i915_gem_mman.c 24.7 KB
Newer Older
1 2 3 4 5 6
/*
 * SPDX-License-Identifier: MIT
 *
 * Copyright © 2014-2016 Intel Corporation
 */

7
#include <linux/anon_inodes.h>
8
#include <linux/mman.h>
9
#include <linux/pfn_t.h>
10 11
#include <linux/sizes.h>

12
#include "gt/intel_gt.h"
13
#include "gt/intel_gt_requests.h"
14

15 16 17 18
#include "i915_drv.h"
#include "i915_gem_gtt.h"
#include "i915_gem_ioctls.h"
#include "i915_gem_object.h"
19
#include "i915_gem_mman.h"
20
#include "i915_trace.h"
21
#include "i915_user_extensions.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
#include "i915_vma.h"

static inline bool
__vma_matches(struct vm_area_struct *vma, struct file *filp,
	      unsigned long addr, unsigned long size)
{
	if (vma->vm_file != filp)
		return false;

	return vma->vm_start == addr &&
	       (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
}

/**
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
59
	struct drm_i915_private *i915 = to_i915(dev);
60 61 62 63
	struct drm_i915_gem_mmap *args = data;
	struct drm_i915_gem_object *obj;
	unsigned long addr;

64 65 66
	/* mmap ioctl is disallowed for all platforms after TGL-LP.  This also
	 * covers all platforms with local memory.
	 */
67
	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
68 69
		return -EOPNOTSUPP;

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
		return -ENODEV;

	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->base.filp) {
		addr = -ENXIO;
		goto err;
	}

	if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
		addr = -EINVAL;
		goto err;
	}

	addr = vm_mmap(obj->base.filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	if (IS_ERR_VALUE(addr))
		goto err;

	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

103
		if (mmap_write_lock_killable(mm)) {
104 105 106 107 108 109 110 111 112
			addr = -EINTR;
			goto err;
		}
		vma = find_vma(mm, addr);
		if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
113
		mmap_write_unlock(mm);
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
		if (IS_ERR_VALUE(addr))
			goto err;
	}
	i915_gem_object_put(obj);

	args->addr_ptr = (u64)addr;
	return 0;

err:
	i915_gem_object_put(obj);
	return addr;
}

static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
{
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
}

/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
 * 3 - Remove implicit set-domain(GTT) and synchronisation on initial
 *     pagefault; swapin remains transparent.
 *
158 159 160
 * 4 - Support multiple fault handlers per object depending on object's
 *     backing storage (a.k.a. MMAP_OFFSET).
 *
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
188
	return 4;
189 190 191 192 193 194 195 196 197 198
}

static inline struct i915_ggtt_view
compute_partial_view(const struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
199
		chunk = roundup(chunk, tile_row_pages(obj) ?: 1);
200 201 202 203 204 205 206 207 208 209 210 211 212 213

	view.type = I915_GGTT_VIEW_PARTIAL;
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
		min_t(unsigned int, chunk,
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

214 215 216 217 218
static vm_fault_t i915_error_to_vmf_fault(int err)
{
	switch (err) {
	default:
		WARN_ONCE(err, "unhandled error in %s: %i\n", __func__, err);
219
		fallthrough;
220 221 222
	case -EIO: /* shmemfs failure from swap device */
	case -EFAULT: /* purged object */
	case -ENODEV: /* bad object, how did you get here! */
223
	case -ENXIO: /* unable to access backing store (on device) */
224 225 226 227 228 229 230
		return VM_FAULT_SIGBUS;

	case -ENOMEM: /* our allocation failure */
		return VM_FAULT_OOM;

	case 0:
	case -EAGAIN:
231
	case -ENOSPC: /* transient failure to evict? */
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
	case -ERESTARTSYS:
	case -EINTR:
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
		return VM_FAULT_NOPAGE;
	}
}

static vm_fault_t vm_fault_cpu(struct vm_fault *vmf)
{
	struct vm_area_struct *area = vmf->vma;
	struct i915_mmap_offset *mmo = area->vm_private_data;
	struct drm_i915_gem_object *obj = mmo->obj;
248
	resource_size_t iomap;
249 250 251
	int err;

	/* Sanity check that we allow writing into this object */
252 253 254
	if (unlikely(i915_gem_object_is_readonly(obj) &&
		     area->vm_flags & VM_WRITE))
		return VM_FAULT_SIGBUS;
255

256 257 258
	if (i915_gem_object_lock_interruptible(obj, NULL))
		return VM_FAULT_NOPAGE;

259 260
	err = i915_gem_object_pin_pages(obj);
	if (err)
261
		goto out;
262

263
	iomap = -1;
264
	if (!i915_gem_object_has_struct_page(obj)) {
265 266 267 268
		iomap = obj->mm.region->iomap.base;
		iomap -= obj->mm.region->region.start;
	}

269
	/* PTEs are revoked in obj->ops->put_pages() */
270 271 272
	err = remap_io_sg(area,
			  area->vm_start, area->vm_end - area->vm_start,
			  obj->mm.pages->sgl, iomap);
273

274
	if (area->vm_flags & VM_WRITE) {
275 276 277 278 279 280
		GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);

281
out:
282
	i915_gem_object_unlock(obj);
283
	return i915_error_to_vmf_fault(err);
284 285 286
}

static vm_fault_t vm_fault_gtt(struct vm_fault *vmf)
287 288 289
{
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
	struct vm_area_struct *area = vmf->vma;
290 291
	struct i915_mmap_offset *mmo = area->vm_private_data;
	struct drm_i915_gem_object *obj = mmo->obj;
292 293
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *i915 = to_i915(dev);
294
	struct intel_runtime_pm *rpm = &i915->runtime_pm;
295 296
	struct i915_ggtt *ggtt = &i915->ggtt;
	bool write = area->vm_flags & VM_WRITE;
297
	struct i915_gem_ww_ctx ww;
298 299 300 301 302 303 304 305 306 307 308
	intel_wakeref_t wakeref;
	struct i915_vma *vma;
	pgoff_t page_offset;
	int srcu;
	int ret;

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;

	trace_i915_gem_object_fault(obj, page_offset, true, write);

309 310 311 312 313
	wakeref = intel_runtime_pm_get(rpm);

	i915_gem_ww_ctx_init(&ww, true);
retry:
	ret = i915_gem_object_lock(obj, &ww);
314
	if (ret)
315
		goto err_rpm;
316

317 318 319 320 321
	/* Sanity check that we allow writing into this object */
	if (i915_gem_object_is_readonly(obj) && write) {
		ret = -EFAULT;
		goto err_rpm;
	}
322

323
	ret = i915_gem_object_pin_pages(obj);
324
	if (ret)
325 326
		goto err_rpm;

327 328 329 330
	ret = intel_gt_reset_trylock(ggtt->vm.gt, &srcu);
	if (ret)
		goto err_pages;

331
	/* Now pin it into the GTT as needed */
332 333 334 335 336
	vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
					  PIN_MAPPABLE |
					  PIN_NONBLOCK /* NOWARN */ |
					  PIN_NOEVICT);
	if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK)) {
337 338 339 340 341
		/* Use a partial view if it is bigger than available space */
		struct i915_ggtt_view view =
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
		unsigned int flags;

342
		flags = PIN_MAPPABLE | PIN_NOSEARCH;
343 344 345 346 347 348 349 350
		if (view.type == I915_GGTT_VIEW_NORMAL)
			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */

		/*
		 * Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */

351 352
		vma = i915_gem_object_ggtt_pin_ww(obj, &ww, &view, 0, 0, flags);
		if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK)) {
353 354
			flags = PIN_MAPPABLE;
			view.type = I915_GGTT_VIEW_PARTIAL;
355
			vma = i915_gem_object_ggtt_pin_ww(obj, &ww, &view, 0, 0, flags);
356
		}
357 358 359

		/* The entire mappable GGTT is pinned? Unexpected! */
		GEM_BUG_ON(vma == ERR_PTR(-ENOSPC));
360 361 362
	}
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
363 364 365 366 367 368 369
		goto err_reset;
	}

	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(i915)) {
		ret = -EFAULT;
		goto err_unpin;
370 371 372 373 374 375 376
	}

	ret = i915_vma_pin_fence(vma);
	if (ret)
		goto err_unpin;

	/* Finally, remap it using the new GTT offset */
377 378 379 380 381
	ret = remap_io_mapping(area,
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->iomap);
382 383 384
	if (ret)
		goto err_fence;

385
	assert_rpm_wakelock_held(rpm);
386 387 388

	/* Mark as being mmapped into userspace for later revocation */
	mutex_lock(&i915->ggtt.vm.mutex);
389
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
390
		list_add(&obj->userfault_link, &i915->ggtt.userfault_list);
391 392
	mutex_unlock(&i915->ggtt.vm.mutex);

393 394 395
	/* Track the mmo associated with the fenced vma */
	vma->mmo = mmo;

396
	if (IS_ACTIVE(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND))
397
		intel_wakeref_auto(&i915->ggtt.userfault_wakeref,
398 399
				   msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND));

400 401 402 403 404
	if (write) {
		GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
		i915_vma_set_ggtt_write(vma);
		obj->mm.dirty = true;
	}
405 406 407 408 409 410

err_fence:
	i915_vma_unpin_fence(vma);
err_unpin:
	__i915_vma_unpin(vma);
err_reset:
411
	intel_gt_reset_unlock(ggtt->vm.gt, srcu);
412 413
err_pages:
	i915_gem_object_unpin_pages(obj);
414
err_rpm:
415 416 417 418 419 420
	if (ret == -EDEADLK) {
		ret = i915_gem_ww_ctx_backoff(&ww);
		if (!ret)
			goto retry;
	}
	i915_gem_ww_ctx_fini(&ww);
421
	intel_runtime_pm_put(rpm, wakeref);
422
	return i915_error_to_vmf_fault(ret);
423 424
}

425 426 427 428 429 430
static int
vm_access(struct vm_area_struct *area, unsigned long addr,
	  void *buf, int len, int write)
{
	struct i915_mmap_offset *mmo = area->vm_private_data;
	struct drm_i915_gem_object *obj = mmo->obj;
431
	struct i915_gem_ww_ctx ww;
432
	void *vaddr;
433
	int err = 0;
434 435 436 437 438 439 440 441

	if (i915_gem_object_is_readonly(obj) && write)
		return -EACCES;

	addr -= area->vm_start;
	if (addr >= obj->base.size)
		return -EINVAL;

442 443 444 445 446 447
	i915_gem_ww_ctx_init(&ww, true);
retry:
	err = i915_gem_object_lock(obj, &ww);
	if (err)
		goto out;

448 449
	/* As this is primarily for debugging, let's focus on simplicity */
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_FORCE_WC);
450 451 452 453
	if (IS_ERR(vaddr)) {
		err = PTR_ERR(vaddr);
		goto out;
	}
454 455 456 457 458 459 460 461 462

	if (write) {
		memcpy(vaddr + addr, buf, len);
		__i915_gem_object_flush_map(obj, addr, len);
	} else {
		memcpy(buf, vaddr + addr, len);
	}

	i915_gem_object_unpin_map(obj);
463 464 465 466 467 468 469 470 471 472
out:
	if (err == -EDEADLK) {
		err = i915_gem_ww_ctx_backoff(&ww);
		if (!err)
			goto retry;
	}
	i915_gem_ww_ctx_fini(&ww);

	if (err)
		return err;
473 474 475 476

	return len;
}

477
void __i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj)
478 479 480 481 482 483
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	for_each_ggtt_vma(vma, obj)
484 485 486
		i915_vma_revoke_mmap(vma);

	GEM_BUG_ON(obj->userfault_count);
487 488
}

489
/*
490 491 492 493 494
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
495
 * fixup by vm_fault_gtt().
496
 */
497
void i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj)
498 499 500 501
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	intel_wakeref_t wakeref;

502 503
	/*
	 * Serialisation between user GTT access and our code depends upon
504 505 506 507 508 509 510
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
	 */
511
	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
512
	mutex_lock(&i915->ggtt.vm.mutex);
513 514 515 516

	if (!obj->userfault_count)
		goto out;

517
	__i915_gem_object_release_mmap_gtt(obj);
518

519 520
	/*
	 * Ensure that the CPU's PTE are revoked and there are not outstanding
521 522 523 524 525 526 527 528 529
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

out:
530
	mutex_unlock(&i915->ggtt.vm.mutex);
531
	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
532 533
}

534 535
void i915_gem_object_release_mmap_offset(struct drm_i915_gem_object *obj)
{
536
	struct i915_mmap_offset *mmo, *mn;
537 538

	spin_lock(&obj->mmo.lock);
539 540
	rbtree_postorder_for_each_entry_safe(mmo, mn,
					     &obj->mmo.offsets, offset) {
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
		/*
		 * vma_node_unmap for GTT mmaps handled already in
		 * __i915_gem_object_release_mmap_gtt
		 */
		if (mmo->mmap_type == I915_MMAP_TYPE_GTT)
			continue;

		spin_unlock(&obj->mmo.lock);
		drm_vma_node_unmap(&mmo->vma_node,
				   obj->base.dev->anon_inode->i_mapping);
		spin_lock(&obj->mmo.lock);
	}
	spin_unlock(&obj->mmo.lock);
}

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
static struct i915_mmap_offset *
lookup_mmo(struct drm_i915_gem_object *obj,
	   enum i915_mmap_type mmap_type)
{
	struct rb_node *rb;

	spin_lock(&obj->mmo.lock);
	rb = obj->mmo.offsets.rb_node;
	while (rb) {
		struct i915_mmap_offset *mmo =
			rb_entry(rb, typeof(*mmo), offset);

		if (mmo->mmap_type == mmap_type) {
			spin_unlock(&obj->mmo.lock);
			return mmo;
		}

		if (mmo->mmap_type < mmap_type)
			rb = rb->rb_right;
		else
			rb = rb->rb_left;
	}
	spin_unlock(&obj->mmo.lock);

	return NULL;
}

static struct i915_mmap_offset *
insert_mmo(struct drm_i915_gem_object *obj, struct i915_mmap_offset *mmo)
{
	struct rb_node *rb, **p;

	spin_lock(&obj->mmo.lock);
	rb = NULL;
	p = &obj->mmo.offsets.rb_node;
	while (*p) {
		struct i915_mmap_offset *pos;

		rb = *p;
		pos = rb_entry(rb, typeof(*pos), offset);

		if (pos->mmap_type == mmo->mmap_type) {
			spin_unlock(&obj->mmo.lock);
			drm_vma_offset_remove(obj->base.dev->vma_offset_manager,
					      &mmo->vma_node);
			kfree(mmo);
			return pos;
		}

		if (pos->mmap_type < mmo->mmap_type)
			p = &rb->rb_right;
		else
			p = &rb->rb_left;
	}
	rb_link_node(&mmo->offset, rb, p);
	rb_insert_color(&mmo->offset, &obj->mmo.offsets);
	spin_unlock(&obj->mmo.lock);

	return mmo;
}

617 618 619 620
static struct i915_mmap_offset *
mmap_offset_attach(struct drm_i915_gem_object *obj,
		   enum i915_mmap_type mmap_type,
		   struct drm_file *file)
621 622
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
623
	struct i915_mmap_offset *mmo;
624 625
	int err;

626 627 628 629
	mmo = lookup_mmo(obj, mmap_type);
	if (mmo)
		goto out;

630 631 632 633 634 635 636 637
	mmo = kmalloc(sizeof(*mmo), GFP_KERNEL);
	if (!mmo)
		return ERR_PTR(-ENOMEM);

	mmo->obj = obj;
	mmo->mmap_type = mmap_type;
	drm_vma_node_reset(&mmo->vma_node);

638 639
	err = drm_vma_offset_add(obj->base.dev->vma_offset_manager,
				 &mmo->vma_node, obj->base.size / PAGE_SIZE);
640
	if (likely(!err))
641
		goto insert;
642 643

	/* Attempt to reap some mmap space from dead objects */
644
	err = intel_gt_retire_requests_timeout(&i915->gt, MAX_SCHEDULE_TIMEOUT);
645
	if (err)
646
		goto err;
647

648
	i915_gem_drain_freed_objects(i915);
649 650
	err = drm_vma_offset_add(obj->base.dev->vma_offset_manager,
				 &mmo->vma_node, obj->base.size / PAGE_SIZE);
651 652 653
	if (err)
		goto err;

654 655 656
insert:
	mmo = insert_mmo(obj, mmo);
	GEM_BUG_ON(lookup_mmo(obj, mmap_type) != mmo);
657 658 659 660 661 662 663 664
out:
	if (file)
		drm_vma_node_allow(&mmo->vma_node, file);
	return mmo;

err:
	kfree(mmo);
	return ERR_PTR(err);
665 666
}

667 668 669 670 671
static int
__assign_mmap_offset(struct drm_file *file,
		     u32 handle,
		     enum i915_mmap_type mmap_type,
		     u64 *offset)
672 673
{
	struct drm_i915_gem_object *obj;
674 675
	struct i915_mmap_offset *mmo;
	int err;
676

677 678 679 680
	obj = i915_gem_object_lookup(file, handle);
	if (!obj)
		return -ENOENT;

681
	if (i915_gem_object_never_mmap(obj)) {
682
		err = -ENODEV;
683 684 685
		goto out;
	}

686
	if (mmap_type != I915_MMAP_TYPE_GTT &&
687 688
	    !i915_gem_object_has_struct_page(obj) &&
	    !i915_gem_object_type_has(obj, I915_GEM_OBJECT_HAS_IOMEM)) {
689 690 691 692 693 694 695 696 697
		err = -ENODEV;
		goto out;
	}

	mmo = mmap_offset_attach(obj, mmap_type, file);
	if (IS_ERR(mmo)) {
		err = PTR_ERR(mmo);
		goto out;
	}
698

699 700
	*offset = drm_vma_node_offset_addr(&mmo->vma_node);
	err = 0;
701
out:
702
	i915_gem_object_put(obj);
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
	return err;
}

int
i915_gem_dumb_mmap_offset(struct drm_file *file,
			  struct drm_device *dev,
			  u32 handle,
			  u64 *offset)
{
	enum i915_mmap_type mmap_type;

	if (boot_cpu_has(X86_FEATURE_PAT))
		mmap_type = I915_MMAP_TYPE_WC;
	else if (!i915_ggtt_has_aperture(&to_i915(dev)->ggtt))
		return -ENODEV;
	else
		mmap_type = I915_MMAP_TYPE_GTT;

	return __assign_mmap_offset(file, handle, mmap_type, offset);
722 723 724
}

/**
725
 * i915_gem_mmap_offset_ioctl - prepare an object for GTT mmap'ing
726 727 728 729 730 731 732 733 734 735 736 737 738 739
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
740 741
i915_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
742
{
743 744 745
	struct drm_i915_private *i915 = to_i915(dev);
	struct drm_i915_gem_mmap_offset *args = data;
	enum i915_mmap_type type;
746
	int err;
747

748 749 750 751 752 753 754 755 756
	/*
	 * Historically we failed to check args.pad and args.offset
	 * and so we cannot use those fields for user input and we cannot
	 * add -EINVAL for them as the ABI is fixed, i.e. old userspace
	 * may be feeding in garbage in those fields.
	 *
	 * if (args->pad) return -EINVAL; is verbotten!
	 */

757 758 759 760
	err = i915_user_extensions(u64_to_user_ptr(args->extensions),
				   NULL, 0, NULL);
	if (err)
		return err;
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787

	switch (args->flags) {
	case I915_MMAP_OFFSET_GTT:
		if (!i915_ggtt_has_aperture(&i915->ggtt))
			return -ENODEV;
		type = I915_MMAP_TYPE_GTT;
		break;

	case I915_MMAP_OFFSET_WC:
		if (!boot_cpu_has(X86_FEATURE_PAT))
			return -ENODEV;
		type = I915_MMAP_TYPE_WC;
		break;

	case I915_MMAP_OFFSET_WB:
		type = I915_MMAP_TYPE_WB;
		break;

	case I915_MMAP_OFFSET_UC:
		if (!boot_cpu_has(X86_FEATURE_PAT))
			return -ENODEV;
		type = I915_MMAP_TYPE_UC;
		break;

	default:
		return -EINVAL;
	}
788

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
	return __assign_mmap_offset(file, args->handle, type, &args->offset);
}

static void vm_open(struct vm_area_struct *vma)
{
	struct i915_mmap_offset *mmo = vma->vm_private_data;
	struct drm_i915_gem_object *obj = mmo->obj;

	GEM_BUG_ON(!obj);
	i915_gem_object_get(obj);
}

static void vm_close(struct vm_area_struct *vma)
{
	struct i915_mmap_offset *mmo = vma->vm_private_data;
	struct drm_i915_gem_object *obj = mmo->obj;

	GEM_BUG_ON(!obj);
	i915_gem_object_put(obj);
}

static const struct vm_operations_struct vm_ops_gtt = {
	.fault = vm_fault_gtt,
812
	.access = vm_access,
813 814 815 816 817 818
	.open = vm_open,
	.close = vm_close,
};

static const struct vm_operations_struct vm_ops_cpu = {
	.fault = vm_fault_cpu,
819
	.access = vm_access,
820 821 822 823
	.open = vm_open,
	.close = vm_close,
};

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
static int singleton_release(struct inode *inode, struct file *file)
{
	struct drm_i915_private *i915 = file->private_data;

	cmpxchg(&i915->gem.mmap_singleton, file, NULL);
	drm_dev_put(&i915->drm);

	return 0;
}

static const struct file_operations singleton_fops = {
	.owner = THIS_MODULE,
	.release = singleton_release,
};

static struct file *mmap_singleton(struct drm_i915_private *i915)
{
	struct file *file;

	rcu_read_lock();
844
	file = READ_ONCE(i915->gem.mmap_singleton);
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
	if (file && !get_file_rcu(file))
		file = NULL;
	rcu_read_unlock();
	if (file)
		return file;

	file = anon_inode_getfile("i915.gem", &singleton_fops, i915, O_RDWR);
	if (IS_ERR(file))
		return file;

	/* Everyone shares a single global address space */
	file->f_mapping = i915->drm.anon_inode->i_mapping;

	smp_store_mb(i915->gem.mmap_singleton, file);
	drm_dev_get(&i915->drm);

	return file;
}

864 865 866 867 868 869 870 871 872 873 874
/*
 * This overcomes the limitation in drm_gem_mmap's assignment of a
 * drm_gem_object as the vma->vm_private_data. Since we need to
 * be able to resolve multiple mmap offsets which could be tied
 * to a single gem object.
 */
int i915_gem_mmap(struct file *filp, struct vm_area_struct *vma)
{
	struct drm_vma_offset_node *node;
	struct drm_file *priv = filp->private_data;
	struct drm_device *dev = priv->minor->dev;
875
	struct drm_i915_gem_object *obj = NULL;
876
	struct i915_mmap_offset *mmo = NULL;
877
	struct file *anon;
878 879 880 881

	if (drm_dev_is_unplugged(dev))
		return -ENODEV;

882
	rcu_read_lock();
883 884 885 886
	drm_vma_offset_lock_lookup(dev->vma_offset_manager);
	node = drm_vma_offset_exact_lookup_locked(dev->vma_offset_manager,
						  vma->vm_pgoff,
						  vma_pages(vma));
887
	if (node && drm_vma_node_is_allowed(node, priv)) {
888 889 890 891 892
		/*
		 * Skip 0-refcnted objects as it is in the process of being
		 * destroyed and will be invalid when the vma manager lock
		 * is released.
		 */
893 894
		mmo = container_of(node, struct i915_mmap_offset, vma_node);
		obj = i915_gem_object_get_rcu(mmo->obj);
895 896
	}
	drm_vma_offset_unlock_lookup(dev->vma_offset_manager);
897
	rcu_read_unlock();
898
	if (!obj)
899
		return node ? -EACCES : -EINVAL;
900

901
	if (i915_gem_object_is_readonly(obj)) {
902
		if (vma->vm_flags & VM_WRITE) {
903
			i915_gem_object_put(obj);
904 905 906 907 908
			return -EINVAL;
		}
		vma->vm_flags &= ~VM_MAYWRITE;
	}

909
	anon = mmap_singleton(to_i915(dev));
910
	if (IS_ERR(anon)) {
911
		i915_gem_object_put(obj);
912 913 914
		return PTR_ERR(anon);
	}

915 916 917
	vma->vm_flags |= VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
	vma->vm_private_data = mmo;

918 919 920 921 922 923 924 925
	/*
	 * We keep the ref on mmo->obj, not vm_file, but we require
	 * vma->vm_file->f_mapping, see vma_link(), for later revocation.
	 * Our userspace is accustomed to having per-file resource cleanup
	 * (i.e. contexts, objects and requests) on their close(fd), which
	 * requires avoiding extraneous references to their filp, hence why
	 * we prefer to use an anonymous file for their mmaps.
	 */
926 927 928
	vma_set_file(vma, anon);
	/* Drop the initial creation reference, the vma is now holding one. */
	fput(anon);
929

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	switch (mmo->mmap_type) {
	case I915_MMAP_TYPE_WC:
		vma->vm_page_prot =
			pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		vma->vm_ops = &vm_ops_cpu;
		break;

	case I915_MMAP_TYPE_WB:
		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
		vma->vm_ops = &vm_ops_cpu;
		break;

	case I915_MMAP_TYPE_UC:
		vma->vm_page_prot =
			pgprot_noncached(vm_get_page_prot(vma->vm_flags));
		vma->vm_ops = &vm_ops_cpu;
		break;

	case I915_MMAP_TYPE_GTT:
		vma->vm_page_prot =
			pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		vma->vm_ops = &vm_ops_gtt;
		break;
	}
	vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);

	return 0;
957 958 959 960 961
}

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/i915_gem_mman.c"
#endif