intel_bw.c 27.4 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2019 Intel Corporation
 */

#include <drm/drm_atomic_state_helper.h>

8
#include "i915_reg.h"
9
#include "intel_atomic.h"
10
#include "intel_bw.h"
11
#include "intel_cdclk.h"
12
#include "intel_display_types.h"
13
#include "intel_mchbar_regs.h"
14
#include "intel_pcode.h"
15
#include "intel_pm.h"
16 17 18 19 20 21

/* Parameters for Qclk Geyserville (QGV) */
struct intel_qgv_point {
	u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd;
};

22 23 24 25
struct intel_psf_gv_point {
	u8 clk; /* clock in multiples of 16.6666 MHz */
};

26
struct intel_qgv_info {
27
	struct intel_qgv_point points[I915_NUM_QGV_POINTS];
28
	struct intel_psf_gv_point psf_points[I915_NUM_PSF_GV_POINTS];
29
	u8 num_points;
30
	u8 num_psf_points;
31
	u8 t_bl;
32 33 34
	u8 max_numchannels;
	u8 channel_width;
	u8 deinterleave;
35 36
};

37 38 39 40 41 42 43 44 45 46 47 48 49
static int dg1_mchbar_read_qgv_point_info(struct drm_i915_private *dev_priv,
					  struct intel_qgv_point *sp,
					  int point)
{
	u32 dclk_ratio, dclk_reference;
	u32 val;

	val = intel_uncore_read(&dev_priv->uncore, SA_PERF_STATUS_0_0_0_MCHBAR_PC);
	dclk_ratio = REG_FIELD_GET(DG1_QCLK_RATIO_MASK, val);
	if (val & DG1_QCLK_REFERENCE)
		dclk_reference = 6; /* 6 * 16.666 MHz = 100 MHz */
	else
		dclk_reference = 8; /* 8 * 16.666 MHz = 133 MHz */
50
	sp->dclk = DIV_ROUND_UP((16667 * dclk_ratio * dclk_reference) + 500, 1000);
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

	val = intel_uncore_read(&dev_priv->uncore, SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
	if (val & DG1_GEAR_TYPE)
		sp->dclk *= 2;

	if (sp->dclk == 0)
		return -EINVAL;

	val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR);
	sp->t_rp = REG_FIELD_GET(DG1_DRAM_T_RP_MASK, val);
	sp->t_rdpre = REG_FIELD_GET(DG1_DRAM_T_RDPRE_MASK, val);

	val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR_HIGH);
	sp->t_rcd = REG_FIELD_GET(DG1_DRAM_T_RCD_MASK, val);
	sp->t_ras = REG_FIELD_GET(DG1_DRAM_T_RAS_MASK, val);

	sp->t_rc = sp->t_rp + sp->t_ras;

	return 0;
}

72 73 74 75
static int icl_pcode_read_qgv_point_info(struct drm_i915_private *dev_priv,
					 struct intel_qgv_point *sp,
					 int point)
{
76
	u32 val = 0, val2 = 0;
77
	u16 dclk;
78 79
	int ret;

80 81 82
	ret = snb_pcode_read(dev_priv, ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
			     ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point),
			     &val, &val2);
83 84 85
	if (ret)
		return ret;

86 87
	dclk = val & 0xffff;
	sp->dclk = DIV_ROUND_UP((16667 * dclk) + (DISPLAY_VER(dev_priv) > 11 ? 500 : 0), 1000);
88 89 90 91 92 93 94 95 96 97 98
	sp->t_rp = (val & 0xff0000) >> 16;
	sp->t_rcd = (val & 0xff000000) >> 24;

	sp->t_rdpre = val2 & 0xff;
	sp->t_ras = (val2 & 0xff00) >> 8;

	sp->t_rc = sp->t_rp + sp->t_ras;

	return 0;
}

99 100 101 102 103 104 105
static int adls_pcode_read_psf_gv_point_info(struct drm_i915_private *dev_priv,
					    struct intel_psf_gv_point *points)
{
	u32 val = 0;
	int ret;
	int i;

106 107
	ret = snb_pcode_read(dev_priv, ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
			     ADL_PCODE_MEM_SS_READ_PSF_GV_INFO, &val, NULL);
108 109 110 111 112 113 114 115 116 117 118
	if (ret)
		return ret;

	for (i = 0; i < I915_NUM_PSF_GV_POINTS; i++) {
		points[i].clk = val & 0xff;
		val >>= 8;
	}

	return 0;
}

119 120 121 122 123 124 125 126 127 128 129 130 131
int icl_pcode_restrict_qgv_points(struct drm_i915_private *dev_priv,
				  u32 points_mask)
{
	int ret;

	/* bspec says to keep retrying for at least 1 ms */
	ret = skl_pcode_request(dev_priv, ICL_PCODE_SAGV_DE_MEM_SS_CONFIG,
				points_mask,
				ICL_PCODE_POINTS_RESTRICTED_MASK,
				ICL_PCODE_POINTS_RESTRICTED,
				1);

	if (ret < 0) {
132
		drm_err(&dev_priv->drm, "Failed to disable qgv points (%d) points: 0x%x\n", ret, points_mask);
133 134 135 136 137 138
		return ret;
	}

	return 0;
}

139
static int icl_get_qgv_points(struct drm_i915_private *dev_priv,
140 141
			      struct intel_qgv_info *qi,
			      bool is_y_tile)
142
{
143
	const struct dram_info *dram_info = &dev_priv->dram_info;
144 145
	int i, ret;

146
	qi->num_points = dram_info->num_qgv_points;
147
	qi->num_psf_points = dram_info->num_psf_gv_points;
148

149
	if (DISPLAY_VER(dev_priv) >= 12)
150 151
		switch (dram_info->type) {
		case INTEL_DRAM_DDR4:
152 153 154 155
			qi->t_bl = is_y_tile ? 8 : 4;
			qi->max_numchannels = 2;
			qi->channel_width = 64;
			qi->deinterleave = is_y_tile ? 1 : 2;
156 157
			break;
		case INTEL_DRAM_DDR5:
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
			qi->t_bl = is_y_tile ? 16 : 8;
			qi->max_numchannels = 4;
			qi->channel_width = 32;
			qi->deinterleave = is_y_tile ? 1 : 2;
			break;
		case INTEL_DRAM_LPDDR4:
			if (IS_ROCKETLAKE(dev_priv)) {
				qi->t_bl = 8;
				qi->max_numchannels = 4;
				qi->channel_width = 32;
				qi->deinterleave = 2;
				break;
			}
			fallthrough;
		case INTEL_DRAM_LPDDR5:
			qi->t_bl = 16;
			qi->max_numchannels = 8;
			qi->channel_width = 16;
			qi->deinterleave = is_y_tile ? 2 : 4;
177 178 179
			break;
		default:
			qi->t_bl = 16;
180
			qi->max_numchannels = 1;
181 182
			break;
		}
183
	else if (DISPLAY_VER(dev_priv) == 11) {
184
		qi->t_bl = dev_priv->dram_info.type == INTEL_DRAM_DDR4 ? 4 : 8;
185 186
		qi->max_numchannels = 1;
	}
187

188 189
	if (drm_WARN_ON(&dev_priv->drm,
			qi->num_points > ARRAY_SIZE(qi->points)))
190 191 192 193 194
		qi->num_points = ARRAY_SIZE(qi->points);

	for (i = 0; i < qi->num_points; i++) {
		struct intel_qgv_point *sp = &qi->points[i];

195 196 197 198 199
		if (IS_DG1(dev_priv))
			ret = dg1_mchbar_read_qgv_point_info(dev_priv, sp, i);
		else
			ret = icl_pcode_read_qgv_point_info(dev_priv, sp, i);

200 201 202
		if (ret)
			return ret;

203 204 205 206
		drm_dbg_kms(&dev_priv->drm,
			    "QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n",
			    i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras,
			    sp->t_rcd, sp->t_rc);
207 208
	}

209 210 211 212 213 214 215 216 217 218 219 220 221
	if (qi->num_psf_points > 0) {
		ret = adls_pcode_read_psf_gv_point_info(dev_priv, qi->psf_points);
		if (ret) {
			drm_err(&dev_priv->drm, "Failed to read PSF point data; PSF points will not be considered in bandwidth calculations.\n");
			qi->num_psf_points = 0;
		}

		for (i = 0; i < qi->num_psf_points; i++)
			drm_dbg_kms(&dev_priv->drm,
				    "PSF GV %d: CLK=%d \n",
				    i, qi->psf_points[i].clk);
	}

222 223 224
	return 0;
}

225 226 227 228 229 230 231 232 233 234
static int adl_calc_psf_bw(int clk)
{
	/*
	 * clk is multiples of 16.666MHz (100/6)
	 * According to BSpec PSF GV bandwidth is
	 * calculated as BW = 64 * clk * 16.666Mhz
	 */
	return DIV_ROUND_CLOSEST(64 * clk * 100, 6);
}

235 236 237 238 239 240 241 242 243 244 245 246
static int icl_sagv_max_dclk(const struct intel_qgv_info *qi)
{
	u16 dclk = 0;
	int i;

	for (i = 0; i < qi->num_points; i++)
		dclk = max(dclk, qi->points[i].dclk);

	return dclk;
}

struct intel_sa_info {
247
	u16 displayrtids;
248
	u8 deburst, deprogbwlimit, derating;
249 250 251 252 253 254
};

static const struct intel_sa_info icl_sa_info = {
	.deburst = 8,
	.deprogbwlimit = 25, /* GB/s */
	.displayrtids = 128,
255
	.derating = 10,
256 257
};

258 259 260 261
static const struct intel_sa_info tgl_sa_info = {
	.deburst = 16,
	.deprogbwlimit = 34, /* GB/s */
	.displayrtids = 256,
262
	.derating = 10,
263 264
};

265
static const struct intel_sa_info rkl_sa_info = {
266
	.deburst = 8,
267 268
	.deprogbwlimit = 20, /* GB/s */
	.displayrtids = 128,
269
	.derating = 10,
270 271
};

272 273 274 275
static const struct intel_sa_info adls_sa_info = {
	.deburst = 16,
	.deprogbwlimit = 38, /* GB/s */
	.displayrtids = 256,
276 277 278 279 280 281 282 283
	.derating = 10,
};

static const struct intel_sa_info adlp_sa_info = {
	.deburst = 16,
	.deprogbwlimit = 38, /* GB/s */
	.displayrtids = 256,
	.derating = 20,
284 285
};

286
static int icl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
287 288 289
{
	struct intel_qgv_info qi = {};
	bool is_y_tile = true; /* assume y tile may be used */
290
	int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels);
291
	int ipqdepth, ipqdepthpch = 16;
292 293
	int dclk_max;
	int maxdebw;
294
	int num_groups = ARRAY_SIZE(dev_priv->max_bw);
295 296
	int i, ret;

297
	ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile);
298
	if (ret) {
299 300
		drm_dbg_kms(&dev_priv->drm,
			    "Failed to get memory subsystem information, ignoring bandwidth limits");
301 302 303 304
		return ret;
	}

	dclk_max = icl_sagv_max_dclk(&qi);
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
	maxdebw = min(sa->deprogbwlimit * 1000, dclk_max * 16 * 6 / 10);
	ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
	qi.deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);

	for (i = 0; i < num_groups; i++) {
		struct intel_bw_info *bi = &dev_priv->max_bw[i];
		int clpchgroup;
		int j;

		clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i;
		bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1;

		bi->num_qgv_points = qi.num_points;
		bi->num_psf_gv_points = qi.num_psf_points;

		for (j = 0; j < qi.num_points; j++) {
			const struct intel_qgv_point *sp = &qi.points[j];
			int ct, bw;

			/*
			 * Max row cycle time
			 *
			 * FIXME what is the logic behind the
			 * assumed burst length?
			 */
			ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
				   (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
			bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct);
333

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
			bi->deratedbw[j] = min(maxdebw,
					       bw * (100 - sa->derating) / 100);

			drm_dbg_kms(&dev_priv->drm,
				    "BW%d / QGV %d: num_planes=%d deratedbw=%u\n",
				    i, j, bi->num_planes, bi->deratedbw[j]);
		}
	}
	/*
	 * In case if SAGV is disabled in BIOS, we always get 1
	 * SAGV point, but we can't send PCode commands to restrict it
	 * as it will fail and pointless anyway.
	 */
	if (qi.num_points == 1)
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
	else
		dev_priv->sagv_status = I915_SAGV_ENABLED;

	return 0;
}

static int tgl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
{
	struct intel_qgv_info qi = {};
	const struct dram_info *dram_info = &dev_priv->dram_info;
	bool is_y_tile = true; /* assume y tile may be used */
	int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels);
	int ipqdepth, ipqdepthpch = 16;
	int dclk_max;
	int maxdebw, peakbw;
	int clperchgroup;
	int num_groups = ARRAY_SIZE(dev_priv->max_bw);
	int i, ret;

	ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile);
	if (ret) {
		drm_dbg_kms(&dev_priv->drm,
			    "Failed to get memory subsystem information, ignoring bandwidth limits");
		return ret;
	}

	if (dram_info->type == INTEL_DRAM_LPDDR4 || dram_info->type == INTEL_DRAM_LPDDR5)
		num_channels *= 2;

	qi.deinterleave = qi.deinterleave ? : DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);

	if (num_channels < qi.max_numchannels && DISPLAY_VER(dev_priv) >= 12)
		qi.deinterleave = max(DIV_ROUND_UP(qi.deinterleave, 2), 1);

	if (DISPLAY_VER(dev_priv) > 11 && num_channels > qi.max_numchannels)
		drm_warn(&dev_priv->drm, "Number of channels exceeds max number of channels.");
	if (qi.max_numchannels != 0)
		num_channels = min_t(u8, num_channels, qi.max_numchannels);

	dclk_max = icl_sagv_max_dclk(&qi);

	peakbw = num_channels * DIV_ROUND_UP(qi.channel_width, 8) * dclk_max;
	maxdebw = min(sa->deprogbwlimit * 1000, peakbw * 6 / 10); /* 60% */
392 393

	ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
394 395 396 397 398
	/*
	 * clperchgroup = 4kpagespermempage * clperchperblock,
	 * clperchperblock = 8 / num_channels * interleave
	 */
	clperchgroup = 4 * DIV_ROUND_UP(8, num_channels) * qi.deinterleave;
399

400
	for (i = 0; i < num_groups; i++) {
401
		struct intel_bw_info *bi = &dev_priv->max_bw[i];
402
		struct intel_bw_info *bi_next;
403 404 405
		int clpchgroup;
		int j;

406 407 408 409 410 411 412 413 414
		if (i < num_groups - 1)
			bi_next = &dev_priv->max_bw[i + 1];

		clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i;

		if (i < num_groups - 1 && clpchgroup < clperchgroup)
			bi_next->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1;
		else
			bi_next->num_planes = 0;
415

416
		bi->num_qgv_points = qi.num_points;
417
		bi->num_psf_gv_points = qi.num_psf_points;
418

419 420 421 422 423 424 425 426 427 428 429 430
		for (j = 0; j < qi.num_points; j++) {
			const struct intel_qgv_point *sp = &qi.points[j];
			int ct, bw;

			/*
			 * Max row cycle time
			 *
			 * FIXME what is the logic behind the
			 * assumed burst length?
			 */
			ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
				   (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
431
			bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct);
432 433

			bi->deratedbw[j] = min(maxdebw,
434
					       bw * (100 - sa->derating) / 100);
435

436 437 438
			drm_dbg_kms(&dev_priv->drm,
				    "BW%d / QGV %d: num_planes=%d deratedbw=%u\n",
				    i, j, bi->num_planes, bi->deratedbw[j]);
439 440
		}

441 442 443 444 445 446 447 448 449
		for (j = 0; j < qi.num_psf_points; j++) {
			const struct intel_psf_gv_point *sp = &qi.psf_points[j];

			bi->psf_bw[j] = adl_calc_psf_bw(sp->clk);

			drm_dbg_kms(&dev_priv->drm,
				    "BW%d / PSF GV %d: num_planes=%d bw=%u\n",
				    i, j, bi->num_planes, bi->psf_bw[j]);
		}
450 451
	}

452 453 454 455 456 457 458 459 460 461
	/*
	 * In case if SAGV is disabled in BIOS, we always get 1
	 * SAGV point, but we can't send PCode commands to restrict it
	 * as it will fail and pointless anyway.
	 */
	if (qi.num_points == 1)
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
	else
		dev_priv->sagv_status = I915_SAGV_ENABLED;

462 463 464
	return 0;
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
static void dg2_get_bw_info(struct drm_i915_private *i915)
{
	struct intel_bw_info *bi = &i915->max_bw[0];

	/*
	 * DG2 doesn't have SAGV or QGV points, just a constant max bandwidth
	 * that doesn't depend on the number of planes enabled.  Create a
	 * single dummy QGV point to reflect that.  DG2-G10 platforms have a
	 * constant 50 GB/s bandwidth, whereas DG2-G11 platforms have 38 GB/s.
	 */
	bi->num_planes = 1;
	bi->num_qgv_points = 1;
	if (IS_DG2_G11(i915))
		bi->deratedbw[0] = 38000;
	else
		bi->deratedbw[0] = 50000;

	i915->sagv_status = I915_SAGV_NOT_CONTROLLED;
}

485 486 487 488 489
static unsigned int icl_max_bw(struct drm_i915_private *dev_priv,
			       int num_planes, int qgv_point)
{
	int i;

490 491 492 493 494
	/*
	 * Let's return max bw for 0 planes
	 */
	num_planes = max(1, num_planes);

495 496 497 498
	for (i = 0; i < ARRAY_SIZE(dev_priv->max_bw); i++) {
		const struct intel_bw_info *bi =
			&dev_priv->max_bw[i];

499 500 501 502 503 504 505
		/*
		 * Pcode will not expose all QGV points when
		 * SAGV is forced to off/min/med/max.
		 */
		if (qgv_point >= bi->num_qgv_points)
			return UINT_MAX;

506 507 508 509 510 511 512
		if (num_planes >= bi->num_planes)
			return bi->deratedbw[qgv_point];
	}

	return 0;
}

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
static unsigned int tgl_max_bw(struct drm_i915_private *dev_priv,
			       int num_planes, int qgv_point)
{
	int i;

	/*
	 * Let's return max bw for 0 planes
	 */
	num_planes = max(1, num_planes);

	for (i = ARRAY_SIZE(dev_priv->max_bw) - 1; i >= 0; i--) {
		const struct intel_bw_info *bi =
			&dev_priv->max_bw[i];

		/*
		 * Pcode will not expose all QGV points when
		 * SAGV is forced to off/min/med/max.
		 */
		if (qgv_point >= bi->num_qgv_points)
			return UINT_MAX;

		if (num_planes <= bi->num_planes)
			return bi->deratedbw[qgv_point];
	}

	return dev_priv->max_bw[0].deratedbw[qgv_point];
}

541 542 543 544 545 546 547 548 549
static unsigned int adl_psf_bw(struct drm_i915_private *dev_priv,
			       int psf_gv_point)
{
	const struct intel_bw_info *bi =
			&dev_priv->max_bw[0];

	return bi->psf_bw[psf_gv_point];
}

550 551
void intel_bw_init_hw(struct drm_i915_private *dev_priv)
{
552 553 554
	if (!HAS_DISPLAY(dev_priv))
		return;

555 556
	if (IS_DG2(dev_priv))
		dg2_get_bw_info(dev_priv);
557
	else if (IS_ALDERLAKE_P(dev_priv))
558
		tgl_get_bw_info(dev_priv, &adlp_sa_info);
559
	else if (IS_ALDERLAKE_S(dev_priv))
560
		tgl_get_bw_info(dev_priv, &adls_sa_info);
561
	else if (IS_ROCKETLAKE(dev_priv))
562
		tgl_get_bw_info(dev_priv, &rkl_sa_info);
563
	else if (DISPLAY_VER(dev_priv) == 12)
564
		tgl_get_bw_info(dev_priv, &tgl_sa_info);
565
	else if (DISPLAY_VER(dev_priv) == 11)
566
		icl_get_bw_info(dev_priv, &icl_sa_info);
567 568 569 570 571 572 573 574 575 576 577 578 579
}

static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state)
{
	/*
	 * We assume cursors are small enough
	 * to not not cause bandwidth problems.
	 */
	return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR));
}

static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state)
{
580
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	unsigned int data_rate = 0;
	enum plane_id plane_id;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		/*
		 * We assume cursors are small enough
		 * to not not cause bandwidth problems.
		 */
		if (plane_id == PLANE_CURSOR)
			continue;

		data_rate += crtc_state->data_rate[plane_id];
	}

	return data_rate;
}
597

598 599 600
void intel_bw_crtc_update(struct intel_bw_state *bw_state,
			  const struct intel_crtc_state *crtc_state)
{
601
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
602
	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
603 604 605 606 607 608

	bw_state->data_rate[crtc->pipe] =
		intel_bw_crtc_data_rate(crtc_state);
	bw_state->num_active_planes[crtc->pipe] =
		intel_bw_crtc_num_active_planes(crtc_state);

609 610 611 612
	drm_dbg_kms(&i915->drm, "pipe %c data rate %u num active planes %u\n",
		    pipe_name(crtc->pipe),
		    bw_state->data_rate[crtc->pipe],
		    bw_state->num_active_planes[crtc->pipe]);
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
}

static unsigned int intel_bw_num_active_planes(struct drm_i915_private *dev_priv,
					       const struct intel_bw_state *bw_state)
{
	unsigned int num_active_planes = 0;
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		num_active_planes += bw_state->num_active_planes[pipe];

	return num_active_planes;
}

static unsigned int intel_bw_data_rate(struct drm_i915_private *dev_priv,
				       const struct intel_bw_state *bw_state)
{
	unsigned int data_rate = 0;
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		data_rate += bw_state->data_rate[pipe];

636
	if (DISPLAY_VER(dev_priv) >= 13 && intel_vtd_active(dev_priv))
637 638
		data_rate = data_rate * 105 / 100;

639 640 641
	return data_rate;
}

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
struct intel_bw_state *
intel_atomic_get_old_bw_state(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_global_state *bw_state;

	bw_state = intel_atomic_get_old_global_obj_state(state, &dev_priv->bw_obj);

	return to_intel_bw_state(bw_state);
}

struct intel_bw_state *
intel_atomic_get_new_bw_state(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_global_state *bw_state;

	bw_state = intel_atomic_get_new_global_obj_state(state, &dev_priv->bw_obj);

	return to_intel_bw_state(bw_state);
}

struct intel_bw_state *
665 666 667
intel_atomic_get_bw_state(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
668
	struct intel_global_state *bw_state;
669

670
	bw_state = intel_atomic_get_global_obj_state(state, &dev_priv->bw_obj);
671 672 673 674 675 676
	if (IS_ERR(bw_state))
		return ERR_CAST(bw_state);

	return to_intel_bw_state(bw_state);
}

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
static void skl_crtc_calc_dbuf_bw(struct intel_bw_state *bw_state,
				  const struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
	struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[crtc->pipe];
	enum plane_id plane_id;

	memset(&crtc_bw->used_bw, 0, sizeof(crtc_bw->used_bw));

	if (!crtc_state->hw.active)
		return;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		const struct skl_ddb_entry *ddb_y =
			&crtc_state->wm.skl.plane_ddb_y[plane_id];
		const struct skl_ddb_entry *ddb_uv =
			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
		unsigned int data_rate = crtc_state->data_rate[plane_id];
		unsigned int dbuf_mask = 0;
		enum dbuf_slice slice;

		dbuf_mask |= skl_ddb_dbuf_slice_mask(i915, ddb_y);
		dbuf_mask |= skl_ddb_dbuf_slice_mask(i915, ddb_uv);

		/*
		 * FIXME: To calculate that more properly we probably
		 * need to split per plane data_rate into data_rate_y
		 * and data_rate_uv for multiplanar formats in order not
		 * to get accounted those twice if they happen to reside
		 * on different slices.
		 * However for pre-icl this would work anyway because
		 * we have only single slice and for icl+ uv plane has
		 * non-zero data rate.
		 * So in worst case those calculation are a bit
		 * pessimistic, which shouldn't pose any significant
		 * problem anyway.
		 */
		for_each_dbuf_slice_in_mask(i915, slice, dbuf_mask)
			crtc_bw->used_bw[slice] += data_rate;
	}
}

720 721 722
int skl_bw_calc_min_cdclk(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
723 724
	struct intel_bw_state *new_bw_state = NULL;
	struct intel_bw_state *old_bw_state = NULL;
725 726 727
	const struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int max_bw = 0;
728
	enum pipe pipe;
729
	int i;
730 731 732 733 734 735

	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
		new_bw_state = intel_atomic_get_bw_state(state);
		if (IS_ERR(new_bw_state))
			return PTR_ERR(new_bw_state);

736 737
		old_bw_state = intel_atomic_get_old_bw_state(state);

738
		skl_crtc_calc_dbuf_bw(new_bw_state, crtc_state);
739 740 741 742 743 744 745
	}

	if (!old_bw_state)
		return 0;

	for_each_pipe(dev_priv, pipe) {
		struct intel_dbuf_bw *crtc_bw;
746
		enum dbuf_slice slice;
747 748

		crtc_bw = &new_bw_state->dbuf_bw[pipe];
749

750
		for_each_dbuf_slice(dev_priv, slice) {
751
			/*
752 753 754 755 756 757
			 * Current experimental observations show that contrary
			 * to BSpec we get underruns once we exceed 64 * CDCLK
			 * for slices in total.
			 * As a temporary measure in order not to keep CDCLK
			 * bumped up all the time we calculate CDCLK according
			 * to this formula for  overall bw consumed by slices.
758
			 */
759
			max_bw += crtc_bw->used_bw[slice];
760 761 762
		}
	}

763
	new_bw_state->min_cdclk = max_bw / 64;
764 765 766 767 768 769 770 771 772 773 774 775 776

	if (new_bw_state->min_cdclk != old_bw_state->min_cdclk) {
		int ret = intel_atomic_lock_global_state(&new_bw_state->base);

		if (ret)
			return ret;
	}

	return 0;
}

int intel_bw_calc_min_cdclk(struct intel_atomic_state *state)
{
777 778 779
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_bw_state *new_bw_state = NULL;
	struct intel_bw_state *old_bw_state = NULL;
780 781 782
	const struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int min_cdclk = 0;
783 784
	enum pipe pipe;
	int i;
785 786 787 788 789 790 791 792 793 794 795 796

	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
		new_bw_state = intel_atomic_get_bw_state(state);
		if (IS_ERR(new_bw_state))
			return PTR_ERR(new_bw_state);

		old_bw_state = intel_atomic_get_old_bw_state(state);
	}

	if (!old_bw_state)
		return 0;

797 798 799 800 801 802 803 804 805 806 807 808
	for_each_pipe(dev_priv, pipe) {
		struct intel_cdclk_state *cdclk_state;

		cdclk_state = intel_atomic_get_new_cdclk_state(state);
		if (!cdclk_state)
			return 0;

		min_cdclk = max(cdclk_state->min_cdclk[pipe], min_cdclk);
	}

	new_bw_state->min_cdclk = min_cdclk;

809 810 811 812 813 814 815 816 817 818
	if (new_bw_state->min_cdclk != old_bw_state->min_cdclk) {
		int ret = intel_atomic_lock_global_state(&new_bw_state->base);

		if (ret)
			return ret;
	}

	return 0;
}

819 820 821 822
int intel_bw_atomic_check(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc_state *new_crtc_state, *old_crtc_state;
823
	struct intel_bw_state *new_bw_state = NULL;
824 825
	const struct intel_bw_state *old_bw_state = NULL;
	unsigned int data_rate;
826 827
	unsigned int num_active_planes;
	struct intel_crtc *crtc;
828
	int i, ret;
829 830 831
	u32 allowed_points = 0;
	unsigned int max_bw_point = 0, max_bw = 0;
	unsigned int num_qgv_points = dev_priv->max_bw[0].num_qgv_points;
832
	unsigned int num_psf_gv_points = dev_priv->max_bw[0].num_psf_gv_points;
833
	bool changed = false;
834
	u32 mask = 0;
835 836

	/* FIXME earlier gens need some checks too */
837
	if (DISPLAY_VER(dev_priv) < 11)
838 839
		return 0;

840 841 842 843 844 845 846 847 848 849 850
	/*
	 * We can _not_ use the whole ADLS_QGV_PT_MASK here, as PCode rejects
	 * it with failure if we try masking any unadvertised points.
	 * So need to operate only with those returned from PCode.
	 */
	if (num_qgv_points > 0)
		mask |= REG_GENMASK(num_qgv_points - 1, 0);

	if (num_psf_gv_points > 0)
		mask |= REG_GENMASK(num_psf_gv_points - 1, 0) << ADLS_PSF_PT_SHIFT;

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
		unsigned int old_data_rate =
			intel_bw_crtc_data_rate(old_crtc_state);
		unsigned int new_data_rate =
			intel_bw_crtc_data_rate(new_crtc_state);
		unsigned int old_active_planes =
			intel_bw_crtc_num_active_planes(old_crtc_state);
		unsigned int new_active_planes =
			intel_bw_crtc_num_active_planes(new_crtc_state);

		/*
		 * Avoid locking the bw state when
		 * nothing significant has changed.
		 */
		if (old_data_rate == new_data_rate &&
		    old_active_planes == new_active_planes)
			continue;

870 871 872
		new_bw_state = intel_atomic_get_bw_state(state);
		if (IS_ERR(new_bw_state))
			return PTR_ERR(new_bw_state);
873

874 875
		new_bw_state->data_rate[crtc->pipe] = new_data_rate;
		new_bw_state->num_active_planes[crtc->pipe] = new_active_planes;
876

877 878
		changed = true;

879 880 881
		drm_dbg_kms(&dev_priv->drm,
			    "pipe %c data rate %u num active planes %u\n",
			    pipe_name(crtc->pipe),
882 883
			    new_bw_state->data_rate[crtc->pipe],
			    new_bw_state->num_active_planes[crtc->pipe]);
884 885
	}

886 887 888 889 890 891 892 893 894 895 896 897 898
	old_bw_state = intel_atomic_get_old_bw_state(state);
	new_bw_state = intel_atomic_get_new_bw_state(state);

	if (new_bw_state &&
	    intel_can_enable_sagv(dev_priv, old_bw_state) !=
	    intel_can_enable_sagv(dev_priv, new_bw_state))
		changed = true;

	/*
	 * If none of our inputs (data rates, number of active
	 * planes, SAGV yes/no) changed then nothing to do here.
	 */
	if (!changed)
899 900
		return 0;

901
	ret = intel_atomic_lock_global_state(&new_bw_state->base);
902 903 904
	if (ret)
		return ret;

905
	data_rate = intel_bw_data_rate(dev_priv, new_bw_state);
906 907
	data_rate = DIV_ROUND_UP(data_rate, 1000);

908
	num_active_planes = intel_bw_num_active_planes(dev_priv, new_bw_state);
909

910 911
	for (i = 0; i < num_qgv_points; i++) {
		unsigned int max_data_rate;
912

913 914 915 916
		if (DISPLAY_VER(dev_priv) > 11)
			max_data_rate = tgl_max_bw(dev_priv, num_active_planes, i);
		else
			max_data_rate = icl_max_bw(dev_priv, num_active_planes, i);
917 918 919 920 921 922 923 924 925 926 927 928 929
		/*
		 * We need to know which qgv point gives us
		 * maximum bandwidth in order to disable SAGV
		 * if we find that we exceed SAGV block time
		 * with watermarks. By that moment we already
		 * have those, as it is calculated earlier in
		 * intel_atomic_check,
		 */
		if (max_data_rate > max_bw) {
			max_bw_point = i;
			max_bw = max_data_rate;
		}
		if (max_data_rate >= data_rate)
930 931
			allowed_points |= REG_FIELD_PREP(ADLS_QGV_PT_MASK, BIT(i));

932 933 934
		drm_dbg_kms(&dev_priv->drm, "QGV point %d: max bw %d required %d\n",
			    i, max_data_rate, data_rate);
	}
935

936 937 938 939 940 941 942 943 944 945 946
	for (i = 0; i < num_psf_gv_points; i++) {
		unsigned int max_data_rate = adl_psf_bw(dev_priv, i);

		if (max_data_rate >= data_rate)
			allowed_points |= REG_FIELD_PREP(ADLS_PSF_PT_MASK, BIT(i));

		drm_dbg_kms(&dev_priv->drm, "PSF GV point %d: max bw %d"
			    " required %d\n",
			    i, max_data_rate, data_rate);
	}

947 948 949 950 951
	/*
	 * BSpec states that we always should have at least one allowed point
	 * left, so if we couldn't - simply reject the configuration for obvious
	 * reasons.
	 */
952
	if ((allowed_points & ADLS_QGV_PT_MASK) == 0) {
953 954 955
		drm_dbg_kms(&dev_priv->drm, "No QGV points provide sufficient memory"
			    " bandwidth %d for display configuration(%d active planes).\n",
			    data_rate, num_active_planes);
956 957 958
		return -EINVAL;
	}

959 960 961 962 963 964 965 966 967
	if (num_psf_gv_points > 0) {
		if ((allowed_points & ADLS_PSF_PT_MASK) == 0) {
			drm_dbg_kms(&dev_priv->drm, "No PSF GV points provide sufficient memory"
				    " bandwidth %d for display configuration(%d active planes).\n",
				    data_rate, num_active_planes);
			return -EINVAL;
		}
	}

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
	/*
	 * Leave only single point with highest bandwidth, if
	 * we can't enable SAGV due to the increased memory latency it may
	 * cause.
	 */
	if (!intel_can_enable_sagv(dev_priv, new_bw_state)) {
		allowed_points = BIT(max_bw_point);
		drm_dbg_kms(&dev_priv->drm, "No SAGV, using single QGV point %d\n",
			    max_bw_point);
	}
	/*
	 * We store the ones which need to be masked as that is what PCode
	 * actually accepts as a parameter.
	 */
	new_bw_state->qgv_points_mask = ~allowed_points & mask;

	/*
	 * If the actual mask had changed we need to make sure that
	 * the commits are serialized(in case this is a nomodeset, nonblocking)
	 */
	if (new_bw_state->qgv_points_mask != old_bw_state->qgv_points_mask) {
		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	}

994 995 996
	return 0;
}

997 998
static struct intel_global_state *
intel_bw_duplicate_state(struct intel_global_obj *obj)
999 1000 1001 1002 1003 1004 1005 1006 1007 1008
{
	struct intel_bw_state *state;

	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
	if (!state)
		return NULL;

	return &state->base;
}

1009 1010
static void intel_bw_destroy_state(struct intel_global_obj *obj,
				   struct intel_global_state *state)
1011 1012 1013 1014
{
	kfree(state);
}

1015
static const struct intel_global_state_funcs intel_bw_funcs = {
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	.atomic_duplicate_state = intel_bw_duplicate_state,
	.atomic_destroy_state = intel_bw_destroy_state,
};

int intel_bw_init(struct drm_i915_private *dev_priv)
{
	struct intel_bw_state *state;

	state = kzalloc(sizeof(*state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;

1028 1029
	intel_atomic_global_obj_init(dev_priv, &dev_priv->bw_obj,
				     &state->base, &intel_bw_funcs);
1030 1031 1032

	return 0;
}