i915_gem_mman.c 24.0 KB
Newer Older
1 2 3 4 5 6
/*
 * SPDX-License-Identifier: MIT
 *
 * Copyright © 2014-2016 Intel Corporation
 */

7
#include <linux/anon_inodes.h>
8
#include <linux/mman.h>
9
#include <linux/pfn_t.h>
10 11
#include <linux/sizes.h>

12
#include "gt/intel_gt.h"
13
#include "gt/intel_gt_requests.h"
14

15 16 17 18
#include "i915_drv.h"
#include "i915_gem_gtt.h"
#include "i915_gem_ioctls.h"
#include "i915_gem_object.h"
19
#include "i915_gem_mman.h"
20
#include "i915_trace.h"
21
#include "i915_user_extensions.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
#include "i915_vma.h"

static inline bool
__vma_matches(struct vm_area_struct *vma, struct file *filp,
	      unsigned long addr, unsigned long size)
{
	if (vma->vm_file != filp)
		return false;

	return vma->vm_start == addr &&
	       (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
}

/**
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_i915_gem_object *obj;
	unsigned long addr;

	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
		return -ENODEV;

	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->base.filp) {
		addr = -ENXIO;
		goto err;
	}

	if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
		addr = -EINVAL;
		goto err;
	}

	addr = vm_mmap(obj->base.filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	if (IS_ERR_VALUE(addr))
		goto err;

	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		if (down_write_killable(&mm->mmap_sem)) {
			addr = -EINTR;
			goto err;
		}
		vma = find_vma(mm, addr);
		if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
		if (IS_ERR_VALUE(addr))
			goto err;
	}
	i915_gem_object_put(obj);

	args->addr_ptr = (u64)addr;
	return 0;

err:
	i915_gem_object_put(obj);
	return addr;
}

static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
{
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
}

/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
 * 3 - Remove implicit set-domain(GTT) and synchronisation on initial
 *     pagefault; swapin remains transparent.
 *
151 152 153
 * 4 - Support multiple fault handlers per object depending on object's
 *     backing storage (a.k.a. MMAP_OFFSET).
 *
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
181
	return 4;
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
}

static inline struct i915_ggtt_view
compute_partial_view(const struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
		min_t(unsigned int, chunk,
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

207 208 209 210 211 212 213 214 215
static vm_fault_t i915_error_to_vmf_fault(int err)
{
	switch (err) {
	default:
		WARN_ONCE(err, "unhandled error in %s: %i\n", __func__, err);
		/* fallthrough */
	case -EIO: /* shmemfs failure from swap device */
	case -EFAULT: /* purged object */
	case -ENODEV: /* bad object, how did you get here! */
216
	case -ENXIO: /* unable to access backing store (on device) */
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
		return VM_FAULT_SIGBUS;

	case -ENOSPC: /* shmemfs allocation failure */
	case -ENOMEM: /* our allocation failure */
		return VM_FAULT_OOM;

	case 0:
	case -EAGAIN:
	case -ERESTARTSYS:
	case -EINTR:
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
		return VM_FAULT_NOPAGE;
	}
}

static vm_fault_t vm_fault_cpu(struct vm_fault *vmf)
{
	struct vm_area_struct *area = vmf->vma;
	struct i915_mmap_offset *mmo = area->vm_private_data;
	struct drm_i915_gem_object *obj = mmo->obj;
241
	resource_size_t iomap;
242 243 244
	int err;

	/* Sanity check that we allow writing into this object */
245 246 247
	if (unlikely(i915_gem_object_is_readonly(obj) &&
		     area->vm_flags & VM_WRITE))
		return VM_FAULT_SIGBUS;
248 249 250

	err = i915_gem_object_pin_pages(obj);
	if (err)
251
		goto out;
252

253 254 255 256 257 258
	iomap = -1;
	if (!i915_gem_object_type_has(obj, I915_GEM_OBJECT_HAS_STRUCT_PAGE)) {
		iomap = obj->mm.region->iomap.base;
		iomap -= obj->mm.region->region.start;
	}

259
	/* PTEs are revoked in obj->ops->put_pages() */
260 261 262
	err = remap_io_sg(area,
			  area->vm_start, area->vm_end - area->vm_start,
			  obj->mm.pages->sgl, iomap);
263

264
	if (area->vm_flags & VM_WRITE) {
265 266 267 268 269 270
		GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);

271 272
out:
	return i915_error_to_vmf_fault(err);
273 274 275
}

static vm_fault_t vm_fault_gtt(struct vm_fault *vmf)
276 277 278
{
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
	struct vm_area_struct *area = vmf->vma;
279 280
	struct i915_mmap_offset *mmo = area->vm_private_data;
	struct drm_i915_gem_object *obj = mmo->obj;
281 282
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *i915 = to_i915(dev);
283
	struct intel_runtime_pm *rpm = &i915->runtime_pm;
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	struct i915_ggtt *ggtt = &i915->ggtt;
	bool write = area->vm_flags & VM_WRITE;
	intel_wakeref_t wakeref;
	struct i915_vma *vma;
	pgoff_t page_offset;
	int srcu;
	int ret;

	/* Sanity check that we allow writing into this object */
	if (i915_gem_object_is_readonly(obj) && write)
		return VM_FAULT_SIGBUS;

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;

	trace_i915_gem_object_fault(obj, page_offset, true, write);

	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

305
	wakeref = intel_runtime_pm_get(rpm);
306

307 308
	ret = intel_gt_reset_trylock(ggtt->vm.gt, &srcu);
	if (ret)
309 310 311 312 313
		goto err_rpm;

	/* Now pin it into the GTT as needed */
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE |
314
				       PIN_NONBLOCK /* NOWARN */ |
315
				       PIN_NOEVICT);
316 317 318 319 320 321
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
		struct i915_ggtt_view view =
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
		unsigned int flags;

322
		flags = PIN_MAPPABLE | PIN_NOSEARCH;
323 324 325 326 327 328 329 330 331
		if (view.type == I915_GGTT_VIEW_NORMAL)
			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */

		/*
		 * Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */

		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
332
		if (IS_ERR(vma)) {
333 334 335 336
			flags = PIN_MAPPABLE;
			view.type = I915_GGTT_VIEW_PARTIAL;
			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		}
337 338 339

		/* The entire mappable GGTT is pinned? Unexpected! */
		GEM_BUG_ON(vma == ERR_PTR(-ENOSPC));
340 341 342
	}
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
343 344 345 346 347 348 349
		goto err_reset;
	}

	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(i915)) {
		ret = -EFAULT;
		goto err_unpin;
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
	}

	ret = i915_vma_pin_fence(vma);
	if (ret)
		goto err_unpin;

	/* Finally, remap it using the new GTT offset */
	ret = remap_io_mapping(area,
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->iomap);
	if (ret)
		goto err_fence;

365
	assert_rpm_wakelock_held(rpm);
366 367 368

	/* Mark as being mmapped into userspace for later revocation */
	mutex_lock(&i915->ggtt.vm.mutex);
369
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
370
		list_add(&obj->userfault_link, &i915->ggtt.userfault_list);
371 372
	mutex_unlock(&i915->ggtt.vm.mutex);

373 374 375
	/* Track the mmo associated with the fenced vma */
	vma->mmo = mmo;

376
	if (IS_ACTIVE(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND))
377
		intel_wakeref_auto(&i915->ggtt.userfault_wakeref,
378 379
				   msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND));

380 381 382 383 384
	if (write) {
		GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
		i915_vma_set_ggtt_write(vma);
		obj->mm.dirty = true;
	}
385 386 387 388 389 390

err_fence:
	i915_vma_unpin_fence(vma);
err_unpin:
	__i915_vma_unpin(vma);
err_reset:
391
	intel_gt_reset_unlock(ggtt->vm.gt, srcu);
392
err_rpm:
393
	intel_runtime_pm_put(rpm, wakeref);
394 395
	i915_gem_object_unpin_pages(obj);
err:
396
	return i915_error_to_vmf_fault(ret);
397 398
}

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
static int
vm_access(struct vm_area_struct *area, unsigned long addr,
	  void *buf, int len, int write)
{
	struct i915_mmap_offset *mmo = area->vm_private_data;
	struct drm_i915_gem_object *obj = mmo->obj;
	void *vaddr;

	if (i915_gem_object_is_readonly(obj) && write)
		return -EACCES;

	addr -= area->vm_start;
	if (addr >= obj->base.size)
		return -EINVAL;

	/* As this is primarily for debugging, let's focus on simplicity */
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_FORCE_WC);
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	if (write) {
		memcpy(vaddr + addr, buf, len);
		__i915_gem_object_flush_map(obj, addr, len);
	} else {
		memcpy(buf, vaddr + addr, len);
	}

	i915_gem_object_unpin_map(obj);

	return len;
}

431
void __i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj)
432 433 434 435 436 437
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	for_each_ggtt_vma(vma, obj)
438 439 440
		i915_vma_revoke_mmap(vma);

	GEM_BUG_ON(obj->userfault_count);
441 442
}

443
/*
444 445 446 447 448
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
449
 * fixup by vm_fault_gtt().
450
 */
451
static void i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj)
452 453 454 455
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	intel_wakeref_t wakeref;

456 457
	/*
	 * Serialisation between user GTT access and our code depends upon
458 459 460 461 462 463 464
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
	 */
465
	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
466
	mutex_lock(&i915->ggtt.vm.mutex);
467 468 469 470

	if (!obj->userfault_count)
		goto out;

471
	__i915_gem_object_release_mmap_gtt(obj);
472

473 474
	/*
	 * Ensure that the CPU's PTE are revoked and there are not outstanding
475 476 477 478 479 480 481 482 483
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

out:
484
	mutex_unlock(&i915->ggtt.vm.mutex);
485
	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
486 487
}

488 489
void i915_gem_object_release_mmap_offset(struct drm_i915_gem_object *obj)
{
490
	struct i915_mmap_offset *mmo, *mn;
491 492

	spin_lock(&obj->mmo.lock);
493 494
	rbtree_postorder_for_each_entry_safe(mmo, mn,
					     &obj->mmo.offsets, offset) {
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
		/*
		 * vma_node_unmap for GTT mmaps handled already in
		 * __i915_gem_object_release_mmap_gtt
		 */
		if (mmo->mmap_type == I915_MMAP_TYPE_GTT)
			continue;

		spin_unlock(&obj->mmo.lock);
		drm_vma_node_unmap(&mmo->vma_node,
				   obj->base.dev->anon_inode->i_mapping);
		spin_lock(&obj->mmo.lock);
	}
	spin_unlock(&obj->mmo.lock);
}

/**
 * i915_gem_object_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
 * Preserve the reservation of the mmapping with the DRM core code, but
 * relinquish ownership of the pages back to the system.
 */
void i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	i915_gem_object_release_mmap_gtt(obj);
	i915_gem_object_release_mmap_offset(obj);
}

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
static struct i915_mmap_offset *
lookup_mmo(struct drm_i915_gem_object *obj,
	   enum i915_mmap_type mmap_type)
{
	struct rb_node *rb;

	spin_lock(&obj->mmo.lock);
	rb = obj->mmo.offsets.rb_node;
	while (rb) {
		struct i915_mmap_offset *mmo =
			rb_entry(rb, typeof(*mmo), offset);

		if (mmo->mmap_type == mmap_type) {
			spin_unlock(&obj->mmo.lock);
			return mmo;
		}

		if (mmo->mmap_type < mmap_type)
			rb = rb->rb_right;
		else
			rb = rb->rb_left;
	}
	spin_unlock(&obj->mmo.lock);

	return NULL;
}

static struct i915_mmap_offset *
insert_mmo(struct drm_i915_gem_object *obj, struct i915_mmap_offset *mmo)
{
	struct rb_node *rb, **p;

	spin_lock(&obj->mmo.lock);
	rb = NULL;
	p = &obj->mmo.offsets.rb_node;
	while (*p) {
		struct i915_mmap_offset *pos;

		rb = *p;
		pos = rb_entry(rb, typeof(*pos), offset);

		if (pos->mmap_type == mmo->mmap_type) {
			spin_unlock(&obj->mmo.lock);
			drm_vma_offset_remove(obj->base.dev->vma_offset_manager,
					      &mmo->vma_node);
			kfree(mmo);
			return pos;
		}

		if (pos->mmap_type < mmo->mmap_type)
			p = &rb->rb_right;
		else
			p = &rb->rb_left;
	}
	rb_link_node(&mmo->offset, rb, p);
	rb_insert_color(&mmo->offset, &obj->mmo.offsets);
	spin_unlock(&obj->mmo.lock);

	return mmo;
}

584 585 586 587
static struct i915_mmap_offset *
mmap_offset_attach(struct drm_i915_gem_object *obj,
		   enum i915_mmap_type mmap_type,
		   struct drm_file *file)
588 589
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
590
	struct i915_mmap_offset *mmo;
591 592
	int err;

593 594 595 596
	mmo = lookup_mmo(obj, mmap_type);
	if (mmo)
		goto out;

597 598 599 600 601 602 603 604
	mmo = kmalloc(sizeof(*mmo), GFP_KERNEL);
	if (!mmo)
		return ERR_PTR(-ENOMEM);

	mmo->obj = obj;
	mmo->mmap_type = mmap_type;
	drm_vma_node_reset(&mmo->vma_node);

605 606
	err = drm_vma_offset_add(obj->base.dev->vma_offset_manager,
				 &mmo->vma_node, obj->base.size / PAGE_SIZE);
607
	if (likely(!err))
608
		goto insert;
609 610

	/* Attempt to reap some mmap space from dead objects */
611
	err = intel_gt_retire_requests_timeout(&i915->gt, MAX_SCHEDULE_TIMEOUT);
612
	if (err)
613
		goto err;
614

615
	i915_gem_drain_freed_objects(i915);
616 617
	err = drm_vma_offset_add(obj->base.dev->vma_offset_manager,
				 &mmo->vma_node, obj->base.size / PAGE_SIZE);
618 619 620
	if (err)
		goto err;

621 622 623
insert:
	mmo = insert_mmo(obj, mmo);
	GEM_BUG_ON(lookup_mmo(obj, mmap_type) != mmo);
624 625 626 627 628 629 630 631
out:
	if (file)
		drm_vma_node_allow(&mmo->vma_node, file);
	return mmo;

err:
	kfree(mmo);
	return ERR_PTR(err);
632 633
}

634 635 636 637 638
static int
__assign_mmap_offset(struct drm_file *file,
		     u32 handle,
		     enum i915_mmap_type mmap_type,
		     u64 *offset)
639 640
{
	struct drm_i915_gem_object *obj;
641 642
	struct i915_mmap_offset *mmo;
	int err;
643

644 645 646 647
	obj = i915_gem_object_lookup(file, handle);
	if (!obj)
		return -ENOENT;

648
	if (i915_gem_object_never_mmap(obj)) {
649
		err = -ENODEV;
650 651 652
		goto out;
	}

653
	if (mmap_type != I915_MMAP_TYPE_GTT &&
654 655 656
	    !i915_gem_object_type_has(obj,
				      I915_GEM_OBJECT_HAS_STRUCT_PAGE |
				      I915_GEM_OBJECT_HAS_IOMEM)) {
657 658 659 660 661 662 663 664 665
		err = -ENODEV;
		goto out;
	}

	mmo = mmap_offset_attach(obj, mmap_type, file);
	if (IS_ERR(mmo)) {
		err = PTR_ERR(mmo);
		goto out;
	}
666

667 668
	*offset = drm_vma_node_offset_addr(&mmo->vma_node);
	err = 0;
669
out:
670
	i915_gem_object_put(obj);
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
	return err;
}

int
i915_gem_dumb_mmap_offset(struct drm_file *file,
			  struct drm_device *dev,
			  u32 handle,
			  u64 *offset)
{
	enum i915_mmap_type mmap_type;

	if (boot_cpu_has(X86_FEATURE_PAT))
		mmap_type = I915_MMAP_TYPE_WC;
	else if (!i915_ggtt_has_aperture(&to_i915(dev)->ggtt))
		return -ENODEV;
	else
		mmap_type = I915_MMAP_TYPE_GTT;

	return __assign_mmap_offset(file, handle, mmap_type, offset);
690 691 692
}

/**
693
 * i915_gem_mmap_offset_ioctl - prepare an object for GTT mmap'ing
694 695 696 697 698 699 700 701 702 703 704 705 706 707
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
708 709
i915_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
710
{
711 712 713
	struct drm_i915_private *i915 = to_i915(dev);
	struct drm_i915_gem_mmap_offset *args = data;
	enum i915_mmap_type type;
714
	int err;
715

716 717 718 719 720 721 722 723 724
	/*
	 * Historically we failed to check args.pad and args.offset
	 * and so we cannot use those fields for user input and we cannot
	 * add -EINVAL for them as the ABI is fixed, i.e. old userspace
	 * may be feeding in garbage in those fields.
	 *
	 * if (args->pad) return -EINVAL; is verbotten!
	 */

725 726 727 728
	err = i915_user_extensions(u64_to_user_ptr(args->extensions),
				   NULL, 0, NULL);
	if (err)
		return err;
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755

	switch (args->flags) {
	case I915_MMAP_OFFSET_GTT:
		if (!i915_ggtt_has_aperture(&i915->ggtt))
			return -ENODEV;
		type = I915_MMAP_TYPE_GTT;
		break;

	case I915_MMAP_OFFSET_WC:
		if (!boot_cpu_has(X86_FEATURE_PAT))
			return -ENODEV;
		type = I915_MMAP_TYPE_WC;
		break;

	case I915_MMAP_OFFSET_WB:
		type = I915_MMAP_TYPE_WB;
		break;

	case I915_MMAP_OFFSET_UC:
		if (!boot_cpu_has(X86_FEATURE_PAT))
			return -ENODEV;
		type = I915_MMAP_TYPE_UC;
		break;

	default:
		return -EINVAL;
	}
756

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
	return __assign_mmap_offset(file, args->handle, type, &args->offset);
}

static void vm_open(struct vm_area_struct *vma)
{
	struct i915_mmap_offset *mmo = vma->vm_private_data;
	struct drm_i915_gem_object *obj = mmo->obj;

	GEM_BUG_ON(!obj);
	i915_gem_object_get(obj);
}

static void vm_close(struct vm_area_struct *vma)
{
	struct i915_mmap_offset *mmo = vma->vm_private_data;
	struct drm_i915_gem_object *obj = mmo->obj;

	GEM_BUG_ON(!obj);
	i915_gem_object_put(obj);
}

static const struct vm_operations_struct vm_ops_gtt = {
	.fault = vm_fault_gtt,
780
	.access = vm_access,
781 782 783 784 785 786
	.open = vm_open,
	.close = vm_close,
};

static const struct vm_operations_struct vm_ops_cpu = {
	.fault = vm_fault_cpu,
787
	.access = vm_access,
788 789 790 791
	.open = vm_open,
	.close = vm_close,
};

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
static int singleton_release(struct inode *inode, struct file *file)
{
	struct drm_i915_private *i915 = file->private_data;

	cmpxchg(&i915->gem.mmap_singleton, file, NULL);
	drm_dev_put(&i915->drm);

	return 0;
}

static const struct file_operations singleton_fops = {
	.owner = THIS_MODULE,
	.release = singleton_release,
};

static struct file *mmap_singleton(struct drm_i915_private *i915)
{
	struct file *file;

	rcu_read_lock();
812
	file = READ_ONCE(i915->gem.mmap_singleton);
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
	if (file && !get_file_rcu(file))
		file = NULL;
	rcu_read_unlock();
	if (file)
		return file;

	file = anon_inode_getfile("i915.gem", &singleton_fops, i915, O_RDWR);
	if (IS_ERR(file))
		return file;

	/* Everyone shares a single global address space */
	file->f_mapping = i915->drm.anon_inode->i_mapping;

	smp_store_mb(i915->gem.mmap_singleton, file);
	drm_dev_get(&i915->drm);

	return file;
}

832 833 834 835 836 837 838 839 840 841 842
/*
 * This overcomes the limitation in drm_gem_mmap's assignment of a
 * drm_gem_object as the vma->vm_private_data. Since we need to
 * be able to resolve multiple mmap offsets which could be tied
 * to a single gem object.
 */
int i915_gem_mmap(struct file *filp, struct vm_area_struct *vma)
{
	struct drm_vma_offset_node *node;
	struct drm_file *priv = filp->private_data;
	struct drm_device *dev = priv->minor->dev;
843
	struct drm_i915_gem_object *obj = NULL;
844
	struct i915_mmap_offset *mmo = NULL;
845
	struct file *anon;
846 847 848 849

	if (drm_dev_is_unplugged(dev))
		return -ENODEV;

850
	rcu_read_lock();
851 852 853 854
	drm_vma_offset_lock_lookup(dev->vma_offset_manager);
	node = drm_vma_offset_exact_lookup_locked(dev->vma_offset_manager,
						  vma->vm_pgoff,
						  vma_pages(vma));
855
	if (node && drm_vma_node_is_allowed(node, priv)) {
856 857 858 859 860
		/*
		 * Skip 0-refcnted objects as it is in the process of being
		 * destroyed and will be invalid when the vma manager lock
		 * is released.
		 */
861 862
		mmo = container_of(node, struct i915_mmap_offset, vma_node);
		obj = i915_gem_object_get_rcu(mmo->obj);
863 864
	}
	drm_vma_offset_unlock_lookup(dev->vma_offset_manager);
865
	rcu_read_unlock();
866
	if (!obj)
867
		return node ? -EACCES : -EINVAL;
868

869
	if (i915_gem_object_is_readonly(obj)) {
870
		if (vma->vm_flags & VM_WRITE) {
871
			i915_gem_object_put(obj);
872 873 874 875 876
			return -EINVAL;
		}
		vma->vm_flags &= ~VM_MAYWRITE;
	}

877
	anon = mmap_singleton(to_i915(dev));
878
	if (IS_ERR(anon)) {
879
		i915_gem_object_put(obj);
880 881 882
		return PTR_ERR(anon);
	}

883 884 885
	vma->vm_flags |= VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
	vma->vm_private_data = mmo;

886 887 888 889 890 891 892 893 894 895 896
	/*
	 * We keep the ref on mmo->obj, not vm_file, but we require
	 * vma->vm_file->f_mapping, see vma_link(), for later revocation.
	 * Our userspace is accustomed to having per-file resource cleanup
	 * (i.e. contexts, objects and requests) on their close(fd), which
	 * requires avoiding extraneous references to their filp, hence why
	 * we prefer to use an anonymous file for their mmaps.
	 */
	fput(vma->vm_file);
	vma->vm_file = anon;

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
	switch (mmo->mmap_type) {
	case I915_MMAP_TYPE_WC:
		vma->vm_page_prot =
			pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		vma->vm_ops = &vm_ops_cpu;
		break;

	case I915_MMAP_TYPE_WB:
		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
		vma->vm_ops = &vm_ops_cpu;
		break;

	case I915_MMAP_TYPE_UC:
		vma->vm_page_prot =
			pgprot_noncached(vm_get_page_prot(vma->vm_flags));
		vma->vm_ops = &vm_ops_cpu;
		break;

	case I915_MMAP_TYPE_GTT:
		vma->vm_page_prot =
			pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		vma->vm_ops = &vm_ops_gtt;
		break;
	}
	vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);

	return 0;
924 925 926 927 928
}

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/i915_gem_mman.c"
#endif