intel_bw.c 30.2 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2019 Intel Corporation
 */

#include <drm/drm_atomic_state_helper.h>

8
#include "i915_reg.h"
9
#include "i915_utils.h"
10
#include "intel_atomic.h"
11
#include "intel_bw.h"
12
#include "intel_cdclk.h"
13
#include "intel_display_types.h"
14
#include "intel_mchbar_regs.h"
15
#include "intel_pcode.h"
16
#include "intel_pm.h"
17 18 19 20 21 22

/* Parameters for Qclk Geyserville (QGV) */
struct intel_qgv_point {
	u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd;
};

23 24 25 26
struct intel_psf_gv_point {
	u8 clk; /* clock in multiples of 16.6666 MHz */
};

27
struct intel_qgv_info {
28
	struct intel_qgv_point points[I915_NUM_QGV_POINTS];
29
	struct intel_psf_gv_point psf_points[I915_NUM_PSF_GV_POINTS];
30
	u8 num_points;
31
	u8 num_psf_points;
32
	u8 t_bl;
33 34 35
	u8 max_numchannels;
	u8 channel_width;
	u8 deinterleave;
36 37
};

38 39 40 41 42 43 44 45 46 47 48 49 50
static int dg1_mchbar_read_qgv_point_info(struct drm_i915_private *dev_priv,
					  struct intel_qgv_point *sp,
					  int point)
{
	u32 dclk_ratio, dclk_reference;
	u32 val;

	val = intel_uncore_read(&dev_priv->uncore, SA_PERF_STATUS_0_0_0_MCHBAR_PC);
	dclk_ratio = REG_FIELD_GET(DG1_QCLK_RATIO_MASK, val);
	if (val & DG1_QCLK_REFERENCE)
		dclk_reference = 6; /* 6 * 16.666 MHz = 100 MHz */
	else
		dclk_reference = 8; /* 8 * 16.666 MHz = 133 MHz */
51
	sp->dclk = DIV_ROUND_UP((16667 * dclk_ratio * dclk_reference) + 500, 1000);
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

	val = intel_uncore_read(&dev_priv->uncore, SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
	if (val & DG1_GEAR_TYPE)
		sp->dclk *= 2;

	if (sp->dclk == 0)
		return -EINVAL;

	val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR);
	sp->t_rp = REG_FIELD_GET(DG1_DRAM_T_RP_MASK, val);
	sp->t_rdpre = REG_FIELD_GET(DG1_DRAM_T_RDPRE_MASK, val);

	val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR_HIGH);
	sp->t_rcd = REG_FIELD_GET(DG1_DRAM_T_RCD_MASK, val);
	sp->t_ras = REG_FIELD_GET(DG1_DRAM_T_RAS_MASK, val);

	sp->t_rc = sp->t_rp + sp->t_ras;

	return 0;
}

73 74 75 76
static int icl_pcode_read_qgv_point_info(struct drm_i915_private *dev_priv,
					 struct intel_qgv_point *sp,
					 int point)
{
77
	u32 val = 0, val2 = 0;
78
	u16 dclk;
79 80
	int ret;

81
	ret = snb_pcode_read(&dev_priv->uncore, ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
82 83
			     ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point),
			     &val, &val2);
84 85 86
	if (ret)
		return ret;

87 88
	dclk = val & 0xffff;
	sp->dclk = DIV_ROUND_UP((16667 * dclk) + (DISPLAY_VER(dev_priv) > 11 ? 500 : 0), 1000);
89 90 91 92 93 94 95 96 97 98 99
	sp->t_rp = (val & 0xff0000) >> 16;
	sp->t_rcd = (val & 0xff000000) >> 24;

	sp->t_rdpre = val2 & 0xff;
	sp->t_ras = (val2 & 0xff00) >> 8;

	sp->t_rc = sp->t_rp + sp->t_ras;

	return 0;
}

100 101 102 103 104 105 106
static int adls_pcode_read_psf_gv_point_info(struct drm_i915_private *dev_priv,
					    struct intel_psf_gv_point *points)
{
	u32 val = 0;
	int ret;
	int i;

107
	ret = snb_pcode_read(&dev_priv->uncore, ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
108
			     ADL_PCODE_MEM_SS_READ_PSF_GV_INFO, &val, NULL);
109 110 111 112 113 114 115 116 117 118 119
	if (ret)
		return ret;

	for (i = 0; i < I915_NUM_PSF_GV_POINTS; i++) {
		points[i].clk = val & 0xff;
		val >>= 8;
	}

	return 0;
}

120 121 122 123 124 125
int icl_pcode_restrict_qgv_points(struct drm_i915_private *dev_priv,
				  u32 points_mask)
{
	int ret;

	/* bspec says to keep retrying for at least 1 ms */
126
	ret = skl_pcode_request(&dev_priv->uncore, ICL_PCODE_SAGV_DE_MEM_SS_CONFIG,
127
				points_mask,
128 129
				ICL_PCODE_REP_QGV_MASK | ADLS_PCODE_REP_PSF_MASK,
				ICL_PCODE_REP_QGV_SAFE | ADLS_PCODE_REP_PSF_SAFE,
130 131 132
				1);

	if (ret < 0) {
133
		drm_err(&dev_priv->drm, "Failed to disable qgv points (%d) points: 0x%x\n", ret, points_mask);
134 135 136 137 138 139
		return ret;
	}

	return 0;
}

140
static int icl_get_qgv_points(struct drm_i915_private *dev_priv,
141 142
			      struct intel_qgv_info *qi,
			      bool is_y_tile)
143
{
144
	const struct dram_info *dram_info = &dev_priv->dram_info;
145 146
	int i, ret;

147
	qi->num_points = dram_info->num_qgv_points;
148
	qi->num_psf_points = dram_info->num_psf_gv_points;
149

150
	if (DISPLAY_VER(dev_priv) >= 12)
151 152
		switch (dram_info->type) {
		case INTEL_DRAM_DDR4:
153 154 155 156
			qi->t_bl = is_y_tile ? 8 : 4;
			qi->max_numchannels = 2;
			qi->channel_width = 64;
			qi->deinterleave = is_y_tile ? 1 : 2;
157 158
			break;
		case INTEL_DRAM_DDR5:
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
			qi->t_bl = is_y_tile ? 16 : 8;
			qi->max_numchannels = 4;
			qi->channel_width = 32;
			qi->deinterleave = is_y_tile ? 1 : 2;
			break;
		case INTEL_DRAM_LPDDR4:
			if (IS_ROCKETLAKE(dev_priv)) {
				qi->t_bl = 8;
				qi->max_numchannels = 4;
				qi->channel_width = 32;
				qi->deinterleave = 2;
				break;
			}
			fallthrough;
		case INTEL_DRAM_LPDDR5:
			qi->t_bl = 16;
			qi->max_numchannels = 8;
			qi->channel_width = 16;
			qi->deinterleave = is_y_tile ? 2 : 4;
178 179 180
			break;
		default:
			qi->t_bl = 16;
181
			qi->max_numchannels = 1;
182 183
			break;
		}
184
	else if (DISPLAY_VER(dev_priv) == 11) {
185
		qi->t_bl = dev_priv->dram_info.type == INTEL_DRAM_DDR4 ? 4 : 8;
186 187
		qi->max_numchannels = 1;
	}
188

189 190
	if (drm_WARN_ON(&dev_priv->drm,
			qi->num_points > ARRAY_SIZE(qi->points)))
191 192 193 194 195
		qi->num_points = ARRAY_SIZE(qi->points);

	for (i = 0; i < qi->num_points; i++) {
		struct intel_qgv_point *sp = &qi->points[i];

196 197 198 199 200
		if (IS_DG1(dev_priv))
			ret = dg1_mchbar_read_qgv_point_info(dev_priv, sp, i);
		else
			ret = icl_pcode_read_qgv_point_info(dev_priv, sp, i);

201 202 203
		if (ret)
			return ret;

204 205 206 207
		drm_dbg_kms(&dev_priv->drm,
			    "QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n",
			    i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras,
			    sp->t_rcd, sp->t_rc);
208 209
	}

210 211 212 213 214 215 216 217 218 219 220 221 222
	if (qi->num_psf_points > 0) {
		ret = adls_pcode_read_psf_gv_point_info(dev_priv, qi->psf_points);
		if (ret) {
			drm_err(&dev_priv->drm, "Failed to read PSF point data; PSF points will not be considered in bandwidth calculations.\n");
			qi->num_psf_points = 0;
		}

		for (i = 0; i < qi->num_psf_points; i++)
			drm_dbg_kms(&dev_priv->drm,
				    "PSF GV %d: CLK=%d \n",
				    i, qi->psf_points[i].clk);
	}

223 224 225
	return 0;
}

226 227 228 229 230 231 232 233 234 235
static int adl_calc_psf_bw(int clk)
{
	/*
	 * clk is multiples of 16.666MHz (100/6)
	 * According to BSpec PSF GV bandwidth is
	 * calculated as BW = 64 * clk * 16.666Mhz
	 */
	return DIV_ROUND_CLOSEST(64 * clk * 100, 6);
}

236 237 238 239 240 241 242 243 244 245 246 247
static int icl_sagv_max_dclk(const struct intel_qgv_info *qi)
{
	u16 dclk = 0;
	int i;

	for (i = 0; i < qi->num_points; i++)
		dclk = max(dclk, qi->points[i].dclk);

	return dclk;
}

struct intel_sa_info {
248
	u16 displayrtids;
249
	u8 deburst, deprogbwlimit, derating;
250 251 252 253 254 255
};

static const struct intel_sa_info icl_sa_info = {
	.deburst = 8,
	.deprogbwlimit = 25, /* GB/s */
	.displayrtids = 128,
256
	.derating = 10,
257 258
};

259 260 261 262
static const struct intel_sa_info tgl_sa_info = {
	.deburst = 16,
	.deprogbwlimit = 34, /* GB/s */
	.displayrtids = 256,
263
	.derating = 10,
264 265
};

266
static const struct intel_sa_info rkl_sa_info = {
267
	.deburst = 8,
268 269
	.deprogbwlimit = 20, /* GB/s */
	.displayrtids = 128,
270
	.derating = 10,
271 272
};

273 274 275 276
static const struct intel_sa_info adls_sa_info = {
	.deburst = 16,
	.deprogbwlimit = 38, /* GB/s */
	.displayrtids = 256,
277 278 279 280 281 282 283 284
	.derating = 10,
};

static const struct intel_sa_info adlp_sa_info = {
	.deburst = 16,
	.deprogbwlimit = 38, /* GB/s */
	.displayrtids = 256,
	.derating = 20,
285 286
};

287
static int icl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
288 289 290
{
	struct intel_qgv_info qi = {};
	bool is_y_tile = true; /* assume y tile may be used */
291
	int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels);
292
	int ipqdepth, ipqdepthpch = 16;
293 294
	int dclk_max;
	int maxdebw;
295
	int num_groups = ARRAY_SIZE(dev_priv->max_bw);
296 297
	int i, ret;

298
	ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile);
299
	if (ret) {
300 301
		drm_dbg_kms(&dev_priv->drm,
			    "Failed to get memory subsystem information, ignoring bandwidth limits");
302 303 304 305
		return ret;
	}

	dclk_max = icl_sagv_max_dclk(&qi);
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
	maxdebw = min(sa->deprogbwlimit * 1000, dclk_max * 16 * 6 / 10);
	ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
	qi.deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);

	for (i = 0; i < num_groups; i++) {
		struct intel_bw_info *bi = &dev_priv->max_bw[i];
		int clpchgroup;
		int j;

		clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i;
		bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1;

		bi->num_qgv_points = qi.num_points;
		bi->num_psf_gv_points = qi.num_psf_points;

		for (j = 0; j < qi.num_points; j++) {
			const struct intel_qgv_point *sp = &qi.points[j];
			int ct, bw;

			/*
			 * Max row cycle time
			 *
			 * FIXME what is the logic behind the
			 * assumed burst length?
			 */
			ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
				   (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
			bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct);
334

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
			bi->deratedbw[j] = min(maxdebw,
					       bw * (100 - sa->derating) / 100);

			drm_dbg_kms(&dev_priv->drm,
				    "BW%d / QGV %d: num_planes=%d deratedbw=%u\n",
				    i, j, bi->num_planes, bi->deratedbw[j]);
		}
	}
	/*
	 * In case if SAGV is disabled in BIOS, we always get 1
	 * SAGV point, but we can't send PCode commands to restrict it
	 * as it will fail and pointless anyway.
	 */
	if (qi.num_points == 1)
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
	else
		dev_priv->sagv_status = I915_SAGV_ENABLED;

	return 0;
}

static int tgl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
{
	struct intel_qgv_info qi = {};
	const struct dram_info *dram_info = &dev_priv->dram_info;
	bool is_y_tile = true; /* assume y tile may be used */
	int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels);
	int ipqdepth, ipqdepthpch = 16;
	int dclk_max;
	int maxdebw, peakbw;
	int clperchgroup;
	int num_groups = ARRAY_SIZE(dev_priv->max_bw);
	int i, ret;

	ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile);
	if (ret) {
		drm_dbg_kms(&dev_priv->drm,
			    "Failed to get memory subsystem information, ignoring bandwidth limits");
		return ret;
	}

	if (dram_info->type == INTEL_DRAM_LPDDR4 || dram_info->type == INTEL_DRAM_LPDDR5)
		num_channels *= 2;

	qi.deinterleave = qi.deinterleave ? : DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);

	if (num_channels < qi.max_numchannels && DISPLAY_VER(dev_priv) >= 12)
		qi.deinterleave = max(DIV_ROUND_UP(qi.deinterleave, 2), 1);

	if (DISPLAY_VER(dev_priv) > 11 && num_channels > qi.max_numchannels)
		drm_warn(&dev_priv->drm, "Number of channels exceeds max number of channels.");
	if (qi.max_numchannels != 0)
		num_channels = min_t(u8, num_channels, qi.max_numchannels);

	dclk_max = icl_sagv_max_dclk(&qi);

	peakbw = num_channels * DIV_ROUND_UP(qi.channel_width, 8) * dclk_max;
	maxdebw = min(sa->deprogbwlimit * 1000, peakbw * 6 / 10); /* 60% */
393 394

	ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
395 396 397 398 399
	/*
	 * clperchgroup = 4kpagespermempage * clperchperblock,
	 * clperchperblock = 8 / num_channels * interleave
	 */
	clperchgroup = 4 * DIV_ROUND_UP(8, num_channels) * qi.deinterleave;
400

401
	for (i = 0; i < num_groups; i++) {
402
		struct intel_bw_info *bi = &dev_priv->max_bw[i];
403
		struct intel_bw_info *bi_next;
404 405 406
		int clpchgroup;
		int j;

407 408 409 410 411 412 413 414 415
		if (i < num_groups - 1)
			bi_next = &dev_priv->max_bw[i + 1];

		clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i;

		if (i < num_groups - 1 && clpchgroup < clperchgroup)
			bi_next->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1;
		else
			bi_next->num_planes = 0;
416

417
		bi->num_qgv_points = qi.num_points;
418
		bi->num_psf_gv_points = qi.num_psf_points;
419

420 421 422 423 424 425 426 427 428 429 430 431
		for (j = 0; j < qi.num_points; j++) {
			const struct intel_qgv_point *sp = &qi.points[j];
			int ct, bw;

			/*
			 * Max row cycle time
			 *
			 * FIXME what is the logic behind the
			 * assumed burst length?
			 */
			ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
				   (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
432
			bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct);
433 434

			bi->deratedbw[j] = min(maxdebw,
435
					       bw * (100 - sa->derating) / 100);
436

437 438 439
			drm_dbg_kms(&dev_priv->drm,
				    "BW%d / QGV %d: num_planes=%d deratedbw=%u\n",
				    i, j, bi->num_planes, bi->deratedbw[j]);
440 441
		}

442 443 444 445 446 447 448 449 450
		for (j = 0; j < qi.num_psf_points; j++) {
			const struct intel_psf_gv_point *sp = &qi.psf_points[j];

			bi->psf_bw[j] = adl_calc_psf_bw(sp->clk);

			drm_dbg_kms(&dev_priv->drm,
				    "BW%d / PSF GV %d: num_planes=%d bw=%u\n",
				    i, j, bi->num_planes, bi->psf_bw[j]);
		}
451 452
	}

453 454 455 456 457 458 459 460 461 462
	/*
	 * In case if SAGV is disabled in BIOS, we always get 1
	 * SAGV point, but we can't send PCode commands to restrict it
	 * as it will fail and pointless anyway.
	 */
	if (qi.num_points == 1)
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
	else
		dev_priv->sagv_status = I915_SAGV_ENABLED;

463 464 465
	return 0;
}

466 467
static void dg2_get_bw_info(struct drm_i915_private *i915)
{
468 469 470
	unsigned int deratedbw = IS_DG2_G11(i915) ? 38000 : 50000;
	int num_groups = ARRAY_SIZE(i915->max_bw);
	int i;
471 472 473

	/*
	 * DG2 doesn't have SAGV or QGV points, just a constant max bandwidth
474 475 476 477
	 * that doesn't depend on the number of planes enabled. So fill all the
	 * plane group with constant bw information for uniformity with other
	 * platforms. DG2-G10 platforms have a constant 50 GB/s bandwidth,
	 * whereas DG2-G11 platforms have 38 GB/s.
478
	 */
479 480 481 482 483 484 485 486
	for (i = 0; i < num_groups; i++) {
		struct intel_bw_info *bi = &i915->max_bw[i];

		bi->num_planes = 1;
		/* Need only one dummy QGV point per group */
		bi->num_qgv_points = 1;
		bi->deratedbw[0] = deratedbw;
	}
487 488 489 490

	i915->sagv_status = I915_SAGV_NOT_CONTROLLED;
}

491 492 493 494 495
static unsigned int icl_max_bw(struct drm_i915_private *dev_priv,
			       int num_planes, int qgv_point)
{
	int i;

496 497 498 499 500
	/*
	 * Let's return max bw for 0 planes
	 */
	num_planes = max(1, num_planes);

501 502 503 504
	for (i = 0; i < ARRAY_SIZE(dev_priv->max_bw); i++) {
		const struct intel_bw_info *bi =
			&dev_priv->max_bw[i];

505 506 507 508 509 510 511
		/*
		 * Pcode will not expose all QGV points when
		 * SAGV is forced to off/min/med/max.
		 */
		if (qgv_point >= bi->num_qgv_points)
			return UINT_MAX;

512 513 514 515 516 517 518
		if (num_planes >= bi->num_planes)
			return bi->deratedbw[qgv_point];
	}

	return 0;
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
static unsigned int tgl_max_bw(struct drm_i915_private *dev_priv,
			       int num_planes, int qgv_point)
{
	int i;

	/*
	 * Let's return max bw for 0 planes
	 */
	num_planes = max(1, num_planes);

	for (i = ARRAY_SIZE(dev_priv->max_bw) - 1; i >= 0; i--) {
		const struct intel_bw_info *bi =
			&dev_priv->max_bw[i];

		/*
		 * Pcode will not expose all QGV points when
		 * SAGV is forced to off/min/med/max.
		 */
		if (qgv_point >= bi->num_qgv_points)
			return UINT_MAX;

		if (num_planes <= bi->num_planes)
			return bi->deratedbw[qgv_point];
	}

	return dev_priv->max_bw[0].deratedbw[qgv_point];
}

547 548 549 550 551 552 553 554 555
static unsigned int adl_psf_bw(struct drm_i915_private *dev_priv,
			       int psf_gv_point)
{
	const struct intel_bw_info *bi =
			&dev_priv->max_bw[0];

	return bi->psf_bw[psf_gv_point];
}

556 557
void intel_bw_init_hw(struct drm_i915_private *dev_priv)
{
558 559 560
	if (!HAS_DISPLAY(dev_priv))
		return;

561 562
	if (IS_DG2(dev_priv))
		dg2_get_bw_info(dev_priv);
563
	else if (IS_ALDERLAKE_P(dev_priv))
564
		tgl_get_bw_info(dev_priv, &adlp_sa_info);
565
	else if (IS_ALDERLAKE_S(dev_priv))
566
		tgl_get_bw_info(dev_priv, &adls_sa_info);
567
	else if (IS_ROCKETLAKE(dev_priv))
568
		tgl_get_bw_info(dev_priv, &rkl_sa_info);
569
	else if (DISPLAY_VER(dev_priv) == 12)
570
		tgl_get_bw_info(dev_priv, &tgl_sa_info);
571
	else if (DISPLAY_VER(dev_priv) == 11)
572
		icl_get_bw_info(dev_priv, &icl_sa_info);
573 574 575 576 577 578 579 580 581 582 583 584 585
}

static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state)
{
	/*
	 * We assume cursors are small enough
	 * to not not cause bandwidth problems.
	 */
	return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR));
}

static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state)
{
586
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
587
	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
588 589 590 591 592 593 594 595 596 597 598 599
	unsigned int data_rate = 0;
	enum plane_id plane_id;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		/*
		 * We assume cursors are small enough
		 * to not not cause bandwidth problems.
		 */
		if (plane_id == PLANE_CURSOR)
			continue;

		data_rate += crtc_state->data_rate[plane_id];
600 601 602

		if (DISPLAY_VER(i915) < 11)
			data_rate += crtc_state->data_rate_y[plane_id];
603 604 605 606
	}

	return data_rate;
}
607

608 609 610 611 612 613 614 615 616 617 618 619
/* "Maximum Pipe Read Bandwidth" */
static int intel_bw_crtc_min_cdclk(const struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *i915 = to_i915(crtc->base.dev);

	if (DISPLAY_VER(i915) < 12)
		return 0;

	return DIV_ROUND_UP_ULL(mul_u32_u32(intel_bw_crtc_data_rate(crtc_state), 10), 512);
}

620 621 622
void intel_bw_crtc_update(struct intel_bw_state *bw_state,
			  const struct intel_crtc_state *crtc_state)
{
623
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
624
	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
625 626 627 628 629 630

	bw_state->data_rate[crtc->pipe] =
		intel_bw_crtc_data_rate(crtc_state);
	bw_state->num_active_planes[crtc->pipe] =
		intel_bw_crtc_num_active_planes(crtc_state);

631 632 633 634
	drm_dbg_kms(&i915->drm, "pipe %c data rate %u num active planes %u\n",
		    pipe_name(crtc->pipe),
		    bw_state->data_rate[crtc->pipe],
		    bw_state->num_active_planes[crtc->pipe]);
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
}

static unsigned int intel_bw_num_active_planes(struct drm_i915_private *dev_priv,
					       const struct intel_bw_state *bw_state)
{
	unsigned int num_active_planes = 0;
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		num_active_planes += bw_state->num_active_planes[pipe];

	return num_active_planes;
}

static unsigned int intel_bw_data_rate(struct drm_i915_private *dev_priv,
				       const struct intel_bw_state *bw_state)
{
	unsigned int data_rate = 0;
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		data_rate += bw_state->data_rate[pipe];

658
	if (DISPLAY_VER(dev_priv) >= 13 && i915_vtd_active(dev_priv))
659
		data_rate = DIV_ROUND_UP(data_rate * 105, 100);
660

661 662 663
	return data_rate;
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
struct intel_bw_state *
intel_atomic_get_old_bw_state(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_global_state *bw_state;

	bw_state = intel_atomic_get_old_global_obj_state(state, &dev_priv->bw_obj);

	return to_intel_bw_state(bw_state);
}

struct intel_bw_state *
intel_atomic_get_new_bw_state(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_global_state *bw_state;

	bw_state = intel_atomic_get_new_global_obj_state(state, &dev_priv->bw_obj);

	return to_intel_bw_state(bw_state);
}

struct intel_bw_state *
687 688 689
intel_atomic_get_bw_state(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
690
	struct intel_global_state *bw_state;
691

692
	bw_state = intel_atomic_get_global_obj_state(state, &dev_priv->bw_obj);
693 694 695 696 697 698
	if (IS_ERR(bw_state))
		return ERR_CAST(bw_state);

	return to_intel_bw_state(bw_state);
}

699 700 701 702 703 704 705 706 707 708 709 710 711 712
static bool intel_bw_state_changed(struct drm_i915_private *i915,
				   const struct intel_bw_state *old_bw_state,
				   const struct intel_bw_state *new_bw_state)
{
	enum pipe pipe;

	for_each_pipe(i915, pipe) {
		const struct intel_dbuf_bw *old_crtc_bw =
			&old_bw_state->dbuf_bw[pipe];
		const struct intel_dbuf_bw *new_crtc_bw =
			&new_bw_state->dbuf_bw[pipe];
		enum dbuf_slice slice;

		for_each_dbuf_slice(i915, slice) {
713 714
			if (old_crtc_bw->max_bw[slice] != new_crtc_bw->max_bw[slice] ||
			    old_crtc_bw->active_planes[slice] != new_crtc_bw->active_planes[slice])
715 716
				return true;
		}
717 718 719

		if (old_bw_state->min_cdclk[pipe] != new_bw_state->min_cdclk[pipe])
			return true;
720 721
	}

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
	return false;
}

static void skl_plane_calc_dbuf_bw(struct intel_bw_state *bw_state,
				   struct intel_crtc *crtc,
				   enum plane_id plane_id,
				   const struct skl_ddb_entry *ddb,
				   unsigned int data_rate)
{
	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
	struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[crtc->pipe];
	unsigned int dbuf_mask = skl_ddb_dbuf_slice_mask(i915, ddb);
	enum dbuf_slice slice;

	/*
	 * The arbiter can only really guarantee an
	 * equal share of the total bw to each plane.
	 */
	for_each_dbuf_slice_in_mask(i915, slice, dbuf_mask) {
		crtc_bw->max_bw[slice] = max(crtc_bw->max_bw[slice], data_rate);
		crtc_bw->active_planes[slice] |= BIT(plane_id);
	}
744 745
}

746 747 748 749 750 751 752 753
static void skl_crtc_calc_dbuf_bw(struct intel_bw_state *bw_state,
				  const struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
	struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[crtc->pipe];
	enum plane_id plane_id;

754
	memset(crtc_bw, 0, sizeof(*crtc_bw));
755 756 757 758 759

	if (!crtc_state->hw.active)
		return;

	for_each_plane_id_on_crtc(crtc, plane_id) {
760 761 762 763 764 765 766 767 768 769
		/*
		 * We assume cursors are small enough
		 * to not cause bandwidth problems.
		 */
		if (plane_id == PLANE_CURSOR)
			continue;

		skl_plane_calc_dbuf_bw(bw_state, crtc, plane_id,
				       &crtc_state->wm.skl.plane_ddb[plane_id],
				       crtc_state->data_rate[plane_id]);
770

771 772 773 774
		if (DISPLAY_VER(i915) < 11)
			skl_plane_calc_dbuf_bw(bw_state, crtc, plane_id,
					       &crtc_state->wm.skl.plane_ddb_y[plane_id],
					       crtc_state->data_rate[plane_id]);
775
	}
776
}
777

778 779 780 781 782 783 784
/* "Maximum Data Buffer Bandwidth" */
static int
intel_bw_dbuf_min_cdclk(struct drm_i915_private *i915,
			const struct intel_bw_state *bw_state)
{
	unsigned int total_max_bw = 0;
	enum dbuf_slice slice;
785

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
	for_each_dbuf_slice(i915, slice) {
		int num_active_planes = 0;
		unsigned int max_bw = 0;
		enum pipe pipe;

		/*
		 * The arbiter can only really guarantee an
		 * equal share of the total bw to each plane.
		 */
		for_each_pipe(i915, pipe) {
			const struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[pipe];

			max_bw = max(crtc_bw->max_bw[slice], max_bw);
			num_active_planes += hweight8(crtc_bw->active_planes[slice]);
		}
		max_bw *= num_active_planes;
802

803
		total_max_bw = max(total_max_bw, max_bw);
804
	}
805 806 807 808 809 810 811

	return DIV_ROUND_UP(total_max_bw, 64);
}

int intel_bw_min_cdclk(struct drm_i915_private *i915,
		       const struct intel_bw_state *bw_state)
{
812 813 814 815 816 817 818 819 820
	enum pipe pipe;
	int min_cdclk;

	min_cdclk = intel_bw_dbuf_min_cdclk(i915, bw_state);

	for_each_pipe(i915, pipe)
		min_cdclk = max(bw_state->min_cdclk[pipe], min_cdclk);

	return min_cdclk;
821 822
}

823 824
int intel_bw_calc_min_cdclk(struct intel_atomic_state *state,
			    bool *need_cdclk_calc)
825 826
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
827
	struct intel_bw_state *new_bw_state = NULL;
828 829
	const struct intel_bw_state *old_bw_state = NULL;
	const struct intel_cdclk_state *cdclk_state;
830
	const struct intel_crtc_state *crtc_state;
831
	int old_min_cdclk, new_min_cdclk;
832
	struct intel_crtc *crtc;
833
	int i;
834

835 836 837
	if (DISPLAY_VER(dev_priv) < 9)
		return 0;

838 839 840 841 842
	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
		new_bw_state = intel_atomic_get_bw_state(state);
		if (IS_ERR(new_bw_state))
			return PTR_ERR(new_bw_state);

843 844
		old_bw_state = intel_atomic_get_old_bw_state(state);

845
		skl_crtc_calc_dbuf_bw(new_bw_state, crtc_state);
846 847 848

		new_bw_state->min_cdclk[crtc->pipe] =
			intel_bw_crtc_min_cdclk(crtc_state);
849 850 851 852 853
	}

	if (!old_bw_state)
		return 0;

854
	if (intel_bw_state_changed(dev_priv, old_bw_state, new_bw_state)) {
855 856 857 858 859
		int ret = intel_atomic_lock_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	}

860 861 862 863 864
	old_min_cdclk = intel_bw_min_cdclk(dev_priv, old_bw_state);
	new_min_cdclk = intel_bw_min_cdclk(dev_priv, new_bw_state);

	/*
	 * No need to check against the cdclk state if
865
	 * the min cdclk doesn't increase.
866
	 *
867
	 * Ie. we only ever increase the cdclk due to bandwidth
868 869 870 871 872 873 874 875 876 877 878 879
	 * requirements. This can reduce back and forth
	 * display blinking due to constant cdclk changes.
	 */
	if (new_min_cdclk <= old_min_cdclk)
		return 0;

	cdclk_state = intel_atomic_get_cdclk_state(state);
	if (IS_ERR(cdclk_state))
		return PTR_ERR(cdclk_state);

	/*
	 * No need to recalculate the cdclk state if
880
	 * the min cdclk doesn't increase.
881
	 *
882
	 * Ie. we only ever increase the cdclk due to bandwidth
883 884 885 886 887 888 889 890 891 892 893
	 * requirements. This can reduce back and forth
	 * display blinking due to constant cdclk changes.
	 */
	if (new_min_cdclk <= cdclk_state->bw_min_cdclk)
		return 0;

	drm_dbg_kms(&dev_priv->drm,
		    "new bandwidth min cdclk (%d kHz) > old min cdclk (%d kHz)\n",
		    new_min_cdclk, cdclk_state->bw_min_cdclk);
	*need_cdclk_calc = true;

894 895 896
	return 0;
}

897 898 899 900
static u16 icl_qgv_points_mask(struct drm_i915_private *i915)
{
	unsigned int num_psf_gv_points = i915->max_bw[0].num_psf_gv_points;
	unsigned int num_qgv_points = i915->max_bw[0].num_qgv_points;
901
	u16 qgv_points = 0, psf_points = 0;
902 903 904 905 906 907 908

	/*
	 * We can _not_ use the whole ADLS_QGV_PT_MASK here, as PCode rejects
	 * it with failure if we try masking any unadvertised points.
	 * So need to operate only with those returned from PCode.
	 */
	if (num_qgv_points > 0)
909
		qgv_points = GENMASK(num_qgv_points - 1, 0);
910 911

	if (num_psf_gv_points > 0)
912
		psf_points = GENMASK(num_psf_gv_points - 1, 0);
913

914
	return ICL_PCODE_REQ_QGV_PT(qgv_points) | ADLS_PCODE_REQ_PSF_PT(psf_points);
915 916
}

917
static int intel_bw_check_data_rate(struct intel_atomic_state *state, bool *changed)
918
{
919 920
	struct drm_i915_private *i915 = to_i915(state->base.dev);
	const struct intel_crtc_state *new_crtc_state, *old_crtc_state;
921
	struct intel_crtc *crtc;
922
	int i;
923 924 925 926 927 928 929 930 931 932 933

	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
		unsigned int old_data_rate =
			intel_bw_crtc_data_rate(old_crtc_state);
		unsigned int new_data_rate =
			intel_bw_crtc_data_rate(new_crtc_state);
		unsigned int old_active_planes =
			intel_bw_crtc_num_active_planes(old_crtc_state);
		unsigned int new_active_planes =
			intel_bw_crtc_num_active_planes(new_crtc_state);
934
		struct intel_bw_state *new_bw_state;
935 936 937 938 939 940 941 942 943

		/*
		 * Avoid locking the bw state when
		 * nothing significant has changed.
		 */
		if (old_data_rate == new_data_rate &&
		    old_active_planes == new_active_planes)
			continue;

944 945 946
		new_bw_state = intel_atomic_get_bw_state(state);
		if (IS_ERR(new_bw_state))
			return PTR_ERR(new_bw_state);
947

948 949
		new_bw_state->data_rate[crtc->pipe] = new_data_rate;
		new_bw_state->num_active_planes[crtc->pipe] = new_active_planes;
950

951
		*changed = true;
952

953 954 955
		drm_dbg_kms(&i915->drm,
			    "[CRTC:%d:%s] data rate %u num active planes %u\n",
			    crtc->base.base.id, crtc->base.name,
956 957
			    new_bw_state->data_rate[crtc->pipe],
			    new_bw_state->num_active_planes[crtc->pipe]);
958 959
	}

960 961 962 963 964 965 966 967 968 969 970
	return 0;
}

int intel_bw_atomic_check(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_bw_state *old_bw_state;
	struct intel_bw_state *new_bw_state;
	unsigned int data_rate;
	unsigned int num_active_planes;
	int i, ret;
971
	u16 qgv_points = 0, psf_points = 0;
972 973 974 975 976 977 978 979 980 981 982 983 984
	unsigned int max_bw_point = 0, max_bw = 0;
	unsigned int num_qgv_points = dev_priv->max_bw[0].num_qgv_points;
	unsigned int num_psf_gv_points = dev_priv->max_bw[0].num_psf_gv_points;
	bool changed = false;

	/* FIXME earlier gens need some checks too */
	if (DISPLAY_VER(dev_priv) < 11)
		return 0;

	ret = intel_bw_check_data_rate(state, &changed);
	if (ret)
		return ret;

985 986 987 988 989 990 991 992 993 994 995 996 997
	old_bw_state = intel_atomic_get_old_bw_state(state);
	new_bw_state = intel_atomic_get_new_bw_state(state);

	if (new_bw_state &&
	    intel_can_enable_sagv(dev_priv, old_bw_state) !=
	    intel_can_enable_sagv(dev_priv, new_bw_state))
		changed = true;

	/*
	 * If none of our inputs (data rates, number of active
	 * planes, SAGV yes/no) changed then nothing to do here.
	 */
	if (!changed)
998 999
		return 0;

1000
	ret = intel_atomic_lock_global_state(&new_bw_state->base);
1001 1002 1003
	if (ret)
		return ret;

1004
	data_rate = intel_bw_data_rate(dev_priv, new_bw_state);
1005 1006
	data_rate = DIV_ROUND_UP(data_rate, 1000);

1007
	num_active_planes = intel_bw_num_active_planes(dev_priv, new_bw_state);
1008

1009 1010
	for (i = 0; i < num_qgv_points; i++) {
		unsigned int max_data_rate;
1011

1012 1013 1014 1015
		if (DISPLAY_VER(dev_priv) > 11)
			max_data_rate = tgl_max_bw(dev_priv, num_active_planes, i);
		else
			max_data_rate = icl_max_bw(dev_priv, num_active_planes, i);
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
		/*
		 * We need to know which qgv point gives us
		 * maximum bandwidth in order to disable SAGV
		 * if we find that we exceed SAGV block time
		 * with watermarks. By that moment we already
		 * have those, as it is calculated earlier in
		 * intel_atomic_check,
		 */
		if (max_data_rate > max_bw) {
			max_bw_point = i;
			max_bw = max_data_rate;
		}
		if (max_data_rate >= data_rate)
1029
			qgv_points |= BIT(i);
1030

1031 1032 1033
		drm_dbg_kms(&dev_priv->drm, "QGV point %d: max bw %d required %d\n",
			    i, max_data_rate, data_rate);
	}
1034

1035 1036 1037 1038
	for (i = 0; i < num_psf_gv_points; i++) {
		unsigned int max_data_rate = adl_psf_bw(dev_priv, i);

		if (max_data_rate >= data_rate)
1039
			psf_points |= BIT(i);
1040 1041 1042 1043 1044 1045

		drm_dbg_kms(&dev_priv->drm, "PSF GV point %d: max bw %d"
			    " required %d\n",
			    i, max_data_rate, data_rate);
	}

1046 1047 1048 1049 1050
	/*
	 * BSpec states that we always should have at least one allowed point
	 * left, so if we couldn't - simply reject the configuration for obvious
	 * reasons.
	 */
1051
	if (qgv_points == 0) {
1052 1053 1054
		drm_dbg_kms(&dev_priv->drm, "No QGV points provide sufficient memory"
			    " bandwidth %d for display configuration(%d active planes).\n",
			    data_rate, num_active_planes);
1055 1056 1057
		return -EINVAL;
	}

1058 1059 1060 1061 1062
	if (num_psf_gv_points > 0 && psf_points == 0) {
		drm_dbg_kms(&dev_priv->drm, "No PSF GV points provide sufficient memory"
			    " bandwidth %d for display configuration(%d active planes).\n",
			    data_rate, num_active_planes);
		return -EINVAL;
1063 1064
	}

1065 1066 1067 1068 1069 1070
	/*
	 * Leave only single point with highest bandwidth, if
	 * we can't enable SAGV due to the increased memory latency it may
	 * cause.
	 */
	if (!intel_can_enable_sagv(dev_priv, new_bw_state)) {
1071
		qgv_points = BIT(max_bw_point);
1072 1073 1074
		drm_dbg_kms(&dev_priv->drm, "No SAGV, using single QGV point %d\n",
			    max_bw_point);
	}
1075

1076 1077 1078 1079
	/*
	 * We store the ones which need to be masked as that is what PCode
	 * actually accepts as a parameter.
	 */
1080
	new_bw_state->qgv_points_mask =
1081 1082
		~(ICL_PCODE_REQ_QGV_PT(qgv_points) |
		  ADLS_PCODE_REQ_PSF_PT(psf_points)) &
1083
		icl_qgv_points_mask(dev_priv);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

	/*
	 * If the actual mask had changed we need to make sure that
	 * the commits are serialized(in case this is a nomodeset, nonblocking)
	 */
	if (new_bw_state->qgv_points_mask != old_bw_state->qgv_points_mask) {
		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	}

1095 1096 1097
	return 0;
}

1098 1099
static struct intel_global_state *
intel_bw_duplicate_state(struct intel_global_obj *obj)
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
{
	struct intel_bw_state *state;

	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
	if (!state)
		return NULL;

	return &state->base;
}

1110 1111
static void intel_bw_destroy_state(struct intel_global_obj *obj,
				   struct intel_global_state *state)
1112 1113 1114 1115
{
	kfree(state);
}

1116
static const struct intel_global_state_funcs intel_bw_funcs = {
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	.atomic_duplicate_state = intel_bw_duplicate_state,
	.atomic_destroy_state = intel_bw_destroy_state,
};

int intel_bw_init(struct drm_i915_private *dev_priv)
{
	struct intel_bw_state *state;

	state = kzalloc(sizeof(*state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;

1129 1130
	intel_atomic_global_obj_init(dev_priv, &dev_priv->bw_obj,
				     &state->base, &intel_bw_funcs);
1131 1132 1133

	return 0;
}