i915_gem_mman.c 20.7 KB
Newer Older
1 2 3 4 5 6 7
/*
 * SPDX-License-Identifier: MIT
 *
 * Copyright © 2014-2016 Intel Corporation
 */

#include <linux/mman.h>
8
#include <linux/pfn_t.h>
9 10
#include <linux/sizes.h>

11
#include "gt/intel_gt.h"
12
#include "gt/intel_gt_requests.h"
13

14 15 16 17
#include "i915_drv.h"
#include "i915_gem_gtt.h"
#include "i915_gem_ioctls.h"
#include "i915_gem_object.h"
18
#include "i915_gem_mman.h"
19
#include "i915_trace.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
#include "i915_vma.h"

static inline bool
__vma_matches(struct vm_area_struct *vma, struct file *filp,
	      unsigned long addr, unsigned long size)
{
	if (vma->vm_file != filp)
		return false;

	return vma->vm_start == addr &&
	       (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
}

/**
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_i915_gem_object *obj;
	unsigned long addr;

	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
		return -ENODEV;

	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->base.filp) {
		addr = -ENXIO;
		goto err;
	}

	if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
		addr = -EINVAL;
		goto err;
	}

	addr = vm_mmap(obj->base.filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	if (IS_ERR_VALUE(addr))
		goto err;

	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		if (down_write_killable(&mm->mmap_sem)) {
			addr = -EINTR;
			goto err;
		}
		vma = find_vma(mm, addr);
		if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
		if (IS_ERR_VALUE(addr))
			goto err;
	}
	i915_gem_object_put(obj);

	args->addr_ptr = (u64)addr;
	return 0;

err:
	i915_gem_object_put(obj);
	return addr;
}

static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
{
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
}

/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
 * 3 - Remove implicit set-domain(GTT) and synchronisation on initial
 *     pagefault; swapin remains transparent.
 *
149 150 151
 * 4 - Support multiple fault handlers per object depending on object's
 *     backing storage (a.k.a. MMAP_OFFSET).
 *
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
179
	return 4;
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
}

static inline struct i915_ggtt_view
compute_partial_view(const struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
		min_t(unsigned int, chunk,
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static vm_fault_t i915_error_to_vmf_fault(int err)
{
	switch (err) {
	default:
		WARN_ONCE(err, "unhandled error in %s: %i\n", __func__, err);
		/* fallthrough */
	case -EIO: /* shmemfs failure from swap device */
	case -EFAULT: /* purged object */
	case -ENODEV: /* bad object, how did you get here! */
		return VM_FAULT_SIGBUS;

	case -ENOSPC: /* shmemfs allocation failure */
	case -ENOMEM: /* our allocation failure */
		return VM_FAULT_OOM;

	case 0:
	case -EAGAIN:
	case -ERESTARTSYS:
	case -EINTR:
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
		return VM_FAULT_NOPAGE;
	}
}

static vm_fault_t vm_fault_cpu(struct vm_fault *vmf)
{
	struct vm_area_struct *area = vmf->vma;
	struct i915_mmap_offset *mmo = area->vm_private_data;
	struct drm_i915_gem_object *obj = mmo->obj;
	unsigned long i, size = area->vm_end - area->vm_start;
	bool write = area->vm_flags & VM_WRITE;
	vm_fault_t ret = VM_FAULT_SIGBUS;
	int err;

	if (!i915_gem_object_has_struct_page(obj))
		return ret;

	/* Sanity check that we allow writing into this object */
	if (i915_gem_object_is_readonly(obj) && write)
		return ret;

	err = i915_gem_object_pin_pages(obj);
	if (err)
		return i915_error_to_vmf_fault(err);

	/* PTEs are revoked in obj->ops->put_pages() */
	for (i = 0; i < size >> PAGE_SHIFT; i++) {
		struct page *page = i915_gem_object_get_page(obj, i);

		ret = vmf_insert_pfn(area,
				     (unsigned long)area->vm_start + i * PAGE_SIZE,
				     page_to_pfn(page));
		if (ret != VM_FAULT_NOPAGE)
			break;
	}

	if (write) {
		GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
		obj->cache_dirty = true; /* XXX flush after PAT update? */
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);

	return ret;
}

static vm_fault_t vm_fault_gtt(struct vm_fault *vmf)
277 278 279
{
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
	struct vm_area_struct *area = vmf->vma;
280 281
	struct i915_mmap_offset *mmo = area->vm_private_data;
	struct drm_i915_gem_object *obj = mmo->obj;
282 283
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *i915 = to_i915(dev);
284
	struct intel_runtime_pm *rpm = &i915->runtime_pm;
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
	struct i915_ggtt *ggtt = &i915->ggtt;
	bool write = area->vm_flags & VM_WRITE;
	intel_wakeref_t wakeref;
	struct i915_vma *vma;
	pgoff_t page_offset;
	int srcu;
	int ret;

	/* Sanity check that we allow writing into this object */
	if (i915_gem_object_is_readonly(obj) && write)
		return VM_FAULT_SIGBUS;

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;

	trace_i915_gem_object_fault(obj, page_offset, true, write);

	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

306
	wakeref = intel_runtime_pm_get(rpm);
307

308 309
	ret = intel_gt_reset_trylock(ggtt->vm.gt, &srcu);
	if (ret)
310 311 312 313 314
		goto err_rpm;

	/* Now pin it into the GTT as needed */
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE |
315
				       PIN_NONBLOCK /* NOWARN */ |
316
				       PIN_NOEVICT);
317 318 319 320 321 322
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
		struct i915_ggtt_view view =
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
		unsigned int flags;

323
		flags = PIN_MAPPABLE | PIN_NOSEARCH;
324 325 326 327 328 329 330 331 332
		if (view.type == I915_GGTT_VIEW_NORMAL)
			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */

		/*
		 * Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */

		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
333
		if (IS_ERR(vma)) {
334 335 336 337
			flags = PIN_MAPPABLE;
			view.type = I915_GGTT_VIEW_PARTIAL;
			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		}
338 339 340

		/* The entire mappable GGTT is pinned? Unexpected! */
		GEM_BUG_ON(vma == ERR_PTR(-ENOSPC));
341 342 343
	}
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
344 345 346 347 348 349 350
		goto err_reset;
	}

	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(i915)) {
		ret = -EFAULT;
		goto err_unpin;
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
	}

	ret = i915_vma_pin_fence(vma);
	if (ret)
		goto err_unpin;

	/* Finally, remap it using the new GTT offset */
	ret = remap_io_mapping(area,
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->iomap);
	if (ret)
		goto err_fence;

366
	assert_rpm_wakelock_held(rpm);
367 368 369

	/* Mark as being mmapped into userspace for later revocation */
	mutex_lock(&i915->ggtt.vm.mutex);
370
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
371
		list_add(&obj->userfault_link, &i915->ggtt.userfault_list);
372 373
	mutex_unlock(&i915->ggtt.vm.mutex);

374 375 376
	/* Track the mmo associated with the fenced vma */
	vma->mmo = mmo;

377
	if (IS_ACTIVE(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND))
378
		intel_wakeref_auto(&i915->ggtt.userfault_wakeref,
379 380
				   msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND));

381 382 383 384 385
	if (write) {
		GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
		i915_vma_set_ggtt_write(vma);
		obj->mm.dirty = true;
	}
386 387 388 389 390 391

err_fence:
	i915_vma_unpin_fence(vma);
err_unpin:
	__i915_vma_unpin(vma);
err_reset:
392
	intel_gt_reset_unlock(ggtt->vm.gt, srcu);
393
err_rpm:
394
	intel_runtime_pm_put(rpm, wakeref);
395 396
	i915_gem_object_unpin_pages(obj);
err:
397
	return i915_error_to_vmf_fault(ret);
398 399
}

400
void __i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj)
401 402 403 404 405 406
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	for_each_ggtt_vma(vma, obj)
407 408 409
		i915_vma_revoke_mmap(vma);

	GEM_BUG_ON(obj->userfault_count);
410 411
}

412
/*
413 414 415 416 417
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
418
 * fixup by vm_fault_gtt().
419
 */
420
static void i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj)
421 422 423 424
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	intel_wakeref_t wakeref;

425 426
	/*
	 * Serialisation between user GTT access and our code depends upon
427 428 429 430 431 432 433
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
	 */
434
	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
435
	mutex_lock(&i915->ggtt.vm.mutex);
436 437 438 439

	if (!obj->userfault_count)
		goto out;

440
	__i915_gem_object_release_mmap_gtt(obj);
441

442 443
	/*
	 * Ensure that the CPU's PTE are revoked and there are not outstanding
444 445 446 447 448 449 450 451 452
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

out:
453
	mutex_unlock(&i915->ggtt.vm.mutex);
454
	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
455 456
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
void i915_gem_object_release_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct i915_mmap_offset *mmo;

	spin_lock(&obj->mmo.lock);
	list_for_each_entry(mmo, &obj->mmo.offsets, offset) {
		/*
		 * vma_node_unmap for GTT mmaps handled already in
		 * __i915_gem_object_release_mmap_gtt
		 */
		if (mmo->mmap_type == I915_MMAP_TYPE_GTT)
			continue;

		spin_unlock(&obj->mmo.lock);
		drm_vma_node_unmap(&mmo->vma_node,
				   obj->base.dev->anon_inode->i_mapping);
		spin_lock(&obj->mmo.lock);
	}
	spin_unlock(&obj->mmo.lock);
}

/**
 * i915_gem_object_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
 * Preserve the reservation of the mmapping with the DRM core code, but
 * relinquish ownership of the pages back to the system.
 */
void i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	i915_gem_object_release_mmap_gtt(obj);
	i915_gem_object_release_mmap_offset(obj);
}

static struct i915_mmap_offset *
mmap_offset_attach(struct drm_i915_gem_object *obj,
		   enum i915_mmap_type mmap_type,
		   struct drm_file *file)
495 496
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
497
	struct i915_mmap_offset *mmo;
498 499
	int err;

500 501 502 503 504 505 506 507 508 509 510 511
	mmo = kmalloc(sizeof(*mmo), GFP_KERNEL);
	if (!mmo)
		return ERR_PTR(-ENOMEM);

	mmo->obj = obj;
	mmo->dev = obj->base.dev;
	mmo->file = file;
	mmo->mmap_type = mmap_type;
	drm_vma_node_reset(&mmo->vma_node);

	err = drm_vma_offset_add(mmo->dev->vma_offset_manager, &mmo->vma_node,
				 obj->base.size / PAGE_SIZE);
512
	if (likely(!err))
513
		goto out;
514 515

	/* Attempt to reap some mmap space from dead objects */
516
	err = intel_gt_retire_requests_timeout(&i915->gt, MAX_SCHEDULE_TIMEOUT);
517
	if (err)
518
		goto err;
519

520
	i915_gem_drain_freed_objects(i915);
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
	err = drm_vma_offset_add(mmo->dev->vma_offset_manager, &mmo->vma_node,
				 obj->base.size / PAGE_SIZE);
	if (err)
		goto err;

out:
	if (file)
		drm_vma_node_allow(&mmo->vma_node, file);

	spin_lock(&obj->mmo.lock);
	list_add(&mmo->offset, &obj->mmo.offsets);
	spin_unlock(&obj->mmo.lock);

	return mmo;

err:
	kfree(mmo);
	return ERR_PTR(err);
539 540
}

541 542 543 544 545
static int
__assign_mmap_offset(struct drm_file *file,
		     u32 handle,
		     enum i915_mmap_type mmap_type,
		     u64 *offset)
546 547
{
	struct drm_i915_gem_object *obj;
548 549
	struct i915_mmap_offset *mmo;
	int err;
550

551 552 553 554
	obj = i915_gem_object_lookup(file, handle);
	if (!obj)
		return -ENOENT;

555 556 557
	if (mmap_type == I915_MMAP_TYPE_GTT &&
	    i915_gem_object_never_bind_ggtt(obj)) {
		err = -ENODEV;
558 559 560
		goto out;
	}

561 562 563 564 565 566 567 568 569 570 571
	if (mmap_type != I915_MMAP_TYPE_GTT &&
	    !i915_gem_object_has_struct_page(obj)) {
		err = -ENODEV;
		goto out;
	}

	mmo = mmap_offset_attach(obj, mmap_type, file);
	if (IS_ERR(mmo)) {
		err = PTR_ERR(mmo);
		goto out;
	}
572

573 574
	*offset = drm_vma_node_offset_addr(&mmo->vma_node);
	err = 0;
575
out:
576
	i915_gem_object_put(obj);
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
	return err;
}

int
i915_gem_dumb_mmap_offset(struct drm_file *file,
			  struct drm_device *dev,
			  u32 handle,
			  u64 *offset)
{
	enum i915_mmap_type mmap_type;

	if (boot_cpu_has(X86_FEATURE_PAT))
		mmap_type = I915_MMAP_TYPE_WC;
	else if (!i915_ggtt_has_aperture(&to_i915(dev)->ggtt))
		return -ENODEV;
	else
		mmap_type = I915_MMAP_TYPE_GTT;

	return __assign_mmap_offset(file, handle, mmap_type, offset);
596 597 598
}

/**
599
 * i915_gem_mmap_offset_ioctl - prepare an object for GTT mmap'ing
600 601 602 603 604 605 606 607 608 609 610 611 612 613
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
614 615
i915_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
616
{
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
	struct drm_i915_private *i915 = to_i915(dev);
	struct drm_i915_gem_mmap_offset *args = data;
	enum i915_mmap_type type;

	if (args->extensions)
		return -EINVAL;

	switch (args->flags) {
	case I915_MMAP_OFFSET_GTT:
		if (!i915_ggtt_has_aperture(&i915->ggtt))
			return -ENODEV;
		type = I915_MMAP_TYPE_GTT;
		break;

	case I915_MMAP_OFFSET_WC:
		if (!boot_cpu_has(X86_FEATURE_PAT))
			return -ENODEV;
		type = I915_MMAP_TYPE_WC;
		break;

	case I915_MMAP_OFFSET_WB:
		type = I915_MMAP_TYPE_WB;
		break;

	case I915_MMAP_OFFSET_UC:
		if (!boot_cpu_has(X86_FEATURE_PAT))
			return -ENODEV;
		type = I915_MMAP_TYPE_UC;
		break;

	default:
		return -EINVAL;
	}
650

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
	return __assign_mmap_offset(file, args->handle, type, &args->offset);
}

static void vm_open(struct vm_area_struct *vma)
{
	struct i915_mmap_offset *mmo = vma->vm_private_data;
	struct drm_i915_gem_object *obj = mmo->obj;

	GEM_BUG_ON(!obj);
	i915_gem_object_get(obj);
}

static void vm_close(struct vm_area_struct *vma)
{
	struct i915_mmap_offset *mmo = vma->vm_private_data;
	struct drm_i915_gem_object *obj = mmo->obj;

	GEM_BUG_ON(!obj);
	i915_gem_object_put(obj);
}

static const struct vm_operations_struct vm_ops_gtt = {
	.fault = vm_fault_gtt,
	.open = vm_open,
	.close = vm_close,
};

static const struct vm_operations_struct vm_ops_cpu = {
	.fault = vm_fault_cpu,
	.open = vm_open,
	.close = vm_close,
};

/*
 * This overcomes the limitation in drm_gem_mmap's assignment of a
 * drm_gem_object as the vma->vm_private_data. Since we need to
 * be able to resolve multiple mmap offsets which could be tied
 * to a single gem object.
 */
int i915_gem_mmap(struct file *filp, struct vm_area_struct *vma)
{
	struct drm_vma_offset_node *node;
	struct drm_file *priv = filp->private_data;
	struct drm_device *dev = priv->minor->dev;
	struct i915_mmap_offset *mmo = NULL;
	struct drm_gem_object *obj = NULL;

	if (drm_dev_is_unplugged(dev))
		return -ENODEV;

	drm_vma_offset_lock_lookup(dev->vma_offset_manager);
	node = drm_vma_offset_exact_lookup_locked(dev->vma_offset_manager,
						  vma->vm_pgoff,
						  vma_pages(vma));
	if (likely(node)) {
		mmo = container_of(node, struct i915_mmap_offset,
				   vma_node);
		/*
		 * In our dependency chain, the drm_vma_offset_node
		 * depends on the validity of the mmo, which depends on
		 * the gem object. However the only reference we have
		 * at this point is the mmo (as the parent of the node).
		 * Try to check if the gem object was at least cleared.
		 */
		if (!mmo || !mmo->obj) {
			drm_vma_offset_unlock_lookup(dev->vma_offset_manager);
			return -EINVAL;
		}
		/*
		 * Skip 0-refcnted objects as it is in the process of being
		 * destroyed and will be invalid when the vma manager lock
		 * is released.
		 */
		obj = &mmo->obj->base;
		if (!kref_get_unless_zero(&obj->refcount))
			obj = NULL;
	}
	drm_vma_offset_unlock_lookup(dev->vma_offset_manager);
	if (!obj)
		return -EINVAL;

	if (!drm_vma_node_is_allowed(node, priv)) {
		drm_gem_object_put_unlocked(obj);
		return -EACCES;
	}

	if (i915_gem_object_is_readonly(to_intel_bo(obj))) {
		if (vma->vm_flags & VM_WRITE) {
			drm_gem_object_put_unlocked(obj);
			return -EINVAL;
		}
		vma->vm_flags &= ~VM_MAYWRITE;
	}

	vma->vm_flags |= VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
	vma->vm_private_data = mmo;

	switch (mmo->mmap_type) {
	case I915_MMAP_TYPE_WC:
		vma->vm_page_prot =
			pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		vma->vm_ops = &vm_ops_cpu;
		break;

	case I915_MMAP_TYPE_WB:
		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
		vma->vm_ops = &vm_ops_cpu;
		break;

	case I915_MMAP_TYPE_UC:
		vma->vm_page_prot =
			pgprot_noncached(vm_get_page_prot(vma->vm_flags));
		vma->vm_ops = &vm_ops_cpu;
		break;

	case I915_MMAP_TYPE_GTT:
		vma->vm_page_prot =
			pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		vma->vm_ops = &vm_ops_gtt;
		break;
	}
	vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);

	return 0;
775 776 777 778 779
}

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/i915_gem_mman.c"
#endif