slub.c 145.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Christoph Lameter 已提交
2 3 4 5
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
6 7
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
8
 *
C
Christoph Lameter 已提交
9
 * (C) 2007 SGI, Christoph Lameter
10
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
11 12 13
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
14
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
15 16 17 18 19
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
20
#include "slab.h"
21
#include <linux/proc_fs.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
23
#include <linux/kasan.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
36
#include <linux/random.h>
C
Christoph Lameter 已提交
37

38 39
#include <trace/events/kmem.h>

40 41
#include "internal.h"

C
Christoph Lameter 已提交
42 43
/*
 * Lock order:
44
 *   1. slab_mutex (Global Mutex)
45 46
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
47
 *
48
 *   slab_mutex
49
 *
50
 *   The role of the slab_mutex is to protect the list of all the slabs
51 52 53
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
54
 *   have the ability to do a cmpxchg_double. It only protects:
55
 *	A. page->freelist	-> List of object free in a page
56 57 58
 *	B. page->inuse		-> Number of objects in use
 *	C. page->objects	-> Number of objects in page
 *	D. page->frozen		-> frozen state
59 60
 *
 *   If a slab is frozen then it is exempt from list management. It is not
61 62 63 64 65
 *   on any list except per cpu partial list. The processor that froze the
 *   slab is the one who can perform list operations on the page. Other
 *   processors may put objects onto the freelist but the processor that
 *   froze the slab is the only one that can retrieve the objects from the
 *   page's freelist.
C
Christoph Lameter 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
86 87
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
88
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
89 90
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
Y
Yu Zhao 已提交
96
 * page->frozen		The slab is frozen and exempt from list processing.
97 98 99 100 101 102 103 104 105 106 107
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111
 *
Y
Yu Zhao 已提交
112
 * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
C
Christoph Lameter 已提交
113
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118 119 120 121 122 123 124
#ifdef CONFIG_SLUB_DEBUG
#ifdef CONFIG_SLUB_DEBUG_ON
DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
#else
DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
#endif
#endif

125 126 127
static inline bool kmem_cache_debug(struct kmem_cache *s)
{
	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
128
}
129

130
void *fixup_red_left(struct kmem_cache *s, void *p)
J
Joonsoo Kim 已提交
131
{
132
	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
J
Joonsoo Kim 已提交
133 134 135 136 137
		p += s->red_left_pad;

	return p;
}

138 139 140 141 142 143 144 145 146
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
147 148 149 150 151 152 153 154 155 156 157
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

158 159 160
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

161 162 163 164
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
165
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
166

167 168 169
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
170
 * sort the partial list by the number of objects in use.
171 172 173
 */
#define MAX_PARTIAL 10

174
#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
C
Christoph Lameter 已提交
175
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
176

177 178 179 180 181 182 183 184
/*
 * These debug flags cannot use CMPXCHG because there might be consistency
 * issues when checking or reading debug information
 */
#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
				SLAB_TRACE)


185
/*
186 187 188
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
189
 */
190
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
191

192 193
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
194
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
195

C
Christoph Lameter 已提交
196
/* Internal SLUB flags */
197
/* Poison object */
198
#define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
199
/* Use cmpxchg_double */
200
#define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
C
Christoph Lameter 已提交
201

202 203 204
/*
 * Tracking user of a slab.
 */
205
#define TRACK_ADDRS_COUNT 16
206
struct track {
207
	unsigned long addr;	/* Called from address */
208 209 210
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
211 212 213 214 215 216 217
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

218
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
219 220
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
221
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
222
static void sysfs_slab_remove(struct kmem_cache *s);
C
Christoph Lameter 已提交
223
#else
224 225 226
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
227
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
228
static inline void sysfs_slab_remove(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
229 230
#endif

231
static inline void stat(const struct kmem_cache *s, enum stat_item si)
232 233
{
#ifdef CONFIG_SLUB_STATS
234 235 236 237 238
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
239 240 241
#endif
}

C
Christoph Lameter 已提交
242 243 244 245
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

246 247 248 249 250 251 252 253 254
/*
 * Returns freelist pointer (ptr). With hardening, this is obfuscated
 * with an XOR of the address where the pointer is held and a per-cache
 * random number.
 */
static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
				 unsigned long ptr_addr)
{
#ifdef CONFIG_SLAB_FREELIST_HARDENED
255 256 257 258 259 260 261 262 263 264 265
	/*
	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
	 * Normally, this doesn't cause any issues, as both set_freepointer()
	 * and get_freepointer() are called with a pointer with the same tag.
	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
	 * example, when __free_slub() iterates over objects in a cache, it
	 * passes untagged pointers to check_object(). check_object() in turns
	 * calls get_freepointer() with an untagged pointer, which causes the
	 * freepointer to be restored incorrectly.
	 */
	return (void *)((unsigned long)ptr ^ s->random ^
266
			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
267 268 269 270 271 272 273 274 275 276 277 278 279
#else
	return ptr;
#endif
}

/* Returns the freelist pointer recorded at location ptr_addr. */
static inline void *freelist_dereference(const struct kmem_cache *s,
					 void *ptr_addr)
{
	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
			    (unsigned long)ptr_addr);
}

280 281
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
282
	return freelist_dereference(s, object + s->offset);
283 284
}

285 286
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
287
	prefetch(object + s->offset);
288 289
}

290 291
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
292
	unsigned long freepointer_addr;
293 294
	void *p;

295
	if (!debug_pagealloc_enabled_static())
296 297
		return get_freepointer(s, object);

298
	freepointer_addr = (unsigned long)object + s->offset;
299
	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
300
	return freelist_ptr(s, p, freepointer_addr);
301 302
}

303 304
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
305 306
	unsigned long freeptr_addr = (unsigned long)object + s->offset;

307 308 309 310
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	BUG_ON(object == fp); /* naive detection of double free or corruption */
#endif

311
	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
312 313 314
}

/* Loop over all objects in a slab */
315
#define for_each_object(__p, __s, __addr, __objects) \
J
Joonsoo Kim 已提交
316 317 318
	for (__p = fixup_red_left(__s, __addr); \
		__p < (__addr) + (__objects) * (__s)->size; \
		__p += (__s)->size)
319 320

/* Determine object index from a given position */
321
static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
322
{
323
	return (kasan_reset_tag(p) - addr) / s->size;
324 325
}

326
static inline unsigned int order_objects(unsigned int order, unsigned int size)
327
{
328
	return ((unsigned int)PAGE_SIZE << order) / size;
329 330
}

331
static inline struct kmem_cache_order_objects oo_make(unsigned int order,
332
		unsigned int size)
333 334
{
	struct kmem_cache_order_objects x = {
335
		(order << OO_SHIFT) + order_objects(order, size)
336 337 338 339 340
	};

	return x;
}

341
static inline unsigned int oo_order(struct kmem_cache_order_objects x)
342
{
343
	return x.x >> OO_SHIFT;
344 345
}

346
static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
347
{
348
	return x.x & OO_MASK;
349 350
}

351 352 353 354 355
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
356
	VM_BUG_ON_PAGE(PageTail(page), page);
357 358 359 360 361
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
362
	VM_BUG_ON_PAGE(PageTail(page), page);
363 364 365
	__bit_spin_unlock(PG_locked, &page->flags);
}

366 367 368 369 370 371 372
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
373 374
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
375
	if (s->flags & __CMPXCHG_DOUBLE) {
376
		if (cmpxchg_double(&page->freelist, &page->counters,
377 378
				   freelist_old, counters_old,
				   freelist_new, counters_new))
379
			return true;
380 381 382 383
	} else
#endif
	{
		slab_lock(page);
384 385
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
386
			page->freelist = freelist_new;
387
			page->counters = counters_new;
388
			slab_unlock(page);
389
			return true;
390 391 392 393 394 395 396 397
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
398
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
399 400
#endif

401
	return false;
402 403
}

404 405 406 407 408
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
409 410
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
411
	if (s->flags & __CMPXCHG_DOUBLE) {
412
		if (cmpxchg_double(&page->freelist, &page->counters,
413 414
				   freelist_old, counters_old,
				   freelist_new, counters_new))
415
			return true;
416 417 418
	} else
#endif
	{
419 420 421
		unsigned long flags;

		local_irq_save(flags);
422
		slab_lock(page);
423 424
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
425
			page->freelist = freelist_new;
426
			page->counters = counters_new;
427
			slab_unlock(page);
428
			local_irq_restore(flags);
429
			return true;
430
		}
431
		slab_unlock(page);
432
		local_irq_restore(flags);
433 434 435 436 437 438
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
439
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
440 441
#endif

442
	return false;
443 444
}

C
Christoph Lameter 已提交
445
#ifdef CONFIG_SLUB_DEBUG
446 447 448
static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
static DEFINE_SPINLOCK(object_map_lock);

449 450 451
/*
 * Determine a map of object in use on a page.
 *
452
 * Node listlock must be held to guarantee that the page does
453 454
 * not vanish from under us.
 */
455
static unsigned long *get_map(struct kmem_cache *s, struct page *page)
456
	__acquires(&object_map_lock)
457 458 459 460
{
	void *p;
	void *addr = page_address(page);

461 462 463 464 465 466
	VM_BUG_ON(!irqs_disabled());

	spin_lock(&object_map_lock);

	bitmap_zero(object_map, page->objects);

467
	for (p = page->freelist; p; p = get_freepointer(s, p))
468 469 470 471 472
		set_bit(slab_index(p, s, addr), object_map);

	return object_map;
}

473
static void put_map(unsigned long *map) __releases(&object_map_lock)
474 475 476
{
	VM_BUG_ON(map != object_map);
	spin_unlock(&object_map_lock);
477 478
}

479
static inline unsigned int size_from_object(struct kmem_cache *s)
J
Joonsoo Kim 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
{
	if (s->flags & SLAB_RED_ZONE)
		return s->size - s->red_left_pad;

	return s->size;
}

static inline void *restore_red_left(struct kmem_cache *s, void *p)
{
	if (s->flags & SLAB_RED_ZONE)
		p -= s->red_left_pad;

	return p;
}

C
Christoph Lameter 已提交
495 496 497
/*
 * Debug settings:
 */
498
#if defined(CONFIG_SLUB_DEBUG_ON)
499
static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
500
#else
501
static slab_flags_t slub_debug;
502
#endif
C
Christoph Lameter 已提交
503

504
static char *slub_debug_string;
505
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
506

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
/*
 * slub is about to manipulate internal object metadata.  This memory lies
 * outside the range of the allocated object, so accessing it would normally
 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 * to tell kasan that these accesses are OK.
 */
static inline void metadata_access_enable(void)
{
	kasan_disable_current();
}

static inline void metadata_access_disable(void)
{
	kasan_enable_current();
}

C
Christoph Lameter 已提交
523 524 525
/*
 * Object debugging
 */
J
Joonsoo Kim 已提交
526 527 528 529 530 531 532 533 534 535 536

/* Verify that a pointer has an address that is valid within a slab page */
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, void *object)
{
	void *base;

	if (!object)
		return 1;

	base = page_address(page);
537
	object = kasan_reset_tag(object);
J
Joonsoo Kim 已提交
538 539 540 541 542 543 544 545 546
	object = restore_red_left(s, object);
	if (object < base || object >= base + page->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

547 548
static void print_section(char *level, char *text, u8 *addr,
			  unsigned int length)
C
Christoph Lameter 已提交
549
{
550
	metadata_access_enable();
551
	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
552
			length, 1);
553
	metadata_access_disable();
C
Christoph Lameter 已提交
554 555
}

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
/*
 * See comment in calculate_sizes().
 */
static inline bool freeptr_outside_object(struct kmem_cache *s)
{
	return s->offset >= s->inuse;
}

/*
 * Return offset of the end of info block which is inuse + free pointer if
 * not overlapping with object.
 */
static inline unsigned int get_info_end(struct kmem_cache *s)
{
	if (freeptr_outside_object(s))
		return s->inuse + sizeof(void *);
	else
		return s->inuse;
}

C
Christoph Lameter 已提交
576 577 578 579 580
static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

581
	p = object + get_info_end(s);
C
Christoph Lameter 已提交
582 583 584 585 586

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
587
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
588
{
A
Akinobu Mita 已提交
589
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
590 591

	if (addr) {
592
#ifdef CONFIG_STACKTRACE
593
		unsigned int nr_entries;
594

595
		metadata_access_enable();
596
		nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
597
		metadata_access_disable();
598

599 600
		if (nr_entries < TRACK_ADDRS_COUNT)
			p->addrs[nr_entries] = 0;
601
#endif
C
Christoph Lameter 已提交
602 603
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
604
		p->pid = current->pid;
C
Christoph Lameter 已提交
605
		p->when = jiffies;
606
	} else {
C
Christoph Lameter 已提交
607
		memset(p, 0, sizeof(struct track));
608
	}
C
Christoph Lameter 已提交
609 610 611 612
}

static void init_tracking(struct kmem_cache *s, void *object)
{
613 614 615
	if (!(s->flags & SLAB_STORE_USER))
		return;

616 617
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
618 619
}

620
static void print_track(const char *s, struct track *t, unsigned long pr_time)
C
Christoph Lameter 已提交
621 622 623 624
{
	if (!t->addr)
		return;

625
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
626
	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
627 628 629 630 631
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
632
				pr_err("\t%pS\n", (void *)t->addrs[i]);
633 634 635 636
			else
				break;
	}
#endif
637 638
}

639
void print_tracking(struct kmem_cache *s, void *object)
640
{
641
	unsigned long pr_time = jiffies;
642 643 644
	if (!(s->flags & SLAB_STORE_USER))
		return;

645 646
	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
647 648 649 650
}

static void print_page_info(struct page *page)
{
651
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
652
	       page, page->objects, page->inuse, page->freelist, page->flags);
653 654 655 656 657

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
658
	struct va_format vaf;
659 660 661
	va_list args;

	va_start(args, fmt);
662 663
	vaf.fmt = fmt;
	vaf.va = &args;
664
	pr_err("=============================================================================\n");
665
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
666
	pr_err("-----------------------------------------------------------------------------\n\n");
667

668
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
669
	va_end(args);
C
Christoph Lameter 已提交
670 671
}

672 673
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
674
	struct va_format vaf;
675 676 677
	va_list args;

	va_start(args, fmt);
678 679 680
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
681 682 683
	va_end(args);
}

684 685 686 687 688 689 690 691 692 693 694 695 696 697
static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
			       void *freelist, void *nextfree)
{
	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
	    !check_valid_pointer(s, page, nextfree)) {
		object_err(s, page, freelist, "Freechain corrupt");
		freelist = NULL;
		slab_fix(s, "Isolate corrupted freechain");
		return true;
	}

	return false;
}

698
static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
699 700
{
	unsigned int off;	/* Offset of last byte */
701
	u8 *addr = page_address(page);
702 703 704 705 706

	print_tracking(s, p);

	print_page_info(page);

707 708
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
709

J
Joonsoo Kim 已提交
710
	if (s->flags & SLAB_RED_ZONE)
711 712
		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
			      s->red_left_pad);
J
Joonsoo Kim 已提交
713
	else if (p > addr + 16)
714
		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
715

716
	print_section(KERN_ERR, "Object ", p,
717
		      min_t(unsigned int, s->object_size, PAGE_SIZE));
C
Christoph Lameter 已提交
718
	if (s->flags & SLAB_RED_ZONE)
719
		print_section(KERN_ERR, "Redzone ", p + s->object_size,
720
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
721

722
	off = get_info_end(s);
C
Christoph Lameter 已提交
723

724
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
725 726
		off += 2 * sizeof(struct track);

727 728
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
729
	if (off != size_from_object(s))
C
Christoph Lameter 已提交
730
		/* Beginning of the filler is the free pointer */
731 732
		print_section(KERN_ERR, "Padding ", p + off,
			      size_from_object(s) - off);
733 734

	dump_stack();
C
Christoph Lameter 已提交
735 736
}

737
void object_err(struct kmem_cache *s, struct page *page,
C
Christoph Lameter 已提交
738 739
			u8 *object, char *reason)
{
740
	slab_bug(s, "%s", reason);
741
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
742 743
}

744
static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
745
			const char *fmt, ...)
C
Christoph Lameter 已提交
746 747 748 749
{
	va_list args;
	char buf[100];

750 751
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
752
	va_end(args);
753
	slab_bug(s, "%s", buf);
754
	print_page_info(page);
C
Christoph Lameter 已提交
755 756 757
	dump_stack();
}

758
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
759 760 761
{
	u8 *p = object;

J
Joonsoo Kim 已提交
762 763 764
	if (s->flags & SLAB_RED_ZONE)
		memset(p - s->red_left_pad, val, s->red_left_pad);

C
Christoph Lameter 已提交
765
	if (s->flags & __OBJECT_POISON) {
766 767
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
768 769 770
	}

	if (s->flags & SLAB_RED_ZONE)
771
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
772 773
}

774 775 776 777 778 779 780 781 782
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
783
			u8 *start, unsigned int value, unsigned int bytes)
784 785 786
{
	u8 *fault;
	u8 *end;
787
	u8 *addr = page_address(page);
788

789
	metadata_access_enable();
790
	fault = memchr_inv(start, value, bytes);
791
	metadata_access_disable();
792 793 794 795 796 797 798 799
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
800 801 802
	pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault - addr,
					fault[0], value);
803 804 805 806
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
807 808 809 810 811 812 813 814
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
815
 *	pointer is at the middle of the object.
C
Christoph Lameter 已提交
816
 *
C
Christoph Lameter 已提交
817 818 819
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
820
 * object + s->object_size
C
Christoph Lameter 已提交
821
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
822
 * 	Padding is extended by another word if Redzoning is enabled and
823
 * 	object_size == inuse.
C
Christoph Lameter 已提交
824
 *
C
Christoph Lameter 已提交
825 826 827 828
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
829 830
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
831 832
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
833
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
834
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
835 836 837
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
838 839
 *
 * object + s->size
C
Christoph Lameter 已提交
840
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
841
 *
842
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
843
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
844 845 846 847 848
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
849
	unsigned long off = get_info_end(s);	/* The end of info */
C
Christoph Lameter 已提交
850 851 852 853 854

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

855 856
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
857
	if (size_from_object(s) == off)
C
Christoph Lameter 已提交
858 859
		return 1;

860
	return check_bytes_and_report(s, page, p, "Object padding",
J
Joonsoo Kim 已提交
861
			p + off, POISON_INUSE, size_from_object(s) - off);
C
Christoph Lameter 已提交
862 863
}

864
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
865 866
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
867 868 869
	u8 *start;
	u8 *fault;
	u8 *end;
870
	u8 *pad;
871 872
	int length;
	int remainder;
C
Christoph Lameter 已提交
873 874 875 876

	if (!(s->flags & SLAB_POISON))
		return 1;

877
	start = page_address(page);
878
	length = page_size(page);
879 880
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
881 882 883
	if (!remainder)
		return 1;

884
	pad = end - remainder;
885
	metadata_access_enable();
886
	fault = memchr_inv(pad, POISON_INUSE, remainder);
887
	metadata_access_disable();
888 889 890 891 892
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

893 894
	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
			fault, end - 1, fault - start);
895
	print_section(KERN_ERR, "Padding ", pad, remainder);
896

897
	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
898
	return 0;
C
Christoph Lameter 已提交
899 900 901
}

static int check_object(struct kmem_cache *s, struct page *page,
902
					void *object, u8 val)
C
Christoph Lameter 已提交
903 904
{
	u8 *p = object;
905
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
906 907

	if (s->flags & SLAB_RED_ZONE) {
J
Joonsoo Kim 已提交
908 909 910 911
		if (!check_bytes_and_report(s, page, object, "Redzone",
			object - s->red_left_pad, val, s->red_left_pad))
			return 0;

912
		if (!check_bytes_and_report(s, page, object, "Redzone",
913
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
914 915
			return 0;
	} else {
916
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
917
			check_bytes_and_report(s, page, p, "Alignment padding",
918 919
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
920
		}
C
Christoph Lameter 已提交
921 922 923
	}

	if (s->flags & SLAB_POISON) {
924
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
925
			(!check_bytes_and_report(s, page, p, "Poison", p,
926
					POISON_FREE, s->object_size - 1) ||
927
			 !check_bytes_and_report(s, page, p, "Poison",
928
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
929 930 931 932 933 934 935
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

936
	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
937 938 939 940 941 942 943 944 945 946
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
947
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
948
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
949
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
950
		 */
951
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
952 953 954 955 956 957 958
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
959 960
	int maxobj;

C
Christoph Lameter 已提交
961 962 963
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
964
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
965 966
		return 0;
	}
967

968
	maxobj = order_objects(compound_order(page), s->size);
969 970
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
971
			page->objects, maxobj);
972 973 974
		return 0;
	}
	if (page->inuse > page->objects) {
975
		slab_err(s, page, "inuse %u > max %u",
976
			page->inuse, page->objects);
C
Christoph Lameter 已提交
977 978 979 980 981 982 983 984
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
985 986
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
987 988 989 990
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
991
	void *fp;
C
Christoph Lameter 已提交
992
	void *object = NULL;
993
	int max_objects;
C
Christoph Lameter 已提交
994

995
	fp = page->freelist;
996
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
997 998 999 1000 1001 1002
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
1003
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
1004
			} else {
1005
				slab_err(s, page, "Freepointer corrupt");
1006
				page->freelist = NULL;
1007
				page->inuse = page->objects;
1008
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

1018
	max_objects = order_objects(compound_order(page), s->size);
1019 1020
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
1021 1022

	if (page->objects != max_objects) {
J
Joe Perches 已提交
1023 1024
		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
			 page->objects, max_objects);
1025 1026 1027
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
1028
	if (page->inuse != page->objects - nr) {
J
Joe Perches 已提交
1029 1030
		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
			 page->inuse, page->objects - nr);
1031
		page->inuse = page->objects - nr;
1032
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
1033 1034 1035 1036
	}
	return search == NULL;
}

1037 1038
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
1039 1040
{
	if (s->flags & SLAB_TRACE) {
1041
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
1042 1043 1044 1045 1046 1047
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
1048
			print_section(KERN_INFO, "Object ", (void *)object,
1049
					s->object_size);
C
Christoph Lameter 已提交
1050 1051 1052 1053 1054

		dump_stack();
	}
}

1055
/*
C
Christoph Lameter 已提交
1056
 * Tracking of fully allocated slabs for debugging purposes.
1057
 */
1058 1059
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
1060
{
1061 1062 1063
	if (!(s->flags & SLAB_STORE_USER))
		return;

1064
	lockdep_assert_held(&n->list_lock);
1065
	list_add(&page->slab_list, &n->full);
1066 1067
}

P
Peter Zijlstra 已提交
1068
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1069 1070 1071 1072
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

1073
	lockdep_assert_held(&n->list_lock);
1074
	list_del(&page->slab_list);
1075 1076
}

1077 1078 1079 1080 1081 1082 1083 1084
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1085 1086 1087 1088 1089
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1090
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1091 1092 1093 1094 1095 1096 1097 1098 1099
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1100
	if (likely(n)) {
1101
		atomic_long_inc(&n->nr_slabs);
1102 1103
		atomic_long_add(objects, &n->total_objects);
	}
1104
}
1105
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1106 1107 1108 1109
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1110
	atomic_long_sub(objects, &n->total_objects);
1111 1112 1113
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1114 1115 1116
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
1117
	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
C
Christoph Lameter 已提交
1118 1119
		return;

1120
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1121 1122 1123
	init_tracking(s, object);
}

1124 1125
static
void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1126
{
1127
	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1128 1129 1130
		return;

	metadata_access_enable();
1131
	memset(addr, POISON_INUSE, page_size(page));
1132 1133 1134
	metadata_access_disable();
}

1135
static inline int alloc_consistency_checks(struct kmem_cache *s,
1136
					struct page *page, void *object)
C
Christoph Lameter 已提交
1137 1138
{
	if (!check_slab(s, page))
1139
		return 0;
C
Christoph Lameter 已提交
1140 1141 1142

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1143
		return 0;
C
Christoph Lameter 已提交
1144 1145
	}

1146
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
		return 0;

	return 1;
}

static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
					void *object, unsigned long addr)
{
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1157
		if (!alloc_consistency_checks(s, page, object))
1158 1159
			goto bad;
	}
C
Christoph Lameter 已提交
1160

C
Christoph Lameter 已提交
1161 1162 1163 1164
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1165
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1166
	return 1;
C
Christoph Lameter 已提交
1167

C
Christoph Lameter 已提交
1168 1169 1170 1171 1172
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1173
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1174
		 */
1175
		slab_fix(s, "Marking all objects used");
1176
		page->inuse = page->objects;
1177
		page->freelist = NULL;
C
Christoph Lameter 已提交
1178 1179 1180 1181
	}
	return 0;
}

1182 1183
static inline int free_consistency_checks(struct kmem_cache *s,
		struct page *page, void *object, unsigned long addr)
C
Christoph Lameter 已提交
1184 1185
{
	if (!check_valid_pointer(s, page, object)) {
1186
		slab_err(s, page, "Invalid object pointer 0x%p", object);
1187
		return 0;
C
Christoph Lameter 已提交
1188 1189 1190
	}

	if (on_freelist(s, page, object)) {
1191
		object_err(s, page, object, "Object already free");
1192
		return 0;
C
Christoph Lameter 已提交
1193 1194
	}

1195
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1196
		return 0;
C
Christoph Lameter 已提交
1197

1198
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1199
		if (!PageSlab(page)) {
J
Joe Perches 已提交
1200 1201
			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
				 object);
1202
		} else if (!page->slab_cache) {
1203 1204
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1205
			dump_stack();
P
Pekka Enberg 已提交
1206
		} else
1207 1208
			object_err(s, page, object,
					"page slab pointer corrupt.");
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
		return 0;
	}
	return 1;
}

/* Supports checking bulk free of a constructed freelist */
static noinline int free_debug_processing(
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
	unsigned long addr)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	void *object = head;
	int cnt = 0;
1223
	unsigned long flags;
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	int ret = 0;

	spin_lock_irqsave(&n->list_lock, flags);
	slab_lock(page);

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!check_slab(s, page))
			goto out;
	}

next_object:
	cnt++;

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!free_consistency_checks(s, page, object, addr))
			goto out;
C
Christoph Lameter 已提交
1240
	}
C
Christoph Lameter 已提交
1241 1242 1243 1244

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1245
	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1246
	init_object(s, object, SLUB_RED_INACTIVE);
1247 1248 1249 1250 1251 1252

	/* Reached end of constructed freelist yet? */
	if (object != tail) {
		object = get_freepointer(s, object);
		goto next_object;
	}
1253 1254
	ret = 1;

1255
out:
1256 1257 1258 1259
	if (cnt != bulk_cnt)
		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
			 bulk_cnt, cnt);

1260
	slab_unlock(page);
1261
	spin_unlock_irqrestore(&n->list_lock, flags);
1262 1263 1264
	if (!ret)
		slab_fix(s, "Object at 0x%p not freed", object);
	return ret;
C
Christoph Lameter 已提交
1265 1266
}

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
/*
 * Parse a block of slub_debug options. Blocks are delimited by ';'
 *
 * @str:    start of block
 * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
 * @slabs:  return start of list of slabs, or NULL when there's no list
 * @init:   assume this is initial parsing and not per-kmem-create parsing
 *
 * returns the start of next block if there's any, or NULL
 */
static char *
parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
C
Christoph Lameter 已提交
1279
{
1280
	bool higher_order_disable = false;
1281

1282 1283 1284 1285 1286
	/* Skip any completely empty blocks */
	while (*str && *str == ';')
		str++;

	if (*str == ',') {
1287 1288 1289 1290
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
1291
		*flags = DEBUG_DEFAULT_FLAGS;
1292
		goto check_slabs;
1293 1294
	}
	*flags = 0;
1295

1296 1297
	/* Determine which debug features should be switched on */
	for (; *str && *str != ',' && *str != ';'; str++) {
1298
		switch (tolower(*str)) {
1299 1300 1301
		case '-':
			*flags = 0;
			break;
1302
		case 'f':
1303
			*flags |= SLAB_CONSISTENCY_CHECKS;
1304 1305
			break;
		case 'z':
1306
			*flags |= SLAB_RED_ZONE;
1307 1308
			break;
		case 'p':
1309
			*flags |= SLAB_POISON;
1310 1311
			break;
		case 'u':
1312
			*flags |= SLAB_STORE_USER;
1313 1314
			break;
		case 't':
1315
			*flags |= SLAB_TRACE;
1316
			break;
1317
		case 'a':
1318
			*flags |= SLAB_FAILSLAB;
1319
			break;
1320 1321 1322 1323 1324
		case 'o':
			/*
			 * Avoid enabling debugging on caches if its minimum
			 * order would increase as a result.
			 */
1325
			higher_order_disable = true;
1326
			break;
1327
		default:
1328 1329
			if (init)
				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1330
		}
C
Christoph Lameter 已提交
1331
	}
1332
check_slabs:
C
Christoph Lameter 已提交
1333
	if (*str == ',')
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
		*slabs = ++str;
	else
		*slabs = NULL;

	/* Skip over the slab list */
	while (*str && *str != ';')
		str++;

	/* Skip any completely empty blocks */
	while (*str && *str == ';')
		str++;

	if (init && higher_order_disable)
		disable_higher_order_debug = 1;

	if (*str)
		return str;
	else
		return NULL;
}

static int __init setup_slub_debug(char *str)
{
	slab_flags_t flags;
	char *saved_str;
	char *slab_list;
	bool global_slub_debug_changed = false;
	bool slab_list_specified = false;

	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	saved_str = str;
	while (str) {
		str = parse_slub_debug_flags(str, &flags, &slab_list, true);

		if (!slab_list) {
			slub_debug = flags;
			global_slub_debug_changed = true;
		} else {
			slab_list_specified = true;
		}
	}

	/*
	 * For backwards compatibility, a single list of flags with list of
	 * slabs means debugging is only enabled for those slabs, so the global
	 * slub_debug should be 0. We can extended that to multiple lists as
	 * long as there is no option specifying flags without a slab list.
	 */
	if (slab_list_specified) {
		if (!global_slub_debug_changed)
			slub_debug = 0;
		slub_debug_string = saved_str;
	}
1393
out:
1394 1395
	if (slub_debug != 0 || slub_debug_string)
		static_branch_enable(&slub_debug_enabled);
1396 1397 1398 1399
	if ((static_branch_unlikely(&init_on_alloc) ||
	     static_branch_unlikely(&init_on_free)) &&
	    (slub_debug & SLAB_POISON))
		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
C
Christoph Lameter 已提交
1400 1401 1402 1403 1404
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
/*
 * kmem_cache_flags - apply debugging options to the cache
 * @object_size:	the size of an object without meta data
 * @flags:		flags to set
 * @name:		name of the cache
 * @ctor:		constructor function
 *
 * Debug option(s) are applied to @flags. In addition to the debug
 * option(s), if a slab name (or multiple) is specified i.e.
 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
 * then only the select slabs will receive the debug option(s).
 */
1417
slab_flags_t kmem_cache_flags(unsigned int object_size,
1418
	slab_flags_t flags, const char *name,
1419
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1420
{
1421 1422
	char *iter;
	size_t len;
1423 1424
	char *next_block;
	slab_flags_t block_flags;
1425 1426

	/* If slub_debug = 0, it folds into the if conditional. */
1427
	if (!slub_debug_string)
1428 1429 1430
		return flags | slub_debug;

	len = strlen(name);
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	next_block = slub_debug_string;
	/* Go through all blocks of debug options, see if any matches our slab's name */
	while (next_block) {
		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
		if (!iter)
			continue;
		/* Found a block that has a slab list, search it */
		while (*iter) {
			char *end, *glob;
			size_t cmplen;

			end = strchrnul(iter, ',');
			if (next_block && next_block < end)
				end = next_block - 1;

			glob = strnchr(iter, end - iter, '*');
			if (glob)
				cmplen = glob - iter;
			else
				cmplen = max_t(size_t, len, (end - iter));
1451

1452 1453 1454 1455
			if (!strncmp(name, iter, cmplen)) {
				flags |= block_flags;
				return flags;
			}
1456

1457 1458 1459
			if (!*end || *end == ';')
				break;
			iter = end + 1;
1460 1461
		}
	}
1462

1463
	return slub_debug;
C
Christoph Lameter 已提交
1464
}
1465
#else /* !CONFIG_SLUB_DEBUG */
C
Christoph Lameter 已提交
1466 1467
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
1468 1469
static inline
void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
C
Christoph Lameter 已提交
1470

C
Christoph Lameter 已提交
1471
static inline int alloc_debug_processing(struct kmem_cache *s,
1472
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1473

1474
static inline int free_debug_processing(
1475 1476
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
1477
	unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1478 1479 1480 1481

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1482
			void *object, u8 val) { return 1; }
1483 1484
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1485 1486
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1487
slab_flags_t kmem_cache_flags(unsigned int object_size,
1488
	slab_flags_t flags, const char *name,
1489
	void (*ctor)(void *))
1490 1491 1492
{
	return flags;
}
C
Christoph Lameter 已提交
1493
#define slub_debug 0
1494

1495 1496
#define disable_higher_order_debug 0

1497 1498
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1499 1500
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1501 1502 1503 1504
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1505

1506 1507 1508 1509 1510
static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
			       void *freelist, void *nextfree)
{
	return false;
}
1511 1512 1513 1514 1515 1516
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1517
static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1518
{
1519
	ptr = kasan_kmalloc_large(ptr, size, flags);
1520
	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1521
	kmemleak_alloc(ptr, size, 1, flags);
1522
	return ptr;
1523 1524
}

1525
static __always_inline void kfree_hook(void *x)
1526 1527
{
	kmemleak_free(x);
1528
	kasan_kfree_large(x, _RET_IP_);
1529 1530
}

1531
static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1532 1533
{
	kmemleak_free_recursive(x, s->flags);
1534

1535 1536 1537 1538 1539
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
1540
#ifdef CONFIG_LOCKDEP
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
	{
		unsigned long flags;

		local_irq_save(flags);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
1551

1552 1553
	/* KASAN might put x into memory quarantine, delaying its reuse */
	return kasan_slab_free(s, x, _RET_IP_);
1554
}
1555

1556 1557
static inline bool slab_free_freelist_hook(struct kmem_cache *s,
					   void **head, void **tail)
1558
{
1559 1560 1561 1562 1563 1564

	void *object;
	void *next = *head;
	void *old_tail = *tail ? *tail : *head;
	int rsize;

1565 1566 1567
	/* Head and tail of the reconstructed freelist */
	*head = NULL;
	*tail = NULL;
1568

1569 1570 1571 1572 1573
	do {
		object = next;
		next = get_freepointer(s, object);

		if (slab_want_init_on_free(s)) {
1574 1575 1576 1577 1578 1579 1580 1581 1582
			/*
			 * Clear the object and the metadata, but don't touch
			 * the redzone.
			 */
			memset(object, 0, s->object_size);
			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
							   : 0;
			memset((char *)object + s->inuse, 0,
			       s->size - s->inuse - rsize);
1583

1584
		}
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
		/* If object's reuse doesn't have to be delayed */
		if (!slab_free_hook(s, object)) {
			/* Move object to the new freelist */
			set_freepointer(s, object, *head);
			*head = object;
			if (!*tail)
				*tail = object;
		}
	} while (object != old_tail);

	if (*head == *tail)
		*tail = NULL;

	return *head != NULL;
1599 1600
}

1601
static void *setup_object(struct kmem_cache *s, struct page *page,
1602 1603 1604
				void *object)
{
	setup_object_debug(s, page, object);
1605
	object = kasan_init_slab_obj(s, object);
1606 1607 1608 1609 1610
	if (unlikely(s->ctor)) {
		kasan_unpoison_object_data(s, object);
		s->ctor(object);
		kasan_poison_object_data(s, object);
	}
1611
	return object;
1612 1613
}

C
Christoph Lameter 已提交
1614 1615 1616
/*
 * Slab allocation and freeing
 */
1617 1618
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1619
{
1620
	struct page *page;
1621
	unsigned int order = oo_order(oo);
1622

1623
	if (node == NUMA_NO_NODE)
1624
		page = alloc_pages(flags, order);
1625
	else
1626
		page = __alloc_pages_node(node, flags, order);
1627

1628
	if (page && charge_slab_page(page, flags, order, s)) {
1629 1630 1631
		__free_pages(page, order);
		page = NULL;
	}
1632 1633

	return page;
1634 1635
}

T
Thomas Garnier 已提交
1636 1637 1638 1639
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Pre-initialize the random sequence cache */
static int init_cache_random_seq(struct kmem_cache *s)
{
1640
	unsigned int count = oo_objects(s->oo);
T
Thomas Garnier 已提交
1641 1642
	int err;

1643 1644 1645 1646
	/* Bailout if already initialised */
	if (s->random_seq)
		return 0;

T
Thomas Garnier 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655
	err = cache_random_seq_create(s, count, GFP_KERNEL);
	if (err) {
		pr_err("SLUB: Unable to initialize free list for %s\n",
			s->name);
		return err;
	}

	/* Transform to an offset on the set of pages */
	if (s->random_seq) {
1656 1657
		unsigned int i;

T
Thomas Garnier 已提交
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
		for (i = 0; i < count; i++)
			s->random_seq[i] *= s->size;
	}
	return 0;
}

/* Initialize each random sequence freelist per cache */
static void __init init_freelist_randomization(void)
{
	struct kmem_cache *s;

	mutex_lock(&slab_mutex);

	list_for_each_entry(s, &slab_caches, list)
		init_cache_random_seq(s);

	mutex_unlock(&slab_mutex);
}

/* Get the next entry on the pre-computed freelist randomized */
static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
				unsigned long *pos, void *start,
				unsigned long page_limit,
				unsigned long freelist_count)
{
	unsigned int idx;

	/*
	 * If the target page allocation failed, the number of objects on the
	 * page might be smaller than the usual size defined by the cache.
	 */
	do {
		idx = s->random_seq[*pos];
		*pos += 1;
		if (*pos >= freelist_count)
			*pos = 0;
	} while (unlikely(idx >= page_limit));

	return (char *)start + idx;
}

/* Shuffle the single linked freelist based on a random pre-computed sequence */
static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	void *start;
	void *cur;
	void *next;
	unsigned long idx, pos, page_limit, freelist_count;

	if (page->objects < 2 || !s->random_seq)
		return false;

	freelist_count = oo_objects(s->oo);
	pos = get_random_int() % freelist_count;

	page_limit = page->objects * s->size;
	start = fixup_red_left(s, page_address(page));

	/* First entry is used as the base of the freelist */
	cur = next_freelist_entry(s, page, &pos, start, page_limit,
				freelist_count);
1719
	cur = setup_object(s, page, cur);
T
Thomas Garnier 已提交
1720 1721 1722 1723 1724
	page->freelist = cur;

	for (idx = 1; idx < page->objects; idx++) {
		next = next_freelist_entry(s, page, &pos, start, page_limit,
			freelist_count);
1725
		next = setup_object(s, page, next);
T
Thomas Garnier 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
		set_freepointer(s, cur, next);
		cur = next;
	}
	set_freepointer(s, cur, NULL);

	return true;
}
#else
static inline int init_cache_random_seq(struct kmem_cache *s)
{
	return 0;
}
static inline void init_freelist_randomization(void) { }
static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

C
Christoph Lameter 已提交
1745 1746
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1747
	struct page *page;
1748
	struct kmem_cache_order_objects oo = s->oo;
1749
	gfp_t alloc_gfp;
1750
	void *start, *p, *next;
1751
	int idx;
T
Thomas Garnier 已提交
1752
	bool shuffle;
C
Christoph Lameter 已提交
1753

1754 1755
	flags &= gfp_allowed_mask;

1756
	if (gfpflags_allow_blocking(flags))
1757 1758
		local_irq_enable();

1759
	flags |= s->allocflags;
1760

1761 1762 1763 1764 1765
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1766
	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1767
		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1768

1769
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1770 1771
	if (unlikely(!page)) {
		oo = s->min;
1772
		alloc_gfp = flags;
1773 1774 1775 1776
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1777
		page = alloc_slab_page(s, alloc_gfp, node, oo);
1778 1779 1780
		if (unlikely(!page))
			goto out;
		stat(s, ORDER_FALLBACK);
1781
	}
V
Vegard Nossum 已提交
1782

1783
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1784

1785
	page->slab_cache = s;
1786
	__SetPageSlab(page);
1787
	if (page_is_pfmemalloc(page))
1788
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1789

1790
	kasan_poison_slab(page);
C
Christoph Lameter 已提交
1791

1792
	start = page_address(page);
C
Christoph Lameter 已提交
1793

1794
	setup_page_debug(s, page, start);
1795

T
Thomas Garnier 已提交
1796 1797 1798
	shuffle = shuffle_freelist(s, page);

	if (!shuffle) {
1799 1800 1801
		start = fixup_red_left(s, start);
		start = setup_object(s, page, start);
		page->freelist = start;
1802 1803 1804 1805 1806 1807 1808
		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
			next = p + s->size;
			next = setup_object(s, page, next);
			set_freepointer(s, p, next);
			p = next;
		}
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
1809 1810
	}

1811
	page->inuse = page->objects;
1812
	page->frozen = 1;
1813

C
Christoph Lameter 已提交
1814
out:
1815
	if (gfpflags_allow_blocking(flags))
1816 1817 1818 1819 1820 1821
		local_irq_disable();
	if (!page)
		return NULL;

	inc_slabs_node(s, page_to_nid(page), page->objects);

C
Christoph Lameter 已提交
1822 1823 1824
	return page;
}

1825 1826
static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
1827 1828
	if (unlikely(flags & GFP_SLAB_BUG_MASK))
		flags = kmalloc_fix_flags(flags);
1829 1830 1831 1832 1833

	return allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
}

C
Christoph Lameter 已提交
1834 1835
static void __free_slab(struct kmem_cache *s, struct page *page)
{
1836 1837
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1838

1839
	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
C
Christoph Lameter 已提交
1840 1841 1842
		void *p;

		slab_pad_check(s, page);
1843 1844
		for_each_object(p, s, page_address(page),
						page->objects)
1845
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1846 1847
	}

1848
	__ClearPageSlabPfmemalloc(page);
1849
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1850

1851
	page->mapping = NULL;
N
Nick Piggin 已提交
1852 1853
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1854
	uncharge_slab_page(page, order, s);
1855
	__free_pages(page, order);
C
Christoph Lameter 已提交
1856 1857 1858 1859
}

static void rcu_free_slab(struct rcu_head *h)
{
1860
	struct page *page = container_of(h, struct page, rcu_head);
1861

1862
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1863 1864 1865 1866
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
1867
	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1868
		call_rcu(&page->rcu_head, rcu_free_slab);
C
Christoph Lameter 已提交
1869 1870 1871 1872 1873 1874
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1875
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1876 1877 1878 1879
	free_slab(s, page);
}

/*
1880
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1881
 */
1882 1883
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1884
{
C
Christoph Lameter 已提交
1885
	n->nr_partial++;
1886
	if (tail == DEACTIVATE_TO_TAIL)
1887
		list_add_tail(&page->slab_list, &n->partial);
1888
	else
1889
		list_add(&page->slab_list, &n->partial);
C
Christoph Lameter 已提交
1890 1891
}

1892 1893
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1894
{
P
Peter Zijlstra 已提交
1895
	lockdep_assert_held(&n->list_lock);
1896 1897
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1898

1899 1900 1901 1902
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
1903
	list_del(&page->slab_list);
1904
	n->nr_partial--;
1905 1906
}

C
Christoph Lameter 已提交
1907
/*
1908 1909
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1910
 *
1911
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1912
 */
1913
static inline void *acquire_slab(struct kmem_cache *s,
1914
		struct kmem_cache_node *n, struct page *page,
1915
		int mode, int *objects)
C
Christoph Lameter 已提交
1916
{
1917 1918 1919 1920
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1921 1922
	lockdep_assert_held(&n->list_lock);

1923 1924 1925 1926 1927
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1928 1929 1930
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1931
	*objects = new.objects - new.inuse;
1932
	if (mode) {
1933
		new.inuse = page->objects;
1934 1935 1936 1937
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1938

1939
	VM_BUG_ON(new.frozen);
1940
	new.frozen = 1;
1941

1942
	if (!__cmpxchg_double_slab(s, page,
1943
			freelist, counters,
1944
			new.freelist, new.counters,
1945 1946
			"acquire_slab"))
		return NULL;
1947 1948

	remove_partial(n, page);
1949
	WARN_ON(!freelist);
1950
	return freelist;
C
Christoph Lameter 已提交
1951 1952
}

1953
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1954
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1955

C
Christoph Lameter 已提交
1956
/*
C
Christoph Lameter 已提交
1957
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1958
 */
1959 1960
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1961
{
1962 1963
	struct page *page, *page2;
	void *object = NULL;
1964
	unsigned int available = 0;
1965
	int objects;
C
Christoph Lameter 已提交
1966 1967 1968 1969

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1970 1971
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1972 1973 1974 1975 1976
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1977
	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1978
		void *t;
1979

1980 1981 1982
		if (!pfmemalloc_match(page, flags))
			continue;

1983
		t = acquire_slab(s, n, page, object == NULL, &objects);
1984 1985 1986
		if (!t)
			break;

1987
		available += objects;
1988
		if (!object) {
1989 1990 1991 1992
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1993
			put_cpu_partial(s, page, 0);
1994
			stat(s, CPU_PARTIAL_NODE);
1995
		}
1996
		if (!kmem_cache_has_cpu_partial(s)
1997
			|| available > slub_cpu_partial(s) / 2)
1998 1999
			break;

2000
	}
C
Christoph Lameter 已提交
2001
	spin_unlock(&n->list_lock);
2002
	return object;
C
Christoph Lameter 已提交
2003 2004 2005
}

/*
C
Christoph Lameter 已提交
2006
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
2007
 */
2008
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2009
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2010 2011 2012
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
2013
	struct zoneref *z;
2014
	struct zone *zone;
2015
	enum zone_type highest_zoneidx = gfp_zone(flags);
2016
	void *object;
2017
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
2018 2019

	/*
C
Christoph Lameter 已提交
2020 2021 2022 2023
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
2024
	 *
C
Christoph Lameter 已提交
2025 2026 2027 2028
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
2029
	 *
2030 2031 2032 2033 2034
	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
	 * (which makes defrag_ratio = 1000) then every (well almost)
	 * allocation will first attempt to defrag slab caches on other nodes.
	 * This means scanning over all nodes to look for partial slabs which
	 * may be expensive if we do it every time we are trying to find a slab
C
Christoph Lameter 已提交
2035
	 * with available objects.
C
Christoph Lameter 已提交
2036
	 */
2037 2038
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
2039 2040
		return NULL;

2041
	do {
2042
		cpuset_mems_cookie = read_mems_allowed_begin();
2043
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
2044
		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2045 2046 2047 2048
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

2049
			if (n && cpuset_zone_allowed(zone, flags) &&
2050
					n->nr_partial > s->min_partial) {
2051
				object = get_partial_node(s, n, c, flags);
2052 2053
				if (object) {
					/*
2054 2055 2056 2057 2058
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
2059 2060 2061
					 */
					return object;
				}
2062
			}
C
Christoph Lameter 已提交
2063
		}
2064
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2065
#endif	/* CONFIG_NUMA */
C
Christoph Lameter 已提交
2066 2067 2068 2069 2070 2071
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
2072
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2073
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2074
{
2075
	void *object;
2076 2077 2078 2079
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
C
Christoph Lameter 已提交
2080

2081
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
2082 2083
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
2084

2085
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
2086 2087
}

2088
#ifdef CONFIG_PREEMPTION
2089
/*
2090
 * Calculate the next globally unique transaction for disambiguation
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

2108
#ifdef SLUB_DEBUG_CMPXCHG
2109 2110 2111 2112 2113 2114 2115 2116 2117
static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}
2118
#endif
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

2131
	pr_info("%s %s: cmpxchg redo ", n, s->name);
2132

2133
#ifdef CONFIG_PREEMPTION
2134
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2135
		pr_warn("due to cpu change %d -> %d\n",
2136 2137 2138 2139
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
2140
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2141 2142
			tid_to_event(tid), tid_to_event(actual_tid));
	else
2143
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2144 2145
			actual_tid, tid, next_tid(tid));
#endif
2146
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2147 2148
}

2149
static void init_kmem_cache_cpus(struct kmem_cache *s)
2150 2151 2152 2153 2154 2155
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
2156

C
Christoph Lameter 已提交
2157 2158 2159
/*
 * Remove the cpu slab
 */
2160
static void deactivate_slab(struct kmem_cache *s, struct page *page,
2161
				void *freelist, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2162
{
2163 2164 2165 2166 2167
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
2168
	int tail = DEACTIVATE_TO_HEAD;
2169 2170 2171 2172
	struct page new;
	struct page old;

	if (page->freelist) {
2173
		stat(s, DEACTIVATE_REMOTE_FREES);
2174
		tail = DEACTIVATE_TO_TAIL;
2175 2176
	}

2177
	/*
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

2189 2190 2191 2192 2193 2194 2195 2196
		/*
		 * If 'nextfree' is invalid, it is possible that the object at
		 * 'freelist' is already corrupted.  So isolate all objects
		 * starting at 'freelist'.
		 */
		if (freelist_corrupted(s, page, freelist, nextfree))
			break;

2197 2198 2199 2200 2201 2202
		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
2203
			VM_BUG_ON(!new.frozen);
2204

2205
		} while (!__cmpxchg_double_slab(s, page,
2206 2207 2208 2209 2210 2211 2212
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

2213
	/*
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
2226
	 */
2227
redo:
2228

2229 2230
	old.freelist = page->freelist;
	old.counters = page->counters;
2231
	VM_BUG_ON(!old.frozen);
2232

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

2244
	if (!new.inuse && n->nr_partial >= s->min_partial)
2245 2246 2247 2248 2249 2250
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
W
Wei Yang 已提交
2251
			 * Taking the spinlock removes the possibility
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {
		if (l == M_PARTIAL)
			remove_partial(n, page);
		else if (l == M_FULL)
P
Peter Zijlstra 已提交
2274
			remove_full(s, n, page);
2275

2276
		if (m == M_PARTIAL)
2277
			add_partial(n, page, tail);
2278
		else if (m == M_FULL)
2279 2280 2281 2282
			add_full(s, n, page);
	}

	l = m;
2283
	if (!__cmpxchg_double_slab(s, page,
2284 2285 2286 2287 2288 2289 2290 2291
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

2292 2293 2294 2295 2296
	if (m == M_PARTIAL)
		stat(s, tail);
	else if (m == M_FULL)
		stat(s, DEACTIVATE_FULL);
	else if (m == M_FREE) {
2297 2298 2299
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
2300
	}
2301 2302 2303

	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2304 2305
}

2306 2307 2308
/*
 * Unfreeze all the cpu partial slabs.
 *
2309 2310 2311
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
2312
 */
2313 2314
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
2315
{
2316
#ifdef CONFIG_SLUB_CPU_PARTIAL
2317
	struct kmem_cache_node *n = NULL, *n2 = NULL;
2318
	struct page *page, *discard_page = NULL;
2319

2320
	while ((page = slub_percpu_partial(c))) {
2321 2322 2323
		struct page new;
		struct page old;

2324
		slub_set_percpu_partial(c, page);
2325 2326 2327 2328 2329 2330 2331 2332 2333

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
2334 2335 2336 2337 2338

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
2339
			VM_BUG_ON(!old.frozen);
2340 2341 2342 2343 2344 2345

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

2346
		} while (!__cmpxchg_double_slab(s, page,
2347 2348 2349 2350
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

2351
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2352 2353
			page->next = discard_page;
			discard_page = page;
2354 2355 2356
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
2357 2358 2359 2360 2361
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
2362 2363 2364 2365 2366 2367 2368 2369 2370

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2371
#endif	/* CONFIG_SLUB_CPU_PARTIAL */
2372 2373 2374
}

/*
2375 2376
 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
 * partial page slot if available.
2377 2378 2379 2380
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2381
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2382
{
2383
#ifdef CONFIG_SLUB_CPU_PARTIAL
2384 2385 2386 2387
	struct page *oldpage;
	int pages;
	int pobjects;

2388
	preempt_disable();
2389 2390 2391 2392 2393 2394 2395 2396
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
2397
			if (drain && pobjects > slub_cpu_partial(s)) {
2398 2399 2400 2401 2402 2403
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2404
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2405
				local_irq_restore(flags);
2406
				oldpage = NULL;
2407 2408
				pobjects = 0;
				pages = 0;
2409
				stat(s, CPU_PARTIAL_DRAIN);
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2420 2421
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2422
	if (unlikely(!slub_cpu_partial(s))) {
2423 2424 2425 2426 2427 2428 2429
		unsigned long flags;

		local_irq_save(flags);
		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
		local_irq_restore(flags);
	}
	preempt_enable();
2430
#endif	/* CONFIG_SLUB_CPU_PARTIAL */
2431 2432
}

2433
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2434
{
2435
	stat(s, CPUSLAB_FLUSH);
2436
	deactivate_slab(s, c->page, c->freelist, c);
2437 2438

	c->tid = next_tid(c->tid);
C
Christoph Lameter 已提交
2439 2440 2441 2442
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2443
 *
C
Christoph Lameter 已提交
2444 2445
 * Called from IPI handler with interrupts disabled.
 */
2446
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2447
{
2448
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2449

2450 2451
	if (c->page)
		flush_slab(s, c);
2452

2453
	unfreeze_partials(s, c);
C
Christoph Lameter 已提交
2454 2455 2456 2457 2458 2459
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2460
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2461 2462
}

2463 2464 2465 2466 2467
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2468
	return c->page || slub_percpu_partial(c);
2469 2470
}

C
Christoph Lameter 已提交
2471 2472
static void flush_all(struct kmem_cache *s)
{
2473
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
C
Christoph Lameter 已提交
2474 2475
}

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
/*
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
 */
static int slub_cpu_dead(unsigned int cpu)
{
	struct kmem_cache *s;
	unsigned long flags;

	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		local_irq_save(flags);
		__flush_cpu_slab(s, cpu);
		local_irq_restore(flags);
	}
	mutex_unlock(&slab_mutex);
	return 0;
}

2495 2496 2497 2498
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2499
static inline int node_match(struct page *page, int node)
2500 2501
{
#ifdef CONFIG_NUMA
2502
	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2503 2504 2505 2506 2507
		return 0;
#endif
	return 1;
}

2508
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2509 2510 2511 2512 2513
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2514 2515 2516 2517 2518 2519 2520
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2521 2522 2523 2524 2525 2526 2527 2528
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
2529
	list_for_each_entry(page, &n->partial, slab_list)
P
Pekka Enberg 已提交
2530 2531 2532 2533
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2534
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2535

P
Pekka Enberg 已提交
2536 2537 2538
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2539 2540 2541
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2542
	int node;
C
Christoph Lameter 已提交
2543
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2544

2545 2546 2547
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2548 2549
	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nid, gfpflags, &gfpflags);
2550
	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2551 2552
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2553

2554
	if (oo_order(s->min) > get_order(s->object_size))
2555 2556
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2557

C
Christoph Lameter 已提交
2558
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2559 2560 2561 2562
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2563 2564 2565
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2566

2567
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2568 2569
			node, nr_slabs, nr_objs, nr_free);
	}
2570
#endif
P
Pekka Enberg 已提交
2571 2572
}

2573 2574 2575
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2576
	void *freelist;
2577 2578
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2579

2580 2581
	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));

2582
	freelist = get_partial(s, flags, node, c);
2583

2584 2585 2586 2587
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2588
	if (page) {
2589
		c = raw_cpu_ptr(s->cpu_slab);
2590 2591 2592 2593 2594 2595 2596
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2597
		freelist = page->freelist;
2598 2599 2600 2601 2602
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
2603
	}
2604

2605
	return freelist;
2606 2607
}

2608 2609 2610 2611 2612 2613 2614 2615
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2616
/*
2617 2618
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2619 2620 2621 2622
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2623 2624
 *
 * This function must be called with interrupt disabled.
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2635

2636
		new.counters = counters;
2637
		VM_BUG_ON(!new.frozen);
2638 2639 2640 2641

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2642
	} while (!__cmpxchg_double_slab(s, page,
2643 2644 2645 2646 2647 2648 2649
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2650
/*
2651 2652 2653 2654 2655 2656
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2657
 *
2658 2659 2660
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2661
 *
2662
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2663 2664
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
2665 2666 2667
 *
 * Version of __slab_alloc to use when we know that interrupts are
 * already disabled (which is the case for bulk allocation).
C
Christoph Lameter 已提交
2668
 */
2669
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2670
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2671
{
2672
	void *freelist;
2673
	struct page *page;
C
Christoph Lameter 已提交
2674

2675
	page = c->page;
2676 2677 2678 2679 2680 2681 2682 2683
	if (!page) {
		/*
		 * if the node is not online or has no normal memory, just
		 * ignore the node constraint
		 */
		if (unlikely(node != NUMA_NO_NODE &&
			     !node_state(node, N_NORMAL_MEMORY)))
			node = NUMA_NO_NODE;
C
Christoph Lameter 已提交
2684
		goto new_slab;
2685
	}
2686
redo:
2687

2688
	if (unlikely(!node_match(page, node))) {
2689 2690 2691 2692 2693 2694 2695 2696
		/*
		 * same as above but node_match() being false already
		 * implies node != NUMA_NO_NODE
		 */
		if (!node_state(node, N_NORMAL_MEMORY)) {
			node = NUMA_NO_NODE;
			goto redo;
		} else {
2697
			stat(s, ALLOC_NODE_MISMATCH);
2698
			deactivate_slab(s, page, c->freelist, c);
2699 2700
			goto new_slab;
		}
2701
	}
C
Christoph Lameter 已提交
2702

2703 2704 2705 2706 2707 2708
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2709
		deactivate_slab(s, page, c->freelist, c);
2710 2711 2712
		goto new_slab;
	}

2713
	/* must check again c->freelist in case of cpu migration or IRQ */
2714 2715
	freelist = c->freelist;
	if (freelist)
2716
		goto load_freelist;
2717

2718
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2719

2720
	if (!freelist) {
2721 2722
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2723
		goto new_slab;
2724
	}
C
Christoph Lameter 已提交
2725

2726
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2727

2728
load_freelist:
2729 2730 2731 2732 2733
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2734
	VM_BUG_ON(!c->page->frozen);
2735
	c->freelist = get_freepointer(s, freelist);
2736
	c->tid = next_tid(c->tid);
2737
	return freelist;
C
Christoph Lameter 已提交
2738 2739

new_slab:
2740

2741 2742 2743
	if (slub_percpu_partial(c)) {
		page = c->page = slub_percpu_partial(c);
		slub_set_percpu_partial(c, page);
2744 2745
		stat(s, CPU_PARTIAL_ALLOC);
		goto redo;
C
Christoph Lameter 已提交
2746 2747
	}

2748
	freelist = new_slab_objects(s, gfpflags, node, &c);
2749

2750
	if (unlikely(!freelist)) {
2751
		slab_out_of_memory(s, gfpflags, node);
2752
		return NULL;
C
Christoph Lameter 已提交
2753
	}
2754

2755
	page = c->page;
2756
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2757
		goto load_freelist;
2758

2759
	/* Only entered in the debug case */
2760 2761
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2762
		goto new_slab;	/* Slab failed checks. Next slab needed */
2763

2764
	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2765
	return freelist;
2766 2767
}

2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
/*
 * Another one that disabled interrupt and compensates for possible
 * cpu changes by refetching the per cpu area pointer.
 */
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
{
	void *p;
	unsigned long flags;

	local_irq_save(flags);
2779
#ifdef CONFIG_PREEMPTION
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif

	p = ___slab_alloc(s, gfpflags, node, addr, c);
	local_irq_restore(flags);
	return p;
}

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
/*
 * If the object has been wiped upon free, make sure it's fully initialized by
 * zeroing out freelist pointer.
 */
static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
						   void *obj)
{
	if (unlikely(slab_want_init_on_free(s)) && obj)
		memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
}

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2814
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2815
		gfp_t gfpflags, int node, unsigned long addr)
2816
{
2817
	void *object;
2818
	struct kmem_cache_cpu *c;
2819
	struct page *page;
2820
	unsigned long tid;
2821

2822 2823
	s = slab_pre_alloc_hook(s, gfpflags);
	if (!s)
A
Akinobu Mita 已提交
2824
		return NULL;
2825 2826 2827 2828 2829 2830
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2831
	 *
2832
	 * We should guarantee that tid and kmem_cache are retrieved on
2833
	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2834
	 * to check if it is matched or not.
2835
	 */
2836 2837 2838
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2839
	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
2840
		 unlikely(tid != READ_ONCE(c->tid)));
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();
2851 2852 2853 2854 2855 2856 2857 2858

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

2859
	object = c->freelist;
2860
	page = c->page;
D
Dave Hansen 已提交
2861
	if (unlikely(!object || !node_match(page, node))) {
2862
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2863 2864
		stat(s, ALLOC_SLOWPATH);
	} else {
2865 2866
		void *next_object = get_freepointer_safe(s, object);

2867
		/*
L
Lucas De Marchi 已提交
2868
		 * The cmpxchg will only match if there was no additional
2869 2870
		 * operation and if we are on the right processor.
		 *
2871 2872
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2873 2874 2875 2876
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2877 2878 2879
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2880
		 */
2881
		if (unlikely(!this_cpu_cmpxchg_double(
2882 2883
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2884
				next_object, next_tid(tid)))) {
2885 2886 2887 2888

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2889
		prefetch_freepointer(s, next_object);
2890
		stat(s, ALLOC_FASTPATH);
2891
	}
2892 2893

	maybe_wipe_obj_freeptr(s, object);
2894

2895
	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2896
		memset(object, 0, s->object_size);
2897

2898
	slab_post_alloc_hook(s, gfpflags, 1, &object);
V
Vegard Nossum 已提交
2899

2900
	return object;
C
Christoph Lameter 已提交
2901 2902
}

2903 2904 2905 2906 2907 2908
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2909 2910
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2911
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2912

2913 2914
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2915 2916

	return ret;
C
Christoph Lameter 已提交
2917 2918 2919
}
EXPORT_SYMBOL(kmem_cache_alloc);

2920
#ifdef CONFIG_TRACING
2921 2922
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2923
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2924
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2925
	ret = kasan_kmalloc(s, ret, size, gfpflags);
2926 2927 2928
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2929 2930
#endif

C
Christoph Lameter 已提交
2931 2932 2933
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2934
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2935

2936
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2937
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2938 2939

	return ret;
C
Christoph Lameter 已提交
2940 2941 2942
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2943
#ifdef CONFIG_TRACING
2944
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2945
				    gfp_t gfpflags,
2946
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2947
{
2948
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2949 2950 2951

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
2952

2953
	ret = kasan_kmalloc(s, ret, size, gfpflags);
2954
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2955
}
2956
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2957
#endif
2958
#endif	/* CONFIG_NUMA */
E
Eduard - Gabriel Munteanu 已提交
2959

C
Christoph Lameter 已提交
2960
/*
K
Kim Phillips 已提交
2961
 * Slow path handling. This may still be called frequently since objects
2962
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2963
 *
2964 2965 2966
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2967
 */
2968
static void __slab_free(struct kmem_cache *s, struct page *page,
2969 2970 2971
			void *head, void *tail, int cnt,
			unsigned long addr)

C
Christoph Lameter 已提交
2972 2973
{
	void *prior;
2974 2975 2976 2977
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2978
	unsigned long flags;
C
Christoph Lameter 已提交
2979

2980
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2981

2982
	if (kmem_cache_debug(s) &&
2983
	    !free_debug_processing(s, page, head, tail, cnt, addr))
2984
		return;
C
Christoph Lameter 已提交
2985

2986
	do {
2987 2988 2989 2990
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2991 2992
		prior = page->freelist;
		counters = page->counters;
2993
		set_freepointer(s, tail, prior);
2994 2995
		new.counters = counters;
		was_frozen = new.frozen;
2996
		new.inuse -= cnt;
2997
		if ((!new.inuse || !prior) && !was_frozen) {
2998

P
Peter Zijlstra 已提交
2999
			if (kmem_cache_has_cpu_partial(s) && !prior) {
3000 3001

				/*
3002 3003 3004 3005
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
3006 3007 3008
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
3009
			} else { /* Needs to be taken off a list */
3010

3011
				n = get_node(s, page_to_nid(page));
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
3023
		}
C
Christoph Lameter 已提交
3024

3025 3026
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
3027
		head, new.counters,
3028
		"__slab_free"));
C
Christoph Lameter 已提交
3029

3030
	if (likely(!n)) {
3031 3032 3033 3034 3035

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
3036
		if (new.frozen && !was_frozen) {
3037
			put_cpu_partial(s, page, 1);
3038 3039
			stat(s, CPU_PARTIAL_FREE);
		}
3040
		/*
3041 3042 3043
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
3044 3045 3046 3047
		if (was_frozen)
			stat(s, FREE_FROZEN);
		return;
	}
C
Christoph Lameter 已提交
3048

3049
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3050 3051
		goto slab_empty;

C
Christoph Lameter 已提交
3052
	/*
3053 3054
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
3055
	 */
3056
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3057
		remove_full(s, n, page);
3058 3059
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
3060
	}
3061
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
3062 3063 3064
	return;

slab_empty:
3065
	if (prior) {
C
Christoph Lameter 已提交
3066
		/*
3067
		 * Slab on the partial list.
C
Christoph Lameter 已提交
3068
		 */
3069
		remove_partial(n, page);
3070
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
3071
	} else {
3072
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
3073 3074
		remove_full(s, n, page);
	}
3075

3076
	spin_unlock_irqrestore(&n->list_lock, flags);
3077
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
3078 3079 3080
	discard_slab(s, page);
}

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
3091 3092 3093 3094
 *
 * Bulk free of a freelist with several objects (all pointing to the
 * same page) possible by specifying head and tail ptr, plus objects
 * count (cnt). Bulk free indicated by tail pointer being set.
3095
 */
3096 3097 3098
static __always_inline void do_slab_free(struct kmem_cache *s,
				struct page *page, void *head, void *tail,
				int cnt, unsigned long addr)
3099
{
3100
	void *tail_obj = tail ? : head;
3101
	struct kmem_cache_cpu *c;
3102 3103 3104 3105 3106 3107
	unsigned long tid;
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
3108
	 * during the cmpxchg then the free will succeed.
3109
	 */
3110 3111 3112
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
3113
	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
3114
		 unlikely(tid != READ_ONCE(c->tid)));
3115

3116 3117
	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();
3118

3119
	if (likely(page == c->page)) {
3120 3121 3122
		void **freelist = READ_ONCE(c->freelist);

		set_freepointer(s, tail_obj, freelist);
3123

3124
		if (unlikely(!this_cpu_cmpxchg_double(
3125
				s->cpu_slab->freelist, s->cpu_slab->tid,
3126
				freelist, tid,
3127
				head, next_tid(tid)))) {
3128 3129 3130 3131

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
3132
		stat(s, FREE_FASTPATH);
3133
	} else
3134
		__slab_free(s, page, head, tail_obj, cnt, addr);
3135 3136 3137

}

3138 3139 3140 3141 3142
static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
				      void *head, void *tail, int cnt,
				      unsigned long addr)
{
	/*
3143 3144
	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
	 * to remove objects, whose reuse must be delayed.
3145
	 */
3146 3147
	if (slab_free_freelist_hook(s, &head, &tail))
		do_slab_free(s, page, head, tail, cnt, addr);
3148 3149
}

3150
#ifdef CONFIG_KASAN_GENERIC
3151 3152 3153 3154 3155 3156
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
{
	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
}
#endif

C
Christoph Lameter 已提交
3157 3158
void kmem_cache_free(struct kmem_cache *s, void *x)
{
3159 3160
	s = cache_from_obj(s, x);
	if (!s)
3161
		return;
3162
	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3163
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
3164 3165 3166
}
EXPORT_SYMBOL(kmem_cache_free);

3167
struct detached_freelist {
3168
	struct page *page;
3169 3170 3171
	void *tail;
	void *freelist;
	int cnt;
3172
	struct kmem_cache *s;
3173
};
3174

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
/*
 * This function progressively scans the array with free objects (with
 * a limited look ahead) and extract objects belonging to the same
 * page.  It builds a detached freelist directly within the given
 * page/objects.  This can happen without any need for
 * synchronization, because the objects are owned by running process.
 * The freelist is build up as a single linked list in the objects.
 * The idea is, that this detached freelist can then be bulk
 * transferred to the real freelist(s), but only requiring a single
 * synchronization primitive.  Look ahead in the array is limited due
 * to performance reasons.
 */
3187 3188 3189
static inline
int build_detached_freelist(struct kmem_cache *s, size_t size,
			    void **p, struct detached_freelist *df)
3190 3191 3192 3193
{
	size_t first_skipped_index = 0;
	int lookahead = 3;
	void *object;
3194
	struct page *page;
3195

3196 3197
	/* Always re-init detached_freelist */
	df->page = NULL;
3198

3199 3200
	do {
		object = p[--size];
3201
		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3202
	} while (!object && size);
3203

3204 3205
	if (!object)
		return 0;
3206

3207 3208 3209 3210 3211 3212
	page = virt_to_head_page(object);
	if (!s) {
		/* Handle kalloc'ed objects */
		if (unlikely(!PageSlab(page))) {
			BUG_ON(!PageCompound(page));
			kfree_hook(object);
3213
			__free_pages(page, compound_order(page));
3214 3215 3216 3217 3218 3219 3220 3221
			p[size] = NULL; /* mark object processed */
			return size;
		}
		/* Derive kmem_cache from object */
		df->s = page->slab_cache;
	} else {
		df->s = cache_from_obj(s, object); /* Support for memcg */
	}
3222

3223
	/* Start new detached freelist */
3224
	df->page = page;
3225
	set_freepointer(df->s, object, NULL);
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
	df->tail = object;
	df->freelist = object;
	p[size] = NULL; /* mark object processed */
	df->cnt = 1;

	while (size) {
		object = p[--size];
		if (!object)
			continue; /* Skip processed objects */

		/* df->page is always set at this point */
		if (df->page == virt_to_head_page(object)) {
			/* Opportunity build freelist */
3239
			set_freepointer(df->s, object, df->freelist);
3240 3241 3242 3243 3244
			df->freelist = object;
			df->cnt++;
			p[size] = NULL; /* mark object processed */

			continue;
3245
		}
3246 3247 3248 3249 3250 3251 3252

		/* Limit look ahead search */
		if (!--lookahead)
			break;

		if (!first_skipped_index)
			first_skipped_index = size + 1;
3253
	}
3254 3255 3256 3257 3258

	return first_skipped_index;
}

/* Note that interrupts must be enabled when calling this function. */
3259
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3260 3261 3262 3263 3264 3265 3266 3267
{
	if (WARN_ON(!size))
		return;

	do {
		struct detached_freelist df;

		size = build_detached_freelist(s, size, p, &df);
A
Arnd Bergmann 已提交
3268
		if (!df.page)
3269 3270
			continue;

3271
		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3272
	} while (likely(size));
3273 3274 3275
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

3276
/* Note that interrupts must be enabled when calling this function. */
3277 3278
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
			  void **p)
3279
{
3280 3281 3282
	struct kmem_cache_cpu *c;
	int i;

3283 3284 3285 3286
	/* memcg and kmem_cache debug support */
	s = slab_pre_alloc_hook(s, flags);
	if (unlikely(!s))
		return false;
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
	/*
	 * Drain objects in the per cpu slab, while disabling local
	 * IRQs, which protects against PREEMPT and interrupts
	 * handlers invoking normal fastpath.
	 */
	local_irq_disable();
	c = this_cpu_ptr(s->cpu_slab);

	for (i = 0; i < size; i++) {
		void *object = c->freelist;

3298
		if (unlikely(!object)) {
3299 3300 3301 3302 3303 3304 3305 3306 3307
			/*
			 * We may have removed an object from c->freelist using
			 * the fastpath in the previous iteration; in that case,
			 * c->tid has not been bumped yet.
			 * Since ___slab_alloc() may reenable interrupts while
			 * allocating memory, we should bump c->tid now.
			 */
			c->tid = next_tid(c->tid);

3308 3309 3310 3311
			/*
			 * Invoking slow path likely have side-effect
			 * of re-populating per CPU c->freelist
			 */
3312
			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3313
					    _RET_IP_, c);
3314 3315 3316
			if (unlikely(!p[i]))
				goto error;

3317
			c = this_cpu_ptr(s->cpu_slab);
3318 3319
			maybe_wipe_obj_freeptr(s, p[i]);

3320 3321
			continue; /* goto for-loop */
		}
3322 3323
		c->freelist = get_freepointer(s, object);
		p[i] = object;
3324
		maybe_wipe_obj_freeptr(s, p[i]);
3325 3326 3327 3328 3329
	}
	c->tid = next_tid(c->tid);
	local_irq_enable();

	/* Clear memory outside IRQ disabled fastpath loop */
3330
	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3331 3332 3333 3334 3335 3336
		int j;

		for (j = 0; j < i; j++)
			memset(p[j], 0, s->object_size);
	}

3337 3338
	/* memcg and kmem_cache debug support */
	slab_post_alloc_hook(s, flags, size, p);
3339
	return i;
3340 3341
error:
	local_irq_enable();
3342 3343
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
3344
	return 0;
3345 3346 3347 3348
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);


C
Christoph Lameter 已提交
3349
/*
C
Christoph Lameter 已提交
3350 3351 3352 3353
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
3354 3355 3356 3357
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
3358
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
3359 3360 3361 3362 3363 3364 3365 3366 3367
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
3368 3369 3370
static unsigned int slub_min_order;
static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
static unsigned int slub_min_objects;
C
Christoph Lameter 已提交
3371 3372 3373 3374

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
3375 3376 3377 3378
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
3379
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
3380 3381 3382 3383 3384 3385
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
3386
 *
C
Christoph Lameter 已提交
3387 3388 3389 3390
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
3391
 *
C
Christoph Lameter 已提交
3392 3393 3394 3395
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
3396
 */
3397 3398
static inline unsigned int slab_order(unsigned int size,
		unsigned int min_objects, unsigned int max_order,
3399
		unsigned int fract_leftover)
C
Christoph Lameter 已提交
3400
{
3401 3402
	unsigned int min_order = slub_min_order;
	unsigned int order;
C
Christoph Lameter 已提交
3403

3404
	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3405
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3406

3407
	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3408
			order <= max_order; order++) {
C
Christoph Lameter 已提交
3409

3410 3411
		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
		unsigned int rem;
C
Christoph Lameter 已提交
3412

3413
		rem = slab_size % size;
C
Christoph Lameter 已提交
3414

3415
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
3416 3417
			break;
	}
C
Christoph Lameter 已提交
3418

C
Christoph Lameter 已提交
3419 3420 3421
	return order;
}

3422
static inline int calculate_order(unsigned int size)
3423
{
3424 3425 3426
	unsigned int order;
	unsigned int min_objects;
	unsigned int max_objects;
3427 3428 3429 3430 3431 3432

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
3433
	 * First we increase the acceptable waste in a slab. Then
3434 3435 3436
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
3437 3438
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3439
	max_objects = order_objects(slub_max_order, size);
3440 3441
	min_objects = min(min_objects, max_objects);

3442
	while (min_objects > 1) {
3443 3444
		unsigned int fraction;

C
Christoph Lameter 已提交
3445
		fraction = 16;
3446 3447
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
3448
					slub_max_order, fraction);
3449 3450 3451 3452
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
3453
		min_objects--;
3454 3455 3456 3457 3458 3459
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
3460
	order = slab_order(size, 1, slub_max_order, 1);
3461 3462 3463 3464 3465 3466
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
3467
	order = slab_order(size, 1, MAX_ORDER, 1);
D
David Rientjes 已提交
3468
	if (order < MAX_ORDER)
3469 3470 3471 3472
		return order;
	return -ENOSYS;
}

3473
static void
3474
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3475 3476 3477 3478
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
3479
#ifdef CONFIG_SLUB_DEBUG
3480
	atomic_long_set(&n->nr_slabs, 0);
3481
	atomic_long_set(&n->total_objects, 0);
3482
	INIT_LIST_HEAD(&n->full);
3483
#endif
C
Christoph Lameter 已提交
3484 3485
}

3486
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3487
{
3488
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3489
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3490

3491
	/*
3492 3493
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
3494
	 */
3495 3496
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
3497 3498 3499 3500 3501

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
3502

3503
	return 1;
3504 3505
}

3506 3507
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
3508 3509 3510 3511 3512
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
3513 3514
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
3515
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
3516
 */
3517
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
3518 3519 3520 3521
{
	struct page *page;
	struct kmem_cache_node *n;

3522
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
3523

3524
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
3525 3526

	BUG_ON(!page);
3527
	if (page_to_nid(page) != node) {
3528 3529
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3530 3531
	}

C
Christoph Lameter 已提交
3532 3533
	n = page->freelist;
	BUG_ON(!n);
3534
#ifdef CONFIG_SLUB_DEBUG
3535
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3536
	init_tracking(kmem_cache_node, n);
3537
#endif
3538
	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3539
		      GFP_KERNEL);
3540 3541 3542 3543
	page->freelist = get_freepointer(kmem_cache_node, n);
	page->inuse = 1;
	page->frozen = 0;
	kmem_cache_node->node[node] = n;
3544
	init_kmem_cache_node(n);
3545
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
3546

3547
	/*
3548 3549
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
3550
	 */
3551
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
3552 3553 3554 3555 3556
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
3557
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3558

C
Christoph Lameter 已提交
3559
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3560
		s->node[node] = NULL;
3561
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
3562 3563 3564
	}
}

3565 3566
void __kmem_cache_release(struct kmem_cache *s)
{
T
Thomas Garnier 已提交
3567
	cache_random_seq_destroy(s);
3568 3569 3570 3571
	free_percpu(s->cpu_slab);
	free_kmem_cache_nodes(s);
}

3572
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
3573 3574 3575
{
	int node;

C
Christoph Lameter 已提交
3576
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3577 3578
		struct kmem_cache_node *n;

3579
		if (slab_state == DOWN) {
3580
			early_kmem_cache_node_alloc(node);
3581 3582
			continue;
		}
3583
		n = kmem_cache_alloc_node(kmem_cache_node,
3584
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
3585

3586 3587 3588
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
3589
		}
3590

3591
		init_kmem_cache_node(n);
3592
		s->node[node] = n;
C
Christoph Lameter 已提交
3593 3594 3595 3596
	}
	return 1;
}

3597
static void set_min_partial(struct kmem_cache *s, unsigned long min)
3598 3599 3600 3601 3602 3603 3604 3605
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
static void set_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
	 * B) The number of objects in cpu partial slabs to extract from the
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
	 */
	if (!kmem_cache_has_cpu_partial(s))
3627
		slub_set_cpu_partial(s, 0);
3628
	else if (s->size >= PAGE_SIZE)
3629
		slub_set_cpu_partial(s, 2);
3630
	else if (s->size >= 1024)
3631
		slub_set_cpu_partial(s, 6);
3632
	else if (s->size >= 256)
3633
		slub_set_cpu_partial(s, 13);
3634
	else
3635
		slub_set_cpu_partial(s, 30);
3636 3637 3638
#endif
}

C
Christoph Lameter 已提交
3639 3640 3641 3642
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
3643
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
3644
{
3645
	slab_flags_t flags = s->flags;
3646
	unsigned int size = s->object_size;
3647
	unsigned int freepointer_area;
3648
	unsigned int order;
C
Christoph Lameter 已提交
3649

3650 3651 3652 3653 3654 3655
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));
3656 3657 3658 3659 3660 3661 3662
	/*
	 * This is the area of the object where a freepointer can be
	 * safely written. If redzoning adds more to the inuse size, we
	 * can't use that portion for writing the freepointer, so
	 * s->offset must be limited within this for the general case.
	 */
	freepointer_area = size;
3663 3664

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3665 3666 3667 3668 3669
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
3670
	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3671
			!s->ctor)
C
Christoph Lameter 已提交
3672 3673 3674 3675 3676 3677
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3678
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3679
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3680
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3681
	 */
3682
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3683
		size += sizeof(void *);
C
Christoph Lameter 已提交
3684
#endif
C
Christoph Lameter 已提交
3685 3686

	/*
C
Christoph Lameter 已提交
3687 3688
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3689 3690 3691
	 */
	s->inuse = size;

3692
	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3693
		s->ctor)) {
C
Christoph Lameter 已提交
3694 3695 3696 3697 3698 3699 3700
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
3701 3702 3703 3704 3705
		 *
		 * The assumption that s->offset >= s->inuse means free
		 * pointer is outside of the object is used in the
		 * freeptr_outside_object() function. If that is no
		 * longer true, the function needs to be modified.
C
Christoph Lameter 已提交
3706 3707 3708
		 */
		s->offset = size;
		size += sizeof(void *);
3709
	} else if (freepointer_area > sizeof(void *)) {
3710 3711 3712 3713 3714
		/*
		 * Store freelist pointer near middle of object to keep
		 * it away from the edges of the object to avoid small
		 * sized over/underflows from neighboring allocations.
		 */
3715
		s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
C
Christoph Lameter 已提交
3716 3717
	}

3718
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3719 3720 3721 3722 3723 3724
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);
3725
#endif
C
Christoph Lameter 已提交
3726

3727 3728
	kasan_cache_create(s, &size, &s->flags);
#ifdef CONFIG_SLUB_DEBUG
J
Joonsoo Kim 已提交
3729
	if (flags & SLAB_RED_ZONE) {
C
Christoph Lameter 已提交
3730 3731 3732 3733
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3734
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3735 3736 3737
		 * of the object.
		 */
		size += sizeof(void *);
J
Joonsoo Kim 已提交
3738 3739 3740 3741 3742

		s->red_left_pad = sizeof(void *);
		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
		size += s->red_left_pad;
	}
C
Christoph Lameter 已提交
3743
#endif
C
Christoph Lameter 已提交
3744

C
Christoph Lameter 已提交
3745 3746 3747 3748 3749
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3750
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3751
	s->size = size;
3752 3753 3754
	if (forced_order >= 0)
		order = forced_order;
	else
3755
		order = calculate_order(size);
C
Christoph Lameter 已提交
3756

3757
	if ((int)order < 0)
C
Christoph Lameter 已提交
3758 3759
		return 0;

3760
	s->allocflags = 0;
3761
	if (order)
3762 3763 3764
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3765
		s->allocflags |= GFP_DMA;
3766

3767 3768 3769
	if (s->flags & SLAB_CACHE_DMA32)
		s->allocflags |= GFP_DMA32;

3770 3771 3772
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3773 3774 3775
	/*
	 * Determine the number of objects per slab
	 */
3776 3777
	s->oo = oo_make(order, size);
	s->min = oo_make(get_order(size), size);
3778 3779
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3780

3781
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3782 3783
}

3784
static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
C
Christoph Lameter 已提交
3785
{
3786
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3787 3788 3789
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	s->random = get_random_long();
#endif
C
Christoph Lameter 已提交
3790

3791
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3792
		goto error;
3793 3794 3795 3796 3797
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3798
		if (get_order(s->size) > get_order(s->object_size)) {
3799 3800 3801 3802 3803 3804
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3805

3806 3807
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3808
	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3809 3810 3811 3812
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3813 3814 3815 3816
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3817 3818
	set_min_partial(s, ilog2(s->size) / 2);

3819
	set_cpu_partial(s);
3820

C
Christoph Lameter 已提交
3821
#ifdef CONFIG_NUMA
3822
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3823
#endif
T
Thomas Garnier 已提交
3824 3825 3826 3827 3828 3829 3830

	/* Initialize the pre-computed randomized freelist if slab is up */
	if (slab_state >= UP) {
		if (init_cache_random_seq(s))
			goto error;
	}

3831
	if (!init_kmem_cache_nodes(s))
3832
		goto error;
C
Christoph Lameter 已提交
3833

3834
	if (alloc_kmem_cache_cpus(s))
3835
		return 0;
3836

3837
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3838
error:
3839
	return -EINVAL;
C
Christoph Lameter 已提交
3840 3841
}

3842
static void list_slab_objects(struct kmem_cache *s, struct page *page,
3843
			      const char *text)
3844 3845 3846
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
3847
	unsigned long *map;
3848
	void *p;
3849

3850
	slab_err(s, page, text, s->name);
3851 3852
	slab_lock(page);

3853
	map = get_map(s, page);
3854 3855 3856
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3857
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3858 3859 3860
			print_tracking(s, p);
		}
	}
3861
	put_map(map);
3862 3863 3864 3865
	slab_unlock(page);
#endif
}

C
Christoph Lameter 已提交
3866
/*
C
Christoph Lameter 已提交
3867
 * Attempt to free all partial slabs on a node.
3868 3869
 * This is called from __kmem_cache_shutdown(). We must take list_lock
 * because sysfs file might still access partial list after the shutdowning.
C
Christoph Lameter 已提交
3870
 */
C
Christoph Lameter 已提交
3871
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3872
{
3873
	LIST_HEAD(discard);
C
Christoph Lameter 已提交
3874 3875
	struct page *page, *h;

3876 3877
	BUG_ON(irqs_disabled());
	spin_lock_irq(&n->list_lock);
3878
	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
C
Christoph Lameter 已提交
3879
		if (!page->inuse) {
3880
			remove_partial(n, page);
3881
			list_add(&page->slab_list, &discard);
3882 3883
		} else {
			list_slab_objects(s, page,
3884
			  "Objects remaining in %s on __kmem_cache_shutdown()");
C
Christoph Lameter 已提交
3885
		}
3886
	}
3887
	spin_unlock_irq(&n->list_lock);
3888

3889
	list_for_each_entry_safe(page, h, &discard, slab_list)
3890
		discard_slab(s, page);
C
Christoph Lameter 已提交
3891 3892
}

3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
bool __kmem_cache_empty(struct kmem_cache *s)
{
	int node;
	struct kmem_cache_node *n;

	for_each_kmem_cache_node(s, node, n)
		if (n->nr_partial || slabs_node(s, node))
			return false;
	return true;
}

C
Christoph Lameter 已提交
3904
/*
C
Christoph Lameter 已提交
3905
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3906
 */
3907
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3908 3909
{
	int node;
C
Christoph Lameter 已提交
3910
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3911 3912 3913

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3914
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3915 3916
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3917 3918
			return 1;
	}
3919
	sysfs_slab_remove(s);
C
Christoph Lameter 已提交
3920 3921 3922 3923 3924 3925 3926 3927 3928
	return 0;
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
3929
	get_option(&str, (int *)&slub_min_order);
C
Christoph Lameter 已提交
3930 3931 3932 3933 3934 3935 3936 3937

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
3938 3939
	get_option(&str, (int *)&slub_max_order);
	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
C
Christoph Lameter 已提交
3940 3941 3942 3943 3944 3945 3946 3947

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
3948
	get_option(&str, (int *)&slub_min_objects);
C
Christoph Lameter 已提交
3949 3950 3951 3952 3953 3954 3955 3956

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
3957
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3958
	void *ret;
C
Christoph Lameter 已提交
3959

3960
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3961
		return kmalloc_large(size, flags);
3962

3963
	s = kmalloc_slab(size, flags);
3964 3965

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3966 3967
		return s;

3968
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3969

3970
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3971

3972
	ret = kasan_kmalloc(s, ret, size, flags);
3973

E
Eduard - Gabriel Munteanu 已提交
3974
	return ret;
C
Christoph Lameter 已提交
3975 3976 3977
}
EXPORT_SYMBOL(__kmalloc);

3978
#ifdef CONFIG_NUMA
3979 3980
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3981
	struct page *page;
3982
	void *ptr = NULL;
3983
	unsigned int order = get_order(size);
3984

3985
	flags |= __GFP_COMP;
3986 3987
	page = alloc_pages_node(node, flags, order);
	if (page) {
3988
		ptr = page_address(page);
3989 3990 3991
		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
				    1 << order);
	}
3992

3993
	return kmalloc_large_node_hook(ptr, size, flags);
3994 3995
}

C
Christoph Lameter 已提交
3996 3997
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3998
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3999
	void *ret;
C
Christoph Lameter 已提交
4000

4001
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
4002 4003
		ret = kmalloc_large_node(size, flags, node);

4004 4005 4006
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
4007 4008 4009

		return ret;
	}
4010

4011
	s = kmalloc_slab(size, flags);
4012 4013

	if (unlikely(ZERO_OR_NULL_PTR(s)))
4014 4015
		return s;

4016
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
4017

4018
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
4019

4020
	ret = kasan_kmalloc(s, ret, size, flags);
4021

E
Eduard - Gabriel Munteanu 已提交
4022
	return ret;
C
Christoph Lameter 已提交
4023 4024
}
EXPORT_SYMBOL(__kmalloc_node);
4025
#endif	/* CONFIG_NUMA */
C
Christoph Lameter 已提交
4026

K
Kees Cook 已提交
4027 4028
#ifdef CONFIG_HARDENED_USERCOPY
/*
4029 4030 4031
 * Rejects incorrectly sized objects and objects that are to be copied
 * to/from userspace but do not fall entirely within the containing slab
 * cache's usercopy region.
K
Kees Cook 已提交
4032 4033 4034 4035
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
4036 4037
void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
			 bool to_user)
K
Kees Cook 已提交
4038 4039
{
	struct kmem_cache *s;
A
Alexey Dobriyan 已提交
4040
	unsigned int offset;
K
Kees Cook 已提交
4041 4042
	size_t object_size;

4043 4044
	ptr = kasan_reset_tag(ptr);

K
Kees Cook 已提交
4045 4046 4047 4048 4049
	/* Find object and usable object size. */
	s = page->slab_cache;

	/* Reject impossible pointers. */
	if (ptr < page_address(page))
4050 4051
		usercopy_abort("SLUB object not in SLUB page?!", NULL,
			       to_user, 0, n);
K
Kees Cook 已提交
4052 4053 4054 4055 4056

	/* Find offset within object. */
	offset = (ptr - page_address(page)) % s->size;

	/* Adjust for redzone and reject if within the redzone. */
4057
	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
K
Kees Cook 已提交
4058
		if (offset < s->red_left_pad)
4059 4060
			usercopy_abort("SLUB object in left red zone",
				       s->name, to_user, offset, n);
K
Kees Cook 已提交
4061 4062 4063
		offset -= s->red_left_pad;
	}

4064 4065 4066 4067
	/* Allow address range falling entirely within usercopy region. */
	if (offset >= s->useroffset &&
	    offset - s->useroffset <= s->usersize &&
	    n <= s->useroffset - offset + s->usersize)
4068
		return;
K
Kees Cook 已提交
4069

4070 4071 4072 4073 4074 4075 4076
	/*
	 * If the copy is still within the allocated object, produce
	 * a warning instead of rejecting the copy. This is intended
	 * to be a temporary method to find any missing usercopy
	 * whitelists.
	 */
	object_size = slab_ksize(s);
4077 4078
	if (usercopy_fallback &&
	    offset <= object_size && n <= object_size - offset) {
4079 4080 4081
		usercopy_warn("SLUB object", s->name, to_user, offset, n);
		return;
	}
K
Kees Cook 已提交
4082

4083
	usercopy_abort("SLUB object", s->name, to_user, offset, n);
K
Kees Cook 已提交
4084 4085 4086
}
#endif /* CONFIG_HARDENED_USERCOPY */

4087
size_t __ksize(const void *object)
C
Christoph Lameter 已提交
4088
{
4089
	struct page *page;
C
Christoph Lameter 已提交
4090

4091
	if (unlikely(object == ZERO_SIZE_PTR))
4092 4093
		return 0;

4094 4095
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
4096 4097
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
4098
		return page_size(page);
P
Pekka Enberg 已提交
4099
	}
C
Christoph Lameter 已提交
4100

4101
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
4102
}
4103
EXPORT_SYMBOL(__ksize);
C
Christoph Lameter 已提交
4104 4105 4106 4107

void kfree(const void *x)
{
	struct page *page;
4108
	void *object = (void *)x;
C
Christoph Lameter 已提交
4109

4110 4111
	trace_kfree(_RET_IP_, x);

4112
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
4113 4114
		return;

4115
	page = virt_to_head_page(x);
4116
	if (unlikely(!PageSlab(page))) {
4117 4118
		unsigned int order = compound_order(page);

4119
		BUG_ON(!PageCompound(page));
4120
		kfree_hook(object);
4121 4122 4123
		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
				    -(1 << order));
		__free_pages(page, order);
4124 4125
		return;
	}
4126
	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
C
Christoph Lameter 已提交
4127 4128 4129
}
EXPORT_SYMBOL(kfree);

4130 4131
#define SHRINK_PROMOTE_MAX 32

4132
/*
4133 4134 4135
 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 * up most to the head of the partial lists. New allocations will then
 * fill those up and thus they can be removed from the partial lists.
C
Christoph Lameter 已提交
4136 4137 4138 4139
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
4140
 */
4141
int __kmem_cache_shrink(struct kmem_cache *s)
4142 4143 4144 4145 4146 4147
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
4148 4149
	struct list_head discard;
	struct list_head promote[SHRINK_PROMOTE_MAX];
4150
	unsigned long flags;
4151
	int ret = 0;
4152 4153

	flush_all(s);
C
Christoph Lameter 已提交
4154
	for_each_kmem_cache_node(s, node, n) {
4155 4156 4157
		INIT_LIST_HEAD(&discard);
		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
			INIT_LIST_HEAD(promote + i);
4158 4159 4160 4161

		spin_lock_irqsave(&n->list_lock, flags);

		/*
4162
		 * Build lists of slabs to discard or promote.
4163
		 *
C
Christoph Lameter 已提交
4164 4165
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
4166
		 */
4167
		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4168 4169 4170 4171 4172 4173 4174 4175 4176
			int free = page->objects - page->inuse;

			/* Do not reread page->inuse */
			barrier();

			/* We do not keep full slabs on the list */
			BUG_ON(free <= 0);

			if (free == page->objects) {
4177
				list_move(&page->slab_list, &discard);
4178
				n->nr_partial--;
4179
			} else if (free <= SHRINK_PROMOTE_MAX)
4180
				list_move(&page->slab_list, promote + free - 1);
4181 4182 4183
		}

		/*
4184 4185
		 * Promote the slabs filled up most to the head of the
		 * partial list.
4186
		 */
4187 4188
		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
			list_splice(promote + i, &n->partial);
4189 4190

		spin_unlock_irqrestore(&n->list_lock, flags);
4191 4192

		/* Release empty slabs */
4193
		list_for_each_entry_safe(page, t, &discard, slab_list)
4194
			discard_slab(s, page);
4195 4196 4197

		if (slabs_node(s, node))
			ret = 1;
4198 4199
	}

4200
	return ret;
4201 4202
}

4203
#ifdef CONFIG_MEMCG
4204
void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
4205
{
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
	/*
	 * Called with all the locks held after a sched RCU grace period.
	 * Even if @s becomes empty after shrinking, we can't know that @s
	 * doesn't have allocations already in-flight and thus can't
	 * destroy @s until the associated memcg is released.
	 *
	 * However, let's remove the sysfs files for empty caches here.
	 * Each cache has a lot of interface files which aren't
	 * particularly useful for empty draining caches; otherwise, we can
	 * easily end up with millions of unnecessary sysfs files on
	 * systems which have a lot of memory and transient cgroups.
	 */
	if (!__kmem_cache_shrink(s))
		sysfs_slab_remove(s);
4220 4221
}

4222 4223 4224 4225 4226 4227
void __kmemcg_cache_deactivate(struct kmem_cache *s)
{
	/*
	 * Disable empty slabs caching. Used to avoid pinning offline
	 * memory cgroups by kmem pages that can be freed.
	 */
4228
	slub_set_cpu_partial(s, 0);
4229 4230
	s->min_partial = 0;
}
4231
#endif	/* CONFIG_MEMCG */
4232

4233 4234 4235 4236
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

4237
	mutex_lock(&slab_mutex);
4238
	list_for_each_entry(s, &slab_caches, list)
4239
		__kmem_cache_shrink(s);
4240
	mutex_unlock(&slab_mutex);
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

4252
	offline_node = marg->status_change_nid_normal;
4253 4254 4255 4256 4257 4258 4259 4260

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

4261
	mutex_lock(&slab_mutex);
4262 4263 4264 4265 4266 4267
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
4268
			 * and offline_pages() function shouldn't call this
4269 4270
			 * callback. So, we must fail.
			 */
4271
			BUG_ON(slabs_node(s, offline_node));
4272 4273

			s->node[offline_node] = NULL;
4274
			kmem_cache_free(kmem_cache_node, n);
4275 4276
		}
	}
4277
	mutex_unlock(&slab_mutex);
4278 4279 4280 4281 4282 4283 4284
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
4285
	int nid = marg->status_change_nid_normal;
4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
4296
	 * We are bringing a node online. No memory is available yet. We must
4297 4298 4299
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
4300
	mutex_lock(&slab_mutex);
4301 4302 4303 4304 4305 4306
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
4307
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4308 4309 4310 4311
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
4312
		init_kmem_cache_node(n);
4313 4314 4315
		s->node[nid] = n;
	}
out:
4316
	mutex_unlock(&slab_mutex);
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
4340 4341 4342 4343
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
4344 4345 4346
	return ret;
}

4347 4348 4349 4350
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
4351

C
Christoph Lameter 已提交
4352 4353 4354 4355
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

4356 4357
/*
 * Used for early kmem_cache structures that were allocated using
4358 4359
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
4360 4361
 */

4362
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4363 4364
{
	int node;
4365
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
4366
	struct kmem_cache_node *n;
4367

4368
	memcpy(s, static_cache, kmem_cache->object_size);
4369

4370 4371 4372 4373 4374 4375
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
4376
	for_each_kmem_cache_node(s, node, n) {
4377 4378
		struct page *p;

4379
		list_for_each_entry(p, &n->partial, slab_list)
C
Christoph Lameter 已提交
4380
			p->slab_cache = s;
4381

L
Li Zefan 已提交
4382
#ifdef CONFIG_SLUB_DEBUG
4383
		list_for_each_entry(p, &n->full, slab_list)
C
Christoph Lameter 已提交
4384
			p->slab_cache = s;
4385 4386
#endif
	}
4387
	slab_init_memcg_params(s);
4388
	list_add(&s->list, &slab_caches);
4389
	memcg_link_cache(s, NULL);
4390
	return s;
4391 4392
}

C
Christoph Lameter 已提交
4393 4394
void __init kmem_cache_init(void)
{
4395 4396
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
4397

4398 4399 4400
	if (debug_guardpage_minorder())
		slub_max_order = 0;

4401 4402
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
4403

4404
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4405
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4406

4407
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
4408 4409 4410 4411

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

4412 4413 4414
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
4415
		       SLAB_HWCACHE_ALIGN, 0, 0);
4416

4417 4418
	kmem_cache = bootstrap(&boot_kmem_cache);
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4419 4420

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4421
	setup_kmalloc_cache_index_table();
4422
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
4423

T
Thomas Garnier 已提交
4424 4425 4426
	/* Setup random freelists for each cache */
	init_freelist_randomization();

4427 4428
	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
				  slub_cpu_dead);
C
Christoph Lameter 已提交
4429

4430
	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4431
		cache_line_size(),
C
Christoph Lameter 已提交
4432 4433 4434 4435
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

4436 4437 4438 4439
void __init kmem_cache_init_late(void)
{
}

4440
struct kmem_cache *
4441
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4442
		   slab_flags_t flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
4443
{
4444
	struct kmem_cache *s, *c;
C
Christoph Lameter 已提交
4445

4446
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
4447 4448
	if (s) {
		s->refcount++;
4449

C
Christoph Lameter 已提交
4450 4451 4452 4453
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
4454
		s->object_size = max(s->object_size, size);
4455
		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
4456

4457
		for_each_memcg_cache(c, s) {
4458
			c->object_size = s->object_size;
4459
			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4460 4461
		}

4462 4463
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
4464
			s = NULL;
4465
		}
4466
	}
C
Christoph Lameter 已提交
4467

4468 4469
	return s;
}
P
Pekka Enberg 已提交
4470

4471
int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4472
{
4473 4474 4475 4476 4477
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
4478

4479 4480 4481 4482
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

4483
	memcg_propagate_slab_attrs(s);
4484 4485
	err = sysfs_slab_add(s);
	if (err)
4486
		__kmem_cache_release(s);
4487

4488
	return err;
C
Christoph Lameter 已提交
4489 4490
}

4491
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
4492
{
4493
	struct kmem_cache *s;
4494
	void *ret;
4495

4496
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4497 4498
		return kmalloc_large(size, gfpflags);

4499
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4500

4501
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4502
		return s;
C
Christoph Lameter 已提交
4503

4504
	ret = slab_alloc(s, gfpflags, caller);
4505

L
Lucas De Marchi 已提交
4506
	/* Honor the call site pointer we received. */
4507
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4508 4509

	return ret;
C
Christoph Lameter 已提交
4510
}
4511
EXPORT_SYMBOL(__kmalloc_track_caller);
C
Christoph Lameter 已提交
4512

4513
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4514
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4515
					int node, unsigned long caller)
C
Christoph Lameter 已提交
4516
{
4517
	struct kmem_cache *s;
4518
	void *ret;
4519

4520
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4521 4522 4523 4524 4525 4526 4527 4528
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
4529

4530
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4531

4532
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4533
		return s;
C
Christoph Lameter 已提交
4534

4535
	ret = slab_alloc_node(s, gfpflags, node, caller);
4536

L
Lucas De Marchi 已提交
4537
	/* Honor the call site pointer we received. */
4538
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4539 4540

	return ret;
C
Christoph Lameter 已提交
4541
}
4542
EXPORT_SYMBOL(__kmalloc_node_track_caller);
4543
#endif
C
Christoph Lameter 已提交
4544

4545
#ifdef CONFIG_SYSFS
4546 4547 4548 4549 4550 4551 4552 4553 4554
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
4555
#endif
4556

4557
#ifdef CONFIG_SLUB_DEBUG
4558
static void validate_slab(struct kmem_cache *s, struct page *page)
4559 4560
{
	void *p;
4561
	void *addr = page_address(page);
4562 4563 4564
	unsigned long *map;

	slab_lock(page);
4565

Y
Yu Zhao 已提交
4566
	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4567
		goto unlock;
4568 4569

	/* Now we know that a valid freelist exists */
4570
	map = get_map(s, page);
4571
	for_each_object(p, s, addr, page->objects) {
Y
Yu Zhao 已提交
4572 4573
		u8 val = test_bit(slab_index(p, s, addr), map) ?
			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4574

Y
Yu Zhao 已提交
4575 4576 4577
		if (!check_object(s, page, p, val))
			break;
	}
4578 4579
	put_map(map);
unlock:
4580
	slab_unlock(page);
4581 4582
}

4583
static int validate_slab_node(struct kmem_cache *s,
4584
		struct kmem_cache_node *n)
4585 4586 4587 4588 4589 4590 4591
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

4592
	list_for_each_entry(page, &n->partial, slab_list) {
4593
		validate_slab(s, page);
4594 4595 4596
		count++;
	}
	if (count != n->nr_partial)
4597 4598
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
4599 4600 4601 4602

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

4603
	list_for_each_entry(page, &n->full, slab_list) {
4604
		validate_slab(s, page);
4605 4606 4607
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
4608 4609
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
4610 4611 4612 4613 4614 4615

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

4616
static long validate_slab_cache(struct kmem_cache *s)
4617 4618 4619
{
	int node;
	unsigned long count = 0;
C
Christoph Lameter 已提交
4620
	struct kmem_cache_node *n;
4621 4622

	flush_all(s);
C
Christoph Lameter 已提交
4623
	for_each_kmem_cache_node(s, node, n)
4624 4625
		count += validate_slab_node(s, n);

4626 4627
	return count;
}
4628
/*
C
Christoph Lameter 已提交
4629
 * Generate lists of code addresses where slabcache objects are allocated
4630 4631 4632 4633 4634
 * and freed.
 */

struct location {
	unsigned long count;
4635
	unsigned long addr;
4636 4637 4638 4639 4640
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
4641
	DECLARE_BITMAP(cpus, NR_CPUS);
4642
	nodemask_t nodes;
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4658
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4659 4660 4661 4662 4663 4664
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4665
	l = (void *)__get_free_pages(flags, order);
4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4679
				const struct track *track)
4680 4681 4682
{
	long start, end, pos;
	struct location *l;
4683
	unsigned long caddr;
4684
	unsigned long age = jiffies - track->when;
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4716 4717
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4718 4719
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4720 4721 4722
			return 1;
		}

4723
		if (track->addr < caddr)
4724 4725 4726 4727 4728 4729
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4730
	 * Not found. Insert new tracking element.
4731
	 */
4732
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4733 4734 4735 4736 4737 4738 4739 4740
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4741 4742 4743 4744 4745 4746
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4747 4748
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4749 4750
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4751 4752 4753 4754
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
4755
		struct page *page, enum track_item alloc)
4756
{
4757
	void *addr = page_address(page);
4758
	void *p;
4759
	unsigned long *map;
4760

4761
	map = get_map(s, page);
4762
	for_each_object(p, s, addr, page->objects)
4763 4764
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4765
	put_map(map);
4766 4767 4768 4769 4770
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4771
	int len = 0;
4772
	unsigned long i;
4773
	struct loc_track t = { 0, 0, NULL };
4774
	int node;
C
Christoph Lameter 已提交
4775
	struct kmem_cache_node *n;
4776

4777 4778
	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
			     GFP_KERNEL)) {
4779
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4780
	}
4781 4782 4783
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4784
	for_each_kmem_cache_node(s, node, n) {
4785 4786 4787
		unsigned long flags;
		struct page *page;

4788
		if (!atomic_long_read(&n->nr_slabs))
4789 4790 4791
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
4792
		list_for_each_entry(page, &n->partial, slab_list)
4793
			process_slab(&t, s, page, alloc);
4794
		list_for_each_entry(page, &n->full, slab_list)
4795
			process_slab(&t, s, page, alloc);
4796 4797 4798 4799
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4800
		struct location *l = &t.loc[i];
4801

H
Hugh Dickins 已提交
4802
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4803
			break;
4804
		len += sprintf(buf + len, "%7ld ", l->count);
4805 4806

		if (l->addr)
J
Joe Perches 已提交
4807
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4808
		else
4809
			len += sprintf(buf + len, "<not-available>");
4810 4811

		if (l->sum_time != l->min_time) {
4812
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4813 4814 4815
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4816
		} else
4817
			len += sprintf(buf + len, " age=%ld",
4818 4819 4820
				l->min_time);

		if (l->min_pid != l->max_pid)
4821
			len += sprintf(buf + len, " pid=%ld-%ld",
4822 4823
				l->min_pid, l->max_pid);
		else
4824
			len += sprintf(buf + len, " pid=%ld",
4825 4826
				l->min_pid);

R
Rusty Russell 已提交
4827 4828
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4829 4830 4831 4832
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " cpus=%*pbl",
					 cpumask_pr_args(to_cpumask(l->cpus)));
4833

4834
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4835 4836 4837 4838
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " nodes=%*pbl",
					 nodemask_pr_args(&l->nodes));
4839

4840
		len += sprintf(buf + len, "\n");
4841 4842 4843 4844
	}

	free_loc_track(&t);
	if (!t.count)
4845 4846
		len += sprintf(buf, "No data\n");
	return len;
4847
}
4848
#endif	/* CONFIG_SLUB_DEBUG */
4849

4850
#ifdef SLUB_RESILIENCY_TEST
4851
static void __init resiliency_test(void)
4852 4853
{
	u8 *p;
4854
	int type = KMALLOC_NORMAL;
4855

4856
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4857

4858 4859 4860
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4861 4862 4863

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4864 4865
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4866

4867
	validate_slab_cache(kmalloc_caches[type][4]);
4868 4869 4870 4871

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4872 4873 4874
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4875

4876
	validate_slab_cache(kmalloc_caches[type][5]);
4877 4878 4879
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4880 4881 4882
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4883
	validate_slab_cache(kmalloc_caches[type][6]);
4884

4885
	pr_err("\nB. Corruption after free\n");
4886 4887 4888
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4889
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4890
	validate_slab_cache(kmalloc_caches[type][7]);
4891 4892 4893 4894

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4895
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4896
	validate_slab_cache(kmalloc_caches[type][8]);
4897 4898 4899 4900

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4901
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4902
	validate_slab_cache(kmalloc_caches[type][9]);
4903 4904 4905 4906 4907
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
4908
#endif	/* SLUB_RESILIENCY_TEST */
4909

4910
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4911
enum slab_stat_type {
4912 4913 4914 4915 4916
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4917 4918
};

4919
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4920 4921 4922
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4923
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4924

4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
#ifdef CONFIG_MEMCG
static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);

static int __init setup_slub_memcg_sysfs(char *str)
{
	int v;

	if (get_option(&str, &v) > 0)
		memcg_sysfs_enabled = v;

	return 1;
}

__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
#endif

4941 4942
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4943 4944 4945 4946 4947 4948
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

K
Kees Cook 已提交
4949
	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4950 4951
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4952

4953 4954
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4955

4956
		for_each_possible_cpu(cpu) {
4957 4958
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4959
			int node;
4960
			struct page *page;
4961

4962
			page = READ_ONCE(c->page);
4963 4964
			if (!page)
				continue;
4965

4966 4967 4968 4969 4970 4971 4972
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4973

4974 4975 4976
			total += x;
			nodes[node] += x;

4977
			page = slub_percpu_partial_read_once(c);
4978
			if (page) {
L
Li Zefan 已提交
4979 4980 4981 4982 4983 4984 4985
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4986 4987
				total += x;
				nodes[node] += x;
4988
			}
C
Christoph Lameter 已提交
4989 4990 4991
		}
	}

4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
	/*
	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
	 * already held which will conflict with an existing lock order:
	 *
	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
	 *
	 * We don't really need mem_hotplug_lock (to hold off
	 * slab_mem_going_offline_callback) here because slab's memory hot
	 * unplug code doesn't destroy the kmem_cache->node[] data.
	 */

5003
#ifdef CONFIG_SLUB_DEBUG
5004
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
5005 5006 5007
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
5008

5009 5010 5011 5012 5013
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
5014
			else
5015
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
5016 5017 5018 5019
			total += x;
			nodes[node] += x;
		}

5020 5021 5022
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
5023
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
5024

C
Christoph Lameter 已提交
5025
		for_each_kmem_cache_node(s, node, n) {
5026 5027 5028 5029
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
5030
			else
5031
				x = n->nr_partial;
C
Christoph Lameter 已提交
5032 5033 5034 5035 5036 5037
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
5038
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
5039 5040 5041 5042 5043 5044 5045 5046 5047
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5048
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
5049 5050 5051 5052 5053 5054 5055 5056

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
5057 5058
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
5059 5060 5061

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
5062
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
5063 5064 5065

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
A
Alexey Dobriyan 已提交
5066
	return sprintf(buf, "%u\n", s->size);
C
Christoph Lameter 已提交
5067 5068 5069 5070 5071
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
5072
	return sprintf(buf, "%u\n", s->align);
C
Christoph Lameter 已提交
5073 5074 5075 5076 5077
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
5078
	return sprintf(buf, "%u\n", s->object_size);
C
Christoph Lameter 已提交
5079 5080 5081 5082 5083
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
5084
	return sprintf(buf, "%u\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
5085 5086 5087 5088 5089
}
SLAB_ATTR_RO(objs_per_slab);

static ssize_t order_show(struct kmem_cache *s, char *buf)
{
5090
	return sprintf(buf, "%u\n", oo_order(s->oo));
C
Christoph Lameter 已提交
5091
}
5092
SLAB_ATTR_RO(order);
C
Christoph Lameter 已提交
5093

5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

5105
	err = kstrtoul(buf, 10, &min);
5106 5107 5108
	if (err)
		return err;

5109
	set_min_partial(s, min);
5110 5111 5112 5113
	return length;
}
SLAB_ATTR(min_partial);

5114 5115
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
5116
	return sprintf(buf, "%u\n", slub_cpu_partial(s));
5117 5118 5119 5120 5121
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
5122
	unsigned int objects;
5123 5124
	int err;

5125
	err = kstrtouint(buf, 10, &objects);
5126 5127
	if (err)
		return err;
5128
	if (objects && !kmem_cache_has_cpu_partial(s))
5129
		return -EINVAL;
5130

5131
	slub_set_cpu_partial(s, objects);
5132 5133 5134 5135 5136
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
5137 5138
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
5139 5140 5141
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
5142 5143 5144 5145 5146
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
5147
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
5148 5149 5150 5151 5152
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
5153
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
5154 5155 5156 5157 5158
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
5159
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
5160 5161 5162 5163 5164
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
5165
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
5166 5167 5168
}
SLAB_ATTR_RO(objects);

5169 5170 5171 5172 5173 5174
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

5175 5176 5177 5178 5179 5180 5181 5182
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
5183 5184 5185
		struct page *page;

		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
5197 5198 5199
		struct page *page;

		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

5210 5211 5212 5213
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}
5214
SLAB_ATTR_RO(reclaim_account);
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

5230 5231
static ssize_t usersize_show(struct kmem_cache *s, char *buf)
{
5232
	return sprintf(buf, "%u\n", s->usersize);
5233 5234 5235
}
SLAB_ATTR_RO(usersize);

5236 5237
static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
5238
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5239 5240 5241
}
SLAB_ATTR_RO(destroy_by_rcu);

5242
#ifdef CONFIG_SLUB_DEBUG
5243 5244 5245 5246 5247 5248
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

5249 5250 5251 5252 5253 5254
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
5255 5256
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
5257
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
C
Christoph Lameter 已提交
5258
}
5259
SLAB_ATTR_RO(sanity_checks);
C
Christoph Lameter 已提交
5260 5261 5262 5263 5264

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}
5265
SLAB_ATTR_RO(trace);
C
Christoph Lameter 已提交
5266 5267 5268 5269 5270 5271

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

5272
SLAB_ATTR_RO(red_zone);
C
Christoph Lameter 已提交
5273 5274 5275 5276 5277 5278

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

5279
SLAB_ATTR_RO(poison);
C
Christoph Lameter 已提交
5280 5281 5282 5283 5284 5285

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

5286
SLAB_ATTR_RO(store_user);
C
Christoph Lameter 已提交
5287

5288 5289 5290 5291 5292 5293 5294 5295
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5296 5297 5298 5299 5300 5301 5302 5303
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
5304 5305
}
SLAB_ATTR(validate);
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}
5329
SLAB_ATTR_RO(failslab);
5330
#endif
5331

5332 5333 5334 5335 5336 5337 5338 5339
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5340
	if (buf[0] == '1')
5341
		kmem_cache_shrink_all(s);
5342
	else
5343 5344 5345 5346 5347
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
5348
#ifdef CONFIG_NUMA
5349
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
5350
{
5351
	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
5352 5353
}

5354
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
5355 5356
				const char *buf, size_t length)
{
5357
	unsigned int ratio;
5358 5359
	int err;

5360
	err = kstrtouint(buf, 10, &ratio);
5361 5362
	if (err)
		return err;
5363 5364
	if (ratio > 100)
		return -ERANGE;
5365

5366
	s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
5367 5368 5369

	return length;
}
5370
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
5371 5372
#endif

5373 5374 5375 5376 5377 5378
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
5379
	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5380 5381 5382 5383 5384

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
5385
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5386 5387 5388 5389 5390 5391 5392

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

5393
#ifdef CONFIG_SMP
5394 5395
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
5396
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5397
	}
5398
#endif
5399 5400 5401 5402
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
5403 5404 5405 5406 5407
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
5408
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
5409 5410
}

5411 5412 5413 5414 5415
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
5416 5417 5418 5419 5420 5421 5422 5423 5424
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
5436
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5437 5438 5439 5440 5441 5442 5443
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5444
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5445
STAT_ATTR(ORDER_FALLBACK, order_fallback);
5446 5447
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5448 5449
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5450 5451
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5452
#endif	/* CONFIG_SLUB_STATS */
5453

P
Pekka Enberg 已提交
5454
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
5455 5456 5457 5458
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
5459
	&min_partial_attr.attr,
5460
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
5461
	&objects_attr.attr,
5462
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
5463 5464 5465 5466 5467 5468 5469 5470
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
5471
	&shrink_attr.attr,
5472
	&slabs_cpu_partial_attr.attr,
5473
#ifdef CONFIG_SLUB_DEBUG
5474 5475 5476 5477
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
5478 5479 5480
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
5481
	&validate_attr.attr,
5482 5483
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
5484
#endif
C
Christoph Lameter 已提交
5485 5486 5487 5488
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
5489
	&remote_node_defrag_ratio_attr.attr,
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
5502
	&alloc_node_mismatch_attr.attr,
5503 5504 5505 5506 5507 5508 5509
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
5510
	&deactivate_bypass_attr.attr,
5511
	&order_fallback_attr.attr,
5512 5513
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
5514 5515
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
5516 5517
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
5518
#endif
5519 5520 5521
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif
5522
	&usersize_attr.attr,
5523

C
Christoph Lameter 已提交
5524 5525 5526
	NULL
};

5527
static const struct attribute_group slab_attr_group = {
C
Christoph Lameter 已提交
5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5565
#ifdef CONFIG_MEMCG
5566
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5567
		struct kmem_cache *c;
C
Christoph Lameter 已提交
5568

5569 5570 5571 5572
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5590 5591
		for_each_memcg_cache(c, s)
			attribute->store(c, buf, len);
5592 5593 5594
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5595 5596 5597
	return err;
}

5598 5599
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
5600
#ifdef CONFIG_MEMCG
5601 5602
	int i;
	char *buffer = NULL;
5603
	struct kmem_cache *root_cache;
5604

5605
	if (is_root_cache(s))
5606 5607
		return;

5608
	root_cache = s->memcg_params.root_cache;
5609

5610 5611 5612 5613
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5614
	if (!root_cache->max_attr_size)
5615 5616 5617 5618 5619 5620
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5621
		ssize_t len;
5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5637 5638
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf) &&
			 !IS_ENABLED(CONFIG_SLUB_STATS))
5639 5640 5641 5642 5643 5644 5645 5646
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5647 5648 5649
		len = attr->show(root_cache, buf);
		if (len > 0)
			attr->store(s, buf, len);
5650 5651 5652 5653
	}

	if (buffer)
		free_page((unsigned long)buffer);
5654
#endif	/* CONFIG_MEMCG */
5655 5656
}

5657 5658 5659 5660 5661
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5662
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5663 5664 5665 5666 5667 5668
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5669
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5670 5671
};

5672
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5673

5674 5675
static inline struct kset *cache_kset(struct kmem_cache *s)
{
5676
#ifdef CONFIG_MEMCG
5677
	if (!is_root_cache(s))
5678
		return s->memcg_params.root_cache->memcg_kset;
5679 5680 5681 5682
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5683 5684 5685
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5686 5687
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
5706 5707
	if (s->flags & SLAB_CACHE_DMA32)
		*p++ = 'D';
C
Christoph Lameter 已提交
5708 5709
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
5710
	if (s->flags & SLAB_CONSISTENCY_CHECKS)
C
Christoph Lameter 已提交
5711
		*p++ = 'F';
V
Vladimir Davydov 已提交
5712 5713
	if (s->flags & SLAB_ACCOUNT)
		*p++ = 'A';
C
Christoph Lameter 已提交
5714 5715
	if (p != name + 1)
		*p++ = '-';
A
Alexey Dobriyan 已提交
5716
	p += sprintf(p, "%07u", s->size);
5717

C
Christoph Lameter 已提交
5718 5719 5720 5721
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733
static void sysfs_slab_remove_workfn(struct work_struct *work)
{
	struct kmem_cache *s =
		container_of(work, struct kmem_cache, kobj_remove_work);

	if (!s->kobj.state_in_sysfs)
		/*
		 * For a memcg cache, this may be called during
		 * deactivation and again on shutdown.  Remove only once.
		 * A cache is never shut down before deactivation is
		 * complete, so no need to worry about synchronization.
		 */
5734
		goto out;
5735 5736 5737 5738

#ifdef CONFIG_MEMCG
	kset_unregister(s->memcg_kset);
#endif
5739
out:
5740 5741 5742
	kobject_put(&s->kobj);
}

C
Christoph Lameter 已提交
5743 5744 5745 5746
static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5747
	struct kset *kset = cache_kset(s);
5748
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5749

5750 5751
	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);

5752 5753 5754 5755 5756
	if (!kset) {
		kobject_init(&s->kobj, &slab_ktype);
		return 0;
	}

5757 5758 5759 5760
	if (!unmergeable && disable_higher_order_debug &&
			(slub_debug & DEBUG_METADATA_FLAGS))
		unmergeable = 1;

C
Christoph Lameter 已提交
5761 5762 5763 5764 5765 5766
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5767
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5768 5769 5770 5771 5772 5773 5774 5775 5776
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5777
	s->kobj.kset = kset;
5778
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5779 5780
	if (err) {
		kobject_put(&s->kobj);
5781
		goto out;
5782
	}
C
Christoph Lameter 已提交
5783 5784

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5785 5786
	if (err)
		goto out_del_kobj;
5787

5788
#ifdef CONFIG_MEMCG
5789
	if (is_root_cache(s) && memcg_sysfs_enabled) {
5790 5791
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5792 5793
			err = -ENOMEM;
			goto out_del_kobj;
5794 5795 5796 5797
		}
	}
#endif

C
Christoph Lameter 已提交
5798 5799 5800 5801
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5802 5803 5804 5805 5806 5807 5808
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5809 5810
}

5811
static void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5812
{
5813
	if (slab_state < FULL)
5814 5815 5816 5817 5818 5819
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5820 5821
	kobject_get(&s->kobj);
	schedule_work(&s->kobj_remove_work);
5822 5823
}

5824 5825 5826 5827 5828 5829
void sysfs_slab_unlink(struct kmem_cache *s)
{
	if (slab_state >= FULL)
		kobject_del(&s->kobj);
}

5830 5831 5832 5833
void sysfs_slab_release(struct kmem_cache *s)
{
	if (slab_state >= FULL)
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5834 5835 5836 5837
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5838
 * available lest we lose that information.
C
Christoph Lameter 已提交
5839 5840 5841 5842 5843 5844 5845
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5846
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5847 5848 5849 5850 5851

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5852
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5853 5854 5855
		/*
		 * If we have a leftover link then remove it.
		 */
5856 5857
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5873
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5874 5875
	int err;

5876
	mutex_lock(&slab_mutex);
5877

5878
	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5879
	if (!slab_kset) {
5880
		mutex_unlock(&slab_mutex);
5881
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5882 5883 5884
		return -ENOSYS;
	}

5885
	slab_state = FULL;
5886

5887
	list_for_each_entry(s, &slab_caches, list) {
5888
		err = sysfs_slab_add(s);
5889
		if (err)
5890 5891
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5892
	}
C
Christoph Lameter 已提交
5893 5894 5895 5896 5897 5898

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5899
		if (err)
5900 5901
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5902 5903 5904
		kfree(al);
	}

5905
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5906 5907 5908 5909 5910
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5911
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5912 5913 5914 5915

/*
 * The /proc/slabinfo ABI
 */
Y
Yang Shi 已提交
5916
#ifdef CONFIG_SLUB_DEBUG
5917
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5918 5919
{
	unsigned long nr_slabs = 0;
5920 5921
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5922
	int node;
C
Christoph Lameter 已提交
5923
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5924

C
Christoph Lameter 已提交
5925
	for_each_kmem_cache_node(s, node, n) {
5926 5927
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5928
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5929 5930
	}

5931 5932 5933 5934 5935 5936
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5937 5938
}

5939
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5940 5941 5942
{
}

5943 5944
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5945
{
5946
	return -EIO;
5947
}
Y
Yang Shi 已提交
5948
#endif /* CONFIG_SLUB_DEBUG */