Rusty Russell 已提交
4851
		if (num_online_cpus() > 1 &&
4852 4853 4854 4855 4856 4857 4858 4859 4860
		    !cpumask_empty(to_cpumask(l->cpus)))
			len += sysfs_emit_at(buf, len, " cpus=%*pbl",
					     cpumask_pr_args(to_cpumask(l->cpus)));

		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
			len += sysfs_emit_at(buf, len, " nodes=%*pbl",
					     nodemask_pr_args(&l->nodes));

		len += sysfs_emit_at(buf, len, "\n");
4861 4862 4863 4864
	}

	free_loc_track(&t);
	if (!t.count)
4865 4866
		len += sysfs_emit_at(buf, len, "No data\n");

4867
	return len;
4868
}
4869
#endif	/* CONFIG_SLUB_DEBUG */
4870

4871
#ifdef SLUB_RESILIENCY_TEST
4872
static void __init resiliency_test(void)
4873 4874
{
	u8 *p;
4875
	int type = KMALLOC_NORMAL;
4876

4877
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4878

4879 4880 4881
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4882 4883 4884

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4885 4886
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4887

4888
	validate_slab_cache(kmalloc_caches[type][4]);
4889 4890 4891 4892

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4893 4894 4895
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4896

4897
	validate_slab_cache(kmalloc_caches[type][5]);
4898 4899 4900
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4901 4902 4903
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4904
	validate_slab_cache(kmalloc_caches[type][6]);
4905

4906
	pr_err("\nB. Corruption after free\n");
4907 4908 4909
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4910
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4911
	validate_slab_cache(kmalloc_caches[type][7]);
4912 4913 4914 4915

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4916
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4917
	validate_slab_cache(kmalloc_caches[type][8]);
4918 4919 4920 4921

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4922
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4923
	validate_slab_cache(kmalloc_caches[type][9]);
4924 4925 4926 4927 4928
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
4929
#endif	/* SLUB_RESILIENCY_TEST */
4930

4931
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4932
enum slab_stat_type {
4933 4934 4935 4936 4937
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4938 4939
};

4940
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4941 4942 4943
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4944
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4945

4946
static ssize_t show_slab_objects(struct kmem_cache *s,
4947
				 char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4948 4949 4950 4951 4952
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;
4953
	int len = 0;
C
Christoph Lameter 已提交
4954

K
Kees Cook 已提交
4955
	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4956 4957
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4958

4959 4960
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4961

4962
		for_each_possible_cpu(cpu) {
4963 4964
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4965
			int node;
4966
			struct page *page;
4967

4968
			page = READ_ONCE(c->page);
4969 4970
			if (!page)
				continue;
4971

4972 4973 4974 4975 4976 4977 4978
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4979

4980 4981 4982
			total += x;
			nodes[node] += x;

4983
			page = slub_percpu_partial_read_once(c);
4984
			if (page) {
L
Li Zefan 已提交
4985 4986 4987 4988 4989 4990 4991
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4992 4993
				total += x;
				nodes[node] += x;
4994
			}
C
Christoph Lameter 已提交
4995 4996 4997
		}
	}

4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
	/*
	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
	 * already held which will conflict with an existing lock order:
	 *
	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
	 *
	 * We don't really need mem_hotplug_lock (to hold off
	 * slab_mem_going_offline_callback) here because slab's memory hot
	 * unplug code doesn't destroy the kmem_cache->node[] data.
	 */

5009
#ifdef CONFIG_SLUB_DEBUG
5010
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
5011 5012 5013
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
5014

5015 5016 5017 5018 5019
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
5020
			else
5021
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
5022 5023 5024 5025
			total += x;
			nodes[node] += x;
		}

5026 5027 5028
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
5029
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
5030

C
Christoph Lameter 已提交
5031
		for_each_kmem_cache_node(s, node, n) {
5032 5033 5034 5035
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
5036
			else
5037
				x = n->nr_partial;
C
Christoph Lameter 已提交
5038 5039 5040 5041
			total += x;
			nodes[node] += x;
		}
	}
5042 5043

	len += sysfs_emit_at(buf, len, "%lu", total);
C
Christoph Lameter 已提交
5044
#ifdef CONFIG_NUMA
5045
	for (node = 0; node < nr_node_ids; node++) {
C
Christoph Lameter 已提交
5046
		if (nodes[node])
5047 5048 5049
			len += sysfs_emit_at(buf, len, " N%d=%lu",
					     node, nodes[node]);
	}
C
Christoph Lameter 已提交
5050
#endif
5051
	len += sysfs_emit_at(buf, len, "\n");
C
Christoph Lameter 已提交
5052
	kfree(nodes);
5053 5054

	return len;
C
Christoph Lameter 已提交
5055 5056 5057
}

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5058
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
5059 5060 5061 5062 5063 5064 5065 5066

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
5067 5068
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
5069 5070 5071

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
5072
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
5073 5074 5075

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
5076
	return sysfs_emit(buf, "%u\n", s->size);
C
Christoph Lameter 已提交
5077 5078 5079 5080 5081
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
5082
	return sysfs_emit(buf, "%u\n", s->align);
C
Christoph Lameter 已提交
5083 5084 5085 5086 5087
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
5088
	return sysfs_emit(buf, "%u\n", s->object_size);
C
Christoph Lameter 已提交
5089 5090 5091 5092 5093
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
5094
	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
5095 5096 5097 5098 5099
}
SLAB_ATTR_RO(objs_per_slab);

static ssize_t order_show(struct kmem_cache *s, char *buf)
{
5100
	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
C
Christoph Lameter 已提交
5101
}
5102
SLAB_ATTR_RO(order);
C
Christoph Lameter 已提交
5103

5104 5105
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
5106
	return sysfs_emit(buf, "%lu\n", s->min_partial);
5107 5108 5109 5110 5111 5112 5113 5114
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

5115
	err = kstrtoul(buf, 10, &min);
5116 5117 5118
	if (err)
		return err;

5119
	set_min_partial(s, min);
5120 5121 5122 5123
	return length;
}
SLAB_ATTR(min_partial);

5124 5125
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
5126
	return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5127 5128 5129 5130 5131
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
5132
	unsigned int objects;
5133 5134
	int err;

5135
	err = kstrtouint(buf, 10, &objects);
5136 5137
	if (err)
		return err;
5138
	if (objects && !kmem_cache_has_cpu_partial(s))
5139
		return -EINVAL;
5140

5141
	slub_set_cpu_partial(s, objects);
5142 5143 5144 5145 5146
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
5147 5148
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
5149 5150
	if (!s->ctor)
		return 0;
5151
	return sysfs_emit(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
5152 5153 5154 5155 5156
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
5157
	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
5158 5159 5160 5161 5162
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
5163
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
5164 5165 5166 5167 5168
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
5169
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
5170 5171 5172 5173 5174
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
5175
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
5176 5177 5178
}
SLAB_ATTR_RO(objects);

5179 5180 5181 5182 5183 5184
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

5185 5186 5187 5188 5189
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
5190
	int len = 0;
5191 5192

	for_each_online_cpu(cpu) {
5193 5194 5195
		struct page *page;

		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5196 5197 5198 5199 5200 5201 5202

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

5203
	len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5204 5205 5206

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
5207 5208 5209
		struct page *page;

		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5210 5211 5212
		if (page)
			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
					     cpu, page->pobjects, page->pages);
5213 5214
	}
#endif
5215 5216 5217
	len += sysfs_emit_at(buf, len, "\n");

	return len;
5218 5219 5220
}
SLAB_ATTR_RO(slabs_cpu_partial);

5221 5222
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
5223
	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5224
}
5225
SLAB_ATTR_RO(reclaim_account);
5226 5227 5228

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
5229
	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5230 5231 5232 5233 5234 5235
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
5236
	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5237 5238 5239 5240
}
SLAB_ATTR_RO(cache_dma);
#endif

5241 5242
static ssize_t usersize_show(struct kmem_cache *s, char *buf)
{
5243
	return sysfs_emit(buf, "%u\n", s->usersize);
5244 5245 5246
}
SLAB_ATTR_RO(usersize);

5247 5248
static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
5249
	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5250 5251 5252
}
SLAB_ATTR_RO(destroy_by_rcu);

5253
#ifdef CONFIG_SLUB_DEBUG
5254 5255 5256 5257 5258 5259
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

5260 5261 5262 5263 5264 5265
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
5266 5267
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
5268
	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
C
Christoph Lameter 已提交
5269
}
5270
SLAB_ATTR_RO(sanity_checks);
C
Christoph Lameter 已提交
5271 5272 5273

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
5274
	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
C
Christoph Lameter 已提交
5275
}
5276
SLAB_ATTR_RO(trace);
C
Christoph Lameter 已提交
5277 5278 5279

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
5280
	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
C
Christoph Lameter 已提交
5281 5282
}

5283
SLAB_ATTR_RO(red_zone);
C
Christoph Lameter 已提交
5284 5285 5286

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
5287
	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
C
Christoph Lameter 已提交
5288 5289
}

5290
SLAB_ATTR_RO(poison);
C
Christoph Lameter 已提交
5291 5292 5293

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
5294
	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
C
Christoph Lameter 已提交
5295 5296
}

5297
SLAB_ATTR_RO(store_user);
C
Christoph Lameter 已提交
5298

5299 5300 5301 5302 5303 5304 5305 5306
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5307 5308 5309 5310 5311 5312 5313 5314
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
5315 5316
}
SLAB_ATTR(validate);
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
5338
	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5339
}
5340
SLAB_ATTR_RO(failslab);
5341
#endif
5342

5343 5344 5345 5346 5347 5348 5349 5350
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5351
	if (buf[0] == '1')
5352
		kmem_cache_shrink(s);
5353
	else
5354 5355 5356 5357 5358
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
5359
#ifdef CONFIG_NUMA
5360
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
5361
{
5362
	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
5363 5364
}

5365
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
5366 5367
				const char *buf, size_t length)
{
5368
	unsigned int ratio;
5369 5370
	int err;

5371
	err = kstrtouint(buf, 10, &ratio);
5372 5373
	if (err)
		return err;
5374 5375
	if (ratio > 100)
		return -ERANGE;
5376

5377
	s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
5378 5379 5380

	return length;
}
5381
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
5382 5383
#endif

5384 5385 5386 5387 5388
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
5389
	int len = 0;
5390
	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5391 5392 5393 5394 5395

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
5396
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5397 5398 5399 5400 5401

		data[cpu] = x;
		sum += x;
	}

5402
	len += sysfs_emit_at(buf, len, "%lu", sum);
5403

5404
#ifdef CONFIG_SMP
5405
	for_each_online_cpu(cpu) {
5406 5407 5408
		if (data[cpu])
			len += sysfs_emit_at(buf, len, " C%d=%u",
					     cpu, data[cpu]);
5409
	}
5410
#endif
5411
	kfree(data);
5412 5413 5414
	len += sysfs_emit_at(buf, len, "\n");

	return len;
5415 5416
}

D
David Rientjes 已提交
5417 5418 5419 5420 5421
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
5422
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
5423 5424
}

5425 5426 5427 5428 5429
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
5430 5431 5432 5433 5434 5435 5436 5437 5438
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
5450
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5451 5452 5453 5454 5455 5456 5457
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5458
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5459
STAT_ATTR(ORDER_FALLBACK, order_fallback);
5460 5461
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5462 5463
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5464 5465
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5466
#endif	/* CONFIG_SLUB_STATS */
5467

P
Pekka Enberg 已提交
5468
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
5469 5470 5471 5472
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
5473
	&min_partial_attr.attr,
5474
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
5475
	&objects_attr.attr,
5476
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
5477 5478 5479 5480 5481 5482 5483 5484
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
5485
	&shrink_attr.attr,
5486
	&slabs_cpu_partial_attr.attr,
5487
#ifdef CONFIG_SLUB_DEBUG
5488 5489 5490 5491
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
5492 5493 5494
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
5495
	&validate_attr.attr,
5496 5497
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
5498
#endif
C
Christoph Lameter 已提交
5499 5500 5501 5502
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
5503
	&remote_node_defrag_ratio_attr.attr,
5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
5516
	&alloc_node_mismatch_attr.attr,
5517 5518 5519 5520 5521 5522 5523
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
5524
	&deactivate_bypass_attr.attr,
5525
	&order_fallback_attr.attr,
5526 5527
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
5528 5529
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
5530 5531
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
5532
#endif
5533 5534 5535
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif
5536
	&usersize_attr.attr,
5537

C
Christoph Lameter 已提交
5538 5539 5540
	NULL
};

5541
static const struct attribute_group slab_attr_group = {
C
Christoph Lameter 已提交
5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
	return err;
}

5582 5583 5584 5585 5586
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5587
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5588 5589 5590 5591 5592 5593
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5594
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5595 5596
};

5597
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5598

5599 5600 5601 5602 5603
static inline struct kset *cache_kset(struct kmem_cache *s)
{
	return slab_kset;
}

C
Christoph Lameter 已提交
5604 5605 5606
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5607 5608
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
5627 5628
	if (s->flags & SLAB_CACHE_DMA32)
		*p++ = 'D';
C
Christoph Lameter 已提交
5629 5630
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
5631
	if (s->flags & SLAB_CONSISTENCY_CHECKS)
C
Christoph Lameter 已提交
5632
		*p++ = 'F';
V
Vladimir Davydov 已提交
5633 5634
	if (s->flags & SLAB_ACCOUNT)
		*p++ = 'A';
C
Christoph Lameter 已提交
5635 5636
	if (p != name + 1)
		*p++ = '-';
A
Alexey Dobriyan 已提交
5637
	p += sprintf(p, "%07u", s->size);
5638

C
Christoph Lameter 已提交
5639 5640 5641 5642 5643 5644 5645 5646
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5647
	struct kset *kset = cache_kset(s);
5648
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5649

5650 5651 5652 5653 5654
	if (!kset) {
		kobject_init(&s->kobj, &slab_ktype);
		return 0;
	}

5655 5656 5657 5658
	if (!unmergeable && disable_higher_order_debug &&
			(slub_debug & DEBUG_METADATA_FLAGS))
		unmergeable = 1;

C
Christoph Lameter 已提交
5659 5660 5661 5662 5663 5664
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5665
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5666 5667 5668 5669 5670 5671 5672 5673 5674
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5675
	s->kobj.kset = kset;
5676
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5677
	if (err)
5678
		goto out;
C
Christoph Lameter 已提交
5679 5680

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5681 5682
	if (err)
		goto out_del_kobj;
5683

C
Christoph Lameter 已提交
5684 5685 5686 5687
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5688 5689 5690 5691 5692 5693 5694
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5695 5696
}

5697 5698 5699 5700 5701 5702
void sysfs_slab_unlink(struct kmem_cache *s)
{
	if (slab_state >= FULL)
		kobject_del(&s->kobj);
}

5703 5704 5705 5706
void sysfs_slab_release(struct kmem_cache *s)
{
	if (slab_state >= FULL)
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5707 5708 5709 5710
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5711
 * available lest we lose that information.
C
Christoph Lameter 已提交
5712 5713 5714 5715 5716 5717 5718
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5719
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5720 5721 5722 5723 5724

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5725
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5726 5727 5728
		/*
		 * If we have a leftover link then remove it.
		 */
5729 5730
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5746
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5747 5748
	int err;

5749
	mutex_lock(&slab_mutex);
5750

5751
	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5752
	if (!slab_kset) {
5753
		mutex_unlock(&slab_mutex);
5754
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5755 5756 5757
		return -ENOSYS;
	}

5758
	slab_state = FULL;
5759

5760
	list_for_each_entry(s, &slab_caches, list) {
5761
		err = sysfs_slab_add(s);
5762
		if (err)
5763 5764
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5765
	}
C
Christoph Lameter 已提交
5766 5767 5768 5769 5770 5771

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5772
		if (err)
5773 5774
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5775 5776 5777
		kfree(al);
	}

5778
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5779 5780 5781 5782 5783
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5784
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5785 5786 5787 5788

/*
 * The /proc/slabinfo ABI
 */
Y
Yang Shi 已提交
5789
#ifdef CONFIG_SLUB_DEBUG
5790
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5791 5792
{
	unsigned long nr_slabs = 0;
5793 5794
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5795
	int node;
C
Christoph Lameter 已提交
5796
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5797

C
Christoph Lameter 已提交
5798
	for_each_kmem_cache_node(s, node, n) {
5799 5800
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5801
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5802 5803
	}

5804 5805 5806 5807 5808 5809
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5810 5811
}

5812
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5813 5814 5815
{
}

5816 5817
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5818
{
5819
	return -EIO;
5820
}
Y
Yang Shi 已提交
5821
#endif /* CONFIG_SLUB_DEBUG */