bio.c 43.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
9
#include <linux/uio.h>
10
#include <linux/iocontext.h>
L
Linus Torvalds 已提交
11 12 13
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
14
#include <linux/export.h>
L
Linus Torvalds 已提交
15 16
#include <linux/mempool.h>
#include <linux/workqueue.h>
17
#include <linux/cgroup.h>
18
#include <linux/blk-cgroup.h>
19
#include <linux/highmem.h>
20
#include <linux/sched/sysctl.h>
21
#include <linux/blk-crypto.h>
22
#include <linux/xarray.h>
L
Linus Torvalds 已提交
23

24
#include <trace/events/block.h>
25
#include "blk.h"
J
Josef Bacik 已提交
26
#include "blk-rq-qos.h"
27

28 29 30 31 32 33
struct biovec_slab {
	int nr_vecs;
	char *name;
	struct kmem_cache *slab;
};

L
Linus Torvalds 已提交
34 35 36 37 38
/*
 * if you change this list, also change bvec_alloc or things will
 * break badly! cannot be bigger than what you can fit into an
 * unsigned short
 */
39
#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
40
static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
41
	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
L
Linus Torvalds 已提交
42 43 44 45 46 47 48
};
#undef BV

/*
 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
 * IO code that does not need private memory pools.
 */
49
struct bio_set fs_bio_set;
50
EXPORT_SYMBOL(fs_bio_set);
L
Linus Torvalds 已提交
51

52 53 54 55 56 57 58 59 60 61
/*
 * Our slab pool management
 */
struct bio_slab {
	struct kmem_cache *slab;
	unsigned int slab_ref;
	unsigned int slab_size;
	char name[8];
};
static DEFINE_MUTEX(bio_slab_lock);
62
static DEFINE_XARRAY(bio_slabs);
63

64
static struct bio_slab *create_bio_slab(unsigned int size)
65
{
66
	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
67

68 69
	if (!bslab)
		return NULL;
70

71 72 73 74 75
	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
	bslab->slab = kmem_cache_create(bslab->name, size,
			ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
	if (!bslab->slab)
		goto fail_alloc_slab;
76

77 78
	bslab->slab_ref = 1;
	bslab->slab_size = size;
79

80 81
	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
		return bslab;
82

83
	kmem_cache_destroy(bslab->slab);
84

85 86 87 88
fail_alloc_slab:
	kfree(bslab);
	return NULL;
}
89

90 91
static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
{
92
	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
93 94 95 96 97 98 99 100 101 102 103 104 105
}

static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
{
	unsigned int size = bs_bio_slab_size(bs);
	struct bio_slab *bslab;

	mutex_lock(&bio_slab_lock);
	bslab = xa_load(&bio_slabs, size);
	if (bslab)
		bslab->slab_ref++;
	else
		bslab = create_bio_slab(size);
106
	mutex_unlock(&bio_slab_lock);
107 108 109 110

	if (bslab)
		return bslab->slab;
	return NULL;
111 112 113 114 115
}

static void bio_put_slab(struct bio_set *bs)
{
	struct bio_slab *bslab = NULL;
116
	unsigned int slab_size = bs_bio_slab_size(bs);
117 118 119

	mutex_lock(&bio_slab_lock);

120
	bslab = xa_load(&bio_slabs, slab_size);
121 122 123
	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
		goto out;

124 125
	WARN_ON_ONCE(bslab->slab != bs->bio_slab);

126 127 128 129 130
	WARN_ON(!bslab->slab_ref);

	if (--bslab->slab_ref)
		goto out;

131 132
	xa_erase(&bio_slabs, slab_size);

133
	kmem_cache_destroy(bslab->slab);
134
	kfree(bslab);
135 136 137 138 139

out:
	mutex_unlock(&bio_slab_lock);
}

140 141
unsigned int bvec_nr_vecs(unsigned short idx)
{
142
	return bvec_slabs[--idx].nr_vecs;
143 144
}

145
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
146
{
147 148 149 150 151
	if (!idx)
		return;
	idx--;

	BIO_BUG_ON(idx >= BVEC_POOL_NR);
152

153
	if (idx == BVEC_POOL_MAX) {
154
		mempool_free(bv, pool);
155
	} else {
156 157 158 159 160 161
		struct biovec_slab *bvs = bvec_slabs + idx;

		kmem_cache_free(bvs->slab, bv);
	}
}

162 163 164 165 166 167 168 169 170 171
/*
 * Make the first allocation restricted and don't dump info on allocation
 * failures, since we'll fall back to the mempool in case of failure.
 */
static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
{
	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
}

172 173
struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
			   mempool_t *pool)
L
Linus Torvalds 已提交
174 175 176
{
	struct bio_vec *bvl;

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
	/*
	 * see comment near bvec_array define!
	 */
	switch (nr) {
	case 1:
		*idx = 0;
		break;
	case 2 ... 4:
		*idx = 1;
		break;
	case 5 ... 16:
		*idx = 2;
		break;
	case 17 ... 64:
		*idx = 3;
		break;
	case 65 ... 128:
		*idx = 4;
		break;
	case 129 ... BIO_MAX_PAGES:
		*idx = 5;
		break;
	default:
		return NULL;
	}

	/*
	 * idx now points to the pool we want to allocate from. only the
	 * 1-vec entry pool is mempool backed.
	 */
207
	if (*idx == BVEC_POOL_MAX) {
208
fallback:
209
		bvl = mempool_alloc(pool, gfp_mask);
210 211
	} else {
		struct biovec_slab *bvs = bvec_slabs + *idx;
L
Linus Torvalds 已提交
212

J
Jens Axboe 已提交
213
		/*
214
		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
215
		 * is set, retry with the 1-entry mempool
J
Jens Axboe 已提交
216
		 */
217
		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
218
		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
219
			*idx = BVEC_POOL_MAX;
220 221 222 223
			goto fallback;
		}
	}

224
	(*idx)++;
L
Linus Torvalds 已提交
225 226 227
	return bvl;
}

228
void bio_uninit(struct bio *bio)
L
Linus Torvalds 已提交
229
{
230 231 232 233 234 235
#ifdef CONFIG_BLK_CGROUP
	if (bio->bi_blkg) {
		blkg_put(bio->bi_blkg);
		bio->bi_blkg = NULL;
	}
#endif
236 237
	if (bio_integrity(bio))
		bio_integrity_free(bio);
238 239

	bio_crypt_free_ctx(bio);
K
Kent Overstreet 已提交
240
}
241
EXPORT_SYMBOL(bio_uninit);
242

K
Kent Overstreet 已提交
243 244 245 246 247
static void bio_free(struct bio *bio)
{
	struct bio_set *bs = bio->bi_pool;
	void *p;

248
	bio_uninit(bio);
K
Kent Overstreet 已提交
249 250

	if (bs) {
251
		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
K
Kent Overstreet 已提交
252 253 254 255 256

		/*
		 * If we have front padding, adjust the bio pointer before freeing
		 */
		p = bio;
257 258
		p -= bs->front_pad;

259
		mempool_free(p, &bs->bio_pool);
K
Kent Overstreet 已提交
260 261 262 263
	} else {
		/* Bio was allocated by bio_kmalloc() */
		kfree(bio);
	}
P
Peter Osterlund 已提交
264 265
}

266 267 268 269 270
/*
 * Users of this function have their own bio allocation. Subsequently,
 * they must remember to pair any call to bio_init() with bio_uninit()
 * when IO has completed, or when the bio is released.
 */
271 272
void bio_init(struct bio *bio, struct bio_vec *table,
	      unsigned short max_vecs)
L
Linus Torvalds 已提交
273
{
J
Jens Axboe 已提交
274
	memset(bio, 0, sizeof(*bio));
275
	atomic_set(&bio->__bi_remaining, 1);
276
	atomic_set(&bio->__bi_cnt, 1);
277 278 279

	bio->bi_io_vec = table;
	bio->bi_max_vecs = max_vecs;
L
Linus Torvalds 已提交
280
}
281
EXPORT_SYMBOL(bio_init);
L
Linus Torvalds 已提交
282

K
Kent Overstreet 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296
/**
 * bio_reset - reinitialize a bio
 * @bio:	bio to reset
 *
 * Description:
 *   After calling bio_reset(), @bio will be in the same state as a freshly
 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 *   comment in struct bio.
 */
void bio_reset(struct bio *bio)
{
	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);

297
	bio_uninit(bio);
K
Kent Overstreet 已提交
298 299

	memset(bio, 0, BIO_RESET_BYTES);
300
	bio->bi_flags = flags;
301
	atomic_set(&bio->__bi_remaining, 1);
K
Kent Overstreet 已提交
302 303 304
}
EXPORT_SYMBOL(bio_reset);

305
static struct bio *__bio_chain_endio(struct bio *bio)
K
Kent Overstreet 已提交
306
{
307 308
	struct bio *parent = bio->bi_private;

309 310
	if (!parent->bi_status)
		parent->bi_status = bio->bi_status;
K
Kent Overstreet 已提交
311
	bio_put(bio);
312 313 314 315 316 317
	return parent;
}

static void bio_chain_endio(struct bio *bio)
{
	bio_endio(__bio_chain_endio(bio));
K
Kent Overstreet 已提交
318 319 320 321
}

/**
 * bio_chain - chain bio completions
322
 * @bio: the target bio
323
 * @parent: the parent bio of @bio
K
Kent Overstreet 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336
 *
 * The caller won't have a bi_end_io called when @bio completes - instead,
 * @parent's bi_end_io won't be called until both @parent and @bio have
 * completed; the chained bio will also be freed when it completes.
 *
 * The caller must not set bi_private or bi_end_io in @bio.
 */
void bio_chain(struct bio *bio, struct bio *parent)
{
	BUG_ON(bio->bi_private || bio->bi_end_io);

	bio->bi_private = parent;
	bio->bi_end_io	= bio_chain_endio;
337
	bio_inc_remaining(parent);
K
Kent Overstreet 已提交
338 339 340
}
EXPORT_SYMBOL(bio_chain);

341 342 343 344 345 346 347 348 349 350 351 352 353
static void bio_alloc_rescue(struct work_struct *work)
{
	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
	struct bio *bio;

	while (1) {
		spin_lock(&bs->rescue_lock);
		bio = bio_list_pop(&bs->rescue_list);
		spin_unlock(&bs->rescue_lock);

		if (!bio)
			break;

354
		submit_bio_noacct(bio);
355 356 357 358 359 360 361 362
	}
}

static void punt_bios_to_rescuer(struct bio_set *bs)
{
	struct bio_list punt, nopunt;
	struct bio *bio;

363 364
	if (WARN_ON_ONCE(!bs->rescue_workqueue))
		return;
365 366 367 368 369 370 371 372 373 374 375 376 377 378
	/*
	 * In order to guarantee forward progress we must punt only bios that
	 * were allocated from this bio_set; otherwise, if there was a bio on
	 * there for a stacking driver higher up in the stack, processing it
	 * could require allocating bios from this bio_set, and doing that from
	 * our own rescuer would be bad.
	 *
	 * Since bio lists are singly linked, pop them all instead of trying to
	 * remove from the middle of the list:
	 */

	bio_list_init(&punt);
	bio_list_init(&nopunt);

379
	while ((bio = bio_list_pop(&current->bio_list[0])))
380
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
381
	current->bio_list[0] = nopunt;
382

383 384 385 386
	bio_list_init(&nopunt);
	while ((bio = bio_list_pop(&current->bio_list[1])))
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
	current->bio_list[1] = nopunt;
387 388 389 390 391 392 393 394

	spin_lock(&bs->rescue_lock);
	bio_list_merge(&bs->rescue_list, &punt);
	spin_unlock(&bs->rescue_lock);

	queue_work(bs->rescue_workqueue, &bs->rescue_work);
}

L
Linus Torvalds 已提交
395 396
/**
 * bio_alloc_bioset - allocate a bio for I/O
397
 * @gfp_mask:   the GFP_* mask given to the slab allocator
L
Linus Torvalds 已提交
398
 * @nr_iovecs:	number of iovecs to pre-allocate
399
 * @bs:		the bio_set to allocate from.
L
Linus Torvalds 已提交
400
 *
401
 * Allocate a bio from the mempools in @bs.
402
 *
403 404 405 406 407 408
 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
 * allocate a bio.  This is due to the mempool guarantees.  To make this work,
 * callers must never allocate more than 1 bio at a time from the general pool.
 * Callers that need to allocate more than 1 bio must always submit the
 * previously allocated bio for IO before attempting to allocate a new one.
 * Failure to do so can cause deadlocks under memory pressure.
409
 *
410 411 412 413
 * Note that when running under submit_bio_noacct() (i.e. any block driver),
 * bios are not submitted until after you return - see the code in
 * submit_bio_noacct() that converts recursion into iteration, to prevent
 * stack overflows.
414
 *
415 416 417 418
 * This would normally mean allocating multiple bios under submit_bio_noacct()
 * would be susceptible to deadlocks, but we have
 * deadlock avoidance code that resubmits any blocked bios from a rescuer
 * thread.
419
 *
420 421 422 423
 * However, we do not guarantee forward progress for allocations from other
 * mempools. Doing multiple allocations from the same mempool under
 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
 * for per bio allocations.
424
 *
425
 * Returns: Pointer to new bio on success, NULL on failure.
426
 */
427 428
struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
			     struct bio_set *bs)
L
Linus Torvalds 已提交
429
{
430
	gfp_t saved_gfp = gfp_mask;
T
Tejun Heo 已提交
431 432 433
	struct bio *bio;
	void *p;

434 435 436
	/* should not use nobvec bioset for nr_iovecs > 0 */
	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
		return NULL;
437

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
	/*
	 * submit_bio_noacct() converts recursion to iteration; this means if
	 * we're running beneath it, any bios we allocate and submit will not be
	 * submitted (and thus freed) until after we return.
	 *
	 * This exposes us to a potential deadlock if we allocate multiple bios
	 * from the same bio_set() while running underneath submit_bio_noacct().
	 * If we were to allocate multiple bios (say a stacking block driver
	 * that was splitting bios), we would deadlock if we exhausted the
	 * mempool's reserve.
	 *
	 * We solve this, and guarantee forward progress, with a rescuer
	 * workqueue per bio_set. If we go to allocate and there are bios on
	 * current->bio_list, we first try the allocation without
	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
	 * blocking to the rescuer workqueue before we retry with the original
	 * gfp_flags.
	 */
	if (current->bio_list &&
	    (!bio_list_empty(&current->bio_list[0]) ||
	     !bio_list_empty(&current->bio_list[1])) &&
	    bs->rescue_workqueue)
		gfp_mask &= ~__GFP_DIRECT_RECLAIM;

	p = mempool_alloc(&bs->bio_pool, gfp_mask);
	if (!p && gfp_mask != saved_gfp) {
		punt_bios_to_rescuer(bs);
		gfp_mask = saved_gfp;
466
		p = mempool_alloc(&bs->bio_pool, gfp_mask);
467
	}
T
Tejun Heo 已提交
468 469
	if (unlikely(!p))
		return NULL;
L
Linus Torvalds 已提交
470

471 472
	bio = p + bs->front_pad;
	if (nr_iovecs > BIO_INLINE_VECS) {
473
		unsigned long idx = 0;
474
		struct bio_vec *bvl = NULL;
475

476
		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
477 478 479
		if (!bvl && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
480 481
			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx,
					 &bs->bvec_pool);
482 483
		}

I
Ingo Molnar 已提交
484 485
		if (unlikely(!bvl))
			goto err_free;
486

487
		bio_init(bio, bvl, bvec_nr_vecs(idx));
M
Ming Lei 已提交
488
		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
489
	} else if (nr_iovecs) {
490 491 492
		bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
	} else {
		bio_init(bio, NULL, 0);
L
Linus Torvalds 已提交
493
	}
494 495

	bio->bi_pool = bs;
L
Linus Torvalds 已提交
496
	return bio;
I
Ingo Molnar 已提交
497 498

err_free:
499
	mempool_free(p, &bs->bio_pool);
I
Ingo Molnar 已提交
500
	return NULL;
L
Linus Torvalds 已提交
501
}
502
EXPORT_SYMBOL(bio_alloc_bioset);
L
Linus Torvalds 已提交
503

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
/**
 * bio_kmalloc - kmalloc a bio for I/O
 * @gfp_mask:   the GFP_* mask given to the slab allocator
 * @nr_iovecs:	number of iovecs to pre-allocate
 *
 * Use kmalloc to allocate and initialize a bio.
 *
 * Returns: Pointer to new bio on success, NULL on failure.
 */
struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs)
{
	struct bio *bio;

	if (nr_iovecs > UIO_MAXIOV)
		return NULL;

	bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
	if (unlikely(!bio))
		return NULL;
	bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
	bio->bi_pool = NULL;
	return bio;
}
EXPORT_SYMBOL(bio_kmalloc);

529
void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
L
Linus Torvalds 已提交
530 531
{
	unsigned long flags;
532 533
	struct bio_vec bv;
	struct bvec_iter iter;
L
Linus Torvalds 已提交
534

535
	__bio_for_each_segment(bv, bio, iter, start) {
536 537 538
		char *data = bvec_kmap_irq(&bv, &flags);
		memset(data, 0, bv.bv_len);
		flush_dcache_page(bv.bv_page);
L
Linus Torvalds 已提交
539 540 541
		bvec_kunmap_irq(data, &flags);
	}
}
542
EXPORT_SYMBOL(zero_fill_bio_iter);
L
Linus Torvalds 已提交
543

544 545 546 547 548 549 550 551 552 553
/**
 * bio_truncate - truncate the bio to small size of @new_size
 * @bio:	the bio to be truncated
 * @new_size:	new size for truncating the bio
 *
 * Description:
 *   Truncate the bio to new size of @new_size. If bio_op(bio) is
 *   REQ_OP_READ, zero the truncated part. This function should only
 *   be used for handling corner cases, such as bio eod.
 */
554 555 556 557 558 559 560 561 562 563
void bio_truncate(struct bio *bio, unsigned new_size)
{
	struct bio_vec bv;
	struct bvec_iter iter;
	unsigned int done = 0;
	bool truncated = false;

	if (new_size >= bio->bi_iter.bi_size)
		return;

564
	if (bio_op(bio) != REQ_OP_READ)
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
		goto exit;

	bio_for_each_segment(bv, bio, iter) {
		if (done + bv.bv_len > new_size) {
			unsigned offset;

			if (!truncated)
				offset = new_size - done;
			else
				offset = 0;
			zero_user(bv.bv_page, offset, bv.bv_len - offset);
			truncated = true;
		}
		done += bv.bv_len;
	}

 exit:
	/*
	 * Don't touch bvec table here and make it really immutable, since
	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
	 * in its .end_bio() callback.
	 *
	 * It is enough to truncate bio by updating .bi_size since we can make
	 * correct bvec with the updated .bi_size for drivers.
	 */
	bio->bi_iter.bi_size = new_size;
}

593 594 595 596 597 598 599 600 601 602 603 604 605 606
/**
 * guard_bio_eod - truncate a BIO to fit the block device
 * @bio:	bio to truncate
 *
 * This allows us to do IO even on the odd last sectors of a device, even if the
 * block size is some multiple of the physical sector size.
 *
 * We'll just truncate the bio to the size of the device, and clear the end of
 * the buffer head manually.  Truly out-of-range accesses will turn into actual
 * I/O errors, this only handles the "we need to be able to do I/O at the final
 * sector" case.
 */
void guard_bio_eod(struct bio *bio)
{
607
	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626

	if (!maxsector)
		return;

	/*
	 * If the *whole* IO is past the end of the device,
	 * let it through, and the IO layer will turn it into
	 * an EIO.
	 */
	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
		return;

	maxsector -= bio->bi_iter.bi_sector;
	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
		return;

	bio_truncate(bio, maxsector << 9);
}

L
Linus Torvalds 已提交
627 628 629 630 631 632
/**
 * bio_put - release a reference to a bio
 * @bio:   bio to release reference to
 *
 * Description:
 *   Put a reference to a &struct bio, either one you have gotten with
633
 *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
L
Linus Torvalds 已提交
634 635 636
 **/
void bio_put(struct bio *bio)
{
637
	if (!bio_flagged(bio, BIO_REFFED))
K
Kent Overstreet 已提交
638
		bio_free(bio);
639 640 641 642 643 644 645 646 647
	else {
		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));

		/*
		 * last put frees it
		 */
		if (atomic_dec_and_test(&bio->__bi_cnt))
			bio_free(bio);
	}
L
Linus Torvalds 已提交
648
}
649
EXPORT_SYMBOL(bio_put);
L
Linus Torvalds 已提交
650

K
Kent Overstreet 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663
/**
 * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
 * 	@bio: destination bio
 * 	@bio_src: bio to clone
 *
 *	Clone a &bio. Caller will own the returned bio, but not
 *	the actual data it points to. Reference count of returned
 * 	bio will be one.
 *
 * 	Caller must ensure that @bio_src is not freed before @bio.
 */
void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
{
664
	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
K
Kent Overstreet 已提交
665 666

	/*
667
	 * most users will be overriding ->bi_bdev with a new target,
K
Kent Overstreet 已提交
668 669
	 * so we don't set nor calculate new physical/hw segment counts here
	 */
670
	bio->bi_bdev = bio_src->bi_bdev;
671
	bio_set_flag(bio, BIO_CLONED);
S
Shaohua Li 已提交
672 673
	if (bio_flagged(bio_src, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
674 675
	if (bio_flagged(bio_src, BIO_REMAPPED))
		bio_set_flag(bio, BIO_REMAPPED);
J
Jens Axboe 已提交
676
	bio->bi_opf = bio_src->bi_opf;
677
	bio->bi_ioprio = bio_src->bi_ioprio;
678
	bio->bi_write_hint = bio_src->bi_write_hint;
K
Kent Overstreet 已提交
679 680
	bio->bi_iter = bio_src->bi_iter;
	bio->bi_io_vec = bio_src->bi_io_vec;
681

682
	bio_clone_blkg_association(bio, bio_src);
683
	blkcg_bio_issue_init(bio);
K
Kent Overstreet 已提交
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
}
EXPORT_SYMBOL(__bio_clone_fast);

/**
 *	bio_clone_fast - clone a bio that shares the original bio's biovec
 *	@bio: bio to clone
 *	@gfp_mask: allocation priority
 *	@bs: bio_set to allocate from
 *
 * 	Like __bio_clone_fast, only also allocates the returned bio
 */
struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
{
	struct bio *b;

	b = bio_alloc_bioset(gfp_mask, 0, bs);
	if (!b)
		return NULL;

	__bio_clone_fast(b, bio);

705 706
	if (bio_crypt_clone(b, bio, gfp_mask) < 0)
		goto err_put;
707

708 709 710
	if (bio_integrity(bio) &&
	    bio_integrity_clone(b, bio, gfp_mask) < 0)
		goto err_put;
K
Kent Overstreet 已提交
711 712

	return b;
713 714 715 716

err_put:
	bio_put(b);
	return NULL;
K
Kent Overstreet 已提交
717 718 719
}
EXPORT_SYMBOL(bio_clone_fast);

720 721
const char *bio_devname(struct bio *bio, char *buf)
{
722
	return bdevname(bio->bi_bdev, buf);
723 724 725
}
EXPORT_SYMBOL(bio_devname);

726 727
static inline bool page_is_mergeable(const struct bio_vec *bv,
		struct page *page, unsigned int len, unsigned int off,
728
		bool *same_page)
729
{
730 731
	size_t bv_end = bv->bv_offset + bv->bv_len;
	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
732 733 734 735 736 737
	phys_addr_t page_addr = page_to_phys(page);

	if (vec_end_addr + 1 != page_addr + off)
		return false;
	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
		return false;
738

739
	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
740 741 742
	if (*same_page)
		return true;
	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
743 744
}

745 746 747 748 749 750 751 752
/*
 * Try to merge a page into a segment, while obeying the hardware segment
 * size limit.  This is not for normal read/write bios, but for passthrough
 * or Zone Append operations that we can't split.
 */
static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
				 struct page *page, unsigned len,
				 unsigned offset, bool *same_page)
753
{
754
	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
755 756 757 758 759 760 761 762
	unsigned long mask = queue_segment_boundary(q);
	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;

	if ((addr1 | mask) != (addr2 | mask))
		return false;
	if (bv->bv_len + len > queue_max_segment_size(q))
		return false;
763
	return __bio_try_merge_page(bio, page, len, offset, same_page);
764 765
}

L
Linus Torvalds 已提交
766
/**
767 768 769 770 771 772 773 774
 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
 * @q: the target queue
 * @bio: destination bio
 * @page: page to add
 * @len: vec entry length
 * @offset: vec entry offset
 * @max_sectors: maximum number of sectors that can be added
 * @same_page: return if the segment has been merged inside the same page
K
Kent Overstreet 已提交
775
 *
776 777
 * Add a page to a bio while respecting the hardware max_sectors, max_segment
 * and gap limitations.
L
Linus Torvalds 已提交
778
 */
779
int bio_add_hw_page(struct request_queue *q, struct bio *bio,
780
		struct page *page, unsigned int len, unsigned int offset,
781
		unsigned int max_sectors, bool *same_page)
L
Linus Torvalds 已提交
782 783 784
{
	struct bio_vec *bvec;

785
	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
L
Linus Torvalds 已提交
786 787
		return 0;

788
	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
L
Linus Torvalds 已提交
789 790
		return 0;

791
	if (bio->bi_vcnt > 0) {
792
		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
793
			return len;
794 795 796 797 798

		/*
		 * If the queue doesn't support SG gaps and adding this segment
		 * would create a gap, disallow it.
		 */
799
		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
800 801
		if (bvec_gap_to_prev(q, bvec, offset))
			return 0;
802 803
	}

M
Ming Lei 已提交
804
	if (bio_full(bio, len))
L
Linus Torvalds 已提交
805 806
		return 0;

807
	if (bio->bi_vcnt >= queue_max_segments(q))
808 809
		return 0;

810 811 812 813 814
	bvec = &bio->bi_io_vec[bio->bi_vcnt];
	bvec->bv_page = page;
	bvec->bv_len = len;
	bvec->bv_offset = offset;
	bio->bi_vcnt++;
815
	bio->bi_iter.bi_size += len;
L
Linus Torvalds 已提交
816 817
	return len;
}
818

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
/**
 * bio_add_pc_page	- attempt to add page to passthrough bio
 * @q: the target queue
 * @bio: destination bio
 * @page: page to add
 * @len: vec entry length
 * @offset: vec entry offset
 *
 * Attempt to add a page to the bio_vec maplist. This can fail for a
 * number of reasons, such as the bio being full or target block device
 * limitations. The target block device must allow bio's up to PAGE_SIZE,
 * so it is always possible to add a single page to an empty bio.
 *
 * This should only be used by passthrough bios.
 */
834 835 836
int bio_add_pc_page(struct request_queue *q, struct bio *bio,
		struct page *page, unsigned int len, unsigned int offset)
{
837
	bool same_page = false;
838 839
	return bio_add_hw_page(q, bio, page, len, offset,
			queue_max_hw_sectors(q), &same_page);
840
}
841
EXPORT_SYMBOL(bio_add_pc_page);
842

L
Linus Torvalds 已提交
843
/**
844 845
 * __bio_try_merge_page - try appending data to an existing bvec.
 * @bio: destination bio
846
 * @page: start page to add
847
 * @len: length of the data to add
848
 * @off: offset of the data relative to @page
849
 * @same_page: return if the segment has been merged inside the same page
L
Linus Torvalds 已提交
850
 *
851
 * Try to add the data at @page + @off to the last bvec of @bio.  This is a
852
 * useful optimisation for file systems with a block size smaller than the
853 854
 * page size.
 *
855 856
 * Warn if (@len, @off) crosses pages in case that @same_page is true.
 *
857
 * Return %true on success or %false on failure.
L
Linus Torvalds 已提交
858
 */
859
bool __bio_try_merge_page(struct bio *bio, struct page *page,
860
		unsigned int len, unsigned int off, bool *same_page)
L
Linus Torvalds 已提交
861
{
K
Kent Overstreet 已提交
862
	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
863
		return false;
864

865
	if (bio->bi_vcnt > 0) {
866
		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
867 868

		if (page_is_mergeable(bv, page, len, off, same_page)) {
869 870
			if (bio->bi_iter.bi_size > UINT_MAX - len) {
				*same_page = false;
871
				return false;
872
			}
873 874 875 876
			bv->bv_len += len;
			bio->bi_iter.bi_size += len;
			return true;
		}
K
Kent Overstreet 已提交
877
	}
878 879 880
	return false;
}
EXPORT_SYMBOL_GPL(__bio_try_merge_page);
K
Kent Overstreet 已提交
881

882
/**
883
 * __bio_add_page - add page(s) to a bio in a new segment
884
 * @bio: destination bio
885 886 887
 * @page: start page to add
 * @len: length of the data to add, may cross pages
 * @off: offset of the data relative to @page, may cross pages
888 889 890 891 892 893 894 895
 *
 * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
 * that @bio has space for another bvec.
 */
void __bio_add_page(struct bio *bio, struct page *page,
		unsigned int len, unsigned int off)
{
	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
K
Kent Overstreet 已提交
896

897
	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
M
Ming Lei 已提交
898
	WARN_ON_ONCE(bio_full(bio, len));
899 900 901 902

	bv->bv_page = page;
	bv->bv_offset = off;
	bv->bv_len = len;
K
Kent Overstreet 已提交
903 904

	bio->bi_iter.bi_size += len;
905
	bio->bi_vcnt++;
906 907 908

	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
		bio_set_flag(bio, BIO_WORKINGSET);
909 910 911 912
}
EXPORT_SYMBOL_GPL(__bio_add_page);

/**
913
 *	bio_add_page	-	attempt to add page(s) to bio
914
 *	@bio: destination bio
915 916 917
 *	@page: start page to add
 *	@len: vec entry length, may cross pages
 *	@offset: vec entry offset relative to @page, may cross pages
918
 *
919
 *	Attempt to add page(s) to the bio_vec maplist. This will only fail
920 921 922 923 924
 *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
 */
int bio_add_page(struct bio *bio, struct page *page,
		 unsigned int len, unsigned int offset)
{
925 926 927
	bool same_page = false;

	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
M
Ming Lei 已提交
928
		if (bio_full(bio, len))
929 930 931
			return 0;
		__bio_add_page(bio, page, len, offset);
	}
K
Kent Overstreet 已提交
932
	return len;
L
Linus Torvalds 已提交
933
}
934
EXPORT_SYMBOL(bio_add_page);
L
Linus Torvalds 已提交
935

936
void bio_release_pages(struct bio *bio, bool mark_dirty)
937 938 939 940
{
	struct bvec_iter_all iter_all;
	struct bio_vec *bvec;

941 942 943
	if (bio_flagged(bio, BIO_NO_PAGE_REF))
		return;

944 945 946
	bio_for_each_segment_all(bvec, bio, iter_all) {
		if (mark_dirty && !PageCompound(bvec->bv_page))
			set_page_dirty_lock(bvec->bv_page);
947
		put_page(bvec->bv_page);
948
	}
949
}
950
EXPORT_SYMBOL_GPL(bio_release_pages);
951

952
static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
953
{
954 955 956 957 958 959 960 961 962
	WARN_ON_ONCE(BVEC_POOL_IDX(bio) != 0);

	bio->bi_vcnt = iter->nr_segs;
	bio->bi_max_vecs = iter->nr_segs;
	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
	bio->bi_iter.bi_bvec_done = iter->iov_offset;
	bio->bi_iter.bi_size = iter->count;

	iov_iter_advance(iter, iter->count);
963
	return 0;
964 965
}

966 967
#define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))

968
/**
969
 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
970 971 972
 * @bio: bio to add pages to
 * @iter: iov iterator describing the region to be mapped
 *
973
 * Pins pages from *iter and appends them to @bio's bvec array. The
974
 * pages will have to be released using put_page() when done.
975
 * For multi-segment *iter, this function only adds pages from the
976
 * next non-empty segment of the iov iterator.
977
 */
978
static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
979
{
980 981
	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
982 983
	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
	struct page **pages = (struct page **)bv;
984
	bool same_page = false;
985 986
	ssize_t size, left;
	unsigned len, i;
987
	size_t offset;
988 989 990 991 992 993 994 995

	/*
	 * Move page array up in the allocated memory for the bio vecs as far as
	 * possible so that we can start filling biovecs from the beginning
	 * without overwriting the temporary page array.
	*/
	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
996 997 998 999 1000

	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
	if (unlikely(size <= 0))
		return size ? size : -EFAULT;

1001 1002
	for (left = size, i = 0; left > 0; left -= len, i++) {
		struct page *page = pages[i];
1003

1004
		len = min_t(size_t, PAGE_SIZE - offset, left);
1005 1006 1007 1008 1009

		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
			if (same_page)
				put_page(page);
		} else {
M
Ming Lei 已提交
1010
			if (WARN_ON_ONCE(bio_full(bio, len)))
1011 1012 1013
                                return -EINVAL;
			__bio_add_page(bio, page, len, offset);
		}
1014
		offset = 0;
1015 1016 1017 1018 1019
	}

	iov_iter_advance(iter, size);
	return 0;
}
1020

1021 1022 1023 1024
static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
{
	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1025
	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1026 1027 1028 1029 1030 1031
	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
	struct page **pages = (struct page **)bv;
	ssize_t size, left;
	unsigned len, i;
	size_t offset;
1032
	int ret = 0;
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

	if (WARN_ON_ONCE(!max_append_sectors))
		return 0;

	/*
	 * Move page array up in the allocated memory for the bio vecs as far as
	 * possible so that we can start filling biovecs from the beginning
	 * without overwriting the temporary page array.
	 */
	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);

	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
	if (unlikely(size <= 0))
		return size ? size : -EFAULT;

	for (left = size, i = 0; left > 0; left -= len, i++) {
		struct page *page = pages[i];
		bool same_page = false;

		len = min_t(size_t, PAGE_SIZE - offset, left);
		if (bio_add_hw_page(q, bio, page, len, offset,
1055 1056 1057 1058
				max_append_sectors, &same_page) != len) {
			ret = -EINVAL;
			break;
		}
1059 1060 1061 1062 1063
		if (same_page)
			put_page(page);
		offset = 0;
	}

1064 1065
	iov_iter_advance(iter, size - left);
	return ret;
1066 1067
}

1068
/**
1069
 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1070
 * @bio: bio to add pages to
1071 1072 1073 1074 1075
 * @iter: iov iterator describing the region to be added
 *
 * This takes either an iterator pointing to user memory, or one pointing to
 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
 * map them into the kernel. On IO completion, the caller should put those
1076 1077 1078 1079 1080 1081
 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
 * to ensure the bvecs and pages stay referenced until the submitted I/O is
 * completed by a call to ->ki_complete() or returns with an error other than
 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
 * on IO completion. If it isn't, then pages should be released.
1082 1083
 *
 * The function tries, but does not guarantee, to pin as many pages as
1084
 * fit into the bio, or are requested in @iter, whatever is smaller. If
1085 1086
 * MM encounters an error pinning the requested pages, it stops. Error
 * is returned only if 0 pages could be pinned.
1087 1088 1089
 *
 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
 * responsible for setting BIO_WORKINGSET if necessary.
1090 1091 1092
 */
int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
{
1093
	int ret = 0;
1094

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	if (iov_iter_is_bvec(iter)) {
		if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
			return -EINVAL;
		bio_iov_bvec_set(bio, iter);
		bio_set_flag(bio, BIO_NO_PAGE_REF);
		return 0;
	} else {
		do {
			if (bio_op(bio) == REQ_OP_ZONE_APPEND)
				ret = __bio_iov_append_get_pages(bio, iter);
1105 1106
			else
				ret = __bio_iov_iter_get_pages(bio, iter);
1107 1108
		} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
	}
1109 1110 1111

	/* don't account direct I/O as memory stall */
	bio_clear_flag(bio, BIO_WORKINGSET);
1112
	return bio->bi_vcnt ? 0 : ret;
1113
}
1114
EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1115

1116
static void submit_bio_wait_endio(struct bio *bio)
1117
{
1118
	complete(bio->bi_private);
1119 1120 1121 1122 1123 1124 1125 1126
}

/**
 * submit_bio_wait - submit a bio, and wait until it completes
 * @bio: The &struct bio which describes the I/O
 *
 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
 * bio_endio() on failure.
1127 1128 1129 1130
 *
 * WARNING: Unlike to how submit_bio() is usually used, this function does not
 * result in bio reference to be consumed. The caller must drop the reference
 * on his own.
1131
 */
1132
int submit_bio_wait(struct bio *bio)
1133
{
1134 1135
	DECLARE_COMPLETION_ONSTACK_MAP(done,
			bio->bi_bdev->bd_disk->lockdep_map);
1136
	unsigned long hang_check;
1137

1138
	bio->bi_private = &done;
1139
	bio->bi_end_io = submit_bio_wait_endio;
J
Jens Axboe 已提交
1140
	bio->bi_opf |= REQ_SYNC;
1141
	submit_bio(bio);
1142 1143 1144 1145 1146 1147 1148 1149 1150

	/* Prevent hang_check timer from firing at us during very long I/O */
	hang_check = sysctl_hung_task_timeout_secs;
	if (hang_check)
		while (!wait_for_completion_io_timeout(&done,
					hang_check * (HZ/2)))
			;
	else
		wait_for_completion_io(&done);
1151

1152
	return blk_status_to_errno(bio->bi_status);
1153 1154 1155
}
EXPORT_SYMBOL(submit_bio_wait);

K
Kent Overstreet 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
/**
 * bio_advance - increment/complete a bio by some number of bytes
 * @bio:	bio to advance
 * @bytes:	number of bytes to complete
 *
 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
 * be updated on the last bvec as well.
 *
 * @bio will then represent the remaining, uncompleted portion of the io.
 */
void bio_advance(struct bio *bio, unsigned bytes)
{
	if (bio_integrity(bio))
		bio_integrity_advance(bio, bytes);

1172
	bio_crypt_advance(bio, bytes);
K
Kent Overstreet 已提交
1173
	bio_advance_iter(bio, &bio->bi_iter, bytes);
K
Kent Overstreet 已提交
1174 1175 1176
}
EXPORT_SYMBOL(bio_advance);

1177 1178
void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
			struct bio *src, struct bvec_iter *src_iter)
K
Kent Overstreet 已提交
1179
{
1180
	struct bio_vec src_bv, dst_bv;
K
Kent Overstreet 已提交
1181
	void *src_p, *dst_p;
1182
	unsigned bytes;
K
Kent Overstreet 已提交
1183

1184 1185 1186
	while (src_iter->bi_size && dst_iter->bi_size) {
		src_bv = bio_iter_iovec(src, *src_iter);
		dst_bv = bio_iter_iovec(dst, *dst_iter);
1187 1188

		bytes = min(src_bv.bv_len, dst_bv.bv_len);
K
Kent Overstreet 已提交
1189

1190 1191
		src_p = kmap_atomic(src_bv.bv_page);
		dst_p = kmap_atomic(dst_bv.bv_page);
K
Kent Overstreet 已提交
1192

1193 1194
		memcpy(dst_p + dst_bv.bv_offset,
		       src_p + src_bv.bv_offset,
K
Kent Overstreet 已提交
1195 1196 1197 1198 1199
		       bytes);

		kunmap_atomic(dst_p);
		kunmap_atomic(src_p);

1200 1201
		flush_dcache_page(dst_bv.bv_page);

P
Pavel Begunkov 已提交
1202 1203
		bio_advance_iter_single(src, src_iter, bytes);
		bio_advance_iter_single(dst, dst_iter, bytes);
K
Kent Overstreet 已提交
1204 1205
	}
}
1206 1207 1208
EXPORT_SYMBOL(bio_copy_data_iter);

/**
1209 1210 1211
 * bio_copy_data - copy contents of data buffers from one bio to another
 * @src: source bio
 * @dst: destination bio
1212 1213 1214 1215 1216 1217
 *
 * Stops when it reaches the end of either @src or @dst - that is, copies
 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
 */
void bio_copy_data(struct bio *dst, struct bio *src)
{
1218 1219 1220 1221
	struct bvec_iter src_iter = src->bi_iter;
	struct bvec_iter dst_iter = dst->bi_iter;

	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1222
}
K
Kent Overstreet 已提交
1223 1224
EXPORT_SYMBOL(bio_copy_data);

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
/**
 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
 * another
 * @src: source bio list
 * @dst: destination bio list
 *
 * Stops when it reaches the end of either the @src list or @dst list - that is,
 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
 * bios).
 */
void bio_list_copy_data(struct bio *dst, struct bio *src)
{
	struct bvec_iter src_iter = src->bi_iter;
	struct bvec_iter dst_iter = dst->bi_iter;

	while (1) {
		if (!src_iter.bi_size) {
			src = src->bi_next;
			if (!src)
				break;

			src_iter = src->bi_iter;
		}

		if (!dst_iter.bi_size) {
			dst = dst->bi_next;
			if (!dst)
				break;

			dst_iter = dst->bi_iter;
		}

		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
	}
}
EXPORT_SYMBOL(bio_list_copy_data);

1262
void bio_free_pages(struct bio *bio)
1263 1264
{
	struct bio_vec *bvec;
1265
	struct bvec_iter_all iter_all;
1266

1267
	bio_for_each_segment_all(bvec, bio, iter_all)
1268 1269
		__free_page(bvec->bv_page);
}
1270
EXPORT_SYMBOL(bio_free_pages);
1271

L
Linus Torvalds 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
/*
 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
 * for performing direct-IO in BIOs.
 *
 * The problem is that we cannot run set_page_dirty() from interrupt context
 * because the required locks are not interrupt-safe.  So what we can do is to
 * mark the pages dirty _before_ performing IO.  And in interrupt context,
 * check that the pages are still dirty.   If so, fine.  If not, redirty them
 * in process context.
 *
 * We special-case compound pages here: normally this means reads into hugetlb
 * pages.  The logic in here doesn't really work right for compound pages
 * because the VM does not uniformly chase down the head page in all cases.
 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
 * handle them at all.  So we skip compound pages here at an early stage.
 *
 * Note that this code is very hard to test under normal circumstances because
 * direct-io pins the pages with get_user_pages().  This makes
 * is_page_cache_freeable return false, and the VM will not clean the pages.
1291
 * But other code (eg, flusher threads) could clean the pages if they are mapped
L
Linus Torvalds 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
 * pagecache.
 *
 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
 * deferred bio dirtying paths.
 */

/*
 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
 */
void bio_set_pages_dirty(struct bio *bio)
{
1303
	struct bio_vec *bvec;
1304
	struct bvec_iter_all iter_all;
L
Linus Torvalds 已提交
1305

1306
	bio_for_each_segment_all(bvec, bio, iter_all) {
1307 1308
		if (!PageCompound(bvec->bv_page))
			set_page_dirty_lock(bvec->bv_page);
L
Linus Torvalds 已提交
1309 1310 1311 1312 1313 1314 1315
	}
}

/*
 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
 * If they are, then fine.  If, however, some pages are clean then they must
 * have been written out during the direct-IO read.  So we take another ref on
1316
 * the BIO and re-dirty the pages in process context.
L
Linus Torvalds 已提交
1317 1318
 *
 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1319 1320
 * here on.  It will run one put_page() against each page and will run one
 * bio_put() against the BIO.
L
Linus Torvalds 已提交
1321 1322
 */

1323
static void bio_dirty_fn(struct work_struct *work);
L
Linus Torvalds 已提交
1324

1325
static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
L
Linus Torvalds 已提交
1326 1327 1328 1329 1330 1331
static DEFINE_SPINLOCK(bio_dirty_lock);
static struct bio *bio_dirty_list;

/*
 * This runs in process context
 */
1332
static void bio_dirty_fn(struct work_struct *work)
L
Linus Torvalds 已提交
1333
{
1334
	struct bio *bio, *next;
L
Linus Torvalds 已提交
1335

1336 1337
	spin_lock_irq(&bio_dirty_lock);
	next = bio_dirty_list;
L
Linus Torvalds 已提交
1338
	bio_dirty_list = NULL;
1339
	spin_unlock_irq(&bio_dirty_lock);
L
Linus Torvalds 已提交
1340

1341 1342
	while ((bio = next) != NULL) {
		next = bio->bi_private;
L
Linus Torvalds 已提交
1343

1344
		bio_release_pages(bio, true);
L
Linus Torvalds 已提交
1345 1346 1347 1348 1349 1350
		bio_put(bio);
	}
}

void bio_check_pages_dirty(struct bio *bio)
{
1351
	struct bio_vec *bvec;
1352
	unsigned long flags;
1353
	struct bvec_iter_all iter_all;
L
Linus Torvalds 已提交
1354

1355
	bio_for_each_segment_all(bvec, bio, iter_all) {
1356 1357
		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
			goto defer;
L
Linus Torvalds 已提交
1358 1359
	}

1360
	bio_release_pages(bio, false);
1361 1362 1363 1364 1365 1366 1367 1368
	bio_put(bio);
	return;
defer:
	spin_lock_irqsave(&bio_dirty_lock, flags);
	bio->bi_private = bio_dirty_list;
	bio_dirty_list = bio;
	spin_unlock_irqrestore(&bio_dirty_lock, flags);
	schedule_work(&bio_dirty_work);
L
Linus Torvalds 已提交
1369 1370
}

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
static inline bool bio_remaining_done(struct bio *bio)
{
	/*
	 * If we're not chaining, then ->__bi_remaining is always 1 and
	 * we always end io on the first invocation.
	 */
	if (!bio_flagged(bio, BIO_CHAIN))
		return true;

	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);

1382
	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1383
		bio_clear_flag(bio, BIO_CHAIN);
1384
		return true;
1385
	}
1386 1387 1388 1389

	return false;
}

L
Linus Torvalds 已提交
1390 1391 1392 1393 1394
/**
 * bio_endio - end I/O on a bio
 * @bio:	bio
 *
 * Description:
1395 1396 1397
 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
 *   bio unless they own it and thus know that it has an end_io function.
N
NeilBrown 已提交
1398 1399 1400 1401 1402
 *
 *   bio_endio() can be called several times on a bio that has been chained
 *   using bio_chain().  The ->bi_end_io() function will only be called the
 *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
 *   generated if BIO_TRACE_COMPLETION is set.
L
Linus Torvalds 已提交
1403
 **/
1404
void bio_endio(struct bio *bio)
L
Linus Torvalds 已提交
1405
{
C
Christoph Hellwig 已提交
1406
again:
1407
	if (!bio_remaining_done(bio))
C
Christoph Hellwig 已提交
1408
		return;
1409 1410
	if (!bio_integrity_endio(bio))
		return;
L
Linus Torvalds 已提交
1411

1412 1413
	if (bio->bi_bdev)
		rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
J
Josef Bacik 已提交
1414

C
Christoph Hellwig 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
	/*
	 * Need to have a real endio function for chained bios, otherwise
	 * various corner cases will break (like stacking block devices that
	 * save/restore bi_end_io) - however, we want to avoid unbounded
	 * recursion and blowing the stack. Tail call optimization would
	 * handle this, but compiling with frame pointers also disables
	 * gcc's sibling call optimization.
	 */
	if (bio->bi_end_io == bio_chain_endio) {
		bio = __bio_chain_endio(bio);
		goto again;
K
Kent Overstreet 已提交
1426
	}
C
Christoph Hellwig 已提交
1427

1428 1429
	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
		trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
N
NeilBrown 已提交
1430 1431 1432
		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
	}

1433
	blk_throtl_bio_endio(bio);
S
Shaohua Li 已提交
1434 1435
	/* release cgroup info */
	bio_uninit(bio);
C
Christoph Hellwig 已提交
1436 1437
	if (bio->bi_end_io)
		bio->bi_end_io(bio);
L
Linus Torvalds 已提交
1438
}
1439
EXPORT_SYMBOL(bio_endio);
L
Linus Torvalds 已提交
1440

K
Kent Overstreet 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
/**
 * bio_split - split a bio
 * @bio:	bio to split
 * @sectors:	number of sectors to split from the front of @bio
 * @gfp:	gfp mask
 * @bs:		bio set to allocate from
 *
 * Allocates and returns a new bio which represents @sectors from the start of
 * @bio, and updates @bio to represent the remaining sectors.
 *
1451
 * Unless this is a discard request the newly allocated bio will point
1452 1453
 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
 * neither @bio nor @bs are freed before the split bio.
K
Kent Overstreet 已提交
1454 1455 1456 1457
 */
struct bio *bio_split(struct bio *bio, int sectors,
		      gfp_t gfp, struct bio_set *bs)
{
1458
	struct bio *split;
K
Kent Overstreet 已提交
1459 1460 1461 1462

	BUG_ON(sectors <= 0);
	BUG_ON(sectors >= bio_sectors(bio));

1463 1464 1465 1466
	/* Zone append commands cannot be split */
	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
		return NULL;

1467
	split = bio_clone_fast(bio, gfp, bs);
K
Kent Overstreet 已提交
1468 1469 1470 1471 1472 1473
	if (!split)
		return NULL;

	split->bi_iter.bi_size = sectors << 9;

	if (bio_integrity(split))
1474
		bio_integrity_trim(split);
K
Kent Overstreet 已提交
1475 1476 1477

	bio_advance(bio, split->bi_iter.bi_size);

N
NeilBrown 已提交
1478
	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1479
		bio_set_flag(split, BIO_TRACE_COMPLETION);
N
NeilBrown 已提交
1480

K
Kent Overstreet 已提交
1481 1482 1483 1484
	return split;
}
EXPORT_SYMBOL(bio_split);

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
/**
 * bio_trim - trim a bio
 * @bio:	bio to trim
 * @offset:	number of sectors to trim from the front of @bio
 * @size:	size we want to trim @bio to, in sectors
 */
void bio_trim(struct bio *bio, int offset, int size)
{
	/* 'bio' is a cloned bio which we need to trim to match
	 * the given offset and size.
	 */

	size <<= 9;
1498
	if (offset == 0 && size == bio->bi_iter.bi_size)
1499 1500 1501
		return;

	bio_advance(bio, offset << 9);
1502
	bio->bi_iter.bi_size = size;
1503 1504

	if (bio_integrity(bio))
1505
		bio_integrity_trim(bio);
1506

1507 1508 1509
}
EXPORT_SYMBOL_GPL(bio_trim);

L
Linus Torvalds 已提交
1510 1511 1512 1513
/*
 * create memory pools for biovec's in a bio_set.
 * use the global biovec slabs created for general use.
 */
1514
int biovec_init_pool(mempool_t *pool, int pool_entries)
L
Linus Torvalds 已提交
1515
{
1516
	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
L
Linus Torvalds 已提交
1517

1518
	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
L
Linus Torvalds 已提交
1519 1520
}

1521 1522 1523 1524 1525 1526 1527
/*
 * bioset_exit - exit a bioset initialized with bioset_init()
 *
 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
 * kzalloc()).
 */
void bioset_exit(struct bio_set *bs)
L
Linus Torvalds 已提交
1528
{
1529 1530
	if (bs->rescue_workqueue)
		destroy_workqueue(bs->rescue_workqueue);
1531
	bs->rescue_workqueue = NULL;
1532

1533 1534
	mempool_exit(&bs->bio_pool);
	mempool_exit(&bs->bvec_pool);
1535

1536
	bioset_integrity_free(bs);
1537 1538 1539 1540 1541
	if (bs->bio_slab)
		bio_put_slab(bs);
	bs->bio_slab = NULL;
}
EXPORT_SYMBOL(bioset_exit);
L
Linus Torvalds 已提交
1542

1543 1544
/**
 * bioset_init - Initialize a bio_set
K
Kent Overstreet 已提交
1545
 * @bs:		pool to initialize
1546 1547 1548 1549 1550
 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
 * @front_pad:	Number of bytes to allocate in front of the returned bio
 * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
 *              and %BIOSET_NEED_RESCUER
 *
K
Kent Overstreet 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
 * Description:
 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
 *    to ask for a number of bytes to be allocated in front of the bio.
 *    Front pad allocation is useful for embedding the bio inside
 *    another structure, to avoid allocating extra data to go with the bio.
 *    Note that the bio must be embedded at the END of that structure always,
 *    or things will break badly.
 *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
 *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
 *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
 *    dispatch queued requests when the mempool runs out of space.
 *
1563 1564 1565 1566 1567 1568 1569
 */
int bioset_init(struct bio_set *bs,
		unsigned int pool_size,
		unsigned int front_pad,
		int flags)
{
	bs->front_pad = front_pad;
1570 1571 1572 1573
	if (flags & BIOSET_NEED_BVECS)
		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
	else
		bs->back_pad = 0;
1574 1575 1576 1577 1578

	spin_lock_init(&bs->rescue_lock);
	bio_list_init(&bs->rescue_list);
	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);

1579
	bs->bio_slab = bio_find_or_create_slab(bs);
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	if (!bs->bio_slab)
		return -ENOMEM;

	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
		goto bad;

	if ((flags & BIOSET_NEED_BVECS) &&
	    biovec_init_pool(&bs->bvec_pool, pool_size))
		goto bad;

	if (!(flags & BIOSET_NEED_RESCUER))
		return 0;

	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
	if (!bs->rescue_workqueue)
		goto bad;

	return 0;
bad:
	bioset_exit(bs);
	return -ENOMEM;
}
EXPORT_SYMBOL(bioset_init);

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
/*
 * Initialize and setup a new bio_set, based on the settings from
 * another bio_set.
 */
int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
{
	int flags;

	flags = 0;
	if (src->bvec_pool.min_nr)
		flags |= BIOSET_NEED_BVECS;
	if (src->rescue_workqueue)
		flags |= BIOSET_NEED_RESCUER;

	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
}
EXPORT_SYMBOL(bioset_init_from_src);

L
Linus Torvalds 已提交
1622 1623 1624 1625
static void __init biovec_init_slabs(void)
{
	int i;

1626
	for (i = 0; i < BVEC_POOL_NR; i++) {
L
Linus Torvalds 已提交
1627 1628 1629
		int size;
		struct biovec_slab *bvs = bvec_slabs + i;

1630 1631 1632 1633 1634
		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
			bvs->slab = NULL;
			continue;
		}

L
Linus Torvalds 已提交
1635 1636
		size = bvs->nr_vecs * sizeof(struct bio_vec);
		bvs->slab = kmem_cache_create(bvs->name, size, 0,
1637
                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
L
Linus Torvalds 已提交
1638 1639 1640 1641 1642
	}
}

static int __init init_bio(void)
{
1643 1644
	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);

1645
	bio_integrity_init();
L
Linus Torvalds 已提交
1646 1647
	biovec_init_slabs();

1648
	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
L
Linus Torvalds 已提交
1649 1650
		panic("bio: can't allocate bios\n");

1651
	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1652 1653
		panic("bio: can't create integrity pool\n");

L
Linus Torvalds 已提交
1654 1655 1656
	return 0;
}
subsys_initcall(init_bio);