bio.c 43.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
9
#include <linux/uio.h>
10
#include <linux/iocontext.h>
L
Linus Torvalds 已提交
11 12 13
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
14
#include <linux/export.h>
L
Linus Torvalds 已提交
15 16
#include <linux/mempool.h>
#include <linux/workqueue.h>
17
#include <linux/cgroup.h>
18
#include <linux/blk-cgroup.h>
19
#include <linux/highmem.h>
20
#include <linux/sched/sysctl.h>
21
#include <linux/blk-crypto.h>
22
#include <linux/xarray.h>
L
Linus Torvalds 已提交
23

24
#include <trace/events/block.h>
25
#include "blk.h"
J
Josef Bacik 已提交
26
#include "blk-rq-qos.h"
27

28 29 30 31 32 33
/*
 * Test patch to inline a certain number of bi_io_vec's inside the bio
 * itself, to shrink a bio data allocation from two mempool calls to one
 */
#define BIO_INLINE_VECS		4

L
Linus Torvalds 已提交
34 35 36 37 38
/*
 * if you change this list, also change bvec_alloc or things will
 * break badly! cannot be bigger than what you can fit into an
 * unsigned short
 */
39
#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
40
static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
41
	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
L
Linus Torvalds 已提交
42 43 44 45 46 47 48
};
#undef BV

/*
 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
 * IO code that does not need private memory pools.
 */
49
struct bio_set fs_bio_set;
50
EXPORT_SYMBOL(fs_bio_set);
L
Linus Torvalds 已提交
51

52 53 54 55 56 57 58 59 60 61
/*
 * Our slab pool management
 */
struct bio_slab {
	struct kmem_cache *slab;
	unsigned int slab_ref;
	unsigned int slab_size;
	char name[8];
};
static DEFINE_MUTEX(bio_slab_lock);
62
static DEFINE_XARRAY(bio_slabs);
63

64
static struct bio_slab *create_bio_slab(unsigned int size)
65
{
66
	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
67

68 69
	if (!bslab)
		return NULL;
70

71 72 73 74 75
	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
	bslab->slab = kmem_cache_create(bslab->name, size,
			ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
	if (!bslab->slab)
		goto fail_alloc_slab;
76

77 78
	bslab->slab_ref = 1;
	bslab->slab_size = size;
79

80 81
	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
		return bslab;
82

83
	kmem_cache_destroy(bslab->slab);
84

85 86 87 88
fail_alloc_slab:
	kfree(bslab);
	return NULL;
}
89

90 91
static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
{
92
	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
93 94 95 96 97 98 99 100 101 102 103 104 105
}

static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
{
	unsigned int size = bs_bio_slab_size(bs);
	struct bio_slab *bslab;

	mutex_lock(&bio_slab_lock);
	bslab = xa_load(&bio_slabs, size);
	if (bslab)
		bslab->slab_ref++;
	else
		bslab = create_bio_slab(size);
106
	mutex_unlock(&bio_slab_lock);
107 108 109 110

	if (bslab)
		return bslab->slab;
	return NULL;
111 112 113 114 115
}

static void bio_put_slab(struct bio_set *bs)
{
	struct bio_slab *bslab = NULL;
116
	unsigned int slab_size = bs_bio_slab_size(bs);
117 118 119

	mutex_lock(&bio_slab_lock);

120
	bslab = xa_load(&bio_slabs, slab_size);
121 122 123
	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
		goto out;

124 125
	WARN_ON_ONCE(bslab->slab != bs->bio_slab);

126 127 128 129 130
	WARN_ON(!bslab->slab_ref);

	if (--bslab->slab_ref)
		goto out;

131 132
	xa_erase(&bio_slabs, slab_size);

133
	kmem_cache_destroy(bslab->slab);
134
	kfree(bslab);
135 136 137 138 139

out:
	mutex_unlock(&bio_slab_lock);
}

140 141
unsigned int bvec_nr_vecs(unsigned short idx)
{
142
	return bvec_slabs[--idx].nr_vecs;
143 144
}

145
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
146
{
147 148 149 150 151
	if (!idx)
		return;
	idx--;

	BIO_BUG_ON(idx >= BVEC_POOL_NR);
152

153
	if (idx == BVEC_POOL_MAX) {
154
		mempool_free(bv, pool);
155
	} else {
156 157 158 159 160 161
		struct biovec_slab *bvs = bvec_slabs + idx;

		kmem_cache_free(bvs->slab, bv);
	}
}

162 163
struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
			   mempool_t *pool)
L
Linus Torvalds 已提交
164 165 166
{
	struct bio_vec *bvl;

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	/*
	 * see comment near bvec_array define!
	 */
	switch (nr) {
	case 1:
		*idx = 0;
		break;
	case 2 ... 4:
		*idx = 1;
		break;
	case 5 ... 16:
		*idx = 2;
		break;
	case 17 ... 64:
		*idx = 3;
		break;
	case 65 ... 128:
		*idx = 4;
		break;
	case 129 ... BIO_MAX_PAGES:
		*idx = 5;
		break;
	default:
		return NULL;
	}

	/*
	 * idx now points to the pool we want to allocate from. only the
	 * 1-vec entry pool is mempool backed.
	 */
197
	if (*idx == BVEC_POOL_MAX) {
198
fallback:
199
		bvl = mempool_alloc(pool, gfp_mask);
200 201
	} else {
		struct biovec_slab *bvs = bvec_slabs + *idx;
202
		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
203

J
Jens Axboe 已提交
204
		/*
205 206 207
		 * Make this allocation restricted and don't dump info on
		 * allocation failures, since we'll fallback to the mempool
		 * in case of failure.
J
Jens Axboe 已提交
208
		 */
209
		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
L
Linus Torvalds 已提交
210

J
Jens Axboe 已提交
211
		/*
212
		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
213
		 * is set, retry with the 1-entry mempool
J
Jens Axboe 已提交
214
		 */
215
		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
216
		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
217
			*idx = BVEC_POOL_MAX;
218 219 220 221
			goto fallback;
		}
	}

222
	(*idx)++;
L
Linus Torvalds 已提交
223 224 225
	return bvl;
}

226
void bio_uninit(struct bio *bio)
L
Linus Torvalds 已提交
227
{
228 229 230 231 232 233
#ifdef CONFIG_BLK_CGROUP
	if (bio->bi_blkg) {
		blkg_put(bio->bi_blkg);
		bio->bi_blkg = NULL;
	}
#endif
234 235
	if (bio_integrity(bio))
		bio_integrity_free(bio);
236 237

	bio_crypt_free_ctx(bio);
K
Kent Overstreet 已提交
238
}
239
EXPORT_SYMBOL(bio_uninit);
240

K
Kent Overstreet 已提交
241 242 243 244 245
static void bio_free(struct bio *bio)
{
	struct bio_set *bs = bio->bi_pool;
	void *p;

246
	bio_uninit(bio);
K
Kent Overstreet 已提交
247 248

	if (bs) {
249
		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
K
Kent Overstreet 已提交
250 251 252 253 254

		/*
		 * If we have front padding, adjust the bio pointer before freeing
		 */
		p = bio;
255 256
		p -= bs->front_pad;

257
		mempool_free(p, &bs->bio_pool);
K
Kent Overstreet 已提交
258 259 260 261
	} else {
		/* Bio was allocated by bio_kmalloc() */
		kfree(bio);
	}
P
Peter Osterlund 已提交
262 263
}

264 265 266 267 268
/*
 * Users of this function have their own bio allocation. Subsequently,
 * they must remember to pair any call to bio_init() with bio_uninit()
 * when IO has completed, or when the bio is released.
 */
269 270
void bio_init(struct bio *bio, struct bio_vec *table,
	      unsigned short max_vecs)
L
Linus Torvalds 已提交
271
{
J
Jens Axboe 已提交
272
	memset(bio, 0, sizeof(*bio));
273
	atomic_set(&bio->__bi_remaining, 1);
274
	atomic_set(&bio->__bi_cnt, 1);
275 276 277

	bio->bi_io_vec = table;
	bio->bi_max_vecs = max_vecs;
L
Linus Torvalds 已提交
278
}
279
EXPORT_SYMBOL(bio_init);
L
Linus Torvalds 已提交
280

K
Kent Overstreet 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294
/**
 * bio_reset - reinitialize a bio
 * @bio:	bio to reset
 *
 * Description:
 *   After calling bio_reset(), @bio will be in the same state as a freshly
 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 *   comment in struct bio.
 */
void bio_reset(struct bio *bio)
{
	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);

295
	bio_uninit(bio);
K
Kent Overstreet 已提交
296 297

	memset(bio, 0, BIO_RESET_BYTES);
298
	bio->bi_flags = flags;
299
	atomic_set(&bio->__bi_remaining, 1);
K
Kent Overstreet 已提交
300 301 302
}
EXPORT_SYMBOL(bio_reset);

303
static struct bio *__bio_chain_endio(struct bio *bio)
K
Kent Overstreet 已提交
304
{
305 306
	struct bio *parent = bio->bi_private;

307 308
	if (!parent->bi_status)
		parent->bi_status = bio->bi_status;
K
Kent Overstreet 已提交
309
	bio_put(bio);
310 311 312 313 314 315
	return parent;
}

static void bio_chain_endio(struct bio *bio)
{
	bio_endio(__bio_chain_endio(bio));
K
Kent Overstreet 已提交
316 317 318 319
}

/**
 * bio_chain - chain bio completions
320
 * @bio: the target bio
321
 * @parent: the parent bio of @bio
K
Kent Overstreet 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334
 *
 * The caller won't have a bi_end_io called when @bio completes - instead,
 * @parent's bi_end_io won't be called until both @parent and @bio have
 * completed; the chained bio will also be freed when it completes.
 *
 * The caller must not set bi_private or bi_end_io in @bio.
 */
void bio_chain(struct bio *bio, struct bio *parent)
{
	BUG_ON(bio->bi_private || bio->bi_end_io);

	bio->bi_private = parent;
	bio->bi_end_io	= bio_chain_endio;
335
	bio_inc_remaining(parent);
K
Kent Overstreet 已提交
336 337 338
}
EXPORT_SYMBOL(bio_chain);

339 340 341 342 343 344 345 346 347 348 349 350 351
static void bio_alloc_rescue(struct work_struct *work)
{
	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
	struct bio *bio;

	while (1) {
		spin_lock(&bs->rescue_lock);
		bio = bio_list_pop(&bs->rescue_list);
		spin_unlock(&bs->rescue_lock);

		if (!bio)
			break;

352
		submit_bio_noacct(bio);
353 354 355 356 357 358 359 360
	}
}

static void punt_bios_to_rescuer(struct bio_set *bs)
{
	struct bio_list punt, nopunt;
	struct bio *bio;

361 362
	if (WARN_ON_ONCE(!bs->rescue_workqueue))
		return;
363 364 365 366 367 368 369 370 371 372 373 374 375 376
	/*
	 * In order to guarantee forward progress we must punt only bios that
	 * were allocated from this bio_set; otherwise, if there was a bio on
	 * there for a stacking driver higher up in the stack, processing it
	 * could require allocating bios from this bio_set, and doing that from
	 * our own rescuer would be bad.
	 *
	 * Since bio lists are singly linked, pop them all instead of trying to
	 * remove from the middle of the list:
	 */

	bio_list_init(&punt);
	bio_list_init(&nopunt);

377
	while ((bio = bio_list_pop(&current->bio_list[0])))
378
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
379
	current->bio_list[0] = nopunt;
380

381 382 383 384
	bio_list_init(&nopunt);
	while ((bio = bio_list_pop(&current->bio_list[1])))
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
	current->bio_list[1] = nopunt;
385 386 387 388 389 390 391 392

	spin_lock(&bs->rescue_lock);
	bio_list_merge(&bs->rescue_list, &punt);
	spin_unlock(&bs->rescue_lock);

	queue_work(bs->rescue_workqueue, &bs->rescue_work);
}

L
Linus Torvalds 已提交
393 394
/**
 * bio_alloc_bioset - allocate a bio for I/O
395
 * @gfp_mask:   the GFP_* mask given to the slab allocator
L
Linus Torvalds 已提交
396
 * @nr_iovecs:	number of iovecs to pre-allocate
397
 * @bs:		the bio_set to allocate from.
L
Linus Torvalds 已提交
398
 *
399
 * Allocate a bio from the mempools in @bs.
400
 *
401 402 403 404 405 406
 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
 * allocate a bio.  This is due to the mempool guarantees.  To make this work,
 * callers must never allocate more than 1 bio at a time from the general pool.
 * Callers that need to allocate more than 1 bio must always submit the
 * previously allocated bio for IO before attempting to allocate a new one.
 * Failure to do so can cause deadlocks under memory pressure.
407
 *
408 409 410 411
 * Note that when running under submit_bio_noacct() (i.e. any block driver),
 * bios are not submitted until after you return - see the code in
 * submit_bio_noacct() that converts recursion into iteration, to prevent
 * stack overflows.
412
 *
413 414 415 416
 * This would normally mean allocating multiple bios under submit_bio_noacct()
 * would be susceptible to deadlocks, but we have
 * deadlock avoidance code that resubmits any blocked bios from a rescuer
 * thread.
417
 *
418 419 420 421
 * However, we do not guarantee forward progress for allocations from other
 * mempools. Doing multiple allocations from the same mempool under
 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
 * for per bio allocations.
422
 *
423
 * Returns: Pointer to new bio on success, NULL on failure.
424
 */
425 426
struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
			     struct bio_set *bs)
L
Linus Torvalds 已提交
427
{
428
	gfp_t saved_gfp = gfp_mask;
T
Tejun Heo 已提交
429 430 431
	struct bio *bio;
	void *p;

432 433 434
	/* should not use nobvec bioset for nr_iovecs > 0 */
	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
		return NULL;
435

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
	/*
	 * submit_bio_noacct() converts recursion to iteration; this means if
	 * we're running beneath it, any bios we allocate and submit will not be
	 * submitted (and thus freed) until after we return.
	 *
	 * This exposes us to a potential deadlock if we allocate multiple bios
	 * from the same bio_set() while running underneath submit_bio_noacct().
	 * If we were to allocate multiple bios (say a stacking block driver
	 * that was splitting bios), we would deadlock if we exhausted the
	 * mempool's reserve.
	 *
	 * We solve this, and guarantee forward progress, with a rescuer
	 * workqueue per bio_set. If we go to allocate and there are bios on
	 * current->bio_list, we first try the allocation without
	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
	 * blocking to the rescuer workqueue before we retry with the original
	 * gfp_flags.
	 */
	if (current->bio_list &&
	    (!bio_list_empty(&current->bio_list[0]) ||
	     !bio_list_empty(&current->bio_list[1])) &&
	    bs->rescue_workqueue)
		gfp_mask &= ~__GFP_DIRECT_RECLAIM;

	p = mempool_alloc(&bs->bio_pool, gfp_mask);
	if (!p && gfp_mask != saved_gfp) {
		punt_bios_to_rescuer(bs);
		gfp_mask = saved_gfp;
464
		p = mempool_alloc(&bs->bio_pool, gfp_mask);
465
	}
T
Tejun Heo 已提交
466 467
	if (unlikely(!p))
		return NULL;
L
Linus Torvalds 已提交
468

469 470
	bio = p + bs->front_pad;
	if (nr_iovecs > BIO_INLINE_VECS) {
471
		unsigned long idx = 0;
472
		struct bio_vec *bvl = NULL;
473

474
		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
475 476 477
		if (!bvl && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
478 479
			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx,
					 &bs->bvec_pool);
480 481
		}

I
Ingo Molnar 已提交
482 483
		if (unlikely(!bvl))
			goto err_free;
484

485
		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
486
		bio_init(bio, bvl, bvec_nr_vecs(idx));
487
	} else if (nr_iovecs) {
488 489 490
		bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
	} else {
		bio_init(bio, NULL, 0);
L
Linus Torvalds 已提交
491
	}
492 493

	bio->bi_pool = bs;
L
Linus Torvalds 已提交
494
	return bio;
I
Ingo Molnar 已提交
495 496

err_free:
497
	mempool_free(p, &bs->bio_pool);
I
Ingo Molnar 已提交
498
	return NULL;
L
Linus Torvalds 已提交
499
}
500
EXPORT_SYMBOL(bio_alloc_bioset);
L
Linus Torvalds 已提交
501

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
/**
 * bio_kmalloc - kmalloc a bio for I/O
 * @gfp_mask:   the GFP_* mask given to the slab allocator
 * @nr_iovecs:	number of iovecs to pre-allocate
 *
 * Use kmalloc to allocate and initialize a bio.
 *
 * Returns: Pointer to new bio on success, NULL on failure.
 */
struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs)
{
	struct bio *bio;

	if (nr_iovecs > UIO_MAXIOV)
		return NULL;

	bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
	if (unlikely(!bio))
		return NULL;
	bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
	bio->bi_pool = NULL;
	return bio;
}
EXPORT_SYMBOL(bio_kmalloc);

527
void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
L
Linus Torvalds 已提交
528 529
{
	unsigned long flags;
530 531
	struct bio_vec bv;
	struct bvec_iter iter;
L
Linus Torvalds 已提交
532

533
	__bio_for_each_segment(bv, bio, iter, start) {
534 535 536
		char *data = bvec_kmap_irq(&bv, &flags);
		memset(data, 0, bv.bv_len);
		flush_dcache_page(bv.bv_page);
L
Linus Torvalds 已提交
537 538 539
		bvec_kunmap_irq(data, &flags);
	}
}
540
EXPORT_SYMBOL(zero_fill_bio_iter);
L
Linus Torvalds 已提交
541

542 543 544 545 546 547 548 549 550 551
/**
 * bio_truncate - truncate the bio to small size of @new_size
 * @bio:	the bio to be truncated
 * @new_size:	new size for truncating the bio
 *
 * Description:
 *   Truncate the bio to new size of @new_size. If bio_op(bio) is
 *   REQ_OP_READ, zero the truncated part. This function should only
 *   be used for handling corner cases, such as bio eod.
 */
552 553 554 555 556 557 558 559 560 561
void bio_truncate(struct bio *bio, unsigned new_size)
{
	struct bio_vec bv;
	struct bvec_iter iter;
	unsigned int done = 0;
	bool truncated = false;

	if (new_size >= bio->bi_iter.bi_size)
		return;

562
	if (bio_op(bio) != REQ_OP_READ)
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
		goto exit;

	bio_for_each_segment(bv, bio, iter) {
		if (done + bv.bv_len > new_size) {
			unsigned offset;

			if (!truncated)
				offset = new_size - done;
			else
				offset = 0;
			zero_user(bv.bv_page, offset, bv.bv_len - offset);
			truncated = true;
		}
		done += bv.bv_len;
	}

 exit:
	/*
	 * Don't touch bvec table here and make it really immutable, since
	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
	 * in its .end_bio() callback.
	 *
	 * It is enough to truncate bio by updating .bi_size since we can make
	 * correct bvec with the updated .bi_size for drivers.
	 */
	bio->bi_iter.bi_size = new_size;
}

591 592 593 594 595 596 597 598 599 600 601 602 603 604
/**
 * guard_bio_eod - truncate a BIO to fit the block device
 * @bio:	bio to truncate
 *
 * This allows us to do IO even on the odd last sectors of a device, even if the
 * block size is some multiple of the physical sector size.
 *
 * We'll just truncate the bio to the size of the device, and clear the end of
 * the buffer head manually.  Truly out-of-range accesses will turn into actual
 * I/O errors, this only handles the "we need to be able to do I/O at the final
 * sector" case.
 */
void guard_bio_eod(struct bio *bio)
{
605
	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624

	if (!maxsector)
		return;

	/*
	 * If the *whole* IO is past the end of the device,
	 * let it through, and the IO layer will turn it into
	 * an EIO.
	 */
	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
		return;

	maxsector -= bio->bi_iter.bi_sector;
	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
		return;

	bio_truncate(bio, maxsector << 9);
}

L
Linus Torvalds 已提交
625 626 627 628 629 630
/**
 * bio_put - release a reference to a bio
 * @bio:   bio to release reference to
 *
 * Description:
 *   Put a reference to a &struct bio, either one you have gotten with
631
 *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
L
Linus Torvalds 已提交
632 633 634
 **/
void bio_put(struct bio *bio)
{
635
	if (!bio_flagged(bio, BIO_REFFED))
K
Kent Overstreet 已提交
636
		bio_free(bio);
637 638 639 640 641 642 643 644 645
	else {
		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));

		/*
		 * last put frees it
		 */
		if (atomic_dec_and_test(&bio->__bi_cnt))
			bio_free(bio);
	}
L
Linus Torvalds 已提交
646
}
647
EXPORT_SYMBOL(bio_put);
L
Linus Torvalds 已提交
648

K
Kent Overstreet 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661
/**
 * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
 * 	@bio: destination bio
 * 	@bio_src: bio to clone
 *
 *	Clone a &bio. Caller will own the returned bio, but not
 *	the actual data it points to. Reference count of returned
 * 	bio will be one.
 *
 * 	Caller must ensure that @bio_src is not freed before @bio.
 */
void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
{
662
	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
K
Kent Overstreet 已提交
663 664

	/*
665
	 * most users will be overriding ->bi_bdev with a new target,
K
Kent Overstreet 已提交
666 667
	 * so we don't set nor calculate new physical/hw segment counts here
	 */
668
	bio->bi_bdev = bio_src->bi_bdev;
669
	bio_set_flag(bio, BIO_CLONED);
S
Shaohua Li 已提交
670 671
	if (bio_flagged(bio_src, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
672 673
	if (bio_flagged(bio_src, BIO_REMAPPED))
		bio_set_flag(bio, BIO_REMAPPED);
J
Jens Axboe 已提交
674
	bio->bi_opf = bio_src->bi_opf;
675
	bio->bi_ioprio = bio_src->bi_ioprio;
676
	bio->bi_write_hint = bio_src->bi_write_hint;
K
Kent Overstreet 已提交
677 678
	bio->bi_iter = bio_src->bi_iter;
	bio->bi_io_vec = bio_src->bi_io_vec;
679

680
	bio_clone_blkg_association(bio, bio_src);
681
	blkcg_bio_issue_init(bio);
K
Kent Overstreet 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
}
EXPORT_SYMBOL(__bio_clone_fast);

/**
 *	bio_clone_fast - clone a bio that shares the original bio's biovec
 *	@bio: bio to clone
 *	@gfp_mask: allocation priority
 *	@bs: bio_set to allocate from
 *
 * 	Like __bio_clone_fast, only also allocates the returned bio
 */
struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
{
	struct bio *b;

	b = bio_alloc_bioset(gfp_mask, 0, bs);
	if (!b)
		return NULL;

	__bio_clone_fast(b, bio);

703 704
	if (bio_crypt_clone(b, bio, gfp_mask) < 0)
		goto err_put;
705

706 707 708
	if (bio_integrity(bio) &&
	    bio_integrity_clone(b, bio, gfp_mask) < 0)
		goto err_put;
K
Kent Overstreet 已提交
709 710

	return b;
711 712 713 714

err_put:
	bio_put(b);
	return NULL;
K
Kent Overstreet 已提交
715 716 717
}
EXPORT_SYMBOL(bio_clone_fast);

718 719
const char *bio_devname(struct bio *bio, char *buf)
{
720
	return bdevname(bio->bi_bdev, buf);
721 722 723
}
EXPORT_SYMBOL(bio_devname);

724 725
static inline bool page_is_mergeable(const struct bio_vec *bv,
		struct page *page, unsigned int len, unsigned int off,
726
		bool *same_page)
727
{
728 729
	size_t bv_end = bv->bv_offset + bv->bv_len;
	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
730 731 732 733 734 735
	phys_addr_t page_addr = page_to_phys(page);

	if (vec_end_addr + 1 != page_addr + off)
		return false;
	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
		return false;
736

737
	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
738 739 740
	if (*same_page)
		return true;
	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
741 742
}

743 744 745 746 747 748 749 750
/*
 * Try to merge a page into a segment, while obeying the hardware segment
 * size limit.  This is not for normal read/write bios, but for passthrough
 * or Zone Append operations that we can't split.
 */
static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
				 struct page *page, unsigned len,
				 unsigned offset, bool *same_page)
751
{
752
	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
753 754 755 756 757 758 759 760
	unsigned long mask = queue_segment_boundary(q);
	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;

	if ((addr1 | mask) != (addr2 | mask))
		return false;
	if (bv->bv_len + len > queue_max_segment_size(q))
		return false;
761
	return __bio_try_merge_page(bio, page, len, offset, same_page);
762 763
}

L
Linus Torvalds 已提交
764
/**
765 766 767 768 769 770 771 772
 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
 * @q: the target queue
 * @bio: destination bio
 * @page: page to add
 * @len: vec entry length
 * @offset: vec entry offset
 * @max_sectors: maximum number of sectors that can be added
 * @same_page: return if the segment has been merged inside the same page
K
Kent Overstreet 已提交
773
 *
774 775
 * Add a page to a bio while respecting the hardware max_sectors, max_segment
 * and gap limitations.
L
Linus Torvalds 已提交
776
 */
777
int bio_add_hw_page(struct request_queue *q, struct bio *bio,
778
		struct page *page, unsigned int len, unsigned int offset,
779
		unsigned int max_sectors, bool *same_page)
L
Linus Torvalds 已提交
780 781 782
{
	struct bio_vec *bvec;

783
	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
L
Linus Torvalds 已提交
784 785
		return 0;

786
	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
L
Linus Torvalds 已提交
787 788
		return 0;

789
	if (bio->bi_vcnt > 0) {
790
		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
791
			return len;
792 793 794 795 796

		/*
		 * If the queue doesn't support SG gaps and adding this segment
		 * would create a gap, disallow it.
		 */
797
		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
798 799
		if (bvec_gap_to_prev(q, bvec, offset))
			return 0;
800 801
	}

M
Ming Lei 已提交
802
	if (bio_full(bio, len))
L
Linus Torvalds 已提交
803 804
		return 0;

805
	if (bio->bi_vcnt >= queue_max_segments(q))
806 807
		return 0;

808 809 810 811 812
	bvec = &bio->bi_io_vec[bio->bi_vcnt];
	bvec->bv_page = page;
	bvec->bv_len = len;
	bvec->bv_offset = offset;
	bio->bi_vcnt++;
813
	bio->bi_iter.bi_size += len;
L
Linus Torvalds 已提交
814 815
	return len;
}
816

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
/**
 * bio_add_pc_page	- attempt to add page to passthrough bio
 * @q: the target queue
 * @bio: destination bio
 * @page: page to add
 * @len: vec entry length
 * @offset: vec entry offset
 *
 * Attempt to add a page to the bio_vec maplist. This can fail for a
 * number of reasons, such as the bio being full or target block device
 * limitations. The target block device must allow bio's up to PAGE_SIZE,
 * so it is always possible to add a single page to an empty bio.
 *
 * This should only be used by passthrough bios.
 */
832 833 834
int bio_add_pc_page(struct request_queue *q, struct bio *bio,
		struct page *page, unsigned int len, unsigned int offset)
{
835
	bool same_page = false;
836 837
	return bio_add_hw_page(q, bio, page, len, offset,
			queue_max_hw_sectors(q), &same_page);
838
}
839
EXPORT_SYMBOL(bio_add_pc_page);
840

L
Linus Torvalds 已提交
841
/**
842 843
 * __bio_try_merge_page - try appending data to an existing bvec.
 * @bio: destination bio
844
 * @page: start page to add
845
 * @len: length of the data to add
846
 * @off: offset of the data relative to @page
847
 * @same_page: return if the segment has been merged inside the same page
L
Linus Torvalds 已提交
848
 *
849
 * Try to add the data at @page + @off to the last bvec of @bio.  This is a
850
 * useful optimisation for file systems with a block size smaller than the
851 852
 * page size.
 *
853 854
 * Warn if (@len, @off) crosses pages in case that @same_page is true.
 *
855
 * Return %true on success or %false on failure.
L
Linus Torvalds 已提交
856
 */
857
bool __bio_try_merge_page(struct bio *bio, struct page *page,
858
		unsigned int len, unsigned int off, bool *same_page)
L
Linus Torvalds 已提交
859
{
K
Kent Overstreet 已提交
860
	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
861
		return false;
862

863
	if (bio->bi_vcnt > 0) {
864
		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
865 866

		if (page_is_mergeable(bv, page, len, off, same_page)) {
867 868
			if (bio->bi_iter.bi_size > UINT_MAX - len) {
				*same_page = false;
869
				return false;
870
			}
871 872 873 874
			bv->bv_len += len;
			bio->bi_iter.bi_size += len;
			return true;
		}
K
Kent Overstreet 已提交
875
	}
876 877 878
	return false;
}
EXPORT_SYMBOL_GPL(__bio_try_merge_page);
K
Kent Overstreet 已提交
879

880
/**
881
 * __bio_add_page - add page(s) to a bio in a new segment
882
 * @bio: destination bio
883 884 885
 * @page: start page to add
 * @len: length of the data to add, may cross pages
 * @off: offset of the data relative to @page, may cross pages
886 887 888 889 890 891 892 893
 *
 * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
 * that @bio has space for another bvec.
 */
void __bio_add_page(struct bio *bio, struct page *page,
		unsigned int len, unsigned int off)
{
	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
K
Kent Overstreet 已提交
894

895
	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
M
Ming Lei 已提交
896
	WARN_ON_ONCE(bio_full(bio, len));
897 898 899 900

	bv->bv_page = page;
	bv->bv_offset = off;
	bv->bv_len = len;
K
Kent Overstreet 已提交
901 902

	bio->bi_iter.bi_size += len;
903
	bio->bi_vcnt++;
904 905 906

	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
		bio_set_flag(bio, BIO_WORKINGSET);
907 908 909 910
}
EXPORT_SYMBOL_GPL(__bio_add_page);

/**
911
 *	bio_add_page	-	attempt to add page(s) to bio
912
 *	@bio: destination bio
913 914 915
 *	@page: start page to add
 *	@len: vec entry length, may cross pages
 *	@offset: vec entry offset relative to @page, may cross pages
916
 *
917
 *	Attempt to add page(s) to the bio_vec maplist. This will only fail
918 919 920 921 922
 *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
 */
int bio_add_page(struct bio *bio, struct page *page,
		 unsigned int len, unsigned int offset)
{
923 924 925
	bool same_page = false;

	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
M
Ming Lei 已提交
926
		if (bio_full(bio, len))
927 928 929
			return 0;
		__bio_add_page(bio, page, len, offset);
	}
K
Kent Overstreet 已提交
930
	return len;
L
Linus Torvalds 已提交
931
}
932
EXPORT_SYMBOL(bio_add_page);
L
Linus Torvalds 已提交
933

934
void bio_release_pages(struct bio *bio, bool mark_dirty)
935 936 937 938
{
	struct bvec_iter_all iter_all;
	struct bio_vec *bvec;

939 940 941
	if (bio_flagged(bio, BIO_NO_PAGE_REF))
		return;

942 943 944
	bio_for_each_segment_all(bvec, bio, iter_all) {
		if (mark_dirty && !PageCompound(bvec->bv_page))
			set_page_dirty_lock(bvec->bv_page);
945
		put_page(bvec->bv_page);
946
	}
947
}
948
EXPORT_SYMBOL_GPL(bio_release_pages);
949

950
static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
951
{
952 953 954 955 956 957 958 959 960
	WARN_ON_ONCE(BVEC_POOL_IDX(bio) != 0);

	bio->bi_vcnt = iter->nr_segs;
	bio->bi_max_vecs = iter->nr_segs;
	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
	bio->bi_iter.bi_bvec_done = iter->iov_offset;
	bio->bi_iter.bi_size = iter->count;

	iov_iter_advance(iter, iter->count);
961
	return 0;
962 963
}

964 965
#define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))

966
/**
967
 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
968 969 970
 * @bio: bio to add pages to
 * @iter: iov iterator describing the region to be mapped
 *
971
 * Pins pages from *iter and appends them to @bio's bvec array. The
972
 * pages will have to be released using put_page() when done.
973
 * For multi-segment *iter, this function only adds pages from the
974
 * next non-empty segment of the iov iterator.
975
 */
976
static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
977
{
978 979
	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
980 981
	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
	struct page **pages = (struct page **)bv;
982
	bool same_page = false;
983 984
	ssize_t size, left;
	unsigned len, i;
985
	size_t offset;
986 987 988 989 990 991 992 993

	/*
	 * Move page array up in the allocated memory for the bio vecs as far as
	 * possible so that we can start filling biovecs from the beginning
	 * without overwriting the temporary page array.
	*/
	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
994 995 996 997 998

	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
	if (unlikely(size <= 0))
		return size ? size : -EFAULT;

999 1000
	for (left = size, i = 0; left > 0; left -= len, i++) {
		struct page *page = pages[i];
1001

1002
		len = min_t(size_t, PAGE_SIZE - offset, left);
1003 1004 1005 1006 1007

		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
			if (same_page)
				put_page(page);
		} else {
M
Ming Lei 已提交
1008
			if (WARN_ON_ONCE(bio_full(bio, len)))
1009 1010 1011
                                return -EINVAL;
			__bio_add_page(bio, page, len, offset);
		}
1012
		offset = 0;
1013 1014 1015 1016 1017
	}

	iov_iter_advance(iter, size);
	return 0;
}
1018

1019 1020 1021 1022
static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
{
	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1023
	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1024 1025 1026 1027 1028 1029
	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
	struct page **pages = (struct page **)bv;
	ssize_t size, left;
	unsigned len, i;
	size_t offset;
1030
	int ret = 0;
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

	if (WARN_ON_ONCE(!max_append_sectors))
		return 0;

	/*
	 * Move page array up in the allocated memory for the bio vecs as far as
	 * possible so that we can start filling biovecs from the beginning
	 * without overwriting the temporary page array.
	 */
	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);

	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
	if (unlikely(size <= 0))
		return size ? size : -EFAULT;

	for (left = size, i = 0; left > 0; left -= len, i++) {
		struct page *page = pages[i];
		bool same_page = false;

		len = min_t(size_t, PAGE_SIZE - offset, left);
		if (bio_add_hw_page(q, bio, page, len, offset,
1053 1054 1055 1056
				max_append_sectors, &same_page) != len) {
			ret = -EINVAL;
			break;
		}
1057 1058 1059 1060 1061
		if (same_page)
			put_page(page);
		offset = 0;
	}

1062 1063
	iov_iter_advance(iter, size - left);
	return ret;
1064 1065
}

1066
/**
1067
 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1068
 * @bio: bio to add pages to
1069 1070 1071 1072 1073
 * @iter: iov iterator describing the region to be added
 *
 * This takes either an iterator pointing to user memory, or one pointing to
 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
 * map them into the kernel. On IO completion, the caller should put those
1074 1075 1076 1077 1078 1079
 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
 * to ensure the bvecs and pages stay referenced until the submitted I/O is
 * completed by a call to ->ki_complete() or returns with an error other than
 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
 * on IO completion. If it isn't, then pages should be released.
1080 1081
 *
 * The function tries, but does not guarantee, to pin as many pages as
1082
 * fit into the bio, or are requested in @iter, whatever is smaller. If
1083 1084
 * MM encounters an error pinning the requested pages, it stops. Error
 * is returned only if 0 pages could be pinned.
1085 1086 1087
 *
 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
 * responsible for setting BIO_WORKINGSET if necessary.
1088 1089 1090
 */
int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
{
1091
	int ret = 0;
1092

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	if (iov_iter_is_bvec(iter)) {
		if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
			return -EINVAL;
		bio_iov_bvec_set(bio, iter);
		bio_set_flag(bio, BIO_NO_PAGE_REF);
		return 0;
	} else {
		do {
			if (bio_op(bio) == REQ_OP_ZONE_APPEND)
				ret = __bio_iov_append_get_pages(bio, iter);
1103 1104
			else
				ret = __bio_iov_iter_get_pages(bio, iter);
1105 1106
		} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
	}
1107 1108 1109

	/* don't account direct I/O as memory stall */
	bio_clear_flag(bio, BIO_WORKINGSET);
1110
	return bio->bi_vcnt ? 0 : ret;
1111
}
1112
EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1113

1114
static void submit_bio_wait_endio(struct bio *bio)
1115
{
1116
	complete(bio->bi_private);
1117 1118 1119 1120 1121 1122 1123 1124
}

/**
 * submit_bio_wait - submit a bio, and wait until it completes
 * @bio: The &struct bio which describes the I/O
 *
 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
 * bio_endio() on failure.
1125 1126 1127 1128
 *
 * WARNING: Unlike to how submit_bio() is usually used, this function does not
 * result in bio reference to be consumed. The caller must drop the reference
 * on his own.
1129
 */
1130
int submit_bio_wait(struct bio *bio)
1131
{
1132 1133
	DECLARE_COMPLETION_ONSTACK_MAP(done,
			bio->bi_bdev->bd_disk->lockdep_map);
1134
	unsigned long hang_check;
1135

1136
	bio->bi_private = &done;
1137
	bio->bi_end_io = submit_bio_wait_endio;
J
Jens Axboe 已提交
1138
	bio->bi_opf |= REQ_SYNC;
1139
	submit_bio(bio);
1140 1141 1142 1143 1144 1145 1146 1147 1148

	/* Prevent hang_check timer from firing at us during very long I/O */
	hang_check = sysctl_hung_task_timeout_secs;
	if (hang_check)
		while (!wait_for_completion_io_timeout(&done,
					hang_check * (HZ/2)))
			;
	else
		wait_for_completion_io(&done);
1149

1150
	return blk_status_to_errno(bio->bi_status);
1151 1152 1153
}
EXPORT_SYMBOL(submit_bio_wait);

K
Kent Overstreet 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
/**
 * bio_advance - increment/complete a bio by some number of bytes
 * @bio:	bio to advance
 * @bytes:	number of bytes to complete
 *
 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
 * be updated on the last bvec as well.
 *
 * @bio will then represent the remaining, uncompleted portion of the io.
 */
void bio_advance(struct bio *bio, unsigned bytes)
{
	if (bio_integrity(bio))
		bio_integrity_advance(bio, bytes);

1170
	bio_crypt_advance(bio, bytes);
K
Kent Overstreet 已提交
1171
	bio_advance_iter(bio, &bio->bi_iter, bytes);
K
Kent Overstreet 已提交
1172 1173 1174
}
EXPORT_SYMBOL(bio_advance);

1175 1176
void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
			struct bio *src, struct bvec_iter *src_iter)
K
Kent Overstreet 已提交
1177
{
1178
	struct bio_vec src_bv, dst_bv;
K
Kent Overstreet 已提交
1179
	void *src_p, *dst_p;
1180
	unsigned bytes;
K
Kent Overstreet 已提交
1181

1182 1183 1184
	while (src_iter->bi_size && dst_iter->bi_size) {
		src_bv = bio_iter_iovec(src, *src_iter);
		dst_bv = bio_iter_iovec(dst, *dst_iter);
1185 1186

		bytes = min(src_bv.bv_len, dst_bv.bv_len);
K
Kent Overstreet 已提交
1187

1188 1189
		src_p = kmap_atomic(src_bv.bv_page);
		dst_p = kmap_atomic(dst_bv.bv_page);
K
Kent Overstreet 已提交
1190

1191 1192
		memcpy(dst_p + dst_bv.bv_offset,
		       src_p + src_bv.bv_offset,
K
Kent Overstreet 已提交
1193 1194 1195 1196 1197
		       bytes);

		kunmap_atomic(dst_p);
		kunmap_atomic(src_p);

1198 1199
		flush_dcache_page(dst_bv.bv_page);

P
Pavel Begunkov 已提交
1200 1201
		bio_advance_iter_single(src, src_iter, bytes);
		bio_advance_iter_single(dst, dst_iter, bytes);
K
Kent Overstreet 已提交
1202 1203
	}
}
1204 1205 1206
EXPORT_SYMBOL(bio_copy_data_iter);

/**
1207 1208 1209
 * bio_copy_data - copy contents of data buffers from one bio to another
 * @src: source bio
 * @dst: destination bio
1210 1211 1212 1213 1214 1215
 *
 * Stops when it reaches the end of either @src or @dst - that is, copies
 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
 */
void bio_copy_data(struct bio *dst, struct bio *src)
{
1216 1217 1218 1219
	struct bvec_iter src_iter = src->bi_iter;
	struct bvec_iter dst_iter = dst->bi_iter;

	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1220
}
K
Kent Overstreet 已提交
1221 1222
EXPORT_SYMBOL(bio_copy_data);

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
/**
 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
 * another
 * @src: source bio list
 * @dst: destination bio list
 *
 * Stops when it reaches the end of either the @src list or @dst list - that is,
 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
 * bios).
 */
void bio_list_copy_data(struct bio *dst, struct bio *src)
{
	struct bvec_iter src_iter = src->bi_iter;
	struct bvec_iter dst_iter = dst->bi_iter;

	while (1) {
		if (!src_iter.bi_size) {
			src = src->bi_next;
			if (!src)
				break;

			src_iter = src->bi_iter;
		}

		if (!dst_iter.bi_size) {
			dst = dst->bi_next;
			if (!dst)
				break;

			dst_iter = dst->bi_iter;
		}

		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
	}
}
EXPORT_SYMBOL(bio_list_copy_data);

1260
void bio_free_pages(struct bio *bio)
1261 1262
{
	struct bio_vec *bvec;
1263
	struct bvec_iter_all iter_all;
1264

1265
	bio_for_each_segment_all(bvec, bio, iter_all)
1266 1267
		__free_page(bvec->bv_page);
}
1268
EXPORT_SYMBOL(bio_free_pages);
1269

L
Linus Torvalds 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
/*
 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
 * for performing direct-IO in BIOs.
 *
 * The problem is that we cannot run set_page_dirty() from interrupt context
 * because the required locks are not interrupt-safe.  So what we can do is to
 * mark the pages dirty _before_ performing IO.  And in interrupt context,
 * check that the pages are still dirty.   If so, fine.  If not, redirty them
 * in process context.
 *
 * We special-case compound pages here: normally this means reads into hugetlb
 * pages.  The logic in here doesn't really work right for compound pages
 * because the VM does not uniformly chase down the head page in all cases.
 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
 * handle them at all.  So we skip compound pages here at an early stage.
 *
 * Note that this code is very hard to test under normal circumstances because
 * direct-io pins the pages with get_user_pages().  This makes
 * is_page_cache_freeable return false, and the VM will not clean the pages.
1289
 * But other code (eg, flusher threads) could clean the pages if they are mapped
L
Linus Torvalds 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
 * pagecache.
 *
 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
 * deferred bio dirtying paths.
 */

/*
 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
 */
void bio_set_pages_dirty(struct bio *bio)
{
1301
	struct bio_vec *bvec;
1302
	struct bvec_iter_all iter_all;
L
Linus Torvalds 已提交
1303

1304
	bio_for_each_segment_all(bvec, bio, iter_all) {
1305 1306
		if (!PageCompound(bvec->bv_page))
			set_page_dirty_lock(bvec->bv_page);
L
Linus Torvalds 已提交
1307 1308 1309 1310 1311 1312 1313
	}
}

/*
 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
 * If they are, then fine.  If, however, some pages are clean then they must
 * have been written out during the direct-IO read.  So we take another ref on
1314
 * the BIO and re-dirty the pages in process context.
L
Linus Torvalds 已提交
1315 1316
 *
 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1317 1318
 * here on.  It will run one put_page() against each page and will run one
 * bio_put() against the BIO.
L
Linus Torvalds 已提交
1319 1320
 */

1321
static void bio_dirty_fn(struct work_struct *work);
L
Linus Torvalds 已提交
1322

1323
static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
L
Linus Torvalds 已提交
1324 1325 1326 1327 1328 1329
static DEFINE_SPINLOCK(bio_dirty_lock);
static struct bio *bio_dirty_list;

/*
 * This runs in process context
 */
1330
static void bio_dirty_fn(struct work_struct *work)
L
Linus Torvalds 已提交
1331
{
1332
	struct bio *bio, *next;
L
Linus Torvalds 已提交
1333

1334 1335
	spin_lock_irq(&bio_dirty_lock);
	next = bio_dirty_list;
L
Linus Torvalds 已提交
1336
	bio_dirty_list = NULL;
1337
	spin_unlock_irq(&bio_dirty_lock);
L
Linus Torvalds 已提交
1338

1339 1340
	while ((bio = next) != NULL) {
		next = bio->bi_private;
L
Linus Torvalds 已提交
1341

1342
		bio_release_pages(bio, true);
L
Linus Torvalds 已提交
1343 1344 1345 1346 1347 1348
		bio_put(bio);
	}
}

void bio_check_pages_dirty(struct bio *bio)
{
1349
	struct bio_vec *bvec;
1350
	unsigned long flags;
1351
	struct bvec_iter_all iter_all;
L
Linus Torvalds 已提交
1352

1353
	bio_for_each_segment_all(bvec, bio, iter_all) {
1354 1355
		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
			goto defer;
L
Linus Torvalds 已提交
1356 1357
	}

1358
	bio_release_pages(bio, false);
1359 1360 1361 1362 1363 1364 1365 1366
	bio_put(bio);
	return;
defer:
	spin_lock_irqsave(&bio_dirty_lock, flags);
	bio->bi_private = bio_dirty_list;
	bio_dirty_list = bio;
	spin_unlock_irqrestore(&bio_dirty_lock, flags);
	schedule_work(&bio_dirty_work);
L
Linus Torvalds 已提交
1367 1368
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
static inline bool bio_remaining_done(struct bio *bio)
{
	/*
	 * If we're not chaining, then ->__bi_remaining is always 1 and
	 * we always end io on the first invocation.
	 */
	if (!bio_flagged(bio, BIO_CHAIN))
		return true;

	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);

1380
	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1381
		bio_clear_flag(bio, BIO_CHAIN);
1382
		return true;
1383
	}
1384 1385 1386 1387

	return false;
}

L
Linus Torvalds 已提交
1388 1389 1390 1391 1392
/**
 * bio_endio - end I/O on a bio
 * @bio:	bio
 *
 * Description:
1393 1394 1395
 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
 *   bio unless they own it and thus know that it has an end_io function.
N
NeilBrown 已提交
1396 1397 1398 1399 1400
 *
 *   bio_endio() can be called several times on a bio that has been chained
 *   using bio_chain().  The ->bi_end_io() function will only be called the
 *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
 *   generated if BIO_TRACE_COMPLETION is set.
L
Linus Torvalds 已提交
1401
 **/
1402
void bio_endio(struct bio *bio)
L
Linus Torvalds 已提交
1403
{
C
Christoph Hellwig 已提交
1404
again:
1405
	if (!bio_remaining_done(bio))
C
Christoph Hellwig 已提交
1406
		return;
1407 1408
	if (!bio_integrity_endio(bio))
		return;
L
Linus Torvalds 已提交
1409

1410 1411
	if (bio->bi_bdev)
		rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
J
Josef Bacik 已提交
1412

C
Christoph Hellwig 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	/*
	 * Need to have a real endio function for chained bios, otherwise
	 * various corner cases will break (like stacking block devices that
	 * save/restore bi_end_io) - however, we want to avoid unbounded
	 * recursion and blowing the stack. Tail call optimization would
	 * handle this, but compiling with frame pointers also disables
	 * gcc's sibling call optimization.
	 */
	if (bio->bi_end_io == bio_chain_endio) {
		bio = __bio_chain_endio(bio);
		goto again;
K
Kent Overstreet 已提交
1424
	}
C
Christoph Hellwig 已提交
1425

1426 1427
	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
		trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
N
NeilBrown 已提交
1428 1429 1430
		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
	}

1431
	blk_throtl_bio_endio(bio);
S
Shaohua Li 已提交
1432 1433
	/* release cgroup info */
	bio_uninit(bio);
C
Christoph Hellwig 已提交
1434 1435
	if (bio->bi_end_io)
		bio->bi_end_io(bio);
L
Linus Torvalds 已提交
1436
}
1437
EXPORT_SYMBOL(bio_endio);
L
Linus Torvalds 已提交
1438

K
Kent Overstreet 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
/**
 * bio_split - split a bio
 * @bio:	bio to split
 * @sectors:	number of sectors to split from the front of @bio
 * @gfp:	gfp mask
 * @bs:		bio set to allocate from
 *
 * Allocates and returns a new bio which represents @sectors from the start of
 * @bio, and updates @bio to represent the remaining sectors.
 *
1449
 * Unless this is a discard request the newly allocated bio will point
1450 1451
 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
 * neither @bio nor @bs are freed before the split bio.
K
Kent Overstreet 已提交
1452 1453 1454 1455
 */
struct bio *bio_split(struct bio *bio, int sectors,
		      gfp_t gfp, struct bio_set *bs)
{
1456
	struct bio *split;
K
Kent Overstreet 已提交
1457 1458 1459 1460

	BUG_ON(sectors <= 0);
	BUG_ON(sectors >= bio_sectors(bio));

1461 1462 1463 1464
	/* Zone append commands cannot be split */
	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
		return NULL;

1465
	split = bio_clone_fast(bio, gfp, bs);
K
Kent Overstreet 已提交
1466 1467 1468 1469 1470 1471
	if (!split)
		return NULL;

	split->bi_iter.bi_size = sectors << 9;

	if (bio_integrity(split))
1472
		bio_integrity_trim(split);
K
Kent Overstreet 已提交
1473 1474 1475

	bio_advance(bio, split->bi_iter.bi_size);

N
NeilBrown 已提交
1476
	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1477
		bio_set_flag(split, BIO_TRACE_COMPLETION);
N
NeilBrown 已提交
1478

K
Kent Overstreet 已提交
1479 1480 1481 1482
	return split;
}
EXPORT_SYMBOL(bio_split);

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
/**
 * bio_trim - trim a bio
 * @bio:	bio to trim
 * @offset:	number of sectors to trim from the front of @bio
 * @size:	size we want to trim @bio to, in sectors
 */
void bio_trim(struct bio *bio, int offset, int size)
{
	/* 'bio' is a cloned bio which we need to trim to match
	 * the given offset and size.
	 */

	size <<= 9;
1496
	if (offset == 0 && size == bio->bi_iter.bi_size)
1497 1498 1499
		return;

	bio_advance(bio, offset << 9);
1500
	bio->bi_iter.bi_size = size;
1501 1502

	if (bio_integrity(bio))
1503
		bio_integrity_trim(bio);
1504

1505 1506 1507
}
EXPORT_SYMBOL_GPL(bio_trim);

L
Linus Torvalds 已提交
1508 1509 1510 1511
/*
 * create memory pools for biovec's in a bio_set.
 * use the global biovec slabs created for general use.
 */
1512
int biovec_init_pool(mempool_t *pool, int pool_entries)
L
Linus Torvalds 已提交
1513
{
1514
	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
L
Linus Torvalds 已提交
1515

1516
	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
L
Linus Torvalds 已提交
1517 1518
}

1519 1520 1521 1522 1523 1524 1525
/*
 * bioset_exit - exit a bioset initialized with bioset_init()
 *
 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
 * kzalloc()).
 */
void bioset_exit(struct bio_set *bs)
L
Linus Torvalds 已提交
1526
{
1527 1528
	if (bs->rescue_workqueue)
		destroy_workqueue(bs->rescue_workqueue);
1529
	bs->rescue_workqueue = NULL;
1530

1531 1532
	mempool_exit(&bs->bio_pool);
	mempool_exit(&bs->bvec_pool);
1533

1534
	bioset_integrity_free(bs);
1535 1536 1537 1538 1539
	if (bs->bio_slab)
		bio_put_slab(bs);
	bs->bio_slab = NULL;
}
EXPORT_SYMBOL(bioset_exit);
L
Linus Torvalds 已提交
1540

1541 1542
/**
 * bioset_init - Initialize a bio_set
K
Kent Overstreet 已提交
1543
 * @bs:		pool to initialize
1544 1545 1546 1547 1548
 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
 * @front_pad:	Number of bytes to allocate in front of the returned bio
 * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
 *              and %BIOSET_NEED_RESCUER
 *
K
Kent Overstreet 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
 * Description:
 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
 *    to ask for a number of bytes to be allocated in front of the bio.
 *    Front pad allocation is useful for embedding the bio inside
 *    another structure, to avoid allocating extra data to go with the bio.
 *    Note that the bio must be embedded at the END of that structure always,
 *    or things will break badly.
 *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
 *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
 *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
 *    dispatch queued requests when the mempool runs out of space.
 *
1561 1562 1563 1564 1565 1566 1567
 */
int bioset_init(struct bio_set *bs,
		unsigned int pool_size,
		unsigned int front_pad,
		int flags)
{
	bs->front_pad = front_pad;
1568 1569 1570 1571
	if (flags & BIOSET_NEED_BVECS)
		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
	else
		bs->back_pad = 0;
1572 1573 1574 1575 1576

	spin_lock_init(&bs->rescue_lock);
	bio_list_init(&bs->rescue_list);
	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);

1577
	bs->bio_slab = bio_find_or_create_slab(bs);
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
	if (!bs->bio_slab)
		return -ENOMEM;

	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
		goto bad;

	if ((flags & BIOSET_NEED_BVECS) &&
	    biovec_init_pool(&bs->bvec_pool, pool_size))
		goto bad;

	if (!(flags & BIOSET_NEED_RESCUER))
		return 0;

	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
	if (!bs->rescue_workqueue)
		goto bad;

	return 0;
bad:
	bioset_exit(bs);
	return -ENOMEM;
}
EXPORT_SYMBOL(bioset_init);

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
/*
 * Initialize and setup a new bio_set, based on the settings from
 * another bio_set.
 */
int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
{
	int flags;

	flags = 0;
	if (src->bvec_pool.min_nr)
		flags |= BIOSET_NEED_BVECS;
	if (src->rescue_workqueue)
		flags |= BIOSET_NEED_RESCUER;

	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
}
EXPORT_SYMBOL(bioset_init_from_src);

L
Linus Torvalds 已提交
1620 1621 1622 1623
static void __init biovec_init_slabs(void)
{
	int i;

1624
	for (i = 0; i < BVEC_POOL_NR; i++) {
L
Linus Torvalds 已提交
1625 1626 1627
		int size;
		struct biovec_slab *bvs = bvec_slabs + i;

1628 1629 1630 1631 1632
		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
			bvs->slab = NULL;
			continue;
		}

L
Linus Torvalds 已提交
1633 1634
		size = bvs->nr_vecs * sizeof(struct bio_vec);
		bvs->slab = kmem_cache_create(bvs->name, size, 0,
1635
                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
L
Linus Torvalds 已提交
1636 1637 1638 1639 1640
	}
}

static int __init init_bio(void)
{
1641 1642
	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);

1643
	bio_integrity_init();
L
Linus Torvalds 已提交
1644 1645
	biovec_init_slabs();

1646
	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
L
Linus Torvalds 已提交
1647 1648
		panic("bio: can't allocate bios\n");

1649
	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1650 1651
		panic("bio: can't create integrity pool\n");

L
Linus Torvalds 已提交
1652 1653 1654
	return 0;
}
subsys_initcall(init_bio);