bio.c 46.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
9
#include <linux/uio.h>
10
#include <linux/iocontext.h>
L
Linus Torvalds 已提交
11 12 13
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
14
#include <linux/export.h>
L
Linus Torvalds 已提交
15 16
#include <linux/mempool.h>
#include <linux/workqueue.h>
17
#include <linux/cgroup.h>
18
#include <linux/blk-cgroup.h>
19
#include <linux/highmem.h>
20
#include <linux/sched/sysctl.h>
L
Linus Torvalds 已提交
21

22
#include <trace/events/block.h>
23
#include "blk.h"
J
Josef Bacik 已提交
24
#include "blk-rq-qos.h"
25

26 27 28 29 30 31
/*
 * Test patch to inline a certain number of bi_io_vec's inside the bio
 * itself, to shrink a bio data allocation from two mempool calls to one
 */
#define BIO_INLINE_VECS		4

L
Linus Torvalds 已提交
32 33 34 35 36
/*
 * if you change this list, also change bvec_alloc or things will
 * break badly! cannot be bigger than what you can fit into an
 * unsigned short
 */
37
#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
38
static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
39
	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
L
Linus Torvalds 已提交
40 41 42 43 44 45 46
};
#undef BV

/*
 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
 * IO code that does not need private memory pools.
 */
47
struct bio_set fs_bio_set;
48
EXPORT_SYMBOL(fs_bio_set);
L
Linus Torvalds 已提交
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/*
 * Our slab pool management
 */
struct bio_slab {
	struct kmem_cache *slab;
	unsigned int slab_ref;
	unsigned int slab_size;
	char name[8];
};
static DEFINE_MUTEX(bio_slab_lock);
static struct bio_slab *bio_slabs;
static unsigned int bio_slab_nr, bio_slab_max;

static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
{
	unsigned int sz = sizeof(struct bio) + extra_size;
	struct kmem_cache *slab = NULL;
67
	struct bio_slab *bslab, *new_bio_slabs;
68
	unsigned int new_bio_slab_max;
69 70 71 72 73 74
	unsigned int i, entry = -1;

	mutex_lock(&bio_slab_lock);

	i = 0;
	while (i < bio_slab_nr) {
75
		bslab = &bio_slabs[i];
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

		if (!bslab->slab && entry == -1)
			entry = i;
		else if (bslab->slab_size == sz) {
			slab = bslab->slab;
			bslab->slab_ref++;
			break;
		}
		i++;
	}

	if (slab)
		goto out_unlock;

	if (bio_slab_nr == bio_slab_max && entry == -1) {
91
		new_bio_slab_max = bio_slab_max << 1;
92
		new_bio_slabs = krealloc(bio_slabs,
93
					 new_bio_slab_max * sizeof(struct bio_slab),
94 95
					 GFP_KERNEL);
		if (!new_bio_slabs)
96
			goto out_unlock;
97
		bio_slab_max = new_bio_slab_max;
98
		bio_slabs = new_bio_slabs;
99 100 101 102 103 104 105
	}
	if (entry == -1)
		entry = bio_slab_nr++;

	bslab = &bio_slabs[entry];

	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
106 107
	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
				 SLAB_HWCACHE_ALIGN, NULL);
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
	if (!slab)
		goto out_unlock;

	bslab->slab = slab;
	bslab->slab_ref = 1;
	bslab->slab_size = sz;
out_unlock:
	mutex_unlock(&bio_slab_lock);
	return slab;
}

static void bio_put_slab(struct bio_set *bs)
{
	struct bio_slab *bslab = NULL;
	unsigned int i;

	mutex_lock(&bio_slab_lock);

	for (i = 0; i < bio_slab_nr; i++) {
		if (bs->bio_slab == bio_slabs[i].slab) {
			bslab = &bio_slabs[i];
			break;
		}
	}

	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
		goto out;

	WARN_ON(!bslab->slab_ref);

	if (--bslab->slab_ref)
		goto out;

	kmem_cache_destroy(bslab->slab);
	bslab->slab = NULL;

out:
	mutex_unlock(&bio_slab_lock);
}

148 149
unsigned int bvec_nr_vecs(unsigned short idx)
{
150
	return bvec_slabs[--idx].nr_vecs;
151 152
}

153
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
154
{
155 156 157 158 159
	if (!idx)
		return;
	idx--;

	BIO_BUG_ON(idx >= BVEC_POOL_NR);
160

161
	if (idx == BVEC_POOL_MAX) {
162
		mempool_free(bv, pool);
163
	} else {
164 165 166 167 168 169
		struct biovec_slab *bvs = bvec_slabs + idx;

		kmem_cache_free(bvs->slab, bv);
	}
}

170 171
struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
			   mempool_t *pool)
L
Linus Torvalds 已提交
172 173 174
{
	struct bio_vec *bvl;

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
	/*
	 * see comment near bvec_array define!
	 */
	switch (nr) {
	case 1:
		*idx = 0;
		break;
	case 2 ... 4:
		*idx = 1;
		break;
	case 5 ... 16:
		*idx = 2;
		break;
	case 17 ... 64:
		*idx = 3;
		break;
	case 65 ... 128:
		*idx = 4;
		break;
	case 129 ... BIO_MAX_PAGES:
		*idx = 5;
		break;
	default:
		return NULL;
	}

	/*
	 * idx now points to the pool we want to allocate from. only the
	 * 1-vec entry pool is mempool backed.
	 */
205
	if (*idx == BVEC_POOL_MAX) {
206
fallback:
207
		bvl = mempool_alloc(pool, gfp_mask);
208 209
	} else {
		struct biovec_slab *bvs = bvec_slabs + *idx;
210
		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
211

J
Jens Axboe 已提交
212
		/*
213 214 215
		 * Make this allocation restricted and don't dump info on
		 * allocation failures, since we'll fallback to the mempool
		 * in case of failure.
J
Jens Axboe 已提交
216
		 */
217
		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
L
Linus Torvalds 已提交
218

J
Jens Axboe 已提交
219
		/*
220
		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
221
		 * is set, retry with the 1-entry mempool
J
Jens Axboe 已提交
222
		 */
223
		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
224
		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
225
			*idx = BVEC_POOL_MAX;
226 227 228 229
			goto fallback;
		}
	}

230
	(*idx)++;
L
Linus Torvalds 已提交
231 232 233
	return bvl;
}

234
void bio_uninit(struct bio *bio)
L
Linus Torvalds 已提交
235
{
236
	bio_disassociate_blkg(bio);
237 238 239

	if (bio_integrity(bio))
		bio_integrity_free(bio);
K
Kent Overstreet 已提交
240
}
241
EXPORT_SYMBOL(bio_uninit);
242

K
Kent Overstreet 已提交
243 244 245 246 247
static void bio_free(struct bio *bio)
{
	struct bio_set *bs = bio->bi_pool;
	void *p;

248
	bio_uninit(bio);
K
Kent Overstreet 已提交
249 250

	if (bs) {
251
		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
K
Kent Overstreet 已提交
252 253 254 255 256

		/*
		 * If we have front padding, adjust the bio pointer before freeing
		 */
		p = bio;
257 258
		p -= bs->front_pad;

259
		mempool_free(p, &bs->bio_pool);
K
Kent Overstreet 已提交
260 261 262 263
	} else {
		/* Bio was allocated by bio_kmalloc() */
		kfree(bio);
	}
P
Peter Osterlund 已提交
264 265
}

266 267 268 269 270
/*
 * Users of this function have their own bio allocation. Subsequently,
 * they must remember to pair any call to bio_init() with bio_uninit()
 * when IO has completed, or when the bio is released.
 */
271 272
void bio_init(struct bio *bio, struct bio_vec *table,
	      unsigned short max_vecs)
L
Linus Torvalds 已提交
273
{
J
Jens Axboe 已提交
274
	memset(bio, 0, sizeof(*bio));
275
	atomic_set(&bio->__bi_remaining, 1);
276
	atomic_set(&bio->__bi_cnt, 1);
277 278 279

	bio->bi_io_vec = table;
	bio->bi_max_vecs = max_vecs;
L
Linus Torvalds 已提交
280
}
281
EXPORT_SYMBOL(bio_init);
L
Linus Torvalds 已提交
282

K
Kent Overstreet 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296
/**
 * bio_reset - reinitialize a bio
 * @bio:	bio to reset
 *
 * Description:
 *   After calling bio_reset(), @bio will be in the same state as a freshly
 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 *   comment in struct bio.
 */
void bio_reset(struct bio *bio)
{
	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);

297
	bio_uninit(bio);
K
Kent Overstreet 已提交
298 299

	memset(bio, 0, BIO_RESET_BYTES);
300
	bio->bi_flags = flags;
301
	atomic_set(&bio->__bi_remaining, 1);
K
Kent Overstreet 已提交
302 303 304
}
EXPORT_SYMBOL(bio_reset);

305
static struct bio *__bio_chain_endio(struct bio *bio)
K
Kent Overstreet 已提交
306
{
307 308
	struct bio *parent = bio->bi_private;

309 310
	if (!parent->bi_status)
		parent->bi_status = bio->bi_status;
K
Kent Overstreet 已提交
311
	bio_put(bio);
312 313 314 315 316 317
	return parent;
}

static void bio_chain_endio(struct bio *bio)
{
	bio_endio(__bio_chain_endio(bio));
K
Kent Overstreet 已提交
318 319 320 321
}

/**
 * bio_chain - chain bio completions
322 323
 * @bio: the target bio
 * @parent: the @bio's parent bio
K
Kent Overstreet 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336
 *
 * The caller won't have a bi_end_io called when @bio completes - instead,
 * @parent's bi_end_io won't be called until both @parent and @bio have
 * completed; the chained bio will also be freed when it completes.
 *
 * The caller must not set bi_private or bi_end_io in @bio.
 */
void bio_chain(struct bio *bio, struct bio *parent)
{
	BUG_ON(bio->bi_private || bio->bi_end_io);

	bio->bi_private = parent;
	bio->bi_end_io	= bio_chain_endio;
337
	bio_inc_remaining(parent);
K
Kent Overstreet 已提交
338 339 340
}
EXPORT_SYMBOL(bio_chain);

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
static void bio_alloc_rescue(struct work_struct *work)
{
	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
	struct bio *bio;

	while (1) {
		spin_lock(&bs->rescue_lock);
		bio = bio_list_pop(&bs->rescue_list);
		spin_unlock(&bs->rescue_lock);

		if (!bio)
			break;

		generic_make_request(bio);
	}
}

static void punt_bios_to_rescuer(struct bio_set *bs)
{
	struct bio_list punt, nopunt;
	struct bio *bio;

363 364
	if (WARN_ON_ONCE(!bs->rescue_workqueue))
		return;
365 366 367 368 369 370 371 372 373 374 375 376 377 378
	/*
	 * In order to guarantee forward progress we must punt only bios that
	 * were allocated from this bio_set; otherwise, if there was a bio on
	 * there for a stacking driver higher up in the stack, processing it
	 * could require allocating bios from this bio_set, and doing that from
	 * our own rescuer would be bad.
	 *
	 * Since bio lists are singly linked, pop them all instead of trying to
	 * remove from the middle of the list:
	 */

	bio_list_init(&punt);
	bio_list_init(&nopunt);

379
	while ((bio = bio_list_pop(&current->bio_list[0])))
380
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
381
	current->bio_list[0] = nopunt;
382

383 384 385 386
	bio_list_init(&nopunt);
	while ((bio = bio_list_pop(&current->bio_list[1])))
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
	current->bio_list[1] = nopunt;
387 388 389 390 391 392 393 394

	spin_lock(&bs->rescue_lock);
	bio_list_merge(&bs->rescue_list, &punt);
	spin_unlock(&bs->rescue_lock);

	queue_work(bs->rescue_workqueue, &bs->rescue_work);
}

L
Linus Torvalds 已提交
395 396
/**
 * bio_alloc_bioset - allocate a bio for I/O
397
 * @gfp_mask:   the GFP_* mask given to the slab allocator
L
Linus Torvalds 已提交
398
 * @nr_iovecs:	number of iovecs to pre-allocate
399
 * @bs:		the bio_set to allocate from.
L
Linus Torvalds 已提交
400 401
 *
 * Description:
402 403 404
 *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
 *   backed by the @bs's mempool.
 *
405 406 407 408 409 410
 *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
 *   always be able to allocate a bio. This is due to the mempool guarantees.
 *   To make this work, callers must never allocate more than 1 bio at a time
 *   from this pool. Callers that need to allocate more than 1 bio must always
 *   submit the previously allocated bio for IO before attempting to allocate
 *   a new one. Failure to do so can cause deadlocks under memory pressure.
411
 *
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
 *   Note that when running under generic_make_request() (i.e. any block
 *   driver), bios are not submitted until after you return - see the code in
 *   generic_make_request() that converts recursion into iteration, to prevent
 *   stack overflows.
 *
 *   This would normally mean allocating multiple bios under
 *   generic_make_request() would be susceptible to deadlocks, but we have
 *   deadlock avoidance code that resubmits any blocked bios from a rescuer
 *   thread.
 *
 *   However, we do not guarantee forward progress for allocations from other
 *   mempools. Doing multiple allocations from the same mempool under
 *   generic_make_request() should be avoided - instead, use bio_set's front_pad
 *   for per bio allocations.
 *
427 428 429
 *   RETURNS:
 *   Pointer to new bio on success, NULL on failure.
 */
430 431
struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
			     struct bio_set *bs)
L
Linus Torvalds 已提交
432
{
433
	gfp_t saved_gfp = gfp_mask;
434 435
	unsigned front_pad;
	unsigned inline_vecs;
I
Ingo Molnar 已提交
436
	struct bio_vec *bvl = NULL;
T
Tejun Heo 已提交
437 438 439
	struct bio *bio;
	void *p;

440 441 442 443 444 445 446 447 448 449
	if (!bs) {
		if (nr_iovecs > UIO_MAXIOV)
			return NULL;

		p = kmalloc(sizeof(struct bio) +
			    nr_iovecs * sizeof(struct bio_vec),
			    gfp_mask);
		front_pad = 0;
		inline_vecs = nr_iovecs;
	} else {
J
Junichi Nomura 已提交
450
		/* should not use nobvec bioset for nr_iovecs > 0 */
451 452
		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
				 nr_iovecs > 0))
J
Junichi Nomura 已提交
453
			return NULL;
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
		/*
		 * generic_make_request() converts recursion to iteration; this
		 * means if we're running beneath it, any bios we allocate and
		 * submit will not be submitted (and thus freed) until after we
		 * return.
		 *
		 * This exposes us to a potential deadlock if we allocate
		 * multiple bios from the same bio_set() while running
		 * underneath generic_make_request(). If we were to allocate
		 * multiple bios (say a stacking block driver that was splitting
		 * bios), we would deadlock if we exhausted the mempool's
		 * reserve.
		 *
		 * We solve this, and guarantee forward progress, with a rescuer
		 * workqueue per bio_set. If we go to allocate and there are
		 * bios on current->bio_list, we first try the allocation
470 471 472
		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
		 * bios we would be blocking to the rescuer workqueue before
		 * we retry with the original gfp_flags.
473 474
		 */

475 476
		if (current->bio_list &&
		    (!bio_list_empty(&current->bio_list[0]) ||
477 478
		     !bio_list_empty(&current->bio_list[1])) &&
		    bs->rescue_workqueue)
479
			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
480

481
		p = mempool_alloc(&bs->bio_pool, gfp_mask);
482 483 484
		if (!p && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
485
			p = mempool_alloc(&bs->bio_pool, gfp_mask);
486 487
		}

488 489 490 491
		front_pad = bs->front_pad;
		inline_vecs = BIO_INLINE_VECS;
	}

T
Tejun Heo 已提交
492 493
	if (unlikely(!p))
		return NULL;
L
Linus Torvalds 已提交
494

495
	bio = p + front_pad;
496
	bio_init(bio, NULL, 0);
I
Ingo Molnar 已提交
497

498
	if (nr_iovecs > inline_vecs) {
499 500
		unsigned long idx = 0;

501
		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
502 503 504
		if (!bvl && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
505
			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
506 507
		}

I
Ingo Molnar 已提交
508 509
		if (unlikely(!bvl))
			goto err_free;
510

511
		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
512 513
	} else if (nr_iovecs) {
		bvl = bio->bi_inline_vecs;
L
Linus Torvalds 已提交
514
	}
515 516

	bio->bi_pool = bs;
I
Ingo Molnar 已提交
517 518
	bio->bi_max_vecs = nr_iovecs;
	bio->bi_io_vec = bvl;
L
Linus Torvalds 已提交
519
	return bio;
I
Ingo Molnar 已提交
520 521

err_free:
522
	mempool_free(p, &bs->bio_pool);
I
Ingo Molnar 已提交
523
	return NULL;
L
Linus Torvalds 已提交
524
}
525
EXPORT_SYMBOL(bio_alloc_bioset);
L
Linus Torvalds 已提交
526

527
void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
L
Linus Torvalds 已提交
528 529
{
	unsigned long flags;
530 531
	struct bio_vec bv;
	struct bvec_iter iter;
L
Linus Torvalds 已提交
532

533
	__bio_for_each_segment(bv, bio, iter, start) {
534 535 536
		char *data = bvec_kmap_irq(&bv, &flags);
		memset(data, 0, bv.bv_len);
		flush_dcache_page(bv.bv_page);
L
Linus Torvalds 已提交
537 538 539
		bvec_kunmap_irq(data, &flags);
	}
}
540
EXPORT_SYMBOL(zero_fill_bio_iter);
L
Linus Torvalds 已提交
541

542 543 544 545 546 547 548 549 550 551
/**
 * bio_truncate - truncate the bio to small size of @new_size
 * @bio:	the bio to be truncated
 * @new_size:	new size for truncating the bio
 *
 * Description:
 *   Truncate the bio to new size of @new_size. If bio_op(bio) is
 *   REQ_OP_READ, zero the truncated part. This function should only
 *   be used for handling corner cases, such as bio eod.
 */
552 553 554 555 556 557 558 559 560 561
void bio_truncate(struct bio *bio, unsigned new_size)
{
	struct bio_vec bv;
	struct bvec_iter iter;
	unsigned int done = 0;
	bool truncated = false;

	if (new_size >= bio->bi_iter.bi_size)
		return;

562
	if (bio_op(bio) != REQ_OP_READ)
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
		goto exit;

	bio_for_each_segment(bv, bio, iter) {
		if (done + bv.bv_len > new_size) {
			unsigned offset;

			if (!truncated)
				offset = new_size - done;
			else
				offset = 0;
			zero_user(bv.bv_page, offset, bv.bv_len - offset);
			truncated = true;
		}
		done += bv.bv_len;
	}

 exit:
	/*
	 * Don't touch bvec table here and make it really immutable, since
	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
	 * in its .end_bio() callback.
	 *
	 * It is enough to truncate bio by updating .bi_size since we can make
	 * correct bvec with the updated .bi_size for drivers.
	 */
	bio->bi_iter.bi_size = new_size;
}

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
/**
 * guard_bio_eod - truncate a BIO to fit the block device
 * @bio:	bio to truncate
 *
 * This allows us to do IO even on the odd last sectors of a device, even if the
 * block size is some multiple of the physical sector size.
 *
 * We'll just truncate the bio to the size of the device, and clear the end of
 * the buffer head manually.  Truly out-of-range accesses will turn into actual
 * I/O errors, this only handles the "we need to be able to do I/O at the final
 * sector" case.
 */
void guard_bio_eod(struct bio *bio)
{
	sector_t maxsector;
	struct hd_struct *part;

	rcu_read_lock();
	part = __disk_get_part(bio->bi_disk, bio->bi_partno);
	if (part)
		maxsector = part_nr_sects_read(part);
	else
		maxsector = get_capacity(bio->bi_disk);
	rcu_read_unlock();

	if (!maxsector)
		return;

	/*
	 * If the *whole* IO is past the end of the device,
	 * let it through, and the IO layer will turn it into
	 * an EIO.
	 */
	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
		return;

	maxsector -= bio->bi_iter.bi_sector;
	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
		return;

	bio_truncate(bio, maxsector << 9);
}

L
Linus Torvalds 已提交
634 635 636 637 638 639
/**
 * bio_put - release a reference to a bio
 * @bio:   bio to release reference to
 *
 * Description:
 *   Put a reference to a &struct bio, either one you have gotten with
640
 *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
L
Linus Torvalds 已提交
641 642 643
 **/
void bio_put(struct bio *bio)
{
644
	if (!bio_flagged(bio, BIO_REFFED))
K
Kent Overstreet 已提交
645
		bio_free(bio);
646 647 648 649 650 651 652 653 654
	else {
		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));

		/*
		 * last put frees it
		 */
		if (atomic_dec_and_test(&bio->__bi_cnt))
			bio_free(bio);
	}
L
Linus Torvalds 已提交
655
}
656
EXPORT_SYMBOL(bio_put);
L
Linus Torvalds 已提交
657

K
Kent Overstreet 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670
/**
 * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
 * 	@bio: destination bio
 * 	@bio_src: bio to clone
 *
 *	Clone a &bio. Caller will own the returned bio, but not
 *	the actual data it points to. Reference count of returned
 * 	bio will be one.
 *
 * 	Caller must ensure that @bio_src is not freed before @bio.
 */
void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
{
671
	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
K
Kent Overstreet 已提交
672 673

	/*
674
	 * most users will be overriding ->bi_disk with a new target,
K
Kent Overstreet 已提交
675 676
	 * so we don't set nor calculate new physical/hw segment counts here
	 */
677
	bio->bi_disk = bio_src->bi_disk;
678
	bio->bi_partno = bio_src->bi_partno;
679
	bio_set_flag(bio, BIO_CLONED);
S
Shaohua Li 已提交
680 681
	if (bio_flagged(bio_src, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
J
Jens Axboe 已提交
682
	bio->bi_opf = bio_src->bi_opf;
683
	bio->bi_ioprio = bio_src->bi_ioprio;
684
	bio->bi_write_hint = bio_src->bi_write_hint;
K
Kent Overstreet 已提交
685 686
	bio->bi_iter = bio_src->bi_iter;
	bio->bi_io_vec = bio_src->bi_io_vec;
687

688
	bio_clone_blkg_association(bio, bio_src);
689
	blkcg_bio_issue_init(bio);
K
Kent Overstreet 已提交
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
}
EXPORT_SYMBOL(__bio_clone_fast);

/**
 *	bio_clone_fast - clone a bio that shares the original bio's biovec
 *	@bio: bio to clone
 *	@gfp_mask: allocation priority
 *	@bs: bio_set to allocate from
 *
 * 	Like __bio_clone_fast, only also allocates the returned bio
 */
struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
{
	struct bio *b;

	b = bio_alloc_bioset(gfp_mask, 0, bs);
	if (!b)
		return NULL;

	__bio_clone_fast(b, bio);

	if (bio_integrity(bio)) {
		int ret;

		ret = bio_integrity_clone(b, bio, gfp_mask);

		if (ret < 0) {
			bio_put(b);
			return NULL;
		}
	}

	return b;
}
EXPORT_SYMBOL(bio_clone_fast);

726 727 728 729 730 731
const char *bio_devname(struct bio *bio, char *buf)
{
	return disk_name(bio->bi_disk, bio->bi_partno, buf);
}
EXPORT_SYMBOL(bio_devname);

732 733
static inline bool page_is_mergeable(const struct bio_vec *bv,
		struct page *page, unsigned int len, unsigned int off,
734
		bool *same_page)
735 736 737 738 739 740 741 742 743
{
	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
		bv->bv_offset + bv->bv_len - 1;
	phys_addr_t page_addr = page_to_phys(page);

	if (vec_end_addr + 1 != page_addr + off)
		return false;
	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
		return false;
744

745 746 747
	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
	if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
		return false;
748 749 750
	return true;
}

751 752 753
static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio,
		struct page *page, unsigned len, unsigned offset,
		bool *same_page)
754
{
755
	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
756 757 758 759 760 761 762 763
	unsigned long mask = queue_segment_boundary(q);
	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;

	if ((addr1 | mask) != (addr2 | mask))
		return false;
	if (bv->bv_len + len > queue_max_segment_size(q))
		return false;
764
	return __bio_try_merge_page(bio, page, len, offset, same_page);
765 766
}

L
Linus Torvalds 已提交
767
/**
768
 *	__bio_add_pc_page	- attempt to add page to passthrough bio
K
Kent Overstreet 已提交
769 770 771 772 773
 *	@q: the target queue
 *	@bio: destination bio
 *	@page: page to add
 *	@len: vec entry length
 *	@offset: vec entry offset
774
 *	@same_page: return if the merge happen inside the same page
L
Linus Torvalds 已提交
775
 *
K
Kent Overstreet 已提交
776 777 778 779 780
 *	Attempt to add a page to the bio_vec maplist. This can fail for a
 *	number of reasons, such as the bio being full or target block device
 *	limitations. The target block device must allow bio's up to PAGE_SIZE,
 *	so it is always possible to add a single page to an empty bio.
 *
M
Ming Lei 已提交
781
 *	This should only be used by passthrough bios.
L
Linus Torvalds 已提交
782
 */
783
int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
784
		struct page *page, unsigned int len, unsigned int offset,
785
		bool *same_page)
L
Linus Torvalds 已提交
786 787 788 789 790 791 792 793 794
{
	struct bio_vec *bvec;

	/*
	 * cloned bio must not modify vec list
	 */
	if (unlikely(bio_flagged(bio, BIO_CLONED)))
		return 0;

K
Kent Overstreet 已提交
795
	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
L
Linus Torvalds 已提交
796 797
		return 0;

798
	if (bio->bi_vcnt > 0) {
799
		if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page))
800
			return len;
801 802 803 804 805

		/*
		 * If the queue doesn't support SG gaps and adding this segment
		 * would create a gap, disallow it.
		 */
806
		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
807 808
		if (bvec_gap_to_prev(q, bvec, offset))
			return 0;
809 810
	}

M
Ming Lei 已提交
811
	if (bio_full(bio, len))
L
Linus Torvalds 已提交
812 813
		return 0;

814
	if (bio->bi_vcnt >= queue_max_segments(q))
815 816
		return 0;

817 818 819 820 821
	bvec = &bio->bi_io_vec[bio->bi_vcnt];
	bvec->bv_page = page;
	bvec->bv_len = len;
	bvec->bv_offset = offset;
	bio->bi_vcnt++;
822
	bio->bi_iter.bi_size += len;
L
Linus Torvalds 已提交
823 824
	return len;
}
825 826 827 828

int bio_add_pc_page(struct request_queue *q, struct bio *bio,
		struct page *page, unsigned int len, unsigned int offset)
{
829 830
	bool same_page = false;
	return __bio_add_pc_page(q, bio, page, len, offset, &same_page);
831
}
832
EXPORT_SYMBOL(bio_add_pc_page);
833

L
Linus Torvalds 已提交
834
/**
835 836
 * __bio_try_merge_page - try appending data to an existing bvec.
 * @bio: destination bio
837
 * @page: start page to add
838
 * @len: length of the data to add
839
 * @off: offset of the data relative to @page
840
 * @same_page: return if the segment has been merged inside the same page
L
Linus Torvalds 已提交
841
 *
842 843 844 845
 * Try to add the data at @page + @off to the last bvec of @bio.  This is a
 * a useful optimisation for file systems with a block size smaller than the
 * page size.
 *
846 847
 * Warn if (@len, @off) crosses pages in case that @same_page is true.
 *
848
 * Return %true on success or %false on failure.
L
Linus Torvalds 已提交
849
 */
850
bool __bio_try_merge_page(struct bio *bio, struct page *page,
851
		unsigned int len, unsigned int off, bool *same_page)
L
Linus Torvalds 已提交
852
{
K
Kent Overstreet 已提交
853
	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
854
		return false;
855

856
	if (bio->bi_vcnt > 0) {
857
		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
858 859

		if (page_is_mergeable(bv, page, len, off, same_page)) {
860 861
			if (bio->bi_iter.bi_size > UINT_MAX - len)
				return false;
862 863 864 865
			bv->bv_len += len;
			bio->bi_iter.bi_size += len;
			return true;
		}
K
Kent Overstreet 已提交
866
	}
867 868 869
	return false;
}
EXPORT_SYMBOL_GPL(__bio_try_merge_page);
K
Kent Overstreet 已提交
870

871
/**
872
 * __bio_add_page - add page(s) to a bio in a new segment
873
 * @bio: destination bio
874 875 876
 * @page: start page to add
 * @len: length of the data to add, may cross pages
 * @off: offset of the data relative to @page, may cross pages
877 878 879 880 881 882 883 884
 *
 * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
 * that @bio has space for another bvec.
 */
void __bio_add_page(struct bio *bio, struct page *page,
		unsigned int len, unsigned int off)
{
	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
K
Kent Overstreet 已提交
885

886
	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
M
Ming Lei 已提交
887
	WARN_ON_ONCE(bio_full(bio, len));
888 889 890 891

	bv->bv_page = page;
	bv->bv_offset = off;
	bv->bv_len = len;
K
Kent Overstreet 已提交
892 893

	bio->bi_iter.bi_size += len;
894
	bio->bi_vcnt++;
895 896 897

	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
		bio_set_flag(bio, BIO_WORKINGSET);
898 899 900 901
}
EXPORT_SYMBOL_GPL(__bio_add_page);

/**
902
 *	bio_add_page	-	attempt to add page(s) to bio
903
 *	@bio: destination bio
904 905 906
 *	@page: start page to add
 *	@len: vec entry length, may cross pages
 *	@offset: vec entry offset relative to @page, may cross pages
907
 *
908
 *	Attempt to add page(s) to the bio_vec maplist. This will only fail
909 910 911 912 913
 *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
 */
int bio_add_page(struct bio *bio, struct page *page,
		 unsigned int len, unsigned int offset)
{
914 915 916
	bool same_page = false;

	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
M
Ming Lei 已提交
917
		if (bio_full(bio, len))
918 919 920
			return 0;
		__bio_add_page(bio, page, len, offset);
	}
K
Kent Overstreet 已提交
921
	return len;
L
Linus Torvalds 已提交
922
}
923
EXPORT_SYMBOL(bio_add_page);
L
Linus Torvalds 已提交
924

925
void bio_release_pages(struct bio *bio, bool mark_dirty)
926 927 928 929
{
	struct bvec_iter_all iter_all;
	struct bio_vec *bvec;

930 931 932
	if (bio_flagged(bio, BIO_NO_PAGE_REF))
		return;

933 934 935
	bio_for_each_segment_all(bvec, bio, iter_all) {
		if (mark_dirty && !PageCompound(bvec->bv_page))
			set_page_dirty_lock(bvec->bv_page);
936
		put_page(bvec->bv_page);
937
	}
938 939
}

940 941 942 943 944 945 946 947 948 949 950 951
static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
{
	const struct bio_vec *bv = iter->bvec;
	unsigned int len;
	size_t size;

	if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
		return -EINVAL;

	len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
	size = bio_add_page(bio, bv->bv_page, len,
				bv->bv_offset + iter->iov_offset);
952 953 954 955
	if (unlikely(size != len))
		return -EINVAL;
	iov_iter_advance(iter, size);
	return 0;
956 957
}

958 959
#define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))

960
/**
961
 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
962 963 964
 * @bio: bio to add pages to
 * @iter: iov iterator describing the region to be mapped
 *
965
 * Pins pages from *iter and appends them to @bio's bvec array. The
966
 * pages will have to be released using put_page() when done.
967 968
 * For multi-segment *iter, this function only adds pages from the
 * the next non-empty segment of the iov iterator.
969
 */
970
static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
971
{
972 973
	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
974 975
	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
	struct page **pages = (struct page **)bv;
976
	bool same_page = false;
977 978
	ssize_t size, left;
	unsigned len, i;
979
	size_t offset;
980 981 982 983 984 985 986 987

	/*
	 * Move page array up in the allocated memory for the bio vecs as far as
	 * possible so that we can start filling biovecs from the beginning
	 * without overwriting the temporary page array.
	*/
	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
988 989 990 991 992

	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
	if (unlikely(size <= 0))
		return size ? size : -EFAULT;

993 994
	for (left = size, i = 0; left > 0; left -= len, i++) {
		struct page *page = pages[i];
995

996
		len = min_t(size_t, PAGE_SIZE - offset, left);
997 998 999 1000 1001

		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
			if (same_page)
				put_page(page);
		} else {
M
Ming Lei 已提交
1002
			if (WARN_ON_ONCE(bio_full(bio, len)))
1003 1004 1005
                                return -EINVAL;
			__bio_add_page(bio, page, len, offset);
		}
1006
		offset = 0;
1007 1008 1009 1010 1011
	}

	iov_iter_advance(iter, size);
	return 0;
}
1012 1013

/**
1014
 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1015
 * @bio: bio to add pages to
1016 1017 1018 1019 1020
 * @iter: iov iterator describing the region to be added
 *
 * This takes either an iterator pointing to user memory, or one pointing to
 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
 * map them into the kernel. On IO completion, the caller should put those
J
Jens Axboe 已提交
1021 1022 1023 1024 1025 1026
 * pages. If we're adding kernel pages, and the caller told us it's safe to
 * do so, we just have to add the pages to the bio directly. We don't grab an
 * extra reference to those pages (the user should already have that), and we
 * don't put the page on IO completion. The caller needs to check if the bio is
 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
 * released.
1027 1028
 *
 * The function tries, but does not guarantee, to pin as many pages as
1029 1030 1031
 * fit into the bio, or are requested in *iter, whatever is smaller. If
 * MM encounters an error pinning the requested pages, it stops. Error
 * is returned only if 0 pages could be pinned.
1032 1033 1034
 */
int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
{
1035
	const bool is_bvec = iov_iter_is_bvec(iter);
1036 1037 1038 1039
	int ret;

	if (WARN_ON_ONCE(bio->bi_vcnt))
		return -EINVAL;
1040 1041

	do {
1042 1043 1044 1045
		if (is_bvec)
			ret = __bio_iov_bvec_add_pages(bio, iter);
		else
			ret = __bio_iov_iter_get_pages(bio, iter);
M
Ming Lei 已提交
1046
	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1047

1048
	if (is_bvec)
1049
		bio_set_flag(bio, BIO_NO_PAGE_REF);
1050
	return bio->bi_vcnt ? 0 : ret;
1051
}
1052

1053
static void submit_bio_wait_endio(struct bio *bio)
1054
{
1055
	complete(bio->bi_private);
1056 1057 1058 1059 1060 1061 1062 1063
}

/**
 * submit_bio_wait - submit a bio, and wait until it completes
 * @bio: The &struct bio which describes the I/O
 *
 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
 * bio_endio() on failure.
1064 1065 1066 1067
 *
 * WARNING: Unlike to how submit_bio() is usually used, this function does not
 * result in bio reference to be consumed. The caller must drop the reference
 * on his own.
1068
 */
1069
int submit_bio_wait(struct bio *bio)
1070
{
1071
	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1072
	unsigned long hang_check;
1073

1074
	bio->bi_private = &done;
1075
	bio->bi_end_io = submit_bio_wait_endio;
J
Jens Axboe 已提交
1076
	bio->bi_opf |= REQ_SYNC;
1077
	submit_bio(bio);
1078 1079 1080 1081 1082 1083 1084 1085 1086

	/* Prevent hang_check timer from firing at us during very long I/O */
	hang_check = sysctl_hung_task_timeout_secs;
	if (hang_check)
		while (!wait_for_completion_io_timeout(&done,
					hang_check * (HZ/2)))
			;
	else
		wait_for_completion_io(&done);
1087

1088
	return blk_status_to_errno(bio->bi_status);
1089 1090 1091
}
EXPORT_SYMBOL(submit_bio_wait);

K
Kent Overstreet 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
/**
 * bio_advance - increment/complete a bio by some number of bytes
 * @bio:	bio to advance
 * @bytes:	number of bytes to complete
 *
 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
 * be updated on the last bvec as well.
 *
 * @bio will then represent the remaining, uncompleted portion of the io.
 */
void bio_advance(struct bio *bio, unsigned bytes)
{
	if (bio_integrity(bio))
		bio_integrity_advance(bio, bytes);

K
Kent Overstreet 已提交
1108
	bio_advance_iter(bio, &bio->bi_iter, bytes);
K
Kent Overstreet 已提交
1109 1110 1111
}
EXPORT_SYMBOL(bio_advance);

1112 1113
void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
			struct bio *src, struct bvec_iter *src_iter)
K
Kent Overstreet 已提交
1114
{
1115
	struct bio_vec src_bv, dst_bv;
K
Kent Overstreet 已提交
1116
	void *src_p, *dst_p;
1117
	unsigned bytes;
K
Kent Overstreet 已提交
1118

1119 1120 1121
	while (src_iter->bi_size && dst_iter->bi_size) {
		src_bv = bio_iter_iovec(src, *src_iter);
		dst_bv = bio_iter_iovec(dst, *dst_iter);
1122 1123

		bytes = min(src_bv.bv_len, dst_bv.bv_len);
K
Kent Overstreet 已提交
1124

1125 1126
		src_p = kmap_atomic(src_bv.bv_page);
		dst_p = kmap_atomic(dst_bv.bv_page);
K
Kent Overstreet 已提交
1127

1128 1129
		memcpy(dst_p + dst_bv.bv_offset,
		       src_p + src_bv.bv_offset,
K
Kent Overstreet 已提交
1130 1131 1132 1133 1134
		       bytes);

		kunmap_atomic(dst_p);
		kunmap_atomic(src_p);

1135 1136
		flush_dcache_page(dst_bv.bv_page);

1137 1138
		bio_advance_iter(src, src_iter, bytes);
		bio_advance_iter(dst, dst_iter, bytes);
K
Kent Overstreet 已提交
1139 1140
	}
}
1141 1142 1143
EXPORT_SYMBOL(bio_copy_data_iter);

/**
1144 1145 1146
 * bio_copy_data - copy contents of data buffers from one bio to another
 * @src: source bio
 * @dst: destination bio
1147 1148 1149 1150 1151 1152
 *
 * Stops when it reaches the end of either @src or @dst - that is, copies
 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
 */
void bio_copy_data(struct bio *dst, struct bio *src)
{
1153 1154 1155 1156
	struct bvec_iter src_iter = src->bi_iter;
	struct bvec_iter dst_iter = dst->bi_iter;

	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1157
}
K
Kent Overstreet 已提交
1158 1159
EXPORT_SYMBOL(bio_copy_data);

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
/**
 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
 * another
 * @src: source bio list
 * @dst: destination bio list
 *
 * Stops when it reaches the end of either the @src list or @dst list - that is,
 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
 * bios).
 */
void bio_list_copy_data(struct bio *dst, struct bio *src)
{
	struct bvec_iter src_iter = src->bi_iter;
	struct bvec_iter dst_iter = dst->bi_iter;

	while (1) {
		if (!src_iter.bi_size) {
			src = src->bi_next;
			if (!src)
				break;

			src_iter = src->bi_iter;
		}

		if (!dst_iter.bi_size) {
			dst = dst->bi_next;
			if (!dst)
				break;

			dst_iter = dst->bi_iter;
		}

		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
	}
}
EXPORT_SYMBOL(bio_list_copy_data);

1197
void bio_free_pages(struct bio *bio)
1198 1199
{
	struct bio_vec *bvec;
1200
	struct bvec_iter_all iter_all;
1201

1202
	bio_for_each_segment_all(bvec, bio, iter_all)
1203 1204
		__free_page(bvec->bv_page);
}
1205
EXPORT_SYMBOL(bio_free_pages);
1206

L
Linus Torvalds 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
/*
 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
 * for performing direct-IO in BIOs.
 *
 * The problem is that we cannot run set_page_dirty() from interrupt context
 * because the required locks are not interrupt-safe.  So what we can do is to
 * mark the pages dirty _before_ performing IO.  And in interrupt context,
 * check that the pages are still dirty.   If so, fine.  If not, redirty them
 * in process context.
 *
 * We special-case compound pages here: normally this means reads into hugetlb
 * pages.  The logic in here doesn't really work right for compound pages
 * because the VM does not uniformly chase down the head page in all cases.
 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
 * handle them at all.  So we skip compound pages here at an early stage.
 *
 * Note that this code is very hard to test under normal circumstances because
 * direct-io pins the pages with get_user_pages().  This makes
 * is_page_cache_freeable return false, and the VM will not clean the pages.
1226
 * But other code (eg, flusher threads) could clean the pages if they are mapped
L
Linus Torvalds 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
 * pagecache.
 *
 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
 * deferred bio dirtying paths.
 */

/*
 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
 */
void bio_set_pages_dirty(struct bio *bio)
{
1238
	struct bio_vec *bvec;
1239
	struct bvec_iter_all iter_all;
L
Linus Torvalds 已提交
1240

1241
	bio_for_each_segment_all(bvec, bio, iter_all) {
1242 1243
		if (!PageCompound(bvec->bv_page))
			set_page_dirty_lock(bvec->bv_page);
L
Linus Torvalds 已提交
1244 1245 1246 1247 1248 1249 1250
	}
}

/*
 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
 * If they are, then fine.  If, however, some pages are clean then they must
 * have been written out during the direct-IO read.  So we take another ref on
1251
 * the BIO and re-dirty the pages in process context.
L
Linus Torvalds 已提交
1252 1253
 *
 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1254 1255
 * here on.  It will run one put_page() against each page and will run one
 * bio_put() against the BIO.
L
Linus Torvalds 已提交
1256 1257
 */

1258
static void bio_dirty_fn(struct work_struct *work);
L
Linus Torvalds 已提交
1259

1260
static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
L
Linus Torvalds 已提交
1261 1262 1263 1264 1265 1266
static DEFINE_SPINLOCK(bio_dirty_lock);
static struct bio *bio_dirty_list;

/*
 * This runs in process context
 */
1267
static void bio_dirty_fn(struct work_struct *work)
L
Linus Torvalds 已提交
1268
{
1269
	struct bio *bio, *next;
L
Linus Torvalds 已提交
1270

1271 1272
	spin_lock_irq(&bio_dirty_lock);
	next = bio_dirty_list;
L
Linus Torvalds 已提交
1273
	bio_dirty_list = NULL;
1274
	spin_unlock_irq(&bio_dirty_lock);
L
Linus Torvalds 已提交
1275

1276 1277
	while ((bio = next) != NULL) {
		next = bio->bi_private;
L
Linus Torvalds 已提交
1278

1279
		bio_release_pages(bio, true);
L
Linus Torvalds 已提交
1280 1281 1282 1283 1284 1285
		bio_put(bio);
	}
}

void bio_check_pages_dirty(struct bio *bio)
{
1286
	struct bio_vec *bvec;
1287
	unsigned long flags;
1288
	struct bvec_iter_all iter_all;
L
Linus Torvalds 已提交
1289

1290
	bio_for_each_segment_all(bvec, bio, iter_all) {
1291 1292
		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
			goto defer;
L
Linus Torvalds 已提交
1293 1294
	}

1295
	bio_release_pages(bio, false);
1296 1297 1298 1299 1300 1301 1302 1303
	bio_put(bio);
	return;
defer:
	spin_lock_irqsave(&bio_dirty_lock, flags);
	bio->bi_private = bio_dirty_list;
	bio_dirty_list = bio;
	spin_unlock_irqrestore(&bio_dirty_lock, flags);
	schedule_work(&bio_dirty_work);
L
Linus Torvalds 已提交
1304 1305
}

1306
void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
1307 1308 1309 1310 1311 1312
{
	unsigned long stamp;
again:
	stamp = READ_ONCE(part->stamp);
	if (unlikely(stamp != now)) {
		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1313
			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1314 1315 1316 1317 1318 1319 1320
		}
	}
	if (part->partno) {
		part = &part_to_disk(part)->part0;
		goto again;
	}
}
L
Linus Torvalds 已提交
1321

1322
void generic_start_io_acct(struct request_queue *q, int op,
1323
			   unsigned long sectors, struct hd_struct *part)
1324
{
1325
	const int sgrp = op_stat_group(op);
1326

1327 1328
	part_stat_lock();

1329
	update_io_ticks(part, jiffies, false);
1330 1331
	part_stat_inc(part, ios[sgrp]);
	part_stat_add(part, sectors[sgrp], sectors);
1332
	part_inc_in_flight(q, part, op_is_write(op));
1333 1334 1335 1336 1337

	part_stat_unlock();
}
EXPORT_SYMBOL(generic_start_io_acct);

1338
void generic_end_io_acct(struct request_queue *q, int req_op,
1339
			 struct hd_struct *part, unsigned long start_time)
1340
{
1341 1342
	unsigned long now = jiffies;
	unsigned long duration = now - start_time;
1343
	const int sgrp = op_stat_group(req_op);
1344

1345 1346
	part_stat_lock();

1347
	update_io_ticks(part, now, true);
1348
	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1349
	part_dec_in_flight(q, part, op_is_write(req_op));
1350 1351 1352 1353 1354

	part_stat_unlock();
}
EXPORT_SYMBOL(generic_end_io_acct);

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
static inline bool bio_remaining_done(struct bio *bio)
{
	/*
	 * If we're not chaining, then ->__bi_remaining is always 1 and
	 * we always end io on the first invocation.
	 */
	if (!bio_flagged(bio, BIO_CHAIN))
		return true;

	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);

1366
	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1367
		bio_clear_flag(bio, BIO_CHAIN);
1368
		return true;
1369
	}
1370 1371 1372 1373

	return false;
}

L
Linus Torvalds 已提交
1374 1375 1376 1377 1378
/**
 * bio_endio - end I/O on a bio
 * @bio:	bio
 *
 * Description:
1379 1380 1381
 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
 *   bio unless they own it and thus know that it has an end_io function.
N
NeilBrown 已提交
1382 1383 1384 1385 1386
 *
 *   bio_endio() can be called several times on a bio that has been chained
 *   using bio_chain().  The ->bi_end_io() function will only be called the
 *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
 *   generated if BIO_TRACE_COMPLETION is set.
L
Linus Torvalds 已提交
1387
 **/
1388
void bio_endio(struct bio *bio)
L
Linus Torvalds 已提交
1389
{
C
Christoph Hellwig 已提交
1390
again:
1391
	if (!bio_remaining_done(bio))
C
Christoph Hellwig 已提交
1392
		return;
1393 1394
	if (!bio_integrity_endio(bio))
		return;
L
Linus Torvalds 已提交
1395

J
Josef Bacik 已提交
1396 1397 1398
	if (bio->bi_disk)
		rq_qos_done_bio(bio->bi_disk->queue, bio);

C
Christoph Hellwig 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	/*
	 * Need to have a real endio function for chained bios, otherwise
	 * various corner cases will break (like stacking block devices that
	 * save/restore bi_end_io) - however, we want to avoid unbounded
	 * recursion and blowing the stack. Tail call optimization would
	 * handle this, but compiling with frame pointers also disables
	 * gcc's sibling call optimization.
	 */
	if (bio->bi_end_io == bio_chain_endio) {
		bio = __bio_chain_endio(bio);
		goto again;
K
Kent Overstreet 已提交
1410
	}
C
Christoph Hellwig 已提交
1411

1412 1413
	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
		trace_block_bio_complete(bio->bi_disk->queue, bio,
1414
					 blk_status_to_errno(bio->bi_status));
N
NeilBrown 已提交
1415 1416 1417
		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
	}

1418
	blk_throtl_bio_endio(bio);
S
Shaohua Li 已提交
1419 1420
	/* release cgroup info */
	bio_uninit(bio);
C
Christoph Hellwig 已提交
1421 1422
	if (bio->bi_end_io)
		bio->bi_end_io(bio);
L
Linus Torvalds 已提交
1423
}
1424
EXPORT_SYMBOL(bio_endio);
L
Linus Torvalds 已提交
1425

K
Kent Overstreet 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
/**
 * bio_split - split a bio
 * @bio:	bio to split
 * @sectors:	number of sectors to split from the front of @bio
 * @gfp:	gfp mask
 * @bs:		bio set to allocate from
 *
 * Allocates and returns a new bio which represents @sectors from the start of
 * @bio, and updates @bio to represent the remaining sectors.
 *
1436
 * Unless this is a discard request the newly allocated bio will point
1437 1438
 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
 * neither @bio nor @bs are freed before the split bio.
K
Kent Overstreet 已提交
1439 1440 1441 1442
 */
struct bio *bio_split(struct bio *bio, int sectors,
		      gfp_t gfp, struct bio_set *bs)
{
1443
	struct bio *split;
K
Kent Overstreet 已提交
1444 1445 1446 1447

	BUG_ON(sectors <= 0);
	BUG_ON(sectors >= bio_sectors(bio));

1448
	split = bio_clone_fast(bio, gfp, bs);
K
Kent Overstreet 已提交
1449 1450 1451 1452 1453 1454
	if (!split)
		return NULL;

	split->bi_iter.bi_size = sectors << 9;

	if (bio_integrity(split))
1455
		bio_integrity_trim(split);
K
Kent Overstreet 已提交
1456 1457 1458

	bio_advance(bio, split->bi_iter.bi_size);

N
NeilBrown 已提交
1459
	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1460
		bio_set_flag(split, BIO_TRACE_COMPLETION);
N
NeilBrown 已提交
1461

K
Kent Overstreet 已提交
1462 1463 1464 1465
	return split;
}
EXPORT_SYMBOL(bio_split);

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
/**
 * bio_trim - trim a bio
 * @bio:	bio to trim
 * @offset:	number of sectors to trim from the front of @bio
 * @size:	size we want to trim @bio to, in sectors
 */
void bio_trim(struct bio *bio, int offset, int size)
{
	/* 'bio' is a cloned bio which we need to trim to match
	 * the given offset and size.
	 */

	size <<= 9;
1479
	if (offset == 0 && size == bio->bi_iter.bi_size)
1480 1481 1482
		return;

	bio_advance(bio, offset << 9);
1483
	bio->bi_iter.bi_size = size;
1484 1485

	if (bio_integrity(bio))
1486
		bio_integrity_trim(bio);
1487

1488 1489 1490
}
EXPORT_SYMBOL_GPL(bio_trim);

L
Linus Torvalds 已提交
1491 1492 1493 1494
/*
 * create memory pools for biovec's in a bio_set.
 * use the global biovec slabs created for general use.
 */
1495
int biovec_init_pool(mempool_t *pool, int pool_entries)
L
Linus Torvalds 已提交
1496
{
1497
	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
L
Linus Torvalds 已提交
1498

1499
	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
L
Linus Torvalds 已提交
1500 1501
}

1502 1503 1504 1505 1506 1507 1508
/*
 * bioset_exit - exit a bioset initialized with bioset_init()
 *
 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
 * kzalloc()).
 */
void bioset_exit(struct bio_set *bs)
L
Linus Torvalds 已提交
1509
{
1510 1511
	if (bs->rescue_workqueue)
		destroy_workqueue(bs->rescue_workqueue);
1512
	bs->rescue_workqueue = NULL;
1513

1514 1515
	mempool_exit(&bs->bio_pool);
	mempool_exit(&bs->bvec_pool);
1516

1517
	bioset_integrity_free(bs);
1518 1519 1520 1521 1522
	if (bs->bio_slab)
		bio_put_slab(bs);
	bs->bio_slab = NULL;
}
EXPORT_SYMBOL(bioset_exit);
L
Linus Torvalds 已提交
1523

1524 1525
/**
 * bioset_init - Initialize a bio_set
K
Kent Overstreet 已提交
1526
 * @bs:		pool to initialize
1527 1528 1529 1530 1531
 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
 * @front_pad:	Number of bytes to allocate in front of the returned bio
 * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
 *              and %BIOSET_NEED_RESCUER
 *
K
Kent Overstreet 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
 * Description:
 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
 *    to ask for a number of bytes to be allocated in front of the bio.
 *    Front pad allocation is useful for embedding the bio inside
 *    another structure, to avoid allocating extra data to go with the bio.
 *    Note that the bio must be embedded at the END of that structure always,
 *    or things will break badly.
 *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
 *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
 *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
 *    dispatch queued requests when the mempool runs out of space.
 *
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
 */
int bioset_init(struct bio_set *bs,
		unsigned int pool_size,
		unsigned int front_pad,
		int flags)
{
	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);

	bs->front_pad = front_pad;

	spin_lock_init(&bs->rescue_lock);
	bio_list_init(&bs->rescue_list);
	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);

	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
	if (!bs->bio_slab)
		return -ENOMEM;

	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
		goto bad;

	if ((flags & BIOSET_NEED_BVECS) &&
	    biovec_init_pool(&bs->bvec_pool, pool_size))
		goto bad;

	if (!(flags & BIOSET_NEED_RESCUER))
		return 0;

	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
	if (!bs->rescue_workqueue)
		goto bad;

	return 0;
bad:
	bioset_exit(bs);
	return -ENOMEM;
}
EXPORT_SYMBOL(bioset_init);

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
/*
 * Initialize and setup a new bio_set, based on the settings from
 * another bio_set.
 */
int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
{
	int flags;

	flags = 0;
	if (src->bvec_pool.min_nr)
		flags |= BIOSET_NEED_BVECS;
	if (src->rescue_workqueue)
		flags |= BIOSET_NEED_RESCUER;

	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
}
EXPORT_SYMBOL(bioset_init_from_src);

1601
#ifdef CONFIG_BLK_CGROUP
1602

1603
/**
1604
 * bio_disassociate_blkg - puts back the blkg reference if associated
1605 1606
 * @bio: target bio
 *
1607
 * Helper to disassociate the blkg from @bio if a blkg is associated.
1608
 */
1609
void bio_disassociate_blkg(struct bio *bio)
1610
{
1611 1612 1613 1614
	if (bio->bi_blkg) {
		blkg_put(bio->bi_blkg);
		bio->bi_blkg = NULL;
	}
1615
}
1616
EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
1617

1618
/**
1619
 * __bio_associate_blkg - associate a bio with the a blkg
1620
 * @bio: target bio
D
Dennis Zhou 已提交
1621 1622
 * @blkg: the blkg to associate
 *
1623 1624 1625 1626 1627
 * This tries to associate @bio with the specified @blkg.  Association failure
 * is handled by walking up the blkg tree.  Therefore, the blkg associated can
 * be anything between @blkg and the root_blkg.  This situation only happens
 * when a cgroup is dying and then the remaining bios will spill to the closest
 * alive blkg.
1628
 *
1629 1630
 * A reference will be taken on the @blkg and will be released when @bio is
 * freed.
1631
 */
1632
static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
1633
{
1634 1635
	bio_disassociate_blkg(bio);

1636
	bio->bi_blkg = blkg_tryget_closest(blkg);
1637 1638
}

1639
/**
1640
 * bio_associate_blkg_from_css - associate a bio with a specified css
1641
 * @bio: target bio
1642
 * @css: target css
1643
 *
1644
 * Associate @bio with the blkg found by combining the css's blkg and the
1645 1646
 * request_queue of the @bio.  This falls back to the queue's root_blkg if
 * the association fails with the css.
1647
 */
1648 1649
void bio_associate_blkg_from_css(struct bio *bio,
				 struct cgroup_subsys_state *css)
1650
{
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	struct request_queue *q = bio->bi_disk->queue;
	struct blkcg_gq *blkg;

	rcu_read_lock();

	if (!css || !css->parent)
		blkg = q->root_blkg;
	else
		blkg = blkg_lookup_create(css_to_blkcg(css), q);

	__bio_associate_blkg(bio, blkg);

	rcu_read_unlock();
1664
}
1665
EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1666

1667
#ifdef CONFIG_MEMCG
1668
/**
1669
 * bio_associate_blkg_from_page - associate a bio with the page's blkg
1670
 * @bio: target bio
1671 1672 1673
 * @page: the page to lookup the blkcg from
 *
 * Associate @bio with the blkg from @page's owning memcg and the respective
1674 1675
 * request_queue.  If cgroup_e_css returns %NULL, fall back to the queue's
 * root_blkg.
1676
 */
1677
void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
1678
{
1679 1680 1681 1682 1683
	struct cgroup_subsys_state *css;

	if (!page->mem_cgroup)
		return;

1684 1685 1686 1687 1688 1689
	rcu_read_lock();

	css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
	bio_associate_blkg_from_css(bio, css);

	rcu_read_unlock();
1690 1691 1692
}
#endif /* CONFIG_MEMCG */

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
/**
 * bio_associate_blkg - associate a bio with a blkg
 * @bio: target bio
 *
 * Associate @bio with the blkg found from the bio's css and request_queue.
 * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
 * already associated, the css is reused and association redone as the
 * request_queue may have changed.
 */
void bio_associate_blkg(struct bio *bio)
{
1704
	struct cgroup_subsys_state *css;
1705 1706 1707

	rcu_read_lock();

1708
	if (bio->bi_blkg)
1709
		css = &bio_blkcg(bio)->css;
1710
	else
1711
		css = blkcg_css();
1712

1713
	bio_associate_blkg_from_css(bio, css);
1714 1715

	rcu_read_unlock();
1716
}
1717
EXPORT_SYMBOL_GPL(bio_associate_blkg);
1718

1719
/**
1720
 * bio_clone_blkg_association - clone blkg association from src to dst bio
1721 1722 1723
 * @dst: destination bio
 * @src: source bio
 */
1724
void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1725
{
1726 1727
	rcu_read_lock();

1728
	if (src->bi_blkg)
1729
		__bio_associate_blkg(dst, src->bi_blkg);
1730 1731

	rcu_read_unlock();
1732
}
1733
EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1734 1735
#endif /* CONFIG_BLK_CGROUP */

L
Linus Torvalds 已提交
1736 1737 1738 1739
static void __init biovec_init_slabs(void)
{
	int i;

1740
	for (i = 0; i < BVEC_POOL_NR; i++) {
L
Linus Torvalds 已提交
1741 1742 1743
		int size;
		struct biovec_slab *bvs = bvec_slabs + i;

1744 1745 1746 1747 1748
		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
			bvs->slab = NULL;
			continue;
		}

L
Linus Torvalds 已提交
1749 1750
		size = bvs->nr_vecs * sizeof(struct bio_vec);
		bvs->slab = kmem_cache_create(bvs->name, size, 0,
1751
                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
L
Linus Torvalds 已提交
1752 1753 1754 1755 1756
	}
}

static int __init init_bio(void)
{
1757 1758
	bio_slab_max = 2;
	bio_slab_nr = 0;
K
Kees Cook 已提交
1759 1760
	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
			    GFP_KERNEL);
1761 1762 1763

	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);

1764 1765
	if (!bio_slabs)
		panic("bio: can't allocate bios\n");
L
Linus Torvalds 已提交
1766

1767
	bio_integrity_init();
L
Linus Torvalds 已提交
1768 1769
	biovec_init_slabs();

1770
	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
L
Linus Torvalds 已提交
1771 1772
		panic("bio: can't allocate bios\n");

1773
	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1774 1775
		panic("bio: can't create integrity pool\n");

L
Linus Torvalds 已提交
1776 1777 1778
	return 0;
}
subsys_initcall(init_bio);