bio.c 43.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
9
#include <linux/uio.h>
10
#include <linux/iocontext.h>
L
Linus Torvalds 已提交
11 12 13
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
14
#include <linux/export.h>
L
Linus Torvalds 已提交
15 16
#include <linux/mempool.h>
#include <linux/workqueue.h>
17
#include <linux/cgroup.h>
18
#include <linux/blk-cgroup.h>
19
#include <linux/highmem.h>
20
#include <linux/sched/sysctl.h>
21
#include <linux/blk-crypto.h>
L
Linus Torvalds 已提交
22

23
#include <trace/events/block.h>
24
#include "blk.h"
J
Josef Bacik 已提交
25
#include "blk-rq-qos.h"
26

27 28 29 30 31 32
/*
 * Test patch to inline a certain number of bi_io_vec's inside the bio
 * itself, to shrink a bio data allocation from two mempool calls to one
 */
#define BIO_INLINE_VECS		4

L
Linus Torvalds 已提交
33 34 35 36 37
/*
 * if you change this list, also change bvec_alloc or things will
 * break badly! cannot be bigger than what you can fit into an
 * unsigned short
 */
38
#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
39
static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
40
	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
L
Linus Torvalds 已提交
41 42 43 44 45 46 47
};
#undef BV

/*
 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
 * IO code that does not need private memory pools.
 */
48
struct bio_set fs_bio_set;
49
EXPORT_SYMBOL(fs_bio_set);
L
Linus Torvalds 已提交
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
/*
 * Our slab pool management
 */
struct bio_slab {
	struct kmem_cache *slab;
	unsigned int slab_ref;
	unsigned int slab_size;
	char name[8];
};
static DEFINE_MUTEX(bio_slab_lock);
static struct bio_slab *bio_slabs;
static unsigned int bio_slab_nr, bio_slab_max;

static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
{
	unsigned int sz = sizeof(struct bio) + extra_size;
	struct kmem_cache *slab = NULL;
68
	struct bio_slab *bslab, *new_bio_slabs;
69
	unsigned int new_bio_slab_max;
70 71 72 73 74 75
	unsigned int i, entry = -1;

	mutex_lock(&bio_slab_lock);

	i = 0;
	while (i < bio_slab_nr) {
76
		bslab = &bio_slabs[i];
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

		if (!bslab->slab && entry == -1)
			entry = i;
		else if (bslab->slab_size == sz) {
			slab = bslab->slab;
			bslab->slab_ref++;
			break;
		}
		i++;
	}

	if (slab)
		goto out_unlock;

	if (bio_slab_nr == bio_slab_max && entry == -1) {
92
		new_bio_slab_max = bio_slab_max << 1;
93
		new_bio_slabs = krealloc(bio_slabs,
94
					 new_bio_slab_max * sizeof(struct bio_slab),
95 96
					 GFP_KERNEL);
		if (!new_bio_slabs)
97
			goto out_unlock;
98
		bio_slab_max = new_bio_slab_max;
99
		bio_slabs = new_bio_slabs;
100 101 102 103 104 105 106
	}
	if (entry == -1)
		entry = bio_slab_nr++;

	bslab = &bio_slabs[entry];

	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
107 108
	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
				 SLAB_HWCACHE_ALIGN, NULL);
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
	if (!slab)
		goto out_unlock;

	bslab->slab = slab;
	bslab->slab_ref = 1;
	bslab->slab_size = sz;
out_unlock:
	mutex_unlock(&bio_slab_lock);
	return slab;
}

static void bio_put_slab(struct bio_set *bs)
{
	struct bio_slab *bslab = NULL;
	unsigned int i;

	mutex_lock(&bio_slab_lock);

	for (i = 0; i < bio_slab_nr; i++) {
		if (bs->bio_slab == bio_slabs[i].slab) {
			bslab = &bio_slabs[i];
			break;
		}
	}

	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
		goto out;

	WARN_ON(!bslab->slab_ref);

	if (--bslab->slab_ref)
		goto out;

	kmem_cache_destroy(bslab->slab);
	bslab->slab = NULL;

out:
	mutex_unlock(&bio_slab_lock);
}

149 150
unsigned int bvec_nr_vecs(unsigned short idx)
{
151
	return bvec_slabs[--idx].nr_vecs;
152 153
}

154
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
155
{
156 157 158 159 160
	if (!idx)
		return;
	idx--;

	BIO_BUG_ON(idx >= BVEC_POOL_NR);
161

162
	if (idx == BVEC_POOL_MAX) {
163
		mempool_free(bv, pool);
164
	} else {
165 166 167 168 169 170
		struct biovec_slab *bvs = bvec_slabs + idx;

		kmem_cache_free(bvs->slab, bv);
	}
}

171 172
struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
			   mempool_t *pool)
L
Linus Torvalds 已提交
173 174 175
{
	struct bio_vec *bvl;

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
	/*
	 * see comment near bvec_array define!
	 */
	switch (nr) {
	case 1:
		*idx = 0;
		break;
	case 2 ... 4:
		*idx = 1;
		break;
	case 5 ... 16:
		*idx = 2;
		break;
	case 17 ... 64:
		*idx = 3;
		break;
	case 65 ... 128:
		*idx = 4;
		break;
	case 129 ... BIO_MAX_PAGES:
		*idx = 5;
		break;
	default:
		return NULL;
	}

	/*
	 * idx now points to the pool we want to allocate from. only the
	 * 1-vec entry pool is mempool backed.
	 */
206
	if (*idx == BVEC_POOL_MAX) {
207
fallback:
208
		bvl = mempool_alloc(pool, gfp_mask);
209 210
	} else {
		struct biovec_slab *bvs = bvec_slabs + *idx;
211
		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
212

J
Jens Axboe 已提交
213
		/*
214 215 216
		 * Make this allocation restricted and don't dump info on
		 * allocation failures, since we'll fallback to the mempool
		 * in case of failure.
J
Jens Axboe 已提交
217
		 */
218
		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
L
Linus Torvalds 已提交
219

J
Jens Axboe 已提交
220
		/*
221
		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
222
		 * is set, retry with the 1-entry mempool
J
Jens Axboe 已提交
223
		 */
224
		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
225
		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
226
			*idx = BVEC_POOL_MAX;
227 228 229 230
			goto fallback;
		}
	}

231
	(*idx)++;
L
Linus Torvalds 已提交
232 233 234
	return bvl;
}

235
void bio_uninit(struct bio *bio)
L
Linus Torvalds 已提交
236
{
237 238 239 240 241 242
#ifdef CONFIG_BLK_CGROUP
	if (bio->bi_blkg) {
		blkg_put(bio->bi_blkg);
		bio->bi_blkg = NULL;
	}
#endif
243 244
	if (bio_integrity(bio))
		bio_integrity_free(bio);
245 246

	bio_crypt_free_ctx(bio);
K
Kent Overstreet 已提交
247
}
248
EXPORT_SYMBOL(bio_uninit);
249

K
Kent Overstreet 已提交
250 251 252 253 254
static void bio_free(struct bio *bio)
{
	struct bio_set *bs = bio->bi_pool;
	void *p;

255
	bio_uninit(bio);
K
Kent Overstreet 已提交
256 257

	if (bs) {
258
		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
K
Kent Overstreet 已提交
259 260 261 262 263

		/*
		 * If we have front padding, adjust the bio pointer before freeing
		 */
		p = bio;
264 265
		p -= bs->front_pad;

266
		mempool_free(p, &bs->bio_pool);
K
Kent Overstreet 已提交
267 268 269 270
	} else {
		/* Bio was allocated by bio_kmalloc() */
		kfree(bio);
	}
P
Peter Osterlund 已提交
271 272
}

273 274 275 276 277
/*
 * Users of this function have their own bio allocation. Subsequently,
 * they must remember to pair any call to bio_init() with bio_uninit()
 * when IO has completed, or when the bio is released.
 */
278 279
void bio_init(struct bio *bio, struct bio_vec *table,
	      unsigned short max_vecs)
L
Linus Torvalds 已提交
280
{
J
Jens Axboe 已提交
281
	memset(bio, 0, sizeof(*bio));
282
	atomic_set(&bio->__bi_remaining, 1);
283
	atomic_set(&bio->__bi_cnt, 1);
284 285 286

	bio->bi_io_vec = table;
	bio->bi_max_vecs = max_vecs;
L
Linus Torvalds 已提交
287
}
288
EXPORT_SYMBOL(bio_init);
L
Linus Torvalds 已提交
289

K
Kent Overstreet 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303
/**
 * bio_reset - reinitialize a bio
 * @bio:	bio to reset
 *
 * Description:
 *   After calling bio_reset(), @bio will be in the same state as a freshly
 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 *   comment in struct bio.
 */
void bio_reset(struct bio *bio)
{
	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);

304
	bio_uninit(bio);
K
Kent Overstreet 已提交
305 306

	memset(bio, 0, BIO_RESET_BYTES);
307
	bio->bi_flags = flags;
308
	atomic_set(&bio->__bi_remaining, 1);
K
Kent Overstreet 已提交
309 310 311
}
EXPORT_SYMBOL(bio_reset);

312
static struct bio *__bio_chain_endio(struct bio *bio)
K
Kent Overstreet 已提交
313
{
314 315
	struct bio *parent = bio->bi_private;

316 317
	if (!parent->bi_status)
		parent->bi_status = bio->bi_status;
K
Kent Overstreet 已提交
318
	bio_put(bio);
319 320 321 322 323 324
	return parent;
}

static void bio_chain_endio(struct bio *bio)
{
	bio_endio(__bio_chain_endio(bio));
K
Kent Overstreet 已提交
325 326 327 328
}

/**
 * bio_chain - chain bio completions
329
 * @bio: the target bio
330
 * @parent: the parent bio of @bio
K
Kent Overstreet 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343
 *
 * The caller won't have a bi_end_io called when @bio completes - instead,
 * @parent's bi_end_io won't be called until both @parent and @bio have
 * completed; the chained bio will also be freed when it completes.
 *
 * The caller must not set bi_private or bi_end_io in @bio.
 */
void bio_chain(struct bio *bio, struct bio *parent)
{
	BUG_ON(bio->bi_private || bio->bi_end_io);

	bio->bi_private = parent;
	bio->bi_end_io	= bio_chain_endio;
344
	bio_inc_remaining(parent);
K
Kent Overstreet 已提交
345 346 347
}
EXPORT_SYMBOL(bio_chain);

348 349 350 351 352 353 354 355 356 357 358 359 360
static void bio_alloc_rescue(struct work_struct *work)
{
	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
	struct bio *bio;

	while (1) {
		spin_lock(&bs->rescue_lock);
		bio = bio_list_pop(&bs->rescue_list);
		spin_unlock(&bs->rescue_lock);

		if (!bio)
			break;

361
		submit_bio_noacct(bio);
362 363 364 365 366 367 368 369
	}
}

static void punt_bios_to_rescuer(struct bio_set *bs)
{
	struct bio_list punt, nopunt;
	struct bio *bio;

370 371
	if (WARN_ON_ONCE(!bs->rescue_workqueue))
		return;
372 373 374 375 376 377 378 379 380 381 382 383 384 385
	/*
	 * In order to guarantee forward progress we must punt only bios that
	 * were allocated from this bio_set; otherwise, if there was a bio on
	 * there for a stacking driver higher up in the stack, processing it
	 * could require allocating bios from this bio_set, and doing that from
	 * our own rescuer would be bad.
	 *
	 * Since bio lists are singly linked, pop them all instead of trying to
	 * remove from the middle of the list:
	 */

	bio_list_init(&punt);
	bio_list_init(&nopunt);

386
	while ((bio = bio_list_pop(&current->bio_list[0])))
387
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
388
	current->bio_list[0] = nopunt;
389

390 391 392 393
	bio_list_init(&nopunt);
	while ((bio = bio_list_pop(&current->bio_list[1])))
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
	current->bio_list[1] = nopunt;
394 395 396 397 398 399 400 401

	spin_lock(&bs->rescue_lock);
	bio_list_merge(&bs->rescue_list, &punt);
	spin_unlock(&bs->rescue_lock);

	queue_work(bs->rescue_workqueue, &bs->rescue_work);
}

L
Linus Torvalds 已提交
402 403
/**
 * bio_alloc_bioset - allocate a bio for I/O
404
 * @gfp_mask:   the GFP_* mask given to the slab allocator
L
Linus Torvalds 已提交
405
 * @nr_iovecs:	number of iovecs to pre-allocate
406
 * @bs:		the bio_set to allocate from.
L
Linus Torvalds 已提交
407 408
 *
 * Description:
409 410 411
 *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
 *   backed by the @bs's mempool.
 *
412 413 414 415 416 417
 *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
 *   always be able to allocate a bio. This is due to the mempool guarantees.
 *   To make this work, callers must never allocate more than 1 bio at a time
 *   from this pool. Callers that need to allocate more than 1 bio must always
 *   submit the previously allocated bio for IO before attempting to allocate
 *   a new one. Failure to do so can cause deadlocks under memory pressure.
418
 *
419
 *   Note that when running under submit_bio_noacct() (i.e. any block
420
 *   driver), bios are not submitted until after you return - see the code in
421
 *   submit_bio_noacct() that converts recursion into iteration, to prevent
422 423 424
 *   stack overflows.
 *
 *   This would normally mean allocating multiple bios under
425
 *   submit_bio_noacct() would be susceptible to deadlocks, but we have
426 427 428 429 430
 *   deadlock avoidance code that resubmits any blocked bios from a rescuer
 *   thread.
 *
 *   However, we do not guarantee forward progress for allocations from other
 *   mempools. Doing multiple allocations from the same mempool under
431
 *   submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
432 433
 *   for per bio allocations.
 *
434 435 436
 *   RETURNS:
 *   Pointer to new bio on success, NULL on failure.
 */
437 438
struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
			     struct bio_set *bs)
L
Linus Torvalds 已提交
439
{
440
	gfp_t saved_gfp = gfp_mask;
441 442
	unsigned front_pad;
	unsigned inline_vecs;
I
Ingo Molnar 已提交
443
	struct bio_vec *bvl = NULL;
T
Tejun Heo 已提交
444 445 446
	struct bio *bio;
	void *p;

447 448 449 450
	if (!bs) {
		if (nr_iovecs > UIO_MAXIOV)
			return NULL;

451
		p = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
452 453 454
		front_pad = 0;
		inline_vecs = nr_iovecs;
	} else {
J
Junichi Nomura 已提交
455
		/* should not use nobvec bioset for nr_iovecs > 0 */
456 457
		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
				 nr_iovecs > 0))
J
Junichi Nomura 已提交
458
			return NULL;
459
		/*
460
		 * submit_bio_noacct() converts recursion to iteration; this
461 462 463 464 465 466
		 * means if we're running beneath it, any bios we allocate and
		 * submit will not be submitted (and thus freed) until after we
		 * return.
		 *
		 * This exposes us to a potential deadlock if we allocate
		 * multiple bios from the same bio_set() while running
467
		 * underneath submit_bio_noacct(). If we were to allocate
468 469 470 471 472 473 474
		 * multiple bios (say a stacking block driver that was splitting
		 * bios), we would deadlock if we exhausted the mempool's
		 * reserve.
		 *
		 * We solve this, and guarantee forward progress, with a rescuer
		 * workqueue per bio_set. If we go to allocate and there are
		 * bios on current->bio_list, we first try the allocation
475 476 477
		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
		 * bios we would be blocking to the rescuer workqueue before
		 * we retry with the original gfp_flags.
478 479
		 */

480 481
		if (current->bio_list &&
		    (!bio_list_empty(&current->bio_list[0]) ||
482 483
		     !bio_list_empty(&current->bio_list[1])) &&
		    bs->rescue_workqueue)
484
			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
485

486
		p = mempool_alloc(&bs->bio_pool, gfp_mask);
487 488 489
		if (!p && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
490
			p = mempool_alloc(&bs->bio_pool, gfp_mask);
491 492
		}

493 494 495 496
		front_pad = bs->front_pad;
		inline_vecs = BIO_INLINE_VECS;
	}

T
Tejun Heo 已提交
497 498
	if (unlikely(!p))
		return NULL;
L
Linus Torvalds 已提交
499

500
	bio = p + front_pad;
501
	bio_init(bio, NULL, 0);
I
Ingo Molnar 已提交
502

503
	if (nr_iovecs > inline_vecs) {
504 505
		unsigned long idx = 0;

506
		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
507 508 509
		if (!bvl && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
510
			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
511 512
		}

I
Ingo Molnar 已提交
513 514
		if (unlikely(!bvl))
			goto err_free;
515

516
		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
517 518
	} else if (nr_iovecs) {
		bvl = bio->bi_inline_vecs;
L
Linus Torvalds 已提交
519
	}
520 521

	bio->bi_pool = bs;
I
Ingo Molnar 已提交
522 523
	bio->bi_max_vecs = nr_iovecs;
	bio->bi_io_vec = bvl;
L
Linus Torvalds 已提交
524
	return bio;
I
Ingo Molnar 已提交
525 526

err_free:
527
	mempool_free(p, &bs->bio_pool);
I
Ingo Molnar 已提交
528
	return NULL;
L
Linus Torvalds 已提交
529
}
530
EXPORT_SYMBOL(bio_alloc_bioset);
L
Linus Torvalds 已提交
531

532
void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
L
Linus Torvalds 已提交
533 534
{
	unsigned long flags;
535 536
	struct bio_vec bv;
	struct bvec_iter iter;
L
Linus Torvalds 已提交
537

538
	__bio_for_each_segment(bv, bio, iter, start) {
539 540 541
		char *data = bvec_kmap_irq(&bv, &flags);
		memset(data, 0, bv.bv_len);
		flush_dcache_page(bv.bv_page);
L
Linus Torvalds 已提交
542 543 544
		bvec_kunmap_irq(data, &flags);
	}
}
545
EXPORT_SYMBOL(zero_fill_bio_iter);
L
Linus Torvalds 已提交
546

547 548 549 550 551 552 553 554 555 556
/**
 * bio_truncate - truncate the bio to small size of @new_size
 * @bio:	the bio to be truncated
 * @new_size:	new size for truncating the bio
 *
 * Description:
 *   Truncate the bio to new size of @new_size. If bio_op(bio) is
 *   REQ_OP_READ, zero the truncated part. This function should only
 *   be used for handling corner cases, such as bio eod.
 */
557 558 559 560 561 562 563 564 565 566
void bio_truncate(struct bio *bio, unsigned new_size)
{
	struct bio_vec bv;
	struct bvec_iter iter;
	unsigned int done = 0;
	bool truncated = false;

	if (new_size >= bio->bi_iter.bi_size)
		return;

567
	if (bio_op(bio) != REQ_OP_READ)
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
		goto exit;

	bio_for_each_segment(bv, bio, iter) {
		if (done + bv.bv_len > new_size) {
			unsigned offset;

			if (!truncated)
				offset = new_size - done;
			else
				offset = 0;
			zero_user(bv.bv_page, offset, bv.bv_len - offset);
			truncated = true;
		}
		done += bv.bv_len;
	}

 exit:
	/*
	 * Don't touch bvec table here and make it really immutable, since
	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
	 * in its .end_bio() callback.
	 *
	 * It is enough to truncate bio by updating .bi_size since we can make
	 * correct bvec with the updated .bi_size for drivers.
	 */
	bio->bi_iter.bi_size = new_size;
}

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
/**
 * guard_bio_eod - truncate a BIO to fit the block device
 * @bio:	bio to truncate
 *
 * This allows us to do IO even on the odd last sectors of a device, even if the
 * block size is some multiple of the physical sector size.
 *
 * We'll just truncate the bio to the size of the device, and clear the end of
 * the buffer head manually.  Truly out-of-range accesses will turn into actual
 * I/O errors, this only handles the "we need to be able to do I/O at the final
 * sector" case.
 */
void guard_bio_eod(struct bio *bio)
{
	sector_t maxsector;
	struct hd_struct *part;

	rcu_read_lock();
	part = __disk_get_part(bio->bi_disk, bio->bi_partno);
	if (part)
		maxsector = part_nr_sects_read(part);
	else
		maxsector = get_capacity(bio->bi_disk);
	rcu_read_unlock();

	if (!maxsector)
		return;

	/*
	 * If the *whole* IO is past the end of the device,
	 * let it through, and the IO layer will turn it into
	 * an EIO.
	 */
	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
		return;

	maxsector -= bio->bi_iter.bi_sector;
	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
		return;

	bio_truncate(bio, maxsector << 9);
}

L
Linus Torvalds 已提交
639 640 641 642 643 644
/**
 * bio_put - release a reference to a bio
 * @bio:   bio to release reference to
 *
 * Description:
 *   Put a reference to a &struct bio, either one you have gotten with
645
 *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
L
Linus Torvalds 已提交
646 647 648
 **/
void bio_put(struct bio *bio)
{
649
	if (!bio_flagged(bio, BIO_REFFED))
K
Kent Overstreet 已提交
650
		bio_free(bio);
651 652 653 654 655 656 657 658 659
	else {
		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));

		/*
		 * last put frees it
		 */
		if (atomic_dec_and_test(&bio->__bi_cnt))
			bio_free(bio);
	}
L
Linus Torvalds 已提交
660
}
661
EXPORT_SYMBOL(bio_put);
L
Linus Torvalds 已提交
662

K
Kent Overstreet 已提交
663 664 665 666 667 668 669 670 671 672 673 674 675
/**
 * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
 * 	@bio: destination bio
 * 	@bio_src: bio to clone
 *
 *	Clone a &bio. Caller will own the returned bio, but not
 *	the actual data it points to. Reference count of returned
 * 	bio will be one.
 *
 * 	Caller must ensure that @bio_src is not freed before @bio.
 */
void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
{
676
	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
K
Kent Overstreet 已提交
677 678

	/*
679
	 * most users will be overriding ->bi_disk with a new target,
K
Kent Overstreet 已提交
680 681
	 * so we don't set nor calculate new physical/hw segment counts here
	 */
682
	bio->bi_disk = bio_src->bi_disk;
683
	bio->bi_partno = bio_src->bi_partno;
684
	bio_set_flag(bio, BIO_CLONED);
S
Shaohua Li 已提交
685 686
	if (bio_flagged(bio_src, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
J
Jens Axboe 已提交
687
	bio->bi_opf = bio_src->bi_opf;
688
	bio->bi_ioprio = bio_src->bi_ioprio;
689
	bio->bi_write_hint = bio_src->bi_write_hint;
K
Kent Overstreet 已提交
690 691
	bio->bi_iter = bio_src->bi_iter;
	bio->bi_io_vec = bio_src->bi_io_vec;
692

693
	bio_clone_blkg_association(bio, bio_src);
694
	blkcg_bio_issue_init(bio);
K
Kent Overstreet 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
}
EXPORT_SYMBOL(__bio_clone_fast);

/**
 *	bio_clone_fast - clone a bio that shares the original bio's biovec
 *	@bio: bio to clone
 *	@gfp_mask: allocation priority
 *	@bs: bio_set to allocate from
 *
 * 	Like __bio_clone_fast, only also allocates the returned bio
 */
struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
{
	struct bio *b;

	b = bio_alloc_bioset(gfp_mask, 0, bs);
	if (!b)
		return NULL;

	__bio_clone_fast(b, bio);

716 717
	if (bio_crypt_clone(b, bio, gfp_mask) < 0)
		goto err_put;
718

719 720 721
	if (bio_integrity(bio) &&
	    bio_integrity_clone(b, bio, gfp_mask) < 0)
		goto err_put;
K
Kent Overstreet 已提交
722 723

	return b;
724 725 726 727

err_put:
	bio_put(b);
	return NULL;
K
Kent Overstreet 已提交
728 729 730
}
EXPORT_SYMBOL(bio_clone_fast);

731 732 733 734 735 736
const char *bio_devname(struct bio *bio, char *buf)
{
	return disk_name(bio->bi_disk, bio->bi_partno, buf);
}
EXPORT_SYMBOL(bio_devname);

737 738
static inline bool page_is_mergeable(const struct bio_vec *bv,
		struct page *page, unsigned int len, unsigned int off,
739
		bool *same_page)
740
{
741 742
	size_t bv_end = bv->bv_offset + bv->bv_len;
	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
743 744 745 746 747 748
	phys_addr_t page_addr = page_to_phys(page);

	if (vec_end_addr + 1 != page_addr + off)
		return false;
	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
		return false;
749

750
	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
751 752 753
	if (*same_page)
		return true;
	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
754 755
}

756 757 758 759 760 761 762 763
/*
 * Try to merge a page into a segment, while obeying the hardware segment
 * size limit.  This is not for normal read/write bios, but for passthrough
 * or Zone Append operations that we can't split.
 */
static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
				 struct page *page, unsigned len,
				 unsigned offset, bool *same_page)
764
{
765
	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
766 767 768 769 770 771 772 773
	unsigned long mask = queue_segment_boundary(q);
	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;

	if ((addr1 | mask) != (addr2 | mask))
		return false;
	if (bv->bv_len + len > queue_max_segment_size(q))
		return false;
774
	return __bio_try_merge_page(bio, page, len, offset, same_page);
775 776
}

L
Linus Torvalds 已提交
777
/**
778 779 780 781 782 783 784 785
 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
 * @q: the target queue
 * @bio: destination bio
 * @page: page to add
 * @len: vec entry length
 * @offset: vec entry offset
 * @max_sectors: maximum number of sectors that can be added
 * @same_page: return if the segment has been merged inside the same page
K
Kent Overstreet 已提交
786
 *
787 788
 * Add a page to a bio while respecting the hardware max_sectors, max_segment
 * and gap limitations.
L
Linus Torvalds 已提交
789
 */
790
int bio_add_hw_page(struct request_queue *q, struct bio *bio,
791
		struct page *page, unsigned int len, unsigned int offset,
792
		unsigned int max_sectors, bool *same_page)
L
Linus Torvalds 已提交
793 794 795
{
	struct bio_vec *bvec;

796
	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
L
Linus Torvalds 已提交
797 798
		return 0;

799
	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
L
Linus Torvalds 已提交
800 801
		return 0;

802
	if (bio->bi_vcnt > 0) {
803
		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
804
			return len;
805 806 807 808 809

		/*
		 * If the queue doesn't support SG gaps and adding this segment
		 * would create a gap, disallow it.
		 */
810
		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
811 812
		if (bvec_gap_to_prev(q, bvec, offset))
			return 0;
813 814
	}

M
Ming Lei 已提交
815
	if (bio_full(bio, len))
L
Linus Torvalds 已提交
816 817
		return 0;

818
	if (bio->bi_vcnt >= queue_max_segments(q))
819 820
		return 0;

821 822 823 824 825
	bvec = &bio->bi_io_vec[bio->bi_vcnt];
	bvec->bv_page = page;
	bvec->bv_len = len;
	bvec->bv_offset = offset;
	bio->bi_vcnt++;
826
	bio->bi_iter.bi_size += len;
L
Linus Torvalds 已提交
827 828
	return len;
}
829

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
/**
 * bio_add_pc_page	- attempt to add page to passthrough bio
 * @q: the target queue
 * @bio: destination bio
 * @page: page to add
 * @len: vec entry length
 * @offset: vec entry offset
 *
 * Attempt to add a page to the bio_vec maplist. This can fail for a
 * number of reasons, such as the bio being full or target block device
 * limitations. The target block device must allow bio's up to PAGE_SIZE,
 * so it is always possible to add a single page to an empty bio.
 *
 * This should only be used by passthrough bios.
 */
845 846 847
int bio_add_pc_page(struct request_queue *q, struct bio *bio,
		struct page *page, unsigned int len, unsigned int offset)
{
848
	bool same_page = false;
849 850
	return bio_add_hw_page(q, bio, page, len, offset,
			queue_max_hw_sectors(q), &same_page);
851
}
852
EXPORT_SYMBOL(bio_add_pc_page);
853

L
Linus Torvalds 已提交
854
/**
855 856
 * __bio_try_merge_page - try appending data to an existing bvec.
 * @bio: destination bio
857
 * @page: start page to add
858
 * @len: length of the data to add
859
 * @off: offset of the data relative to @page
860
 * @same_page: return if the segment has been merged inside the same page
L
Linus Torvalds 已提交
861
 *
862
 * Try to add the data at @page + @off to the last bvec of @bio.  This is a
863
 * useful optimisation for file systems with a block size smaller than the
864 865
 * page size.
 *
866 867
 * Warn if (@len, @off) crosses pages in case that @same_page is true.
 *
868
 * Return %true on success or %false on failure.
L
Linus Torvalds 已提交
869
 */
870
bool __bio_try_merge_page(struct bio *bio, struct page *page,
871
		unsigned int len, unsigned int off, bool *same_page)
L
Linus Torvalds 已提交
872
{
K
Kent Overstreet 已提交
873
	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
874
		return false;
875

876
	if (bio->bi_vcnt > 0) {
877
		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
878 879

		if (page_is_mergeable(bv, page, len, off, same_page)) {
880 881
			if (bio->bi_iter.bi_size > UINT_MAX - len) {
				*same_page = false;
882
				return false;
883
			}
884 885 886 887
			bv->bv_len += len;
			bio->bi_iter.bi_size += len;
			return true;
		}
K
Kent Overstreet 已提交
888
	}
889 890 891
	return false;
}
EXPORT_SYMBOL_GPL(__bio_try_merge_page);
K
Kent Overstreet 已提交
892

893
/**
894
 * __bio_add_page - add page(s) to a bio in a new segment
895
 * @bio: destination bio
896 897 898
 * @page: start page to add
 * @len: length of the data to add, may cross pages
 * @off: offset of the data relative to @page, may cross pages
899 900 901 902 903 904 905 906
 *
 * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
 * that @bio has space for another bvec.
 */
void __bio_add_page(struct bio *bio, struct page *page,
		unsigned int len, unsigned int off)
{
	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
K
Kent Overstreet 已提交
907

908
	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
M
Ming Lei 已提交
909
	WARN_ON_ONCE(bio_full(bio, len));
910 911 912 913

	bv->bv_page = page;
	bv->bv_offset = off;
	bv->bv_len = len;
K
Kent Overstreet 已提交
914 915

	bio->bi_iter.bi_size += len;
916
	bio->bi_vcnt++;
917 918 919

	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
		bio_set_flag(bio, BIO_WORKINGSET);
920 921 922 923
}
EXPORT_SYMBOL_GPL(__bio_add_page);

/**
924
 *	bio_add_page	-	attempt to add page(s) to bio
925
 *	@bio: destination bio
926 927 928
 *	@page: start page to add
 *	@len: vec entry length, may cross pages
 *	@offset: vec entry offset relative to @page, may cross pages
929
 *
930
 *	Attempt to add page(s) to the bio_vec maplist. This will only fail
931 932 933 934 935
 *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
 */
int bio_add_page(struct bio *bio, struct page *page,
		 unsigned int len, unsigned int offset)
{
936 937 938
	bool same_page = false;

	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
M
Ming Lei 已提交
939
		if (bio_full(bio, len))
940 941 942
			return 0;
		__bio_add_page(bio, page, len, offset);
	}
K
Kent Overstreet 已提交
943
	return len;
L
Linus Torvalds 已提交
944
}
945
EXPORT_SYMBOL(bio_add_page);
L
Linus Torvalds 已提交
946

947
void bio_release_pages(struct bio *bio, bool mark_dirty)
948 949 950 951
{
	struct bvec_iter_all iter_all;
	struct bio_vec *bvec;

952 953 954
	if (bio_flagged(bio, BIO_NO_PAGE_REF))
		return;

955 956 957
	bio_for_each_segment_all(bvec, bio, iter_all) {
		if (mark_dirty && !PageCompound(bvec->bv_page))
			set_page_dirty_lock(bvec->bv_page);
958
		put_page(bvec->bv_page);
959
	}
960
}
961
EXPORT_SYMBOL_GPL(bio_release_pages);
962

963 964 965 966 967 968 969 970 971 972 973 974
static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
{
	const struct bio_vec *bv = iter->bvec;
	unsigned int len;
	size_t size;

	if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
		return -EINVAL;

	len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
	size = bio_add_page(bio, bv->bv_page, len,
				bv->bv_offset + iter->iov_offset);
975 976 977 978
	if (unlikely(size != len))
		return -EINVAL;
	iov_iter_advance(iter, size);
	return 0;
979 980
}

981 982
#define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))

983
/**
984
 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
985 986 987
 * @bio: bio to add pages to
 * @iter: iov iterator describing the region to be mapped
 *
988
 * Pins pages from *iter and appends them to @bio's bvec array. The
989
 * pages will have to be released using put_page() when done.
990
 * For multi-segment *iter, this function only adds pages from the
991
 * next non-empty segment of the iov iterator.
992
 */
993
static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
994
{
995 996
	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
997 998
	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
	struct page **pages = (struct page **)bv;
999
	bool same_page = false;
1000 1001
	ssize_t size, left;
	unsigned len, i;
1002
	size_t offset;
1003 1004 1005 1006 1007 1008 1009 1010

	/*
	 * Move page array up in the allocated memory for the bio vecs as far as
	 * possible so that we can start filling biovecs from the beginning
	 * without overwriting the temporary page array.
	*/
	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1011 1012 1013 1014 1015

	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
	if (unlikely(size <= 0))
		return size ? size : -EFAULT;

1016 1017
	for (left = size, i = 0; left > 0; left -= len, i++) {
		struct page *page = pages[i];
1018

1019
		len = min_t(size_t, PAGE_SIZE - offset, left);
1020 1021 1022 1023 1024

		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
			if (same_page)
				put_page(page);
		} else {
M
Ming Lei 已提交
1025
			if (WARN_ON_ONCE(bio_full(bio, len)))
1026 1027 1028
                                return -EINVAL;
			__bio_add_page(bio, page, len, offset);
		}
1029
		offset = 0;
1030 1031 1032 1033 1034
	}

	iov_iter_advance(iter, size);
	return 0;
}
1035

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
{
	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
	struct request_queue *q = bio->bi_disk->queue;
	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
	struct page **pages = (struct page **)bv;
	ssize_t size, left;
	unsigned len, i;
	size_t offset;

	if (WARN_ON_ONCE(!max_append_sectors))
		return 0;

	/*
	 * Move page array up in the allocated memory for the bio vecs as far as
	 * possible so that we can start filling biovecs from the beginning
	 * without overwriting the temporary page array.
	 */
	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);

	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
	if (unlikely(size <= 0))
		return size ? size : -EFAULT;

	for (left = size, i = 0; left > 0; left -= len, i++) {
		struct page *page = pages[i];
		bool same_page = false;

		len = min_t(size_t, PAGE_SIZE - offset, left);
		if (bio_add_hw_page(q, bio, page, len, offset,
				max_append_sectors, &same_page) != len)
			return -EINVAL;
		if (same_page)
			put_page(page);
		offset = 0;
	}

	iov_iter_advance(iter, size);
	return 0;
}

1080
/**
1081
 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1082
 * @bio: bio to add pages to
1083 1084 1085 1086 1087
 * @iter: iov iterator describing the region to be added
 *
 * This takes either an iterator pointing to user memory, or one pointing to
 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
 * map them into the kernel. On IO completion, the caller should put those
J
Jens Axboe 已提交
1088 1089 1090 1091 1092 1093
 * pages. If we're adding kernel pages, and the caller told us it's safe to
 * do so, we just have to add the pages to the bio directly. We don't grab an
 * extra reference to those pages (the user should already have that), and we
 * don't put the page on IO completion. The caller needs to check if the bio is
 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
 * released.
1094 1095
 *
 * The function tries, but does not guarantee, to pin as many pages as
1096 1097 1098
 * fit into the bio, or are requested in *iter, whatever is smaller. If
 * MM encounters an error pinning the requested pages, it stops. Error
 * is returned only if 0 pages could be pinned.
1099 1100 1101
 */
int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
{
1102
	const bool is_bvec = iov_iter_is_bvec(iter);
1103 1104 1105 1106
	int ret;

	if (WARN_ON_ONCE(bio->bi_vcnt))
		return -EINVAL;
1107 1108

	do {
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
			if (WARN_ON_ONCE(is_bvec))
				return -EINVAL;
			ret = __bio_iov_append_get_pages(bio, iter);
		} else {
			if (is_bvec)
				ret = __bio_iov_bvec_add_pages(bio, iter);
			else
				ret = __bio_iov_iter_get_pages(bio, iter);
		}
M
Ming Lei 已提交
1119
	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1120

1121
	if (is_bvec)
1122
		bio_set_flag(bio, BIO_NO_PAGE_REF);
1123
	return bio->bi_vcnt ? 0 : ret;
1124
}
1125
EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1126

1127
static void submit_bio_wait_endio(struct bio *bio)
1128
{
1129
	complete(bio->bi_private);
1130 1131 1132 1133 1134 1135 1136 1137
}

/**
 * submit_bio_wait - submit a bio, and wait until it completes
 * @bio: The &struct bio which describes the I/O
 *
 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
 * bio_endio() on failure.
1138 1139 1140 1141
 *
 * WARNING: Unlike to how submit_bio() is usually used, this function does not
 * result in bio reference to be consumed. The caller must drop the reference
 * on his own.
1142
 */
1143
int submit_bio_wait(struct bio *bio)
1144
{
1145
	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1146
	unsigned long hang_check;
1147

1148
	bio->bi_private = &done;
1149
	bio->bi_end_io = submit_bio_wait_endio;
J
Jens Axboe 已提交
1150
	bio->bi_opf |= REQ_SYNC;
1151
	submit_bio(bio);
1152 1153 1154 1155 1156 1157 1158 1159 1160

	/* Prevent hang_check timer from firing at us during very long I/O */
	hang_check = sysctl_hung_task_timeout_secs;
	if (hang_check)
		while (!wait_for_completion_io_timeout(&done,
					hang_check * (HZ/2)))
			;
	else
		wait_for_completion_io(&done);
1161

1162
	return blk_status_to_errno(bio->bi_status);
1163 1164 1165
}
EXPORT_SYMBOL(submit_bio_wait);

K
Kent Overstreet 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
/**
 * bio_advance - increment/complete a bio by some number of bytes
 * @bio:	bio to advance
 * @bytes:	number of bytes to complete
 *
 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
 * be updated on the last bvec as well.
 *
 * @bio will then represent the remaining, uncompleted portion of the io.
 */
void bio_advance(struct bio *bio, unsigned bytes)
{
	if (bio_integrity(bio))
		bio_integrity_advance(bio, bytes);

1182
	bio_crypt_advance(bio, bytes);
K
Kent Overstreet 已提交
1183
	bio_advance_iter(bio, &bio->bi_iter, bytes);
K
Kent Overstreet 已提交
1184 1185 1186
}
EXPORT_SYMBOL(bio_advance);

1187 1188
void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
			struct bio *src, struct bvec_iter *src_iter)
K
Kent Overstreet 已提交
1189
{
1190
	struct bio_vec src_bv, dst_bv;
K
Kent Overstreet 已提交
1191
	void *src_p, *dst_p;
1192
	unsigned bytes;
K
Kent Overstreet 已提交
1193

1194 1195 1196
	while (src_iter->bi_size && dst_iter->bi_size) {
		src_bv = bio_iter_iovec(src, *src_iter);
		dst_bv = bio_iter_iovec(dst, *dst_iter);
1197 1198

		bytes = min(src_bv.bv_len, dst_bv.bv_len);
K
Kent Overstreet 已提交
1199

1200 1201
		src_p = kmap_atomic(src_bv.bv_page);
		dst_p = kmap_atomic(dst_bv.bv_page);
K
Kent Overstreet 已提交
1202

1203 1204
		memcpy(dst_p + dst_bv.bv_offset,
		       src_p + src_bv.bv_offset,
K
Kent Overstreet 已提交
1205 1206 1207 1208 1209
		       bytes);

		kunmap_atomic(dst_p);
		kunmap_atomic(src_p);

1210 1211
		flush_dcache_page(dst_bv.bv_page);

1212 1213
		bio_advance_iter(src, src_iter, bytes);
		bio_advance_iter(dst, dst_iter, bytes);
K
Kent Overstreet 已提交
1214 1215
	}
}
1216 1217 1218
EXPORT_SYMBOL(bio_copy_data_iter);

/**
1219 1220 1221
 * bio_copy_data - copy contents of data buffers from one bio to another
 * @src: source bio
 * @dst: destination bio
1222 1223 1224 1225 1226 1227
 *
 * Stops when it reaches the end of either @src or @dst - that is, copies
 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
 */
void bio_copy_data(struct bio *dst, struct bio *src)
{
1228 1229 1230 1231
	struct bvec_iter src_iter = src->bi_iter;
	struct bvec_iter dst_iter = dst->bi_iter;

	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1232
}
K
Kent Overstreet 已提交
1233 1234
EXPORT_SYMBOL(bio_copy_data);

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
/**
 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
 * another
 * @src: source bio list
 * @dst: destination bio list
 *
 * Stops when it reaches the end of either the @src list or @dst list - that is,
 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
 * bios).
 */
void bio_list_copy_data(struct bio *dst, struct bio *src)
{
	struct bvec_iter src_iter = src->bi_iter;
	struct bvec_iter dst_iter = dst->bi_iter;

	while (1) {
		if (!src_iter.bi_size) {
			src = src->bi_next;
			if (!src)
				break;

			src_iter = src->bi_iter;
		}

		if (!dst_iter.bi_size) {
			dst = dst->bi_next;
			if (!dst)
				break;

			dst_iter = dst->bi_iter;
		}

		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
	}
}
EXPORT_SYMBOL(bio_list_copy_data);

1272
void bio_free_pages(struct bio *bio)
1273 1274
{
	struct bio_vec *bvec;
1275
	struct bvec_iter_all iter_all;
1276

1277
	bio_for_each_segment_all(bvec, bio, iter_all)
1278 1279
		__free_page(bvec->bv_page);
}
1280
EXPORT_SYMBOL(bio_free_pages);
1281

L
Linus Torvalds 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
/*
 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
 * for performing direct-IO in BIOs.
 *
 * The problem is that we cannot run set_page_dirty() from interrupt context
 * because the required locks are not interrupt-safe.  So what we can do is to
 * mark the pages dirty _before_ performing IO.  And in interrupt context,
 * check that the pages are still dirty.   If so, fine.  If not, redirty them
 * in process context.
 *
 * We special-case compound pages here: normally this means reads into hugetlb
 * pages.  The logic in here doesn't really work right for compound pages
 * because the VM does not uniformly chase down the head page in all cases.
 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
 * handle them at all.  So we skip compound pages here at an early stage.
 *
 * Note that this code is very hard to test under normal circumstances because
 * direct-io pins the pages with get_user_pages().  This makes
 * is_page_cache_freeable return false, and the VM will not clean the pages.
1301
 * But other code (eg, flusher threads) could clean the pages if they are mapped
L
Linus Torvalds 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
 * pagecache.
 *
 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
 * deferred bio dirtying paths.
 */

/*
 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
 */
void bio_set_pages_dirty(struct bio *bio)
{
1313
	struct bio_vec *bvec;
1314
	struct bvec_iter_all iter_all;
L
Linus Torvalds 已提交
1315

1316
	bio_for_each_segment_all(bvec, bio, iter_all) {
1317 1318
		if (!PageCompound(bvec->bv_page))
			set_page_dirty_lock(bvec->bv_page);
L
Linus Torvalds 已提交
1319 1320 1321 1322 1323 1324 1325
	}
}

/*
 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
 * If they are, then fine.  If, however, some pages are clean then they must
 * have been written out during the direct-IO read.  So we take another ref on
1326
 * the BIO and re-dirty the pages in process context.
L
Linus Torvalds 已提交
1327 1328
 *
 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1329 1330
 * here on.  It will run one put_page() against each page and will run one
 * bio_put() against the BIO.
L
Linus Torvalds 已提交
1331 1332
 */

1333
static void bio_dirty_fn(struct work_struct *work);
L
Linus Torvalds 已提交
1334

1335
static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
L
Linus Torvalds 已提交
1336 1337 1338 1339 1340 1341
static DEFINE_SPINLOCK(bio_dirty_lock);
static struct bio *bio_dirty_list;

/*
 * This runs in process context
 */
1342
static void bio_dirty_fn(struct work_struct *work)
L
Linus Torvalds 已提交
1343
{
1344
	struct bio *bio, *next;
L
Linus Torvalds 已提交
1345

1346 1347
	spin_lock_irq(&bio_dirty_lock);
	next = bio_dirty_list;
L
Linus Torvalds 已提交
1348
	bio_dirty_list = NULL;
1349
	spin_unlock_irq(&bio_dirty_lock);
L
Linus Torvalds 已提交
1350

1351 1352
	while ((bio = next) != NULL) {
		next = bio->bi_private;
L
Linus Torvalds 已提交
1353

1354
		bio_release_pages(bio, true);
L
Linus Torvalds 已提交
1355 1356 1357 1358 1359 1360
		bio_put(bio);
	}
}

void bio_check_pages_dirty(struct bio *bio)
{
1361
	struct bio_vec *bvec;
1362
	unsigned long flags;
1363
	struct bvec_iter_all iter_all;
L
Linus Torvalds 已提交
1364

1365
	bio_for_each_segment_all(bvec, bio, iter_all) {
1366 1367
		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
			goto defer;
L
Linus Torvalds 已提交
1368 1369
	}

1370
	bio_release_pages(bio, false);
1371 1372 1373 1374 1375 1376 1377 1378
	bio_put(bio);
	return;
defer:
	spin_lock_irqsave(&bio_dirty_lock, flags);
	bio->bi_private = bio_dirty_list;
	bio_dirty_list = bio;
	spin_unlock_irqrestore(&bio_dirty_lock, flags);
	schedule_work(&bio_dirty_work);
L
Linus Torvalds 已提交
1379 1380
}

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
static inline bool bio_remaining_done(struct bio *bio)
{
	/*
	 * If we're not chaining, then ->__bi_remaining is always 1 and
	 * we always end io on the first invocation.
	 */
	if (!bio_flagged(bio, BIO_CHAIN))
		return true;

	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);

1392
	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1393
		bio_clear_flag(bio, BIO_CHAIN);
1394
		return true;
1395
	}
1396 1397 1398 1399

	return false;
}

L
Linus Torvalds 已提交
1400 1401 1402 1403 1404
/**
 * bio_endio - end I/O on a bio
 * @bio:	bio
 *
 * Description:
1405 1406 1407
 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
 *   bio unless they own it and thus know that it has an end_io function.
N
NeilBrown 已提交
1408 1409 1410 1411 1412
 *
 *   bio_endio() can be called several times on a bio that has been chained
 *   using bio_chain().  The ->bi_end_io() function will only be called the
 *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
 *   generated if BIO_TRACE_COMPLETION is set.
L
Linus Torvalds 已提交
1413
 **/
1414
void bio_endio(struct bio *bio)
L
Linus Torvalds 已提交
1415
{
C
Christoph Hellwig 已提交
1416
again:
1417
	if (!bio_remaining_done(bio))
C
Christoph Hellwig 已提交
1418
		return;
1419 1420
	if (!bio_integrity_endio(bio))
		return;
L
Linus Torvalds 已提交
1421

J
Josef Bacik 已提交
1422 1423 1424
	if (bio->bi_disk)
		rq_qos_done_bio(bio->bi_disk->queue, bio);

C
Christoph Hellwig 已提交
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
	/*
	 * Need to have a real endio function for chained bios, otherwise
	 * various corner cases will break (like stacking block devices that
	 * save/restore bi_end_io) - however, we want to avoid unbounded
	 * recursion and blowing the stack. Tail call optimization would
	 * handle this, but compiling with frame pointers also disables
	 * gcc's sibling call optimization.
	 */
	if (bio->bi_end_io == bio_chain_endio) {
		bio = __bio_chain_endio(bio);
		goto again;
K
Kent Overstreet 已提交
1436
	}
C
Christoph Hellwig 已提交
1437

1438
	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1439
		trace_block_bio_complete(bio->bi_disk->queue, bio);
N
NeilBrown 已提交
1440 1441 1442
		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
	}

1443
	blk_throtl_bio_endio(bio);
S
Shaohua Li 已提交
1444 1445
	/* release cgroup info */
	bio_uninit(bio);
C
Christoph Hellwig 已提交
1446 1447
	if (bio->bi_end_io)
		bio->bi_end_io(bio);
L
Linus Torvalds 已提交
1448
}
1449
EXPORT_SYMBOL(bio_endio);
L
Linus Torvalds 已提交
1450

K
Kent Overstreet 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
/**
 * bio_split - split a bio
 * @bio:	bio to split
 * @sectors:	number of sectors to split from the front of @bio
 * @gfp:	gfp mask
 * @bs:		bio set to allocate from
 *
 * Allocates and returns a new bio which represents @sectors from the start of
 * @bio, and updates @bio to represent the remaining sectors.
 *
1461
 * Unless this is a discard request the newly allocated bio will point
1462 1463
 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
 * neither @bio nor @bs are freed before the split bio.
K
Kent Overstreet 已提交
1464 1465 1466 1467
 */
struct bio *bio_split(struct bio *bio, int sectors,
		      gfp_t gfp, struct bio_set *bs)
{
1468
	struct bio *split;
K
Kent Overstreet 已提交
1469 1470 1471 1472

	BUG_ON(sectors <= 0);
	BUG_ON(sectors >= bio_sectors(bio));

1473 1474 1475 1476
	/* Zone append commands cannot be split */
	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
		return NULL;

1477
	split = bio_clone_fast(bio, gfp, bs);
K
Kent Overstreet 已提交
1478 1479 1480 1481 1482 1483
	if (!split)
		return NULL;

	split->bi_iter.bi_size = sectors << 9;

	if (bio_integrity(split))
1484
		bio_integrity_trim(split);
K
Kent Overstreet 已提交
1485 1486 1487

	bio_advance(bio, split->bi_iter.bi_size);

N
NeilBrown 已提交
1488
	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1489
		bio_set_flag(split, BIO_TRACE_COMPLETION);
N
NeilBrown 已提交
1490

K
Kent Overstreet 已提交
1491 1492 1493 1494
	return split;
}
EXPORT_SYMBOL(bio_split);

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
/**
 * bio_trim - trim a bio
 * @bio:	bio to trim
 * @offset:	number of sectors to trim from the front of @bio
 * @size:	size we want to trim @bio to, in sectors
 */
void bio_trim(struct bio *bio, int offset, int size)
{
	/* 'bio' is a cloned bio which we need to trim to match
	 * the given offset and size.
	 */

	size <<= 9;
1508
	if (offset == 0 && size == bio->bi_iter.bi_size)
1509 1510 1511
		return;

	bio_advance(bio, offset << 9);
1512
	bio->bi_iter.bi_size = size;
1513 1514

	if (bio_integrity(bio))
1515
		bio_integrity_trim(bio);
1516

1517 1518 1519
}
EXPORT_SYMBOL_GPL(bio_trim);

L
Linus Torvalds 已提交
1520 1521 1522 1523
/*
 * create memory pools for biovec's in a bio_set.
 * use the global biovec slabs created for general use.
 */
1524
int biovec_init_pool(mempool_t *pool, int pool_entries)
L
Linus Torvalds 已提交
1525
{
1526
	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
L
Linus Torvalds 已提交
1527

1528
	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
L
Linus Torvalds 已提交
1529 1530
}

1531 1532 1533 1534 1535 1536 1537
/*
 * bioset_exit - exit a bioset initialized with bioset_init()
 *
 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
 * kzalloc()).
 */
void bioset_exit(struct bio_set *bs)
L
Linus Torvalds 已提交
1538
{
1539 1540
	if (bs->rescue_workqueue)
		destroy_workqueue(bs->rescue_workqueue);
1541
	bs->rescue_workqueue = NULL;
1542

1543 1544
	mempool_exit(&bs->bio_pool);
	mempool_exit(&bs->bvec_pool);
1545

1546
	bioset_integrity_free(bs);
1547 1548 1549 1550 1551
	if (bs->bio_slab)
		bio_put_slab(bs);
	bs->bio_slab = NULL;
}
EXPORT_SYMBOL(bioset_exit);
L
Linus Torvalds 已提交
1552

1553 1554
/**
 * bioset_init - Initialize a bio_set
K
Kent Overstreet 已提交
1555
 * @bs:		pool to initialize
1556 1557 1558 1559 1560
 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
 * @front_pad:	Number of bytes to allocate in front of the returned bio
 * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
 *              and %BIOSET_NEED_RESCUER
 *
K
Kent Overstreet 已提交
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
 * Description:
 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
 *    to ask for a number of bytes to be allocated in front of the bio.
 *    Front pad allocation is useful for embedding the bio inside
 *    another structure, to avoid allocating extra data to go with the bio.
 *    Note that the bio must be embedded at the END of that structure always,
 *    or things will break badly.
 *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
 *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
 *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
 *    dispatch queued requests when the mempool runs out of space.
 *
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
 */
int bioset_init(struct bio_set *bs,
		unsigned int pool_size,
		unsigned int front_pad,
		int flags)
{
	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);

	bs->front_pad = front_pad;

	spin_lock_init(&bs->rescue_lock);
	bio_list_init(&bs->rescue_list);
	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);

	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
	if (!bs->bio_slab)
		return -ENOMEM;

	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
		goto bad;

	if ((flags & BIOSET_NEED_BVECS) &&
	    biovec_init_pool(&bs->bvec_pool, pool_size))
		goto bad;

	if (!(flags & BIOSET_NEED_RESCUER))
		return 0;

	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
	if (!bs->rescue_workqueue)
		goto bad;

	return 0;
bad:
	bioset_exit(bs);
	return -ENOMEM;
}
EXPORT_SYMBOL(bioset_init);

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
/*
 * Initialize and setup a new bio_set, based on the settings from
 * another bio_set.
 */
int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
{
	int flags;

	flags = 0;
	if (src->bvec_pool.min_nr)
		flags |= BIOSET_NEED_BVECS;
	if (src->rescue_workqueue)
		flags |= BIOSET_NEED_RESCUER;

	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
}
EXPORT_SYMBOL(bioset_init_from_src);

L
Linus Torvalds 已提交
1630 1631 1632 1633
static void __init biovec_init_slabs(void)
{
	int i;

1634
	for (i = 0; i < BVEC_POOL_NR; i++) {
L
Linus Torvalds 已提交
1635 1636 1637
		int size;
		struct biovec_slab *bvs = bvec_slabs + i;

1638 1639 1640 1641 1642
		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
			bvs->slab = NULL;
			continue;
		}

L
Linus Torvalds 已提交
1643 1644
		size = bvs->nr_vecs * sizeof(struct bio_vec);
		bvs->slab = kmem_cache_create(bvs->name, size, 0,
1645
                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
L
Linus Torvalds 已提交
1646 1647 1648 1649 1650
	}
}

static int __init init_bio(void)
{
1651 1652
	bio_slab_max = 2;
	bio_slab_nr = 0;
K
Kees Cook 已提交
1653 1654
	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
			    GFP_KERNEL);
1655 1656 1657

	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);

1658 1659
	if (!bio_slabs)
		panic("bio: can't allocate bios\n");
L
Linus Torvalds 已提交
1660

1661
	bio_integrity_init();
L
Linus Torvalds 已提交
1662 1663
	biovec_init_slabs();

1664
	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
L
Linus Torvalds 已提交
1665 1666
		panic("bio: can't allocate bios\n");

1667
	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1668 1669
		panic("bio: can't create integrity pool\n");

L
Linus Torvalds 已提交
1670 1671 1672
	return 0;
}
subsys_initcall(init_bio);