i915_gem_mman.c 25.8 KB
Newer Older
1 2 3 4 5 6
/*
 * SPDX-License-Identifier: MIT
 *
 * Copyright © 2014-2016 Intel Corporation
 */

7
#include <linux/anon_inodes.h>
8
#include <linux/mman.h>
9
#include <linux/pfn_t.h>
10 11
#include <linux/sizes.h>

12
#include "gt/intel_gt.h"
13
#include "gt/intel_gt_requests.h"
14

15 16 17 18
#include "i915_drv.h"
#include "i915_gem_gtt.h"
#include "i915_gem_ioctls.h"
#include "i915_gem_object.h"
19
#include "i915_gem_mman.h"
20
#include "i915_trace.h"
21
#include "i915_user_extensions.h"
22
#include "i915_gem_ttm.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
#include "i915_vma.h"

static inline bool
__vma_matches(struct vm_area_struct *vma, struct file *filp,
	      unsigned long addr, unsigned long size)
{
	if (vma->vm_file != filp)
		return false;

	return vma->vm_start == addr &&
	       (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
}

/**
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
60
	struct drm_i915_private *i915 = to_i915(dev);
61 62 63 64
	struct drm_i915_gem_mmap *args = data;
	struct drm_i915_gem_object *obj;
	unsigned long addr;

65 66 67
	/*
	 * mmap ioctl is disallowed for all discrete platforms,
	 * and for all platforms with GRAPHICS_VER > 12.
68
	 */
69
	if (IS_DGFX(i915) || GRAPHICS_VER(i915) > 12)
70 71
		return -EOPNOTSUPP;

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
		return -ENODEV;

	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->base.filp) {
		addr = -ENXIO;
		goto err;
	}

	if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
		addr = -EINVAL;
		goto err;
	}

	addr = vm_mmap(obj->base.filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	if (IS_ERR_VALUE(addr))
		goto err;

	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

105
		if (mmap_write_lock_killable(mm)) {
106 107 108 109 110 111 112 113 114
			addr = -EINTR;
			goto err;
		}
		vma = find_vma(mm, addr);
		if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
115
		mmap_write_unlock(mm);
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
		if (IS_ERR_VALUE(addr))
			goto err;
	}
	i915_gem_object_put(obj);

	args->addr_ptr = (u64)addr;
	return 0;

err:
	i915_gem_object_put(obj);
	return addr;
}

static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
{
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
}

/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
 * 3 - Remove implicit set-domain(GTT) and synchronisation on initial
 *     pagefault; swapin remains transparent.
 *
160 161 162
 * 4 - Support multiple fault handlers per object depending on object's
 *     backing storage (a.k.a. MMAP_OFFSET).
 *
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
190
	return 4;
191 192 193 194 195 196 197 198 199 200
}

static inline struct i915_ggtt_view
compute_partial_view(const struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
201
		chunk = roundup(chunk, tile_row_pages(obj) ?: 1);
202 203 204 205 206 207 208 209 210 211 212 213 214 215

	view.type = I915_GGTT_VIEW_PARTIAL;
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
		min_t(unsigned int, chunk,
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

216 217 218 219 220
static vm_fault_t i915_error_to_vmf_fault(int err)
{
	switch (err) {
	default:
		WARN_ONCE(err, "unhandled error in %s: %i\n", __func__, err);
221
		fallthrough;
222 223 224
	case -EIO: /* shmemfs failure from swap device */
	case -EFAULT: /* purged object */
	case -ENODEV: /* bad object, how did you get here! */
225
	case -ENXIO: /* unable to access backing store (on device) */
226 227 228 229 230 231 232
		return VM_FAULT_SIGBUS;

	case -ENOMEM: /* our allocation failure */
		return VM_FAULT_OOM;

	case 0:
	case -EAGAIN:
233
	case -ENOSPC: /* transient failure to evict? */
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
	case -ERESTARTSYS:
	case -EINTR:
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
		return VM_FAULT_NOPAGE;
	}
}

static vm_fault_t vm_fault_cpu(struct vm_fault *vmf)
{
	struct vm_area_struct *area = vmf->vma;
	struct i915_mmap_offset *mmo = area->vm_private_data;
	struct drm_i915_gem_object *obj = mmo->obj;
250
	resource_size_t iomap;
251 252 253
	int err;

	/* Sanity check that we allow writing into this object */
254 255 256
	if (unlikely(i915_gem_object_is_readonly(obj) &&
		     area->vm_flags & VM_WRITE))
		return VM_FAULT_SIGBUS;
257

258 259 260
	if (i915_gem_object_lock_interruptible(obj, NULL))
		return VM_FAULT_NOPAGE;

261 262
	err = i915_gem_object_pin_pages(obj);
	if (err)
263
		goto out;
264

265
	iomap = -1;
266
	if (!i915_gem_object_has_struct_page(obj)) {
267 268 269 270
		iomap = obj->mm.region->iomap.base;
		iomap -= obj->mm.region->region.start;
	}

271
	/* PTEs are revoked in obj->ops->put_pages() */
272 273 274
	err = remap_io_sg(area,
			  area->vm_start, area->vm_end - area->vm_start,
			  obj->mm.pages->sgl, iomap);
275

276
	if (area->vm_flags & VM_WRITE) {
277 278 279 280 281 282
		GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);

283
out:
284
	i915_gem_object_unlock(obj);
285
	return i915_error_to_vmf_fault(err);
286 287 288
}

static vm_fault_t vm_fault_gtt(struct vm_fault *vmf)
289 290 291
{
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
	struct vm_area_struct *area = vmf->vma;
292 293
	struct i915_mmap_offset *mmo = area->vm_private_data;
	struct drm_i915_gem_object *obj = mmo->obj;
294 295
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *i915 = to_i915(dev);
296
	struct intel_runtime_pm *rpm = &i915->runtime_pm;
297 298
	struct i915_ggtt *ggtt = &i915->ggtt;
	bool write = area->vm_flags & VM_WRITE;
299
	struct i915_gem_ww_ctx ww;
300 301 302 303 304 305 306 307 308 309 310
	intel_wakeref_t wakeref;
	struct i915_vma *vma;
	pgoff_t page_offset;
	int srcu;
	int ret;

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;

	trace_i915_gem_object_fault(obj, page_offset, true, write);

311 312 313 314 315
	wakeref = intel_runtime_pm_get(rpm);

	i915_gem_ww_ctx_init(&ww, true);
retry:
	ret = i915_gem_object_lock(obj, &ww);
316
	if (ret)
317
		goto err_rpm;
318

319 320 321 322 323
	/* Sanity check that we allow writing into this object */
	if (i915_gem_object_is_readonly(obj) && write) {
		ret = -EFAULT;
		goto err_rpm;
	}
324

325
	ret = i915_gem_object_pin_pages(obj);
326
	if (ret)
327 328
		goto err_rpm;

329 330 331 332
	ret = intel_gt_reset_trylock(ggtt->vm.gt, &srcu);
	if (ret)
		goto err_pages;

333
	/* Now pin it into the GTT as needed */
334 335 336 337 338
	vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
					  PIN_MAPPABLE |
					  PIN_NONBLOCK /* NOWARN */ |
					  PIN_NOEVICT);
	if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK)) {
339 340 341 342 343
		/* Use a partial view if it is bigger than available space */
		struct i915_ggtt_view view =
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
		unsigned int flags;

344
		flags = PIN_MAPPABLE | PIN_NOSEARCH;
345 346 347 348 349 350 351 352
		if (view.type == I915_GGTT_VIEW_NORMAL)
			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */

		/*
		 * Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */

353 354
		vma = i915_gem_object_ggtt_pin_ww(obj, &ww, &view, 0, 0, flags);
		if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK)) {
355 356
			flags = PIN_MAPPABLE;
			view.type = I915_GGTT_VIEW_PARTIAL;
357
			vma = i915_gem_object_ggtt_pin_ww(obj, &ww, &view, 0, 0, flags);
358
		}
359 360 361

		/* The entire mappable GGTT is pinned? Unexpected! */
		GEM_BUG_ON(vma == ERR_PTR(-ENOSPC));
362 363 364
	}
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
365 366 367 368 369 370 371
		goto err_reset;
	}

	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(i915)) {
		ret = -EFAULT;
		goto err_unpin;
372 373 374 375 376 377 378
	}

	ret = i915_vma_pin_fence(vma);
	if (ret)
		goto err_unpin;

	/* Finally, remap it using the new GTT offset */
379 380 381 382 383
	ret = remap_io_mapping(area,
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->iomap);
384 385 386
	if (ret)
		goto err_fence;

387
	assert_rpm_wakelock_held(rpm);
388 389 390

	/* Mark as being mmapped into userspace for later revocation */
	mutex_lock(&i915->ggtt.vm.mutex);
391
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
392
		list_add(&obj->userfault_link, &i915->ggtt.userfault_list);
393 394
	mutex_unlock(&i915->ggtt.vm.mutex);

395 396 397
	/* Track the mmo associated with the fenced vma */
	vma->mmo = mmo;

398
	if (IS_ACTIVE(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND))
399
		intel_wakeref_auto(&i915->ggtt.userfault_wakeref,
400 401
				   msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND));

402 403 404 405 406
	if (write) {
		GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
		i915_vma_set_ggtt_write(vma);
		obj->mm.dirty = true;
	}
407 408 409 410 411 412

err_fence:
	i915_vma_unpin_fence(vma);
err_unpin:
	__i915_vma_unpin(vma);
err_reset:
413
	intel_gt_reset_unlock(ggtt->vm.gt, srcu);
414 415
err_pages:
	i915_gem_object_unpin_pages(obj);
416
err_rpm:
417 418 419 420 421 422
	if (ret == -EDEADLK) {
		ret = i915_gem_ww_ctx_backoff(&ww);
		if (!ret)
			goto retry;
	}
	i915_gem_ww_ctx_fini(&ww);
423
	intel_runtime_pm_put(rpm, wakeref);
424
	return i915_error_to_vmf_fault(ret);
425 426
}

427 428 429 430 431 432
static int
vm_access(struct vm_area_struct *area, unsigned long addr,
	  void *buf, int len, int write)
{
	struct i915_mmap_offset *mmo = area->vm_private_data;
	struct drm_i915_gem_object *obj = mmo->obj;
433
	struct i915_gem_ww_ctx ww;
434
	void *vaddr;
435
	int err = 0;
436 437 438 439 440 441 442 443

	if (i915_gem_object_is_readonly(obj) && write)
		return -EACCES;

	addr -= area->vm_start;
	if (addr >= obj->base.size)
		return -EINVAL;

444 445 446 447 448 449
	i915_gem_ww_ctx_init(&ww, true);
retry:
	err = i915_gem_object_lock(obj, &ww);
	if (err)
		goto out;

450 451
	/* As this is primarily for debugging, let's focus on simplicity */
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_FORCE_WC);
452 453 454 455
	if (IS_ERR(vaddr)) {
		err = PTR_ERR(vaddr);
		goto out;
	}
456 457 458 459 460 461 462 463 464

	if (write) {
		memcpy(vaddr + addr, buf, len);
		__i915_gem_object_flush_map(obj, addr, len);
	} else {
		memcpy(buf, vaddr + addr, len);
	}

	i915_gem_object_unpin_map(obj);
465 466 467 468 469 470 471 472 473 474
out:
	if (err == -EDEADLK) {
		err = i915_gem_ww_ctx_backoff(&ww);
		if (!err)
			goto retry;
	}
	i915_gem_ww_ctx_fini(&ww);

	if (err)
		return err;
475 476 477 478

	return len;
}

479
void __i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj)
480 481 482 483 484 485
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	for_each_ggtt_vma(vma, obj)
486 487 488
		i915_vma_revoke_mmap(vma);

	GEM_BUG_ON(obj->userfault_count);
489 490
}

491
/*
492 493 494 495 496
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
497
 * fixup by vm_fault_gtt().
498
 */
499
void i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj)
500 501 502 503
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	intel_wakeref_t wakeref;

504 505
	/*
	 * Serialisation between user GTT access and our code depends upon
506 507 508 509 510 511 512
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
	 */
513
	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
514
	mutex_lock(&i915->ggtt.vm.mutex);
515 516 517 518

	if (!obj->userfault_count)
		goto out;

519
	__i915_gem_object_release_mmap_gtt(obj);
520

521 522
	/*
	 * Ensure that the CPU's PTE are revoked and there are not outstanding
523 524 525 526 527 528 529 530 531
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

out:
532
	mutex_unlock(&i915->ggtt.vm.mutex);
533
	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
534 535
}

536 537
void i915_gem_object_release_mmap_offset(struct drm_i915_gem_object *obj)
{
538
	struct i915_mmap_offset *mmo, *mn;
539 540

	spin_lock(&obj->mmo.lock);
541 542
	rbtree_postorder_for_each_entry_safe(mmo, mn,
					     &obj->mmo.offsets, offset) {
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
		/*
		 * vma_node_unmap for GTT mmaps handled already in
		 * __i915_gem_object_release_mmap_gtt
		 */
		if (mmo->mmap_type == I915_MMAP_TYPE_GTT)
			continue;

		spin_unlock(&obj->mmo.lock);
		drm_vma_node_unmap(&mmo->vma_node,
				   obj->base.dev->anon_inode->i_mapping);
		spin_lock(&obj->mmo.lock);
	}
	spin_unlock(&obj->mmo.lock);
}

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
static struct i915_mmap_offset *
lookup_mmo(struct drm_i915_gem_object *obj,
	   enum i915_mmap_type mmap_type)
{
	struct rb_node *rb;

	spin_lock(&obj->mmo.lock);
	rb = obj->mmo.offsets.rb_node;
	while (rb) {
		struct i915_mmap_offset *mmo =
			rb_entry(rb, typeof(*mmo), offset);

		if (mmo->mmap_type == mmap_type) {
			spin_unlock(&obj->mmo.lock);
			return mmo;
		}

		if (mmo->mmap_type < mmap_type)
			rb = rb->rb_right;
		else
			rb = rb->rb_left;
	}
	spin_unlock(&obj->mmo.lock);

	return NULL;
}

static struct i915_mmap_offset *
insert_mmo(struct drm_i915_gem_object *obj, struct i915_mmap_offset *mmo)
{
	struct rb_node *rb, **p;

	spin_lock(&obj->mmo.lock);
	rb = NULL;
	p = &obj->mmo.offsets.rb_node;
	while (*p) {
		struct i915_mmap_offset *pos;

		rb = *p;
		pos = rb_entry(rb, typeof(*pos), offset);

		if (pos->mmap_type == mmo->mmap_type) {
			spin_unlock(&obj->mmo.lock);
			drm_vma_offset_remove(obj->base.dev->vma_offset_manager,
					      &mmo->vma_node);
			kfree(mmo);
			return pos;
		}

		if (pos->mmap_type < mmo->mmap_type)
			p = &rb->rb_right;
		else
			p = &rb->rb_left;
	}
	rb_link_node(&mmo->offset, rb, p);
	rb_insert_color(&mmo->offset, &obj->mmo.offsets);
	spin_unlock(&obj->mmo.lock);

	return mmo;
}

619 620 621 622
static struct i915_mmap_offset *
mmap_offset_attach(struct drm_i915_gem_object *obj,
		   enum i915_mmap_type mmap_type,
		   struct drm_file *file)
623 624
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
625
	struct i915_mmap_offset *mmo;
626 627
	int err;

628 629
	GEM_BUG_ON(obj->ops->mmap_offset || obj->ops->mmap_ops);

630 631 632 633
	mmo = lookup_mmo(obj, mmap_type);
	if (mmo)
		goto out;

634 635 636 637 638 639 640 641
	mmo = kmalloc(sizeof(*mmo), GFP_KERNEL);
	if (!mmo)
		return ERR_PTR(-ENOMEM);

	mmo->obj = obj;
	mmo->mmap_type = mmap_type;
	drm_vma_node_reset(&mmo->vma_node);

642 643
	err = drm_vma_offset_add(obj->base.dev->vma_offset_manager,
				 &mmo->vma_node, obj->base.size / PAGE_SIZE);
644
	if (likely(!err))
645
		goto insert;
646 647

	/* Attempt to reap some mmap space from dead objects */
648
	err = intel_gt_retire_requests_timeout(&i915->gt, MAX_SCHEDULE_TIMEOUT);
649
	if (err)
650
		goto err;
651

652
	i915_gem_drain_freed_objects(i915);
653 654
	err = drm_vma_offset_add(obj->base.dev->vma_offset_manager,
				 &mmo->vma_node, obj->base.size / PAGE_SIZE);
655 656 657
	if (err)
		goto err;

658 659 660
insert:
	mmo = insert_mmo(obj, mmo);
	GEM_BUG_ON(lookup_mmo(obj, mmap_type) != mmo);
661 662 663 664 665 666 667 668
out:
	if (file)
		drm_vma_node_allow(&mmo->vma_node, file);
	return mmo;

err:
	kfree(mmo);
	return ERR_PTR(err);
669 670
}

671
static int
672
__assign_mmap_offset(struct drm_i915_gem_object *obj,
673
		     enum i915_mmap_type mmap_type,
674
		     u64 *offset, struct drm_file *file)
675
{
676
	struct i915_mmap_offset *mmo;
677

678 679
	if (i915_gem_object_never_mmap(obj))
		return -ENODEV;
680

681
	if (obj->ops->mmap_offset)  {
682 683 684
		if (mmap_type != I915_MMAP_TYPE_FIXED)
			return -ENODEV;

685 686
		*offset = obj->ops->mmap_offset(obj);
		return 0;
687 688
	}

689 690 691
	if (mmap_type == I915_MMAP_TYPE_FIXED)
		return -ENODEV;

692
	if (mmap_type != I915_MMAP_TYPE_GTT &&
693
	    !i915_gem_object_has_struct_page(obj) &&
694
	    !i915_gem_object_has_iomem(obj))
695
		return -ENODEV;
696 697

	mmo = mmap_offset_attach(obj, mmap_type, file);
698 699
	if (IS_ERR(mmo))
		return PTR_ERR(mmo);
700

701
	*offset = drm_vma_node_offset_addr(&mmo->vma_node);
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
	return 0;
}

static int
__assign_mmap_offset_handle(struct drm_file *file,
			    u32 handle,
			    enum i915_mmap_type mmap_type,
			    u64 *offset)
{
	struct drm_i915_gem_object *obj;
	int err;

	obj = i915_gem_object_lookup(file, handle);
	if (!obj)
		return -ENOENT;

718 719 720
	err = i915_gem_object_lock_interruptible(obj, NULL);
	if (err)
		goto out_put;
721
	err = __assign_mmap_offset(obj, mmap_type, offset, file);
722 723
	i915_gem_object_unlock(obj);
out_put:
724
	i915_gem_object_put(obj);
725 726 727 728 729 730 731 732 733 734 735
	return err;
}

int
i915_gem_dumb_mmap_offset(struct drm_file *file,
			  struct drm_device *dev,
			  u32 handle,
			  u64 *offset)
{
	enum i915_mmap_type mmap_type;

736 737 738
	if (HAS_LMEM(to_i915(dev)))
		mmap_type = I915_MMAP_TYPE_FIXED;
	else if (boot_cpu_has(X86_FEATURE_PAT))
739 740 741 742 743 744
		mmap_type = I915_MMAP_TYPE_WC;
	else if (!i915_ggtt_has_aperture(&to_i915(dev)->ggtt))
		return -ENODEV;
	else
		mmap_type = I915_MMAP_TYPE_GTT;

745
	return __assign_mmap_offset_handle(file, handle, mmap_type, offset);
746 747 748
}

/**
749
 * i915_gem_mmap_offset_ioctl - prepare an object for GTT mmap'ing
750 751 752 753 754 755 756 757 758 759 760 761 762 763
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
764 765
i915_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
766
{
767 768 769
	struct drm_i915_private *i915 = to_i915(dev);
	struct drm_i915_gem_mmap_offset *args = data;
	enum i915_mmap_type type;
770
	int err;
771

772 773 774 775 776 777 778 779 780
	/*
	 * Historically we failed to check args.pad and args.offset
	 * and so we cannot use those fields for user input and we cannot
	 * add -EINVAL for them as the ABI is fixed, i.e. old userspace
	 * may be feeding in garbage in those fields.
	 *
	 * if (args->pad) return -EINVAL; is verbotten!
	 */

781 782 783 784
	err = i915_user_extensions(u64_to_user_ptr(args->extensions),
				   NULL, 0, NULL);
	if (err)
		return err;
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808

	switch (args->flags) {
	case I915_MMAP_OFFSET_GTT:
		if (!i915_ggtt_has_aperture(&i915->ggtt))
			return -ENODEV;
		type = I915_MMAP_TYPE_GTT;
		break;

	case I915_MMAP_OFFSET_WC:
		if (!boot_cpu_has(X86_FEATURE_PAT))
			return -ENODEV;
		type = I915_MMAP_TYPE_WC;
		break;

	case I915_MMAP_OFFSET_WB:
		type = I915_MMAP_TYPE_WB;
		break;

	case I915_MMAP_OFFSET_UC:
		if (!boot_cpu_has(X86_FEATURE_PAT))
			return -ENODEV;
		type = I915_MMAP_TYPE_UC;
		break;

809 810 811 812
	case I915_MMAP_OFFSET_FIXED:
		type = I915_MMAP_TYPE_FIXED;
		break;

813 814 815
	default:
		return -EINVAL;
	}
816

817
	return __assign_mmap_offset_handle(file, args->handle, type, &args->offset);
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
}

static void vm_open(struct vm_area_struct *vma)
{
	struct i915_mmap_offset *mmo = vma->vm_private_data;
	struct drm_i915_gem_object *obj = mmo->obj;

	GEM_BUG_ON(!obj);
	i915_gem_object_get(obj);
}

static void vm_close(struct vm_area_struct *vma)
{
	struct i915_mmap_offset *mmo = vma->vm_private_data;
	struct drm_i915_gem_object *obj = mmo->obj;

	GEM_BUG_ON(!obj);
	i915_gem_object_put(obj);
}

static const struct vm_operations_struct vm_ops_gtt = {
	.fault = vm_fault_gtt,
840
	.access = vm_access,
841 842 843 844 845 846
	.open = vm_open,
	.close = vm_close,
};

static const struct vm_operations_struct vm_ops_cpu = {
	.fault = vm_fault_cpu,
847
	.access = vm_access,
848 849 850 851
	.open = vm_open,
	.close = vm_close,
};

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
static int singleton_release(struct inode *inode, struct file *file)
{
	struct drm_i915_private *i915 = file->private_data;

	cmpxchg(&i915->gem.mmap_singleton, file, NULL);
	drm_dev_put(&i915->drm);

	return 0;
}

static const struct file_operations singleton_fops = {
	.owner = THIS_MODULE,
	.release = singleton_release,
};

static struct file *mmap_singleton(struct drm_i915_private *i915)
{
	struct file *file;

	rcu_read_lock();
872
	file = READ_ONCE(i915->gem.mmap_singleton);
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
	if (file && !get_file_rcu(file))
		file = NULL;
	rcu_read_unlock();
	if (file)
		return file;

	file = anon_inode_getfile("i915.gem", &singleton_fops, i915, O_RDWR);
	if (IS_ERR(file))
		return file;

	/* Everyone shares a single global address space */
	file->f_mapping = i915->drm.anon_inode->i_mapping;

	smp_store_mb(i915->gem.mmap_singleton, file);
	drm_dev_get(&i915->drm);

	return file;
}

892 893 894 895 896 897 898 899 900 901 902
/*
 * This overcomes the limitation in drm_gem_mmap's assignment of a
 * drm_gem_object as the vma->vm_private_data. Since we need to
 * be able to resolve multiple mmap offsets which could be tied
 * to a single gem object.
 */
int i915_gem_mmap(struct file *filp, struct vm_area_struct *vma)
{
	struct drm_vma_offset_node *node;
	struct drm_file *priv = filp->private_data;
	struct drm_device *dev = priv->minor->dev;
903
	struct drm_i915_gem_object *obj = NULL;
904
	struct i915_mmap_offset *mmo = NULL;
905
	struct file *anon;
906 907 908 909

	if (drm_dev_is_unplugged(dev))
		return -ENODEV;

910
	rcu_read_lock();
911 912 913 914
	drm_vma_offset_lock_lookup(dev->vma_offset_manager);
	node = drm_vma_offset_exact_lookup_locked(dev->vma_offset_manager,
						  vma->vm_pgoff,
						  vma_pages(vma));
915
	if (node && drm_vma_node_is_allowed(node, priv)) {
916 917 918 919 920
		/*
		 * Skip 0-refcnted objects as it is in the process of being
		 * destroyed and will be invalid when the vma manager lock
		 * is released.
		 */
921 922 923 924 925 926 927 928 929 930 931 932
		if (!node->driver_private) {
			mmo = container_of(node, struct i915_mmap_offset, vma_node);
			obj = i915_gem_object_get_rcu(mmo->obj);

			GEM_BUG_ON(obj && obj->ops->mmap_ops);
		} else {
			obj = i915_gem_object_get_rcu
				(container_of(node, struct drm_i915_gem_object,
					      base.vma_node));

			GEM_BUG_ON(obj && !obj->ops->mmap_ops);
		}
933 934
	}
	drm_vma_offset_unlock_lookup(dev->vma_offset_manager);
935
	rcu_read_unlock();
936
	if (!obj)
937
		return node ? -EACCES : -EINVAL;
938

939
	if (i915_gem_object_is_readonly(obj)) {
940
		if (vma->vm_flags & VM_WRITE) {
941
			i915_gem_object_put(obj);
942 943 944 945 946
			return -EINVAL;
		}
		vma->vm_flags &= ~VM_MAYWRITE;
	}

947
	anon = mmap_singleton(to_i915(dev));
948
	if (IS_ERR(anon)) {
949
		i915_gem_object_put(obj);
950 951 952
		return PTR_ERR(anon);
	}

953
	vma->vm_flags |= VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO;
954

955 956 957 958 959 960 961 962
	/*
	 * We keep the ref on mmo->obj, not vm_file, but we require
	 * vma->vm_file->f_mapping, see vma_link(), for later revocation.
	 * Our userspace is accustomed to having per-file resource cleanup
	 * (i.e. contexts, objects and requests) on their close(fd), which
	 * requires avoiding extraneous references to their filp, hence why
	 * we prefer to use an anonymous file for their mmaps.
	 */
963 964 965
	vma_set_file(vma, anon);
	/* Drop the initial creation reference, the vma is now holding one. */
	fput(anon);
966

967 968 969 970 971 972 973 974 975
	if (obj->ops->mmap_ops) {
		vma->vm_page_prot = pgprot_decrypted(vm_get_page_prot(vma->vm_flags));
		vma->vm_ops = obj->ops->mmap_ops;
		vma->vm_private_data = node->driver_private;
		return 0;
	}

	vma->vm_private_data = mmo;

976 977 978 979 980 981 982
	switch (mmo->mmap_type) {
	case I915_MMAP_TYPE_WC:
		vma->vm_page_prot =
			pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		vma->vm_ops = &vm_ops_cpu;
		break;

983 984 985
	case I915_MMAP_TYPE_FIXED:
		GEM_WARN_ON(1);
		fallthrough;
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	case I915_MMAP_TYPE_WB:
		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
		vma->vm_ops = &vm_ops_cpu;
		break;

	case I915_MMAP_TYPE_UC:
		vma->vm_page_prot =
			pgprot_noncached(vm_get_page_prot(vma->vm_flags));
		vma->vm_ops = &vm_ops_cpu;
		break;

	case I915_MMAP_TYPE_GTT:
		vma->vm_page_prot =
			pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		vma->vm_ops = &vm_ops_gtt;
		break;
	}
	vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);

	return 0;
1006 1007 1008 1009 1010
}

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/i915_gem_mman.c"
#endif