intel_bw.c 27.0 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2019 Intel Corporation
 */

#include <drm/drm_atomic_state_helper.h>

8
#include "i915_reg.h"
9
#include "intel_atomic.h"
10
#include "intel_bw.h"
11
#include "intel_cdclk.h"
12
#include "intel_display_types.h"
13
#include "intel_pcode.h"
14
#include "intel_pm.h"
15 16 17 18 19 20

/* Parameters for Qclk Geyserville (QGV) */
struct intel_qgv_point {
	u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd;
};

21 22 23 24
struct intel_psf_gv_point {
	u8 clk; /* clock in multiples of 16.6666 MHz */
};

25
struct intel_qgv_info {
26
	struct intel_qgv_point points[I915_NUM_QGV_POINTS];
27
	struct intel_psf_gv_point psf_points[I915_NUM_PSF_GV_POINTS];
28
	u8 num_points;
29
	u8 num_psf_points;
30
	u8 t_bl;
31 32 33
	u8 max_numchannels;
	u8 channel_width;
	u8 deinterleave;
34 35
};

36 37 38 39 40 41 42 43 44 45 46 47 48
static int dg1_mchbar_read_qgv_point_info(struct drm_i915_private *dev_priv,
					  struct intel_qgv_point *sp,
					  int point)
{
	u32 dclk_ratio, dclk_reference;
	u32 val;

	val = intel_uncore_read(&dev_priv->uncore, SA_PERF_STATUS_0_0_0_MCHBAR_PC);
	dclk_ratio = REG_FIELD_GET(DG1_QCLK_RATIO_MASK, val);
	if (val & DG1_QCLK_REFERENCE)
		dclk_reference = 6; /* 6 * 16.666 MHz = 100 MHz */
	else
		dclk_reference = 8; /* 8 * 16.666 MHz = 133 MHz */
49
	sp->dclk = DIV_ROUND_UP((16667 * dclk_ratio * dclk_reference) + 500, 1000);
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

	val = intel_uncore_read(&dev_priv->uncore, SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
	if (val & DG1_GEAR_TYPE)
		sp->dclk *= 2;

	if (sp->dclk == 0)
		return -EINVAL;

	val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR);
	sp->t_rp = REG_FIELD_GET(DG1_DRAM_T_RP_MASK, val);
	sp->t_rdpre = REG_FIELD_GET(DG1_DRAM_T_RDPRE_MASK, val);

	val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR_HIGH);
	sp->t_rcd = REG_FIELD_GET(DG1_DRAM_T_RCD_MASK, val);
	sp->t_ras = REG_FIELD_GET(DG1_DRAM_T_RAS_MASK, val);

	sp->t_rc = sp->t_rp + sp->t_ras;

	return 0;
}

71 72 73 74
static int icl_pcode_read_qgv_point_info(struct drm_i915_private *dev_priv,
					 struct intel_qgv_point *sp,
					 int point)
{
75
	u32 val = 0, val2 = 0;
76
	u16 dclk;
77 78
	int ret;

79 80 81
	ret = snb_pcode_read(dev_priv, ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
			     ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point),
			     &val, &val2);
82 83 84
	if (ret)
		return ret;

85 86
	dclk = val & 0xffff;
	sp->dclk = DIV_ROUND_UP((16667 * dclk) + (DISPLAY_VER(dev_priv) > 11 ? 500 : 0), 1000);
87 88 89 90 91 92 93 94 95 96 97
	sp->t_rp = (val & 0xff0000) >> 16;
	sp->t_rcd = (val & 0xff000000) >> 24;

	sp->t_rdpre = val2 & 0xff;
	sp->t_ras = (val2 & 0xff00) >> 8;

	sp->t_rc = sp->t_rp + sp->t_ras;

	return 0;
}

98 99 100 101 102 103 104
static int adls_pcode_read_psf_gv_point_info(struct drm_i915_private *dev_priv,
					    struct intel_psf_gv_point *points)
{
	u32 val = 0;
	int ret;
	int i;

105 106
	ret = snb_pcode_read(dev_priv, ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
			     ADL_PCODE_MEM_SS_READ_PSF_GV_INFO, &val, NULL);
107 108 109 110 111 112 113 114 115 116 117
	if (ret)
		return ret;

	for (i = 0; i < I915_NUM_PSF_GV_POINTS; i++) {
		points[i].clk = val & 0xff;
		val >>= 8;
	}

	return 0;
}

118 119 120 121 122 123 124 125 126 127 128 129 130
int icl_pcode_restrict_qgv_points(struct drm_i915_private *dev_priv,
				  u32 points_mask)
{
	int ret;

	/* bspec says to keep retrying for at least 1 ms */
	ret = skl_pcode_request(dev_priv, ICL_PCODE_SAGV_DE_MEM_SS_CONFIG,
				points_mask,
				ICL_PCODE_POINTS_RESTRICTED_MASK,
				ICL_PCODE_POINTS_RESTRICTED,
				1);

	if (ret < 0) {
131
		drm_err(&dev_priv->drm, "Failed to disable qgv points (%d) points: 0x%x\n", ret, points_mask);
132 133 134 135 136 137
		return ret;
	}

	return 0;
}

138
static int icl_get_qgv_points(struct drm_i915_private *dev_priv,
139 140
			      struct intel_qgv_info *qi,
			      bool is_y_tile)
141
{
142
	const struct dram_info *dram_info = &dev_priv->dram_info;
143 144
	int i, ret;

145
	qi->num_points = dram_info->num_qgv_points;
146
	qi->num_psf_points = dram_info->num_psf_gv_points;
147

148
	if (DISPLAY_VER(dev_priv) >= 12)
149 150
		switch (dram_info->type) {
		case INTEL_DRAM_DDR4:
151 152 153 154
			qi->t_bl = is_y_tile ? 8 : 4;
			qi->max_numchannels = 2;
			qi->channel_width = 64;
			qi->deinterleave = is_y_tile ? 1 : 2;
155 156
			break;
		case INTEL_DRAM_DDR5:
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
			qi->t_bl = is_y_tile ? 16 : 8;
			qi->max_numchannels = 4;
			qi->channel_width = 32;
			qi->deinterleave = is_y_tile ? 1 : 2;
			break;
		case INTEL_DRAM_LPDDR4:
			if (IS_ROCKETLAKE(dev_priv)) {
				qi->t_bl = 8;
				qi->max_numchannels = 4;
				qi->channel_width = 32;
				qi->deinterleave = 2;
				break;
			}
			fallthrough;
		case INTEL_DRAM_LPDDR5:
			qi->t_bl = 16;
			qi->max_numchannels = 8;
			qi->channel_width = 16;
			qi->deinterleave = is_y_tile ? 2 : 4;
176 177 178
			break;
		default:
			qi->t_bl = 16;
179
			qi->max_numchannels = 1;
180 181
			break;
		}
182
	else if (DISPLAY_VER(dev_priv) == 11) {
183
		qi->t_bl = dev_priv->dram_info.type == INTEL_DRAM_DDR4 ? 4 : 8;
184 185
		qi->max_numchannels = 1;
	}
186

187 188
	if (drm_WARN_ON(&dev_priv->drm,
			qi->num_points > ARRAY_SIZE(qi->points)))
189 190 191 192 193
		qi->num_points = ARRAY_SIZE(qi->points);

	for (i = 0; i < qi->num_points; i++) {
		struct intel_qgv_point *sp = &qi->points[i];

194 195 196 197 198
		if (IS_DG1(dev_priv))
			ret = dg1_mchbar_read_qgv_point_info(dev_priv, sp, i);
		else
			ret = icl_pcode_read_qgv_point_info(dev_priv, sp, i);

199 200 201
		if (ret)
			return ret;

202 203 204 205
		drm_dbg_kms(&dev_priv->drm,
			    "QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n",
			    i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras,
			    sp->t_rcd, sp->t_rc);
206 207
	}

208 209 210 211 212 213 214 215 216 217 218 219 220
	if (qi->num_psf_points > 0) {
		ret = adls_pcode_read_psf_gv_point_info(dev_priv, qi->psf_points);
		if (ret) {
			drm_err(&dev_priv->drm, "Failed to read PSF point data; PSF points will not be considered in bandwidth calculations.\n");
			qi->num_psf_points = 0;
		}

		for (i = 0; i < qi->num_psf_points; i++)
			drm_dbg_kms(&dev_priv->drm,
				    "PSF GV %d: CLK=%d \n",
				    i, qi->psf_points[i].clk);
	}

221 222 223
	return 0;
}

224 225 226 227 228 229 230 231 232 233
static int adl_calc_psf_bw(int clk)
{
	/*
	 * clk is multiples of 16.666MHz (100/6)
	 * According to BSpec PSF GV bandwidth is
	 * calculated as BW = 64 * clk * 16.666Mhz
	 */
	return DIV_ROUND_CLOSEST(64 * clk * 100, 6);
}

234 235 236 237 238 239 240 241 242 243 244 245
static int icl_sagv_max_dclk(const struct intel_qgv_info *qi)
{
	u16 dclk = 0;
	int i;

	for (i = 0; i < qi->num_points; i++)
		dclk = max(dclk, qi->points[i].dclk);

	return dclk;
}

struct intel_sa_info {
246
	u16 displayrtids;
247
	u8 deburst, deprogbwlimit, derating;
248 249 250 251 252 253
};

static const struct intel_sa_info icl_sa_info = {
	.deburst = 8,
	.deprogbwlimit = 25, /* GB/s */
	.displayrtids = 128,
254
	.derating = 10,
255 256
};

257 258 259 260
static const struct intel_sa_info tgl_sa_info = {
	.deburst = 16,
	.deprogbwlimit = 34, /* GB/s */
	.displayrtids = 256,
261
	.derating = 10,
262 263
};

264
static const struct intel_sa_info rkl_sa_info = {
265
	.deburst = 8,
266 267
	.deprogbwlimit = 20, /* GB/s */
	.displayrtids = 128,
268
	.derating = 10,
269 270
};

271 272 273 274
static const struct intel_sa_info adls_sa_info = {
	.deburst = 16,
	.deprogbwlimit = 38, /* GB/s */
	.displayrtids = 256,
275 276 277 278 279 280 281 282
	.derating = 10,
};

static const struct intel_sa_info adlp_sa_info = {
	.deburst = 16,
	.deprogbwlimit = 38, /* GB/s */
	.displayrtids = 256,
	.derating = 20,
283 284
};

285
static int icl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
286 287 288
{
	struct intel_qgv_info qi = {};
	bool is_y_tile = true; /* assume y tile may be used */
289
	int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels);
290
	int ipqdepth, ipqdepthpch = 16;
291 292
	int dclk_max;
	int maxdebw;
293
	int num_groups = ARRAY_SIZE(dev_priv->max_bw);
294 295
	int i, ret;

296
	ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile);
297
	if (ret) {
298 299
		drm_dbg_kms(&dev_priv->drm,
			    "Failed to get memory subsystem information, ignoring bandwidth limits");
300 301 302 303
		return ret;
	}

	dclk_max = icl_sagv_max_dclk(&qi);
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
	maxdebw = min(sa->deprogbwlimit * 1000, dclk_max * 16 * 6 / 10);
	ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
	qi.deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);

	for (i = 0; i < num_groups; i++) {
		struct intel_bw_info *bi = &dev_priv->max_bw[i];
		int clpchgroup;
		int j;

		clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i;
		bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1;

		bi->num_qgv_points = qi.num_points;
		bi->num_psf_gv_points = qi.num_psf_points;

		for (j = 0; j < qi.num_points; j++) {
			const struct intel_qgv_point *sp = &qi.points[j];
			int ct, bw;

			/*
			 * Max row cycle time
			 *
			 * FIXME what is the logic behind the
			 * assumed burst length?
			 */
			ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
				   (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
			bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct);
332

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
			bi->deratedbw[j] = min(maxdebw,
					       bw * (100 - sa->derating) / 100);

			drm_dbg_kms(&dev_priv->drm,
				    "BW%d / QGV %d: num_planes=%d deratedbw=%u\n",
				    i, j, bi->num_planes, bi->deratedbw[j]);
		}
	}
	/*
	 * In case if SAGV is disabled in BIOS, we always get 1
	 * SAGV point, but we can't send PCode commands to restrict it
	 * as it will fail and pointless anyway.
	 */
	if (qi.num_points == 1)
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
	else
		dev_priv->sagv_status = I915_SAGV_ENABLED;

	return 0;
}

static int tgl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
{
	struct intel_qgv_info qi = {};
	const struct dram_info *dram_info = &dev_priv->dram_info;
	bool is_y_tile = true; /* assume y tile may be used */
	int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels);
	int ipqdepth, ipqdepthpch = 16;
	int dclk_max;
	int maxdebw, peakbw;
	int clperchgroup;
	int num_groups = ARRAY_SIZE(dev_priv->max_bw);
	int i, ret;

	ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile);
	if (ret) {
		drm_dbg_kms(&dev_priv->drm,
			    "Failed to get memory subsystem information, ignoring bandwidth limits");
		return ret;
	}

	if (dram_info->type == INTEL_DRAM_LPDDR4 || dram_info->type == INTEL_DRAM_LPDDR5)
		num_channels *= 2;

	qi.deinterleave = qi.deinterleave ? : DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);

	if (num_channels < qi.max_numchannels && DISPLAY_VER(dev_priv) >= 12)
		qi.deinterleave = max(DIV_ROUND_UP(qi.deinterleave, 2), 1);

	if (DISPLAY_VER(dev_priv) > 11 && num_channels > qi.max_numchannels)
		drm_warn(&dev_priv->drm, "Number of channels exceeds max number of channels.");
	if (qi.max_numchannels != 0)
		num_channels = min_t(u8, num_channels, qi.max_numchannels);

	dclk_max = icl_sagv_max_dclk(&qi);

	peakbw = num_channels * DIV_ROUND_UP(qi.channel_width, 8) * dclk_max;
	maxdebw = min(sa->deprogbwlimit * 1000, peakbw * 6 / 10); /* 60% */
391 392

	ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
393 394 395 396 397
	/*
	 * clperchgroup = 4kpagespermempage * clperchperblock,
	 * clperchperblock = 8 / num_channels * interleave
	 */
	clperchgroup = 4 * DIV_ROUND_UP(8, num_channels) * qi.deinterleave;
398

399
	for (i = 0; i < num_groups; i++) {
400
		struct intel_bw_info *bi = &dev_priv->max_bw[i];
401
		struct intel_bw_info *bi_next;
402 403 404
		int clpchgroup;
		int j;

405 406 407 408 409 410 411 412 413
		if (i < num_groups - 1)
			bi_next = &dev_priv->max_bw[i + 1];

		clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i;

		if (i < num_groups - 1 && clpchgroup < clperchgroup)
			bi_next->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1;
		else
			bi_next->num_planes = 0;
414

415
		bi->num_qgv_points = qi.num_points;
416
		bi->num_psf_gv_points = qi.num_psf_points;
417

418 419 420 421 422 423 424 425 426 427 428 429
		for (j = 0; j < qi.num_points; j++) {
			const struct intel_qgv_point *sp = &qi.points[j];
			int ct, bw;

			/*
			 * Max row cycle time
			 *
			 * FIXME what is the logic behind the
			 * assumed burst length?
			 */
			ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
				   (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
430
			bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct);
431 432

			bi->deratedbw[j] = min(maxdebw,
433
					       bw * (100 - sa->derating) / 100);
434

435 436 437
			drm_dbg_kms(&dev_priv->drm,
				    "BW%d / QGV %d: num_planes=%d deratedbw=%u\n",
				    i, j, bi->num_planes, bi->deratedbw[j]);
438 439
		}

440 441 442 443 444 445 446 447 448
		for (j = 0; j < qi.num_psf_points; j++) {
			const struct intel_psf_gv_point *sp = &qi.psf_points[j];

			bi->psf_bw[j] = adl_calc_psf_bw(sp->clk);

			drm_dbg_kms(&dev_priv->drm,
				    "BW%d / PSF GV %d: num_planes=%d bw=%u\n",
				    i, j, bi->num_planes, bi->psf_bw[j]);
		}
449 450
	}

451 452 453 454 455 456 457 458 459 460
	/*
	 * In case if SAGV is disabled in BIOS, we always get 1
	 * SAGV point, but we can't send PCode commands to restrict it
	 * as it will fail and pointless anyway.
	 */
	if (qi.num_points == 1)
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
	else
		dev_priv->sagv_status = I915_SAGV_ENABLED;

461 462 463
	return 0;
}

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
static void dg2_get_bw_info(struct drm_i915_private *i915)
{
	struct intel_bw_info *bi = &i915->max_bw[0];

	/*
	 * DG2 doesn't have SAGV or QGV points, just a constant max bandwidth
	 * that doesn't depend on the number of planes enabled.  Create a
	 * single dummy QGV point to reflect that.  DG2-G10 platforms have a
	 * constant 50 GB/s bandwidth, whereas DG2-G11 platforms have 38 GB/s.
	 */
	bi->num_planes = 1;
	bi->num_qgv_points = 1;
	if (IS_DG2_G11(i915))
		bi->deratedbw[0] = 38000;
	else
		bi->deratedbw[0] = 50000;

	i915->sagv_status = I915_SAGV_NOT_CONTROLLED;
}

484 485 486 487 488
static unsigned int icl_max_bw(struct drm_i915_private *dev_priv,
			       int num_planes, int qgv_point)
{
	int i;

489 490 491 492 493
	/*
	 * Let's return max bw for 0 planes
	 */
	num_planes = max(1, num_planes);

494 495 496 497
	for (i = 0; i < ARRAY_SIZE(dev_priv->max_bw); i++) {
		const struct intel_bw_info *bi =
			&dev_priv->max_bw[i];

498 499 500 501 502 503 504
		/*
		 * Pcode will not expose all QGV points when
		 * SAGV is forced to off/min/med/max.
		 */
		if (qgv_point >= bi->num_qgv_points)
			return UINT_MAX;

505 506 507 508 509 510 511
		if (num_planes >= bi->num_planes)
			return bi->deratedbw[qgv_point];
	}

	return 0;
}

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
static unsigned int tgl_max_bw(struct drm_i915_private *dev_priv,
			       int num_planes, int qgv_point)
{
	int i;

	/*
	 * Let's return max bw for 0 planes
	 */
	num_planes = max(1, num_planes);

	for (i = ARRAY_SIZE(dev_priv->max_bw) - 1; i >= 0; i--) {
		const struct intel_bw_info *bi =
			&dev_priv->max_bw[i];

		/*
		 * Pcode will not expose all QGV points when
		 * SAGV is forced to off/min/med/max.
		 */
		if (qgv_point >= bi->num_qgv_points)
			return UINT_MAX;

		if (num_planes <= bi->num_planes)
			return bi->deratedbw[qgv_point];
	}

	return dev_priv->max_bw[0].deratedbw[qgv_point];
}

540 541 542 543 544 545 546 547 548
static unsigned int adl_psf_bw(struct drm_i915_private *dev_priv,
			       int psf_gv_point)
{
	const struct intel_bw_info *bi =
			&dev_priv->max_bw[0];

	return bi->psf_bw[psf_gv_point];
}

549 550
void intel_bw_init_hw(struct drm_i915_private *dev_priv)
{
551 552 553
	if (!HAS_DISPLAY(dev_priv))
		return;

554 555
	if (IS_DG2(dev_priv))
		dg2_get_bw_info(dev_priv);
556
	else if (IS_ALDERLAKE_P(dev_priv))
557
		tgl_get_bw_info(dev_priv, &adlp_sa_info);
558
	else if (IS_ALDERLAKE_S(dev_priv))
559
		tgl_get_bw_info(dev_priv, &adls_sa_info);
560
	else if (IS_ROCKETLAKE(dev_priv))
561
		tgl_get_bw_info(dev_priv, &rkl_sa_info);
562
	else if (DISPLAY_VER(dev_priv) == 12)
563
		tgl_get_bw_info(dev_priv, &tgl_sa_info);
564
	else if (DISPLAY_VER(dev_priv) == 11)
565
		icl_get_bw_info(dev_priv, &icl_sa_info);
566 567 568 569 570 571 572 573 574 575 576 577 578
}

static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state)
{
	/*
	 * We assume cursors are small enough
	 * to not not cause bandwidth problems.
	 */
	return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR));
}

static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state)
{
579
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
	unsigned int data_rate = 0;
	enum plane_id plane_id;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		/*
		 * We assume cursors are small enough
		 * to not not cause bandwidth problems.
		 */
		if (plane_id == PLANE_CURSOR)
			continue;

		data_rate += crtc_state->data_rate[plane_id];
	}

	return data_rate;
}
596

597 598 599
void intel_bw_crtc_update(struct intel_bw_state *bw_state,
			  const struct intel_crtc_state *crtc_state)
{
600
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
601
	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
602 603 604 605 606 607

	bw_state->data_rate[crtc->pipe] =
		intel_bw_crtc_data_rate(crtc_state);
	bw_state->num_active_planes[crtc->pipe] =
		intel_bw_crtc_num_active_planes(crtc_state);

608 609 610 611
	drm_dbg_kms(&i915->drm, "pipe %c data rate %u num active planes %u\n",
		    pipe_name(crtc->pipe),
		    bw_state->data_rate[crtc->pipe],
		    bw_state->num_active_planes[crtc->pipe]);
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
}

static unsigned int intel_bw_num_active_planes(struct drm_i915_private *dev_priv,
					       const struct intel_bw_state *bw_state)
{
	unsigned int num_active_planes = 0;
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		num_active_planes += bw_state->num_active_planes[pipe];

	return num_active_planes;
}

static unsigned int intel_bw_data_rate(struct drm_i915_private *dev_priv,
				       const struct intel_bw_state *bw_state)
{
	unsigned int data_rate = 0;
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		data_rate += bw_state->data_rate[pipe];

635
	if (DISPLAY_VER(dev_priv) >= 13 && intel_vtd_active(dev_priv))
636 637
		data_rate = data_rate * 105 / 100;

638 639 640
	return data_rate;
}

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
struct intel_bw_state *
intel_atomic_get_old_bw_state(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_global_state *bw_state;

	bw_state = intel_atomic_get_old_global_obj_state(state, &dev_priv->bw_obj);

	return to_intel_bw_state(bw_state);
}

struct intel_bw_state *
intel_atomic_get_new_bw_state(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_global_state *bw_state;

	bw_state = intel_atomic_get_new_global_obj_state(state, &dev_priv->bw_obj);

	return to_intel_bw_state(bw_state);
}

struct intel_bw_state *
664 665 666
intel_atomic_get_bw_state(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
667
	struct intel_global_state *bw_state;
668

669
	bw_state = intel_atomic_get_global_obj_state(state, &dev_priv->bw_obj);
670 671 672 673 674 675
	if (IS_ERR(bw_state))
		return ERR_CAST(bw_state);

	return to_intel_bw_state(bw_state);
}

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
static void skl_crtc_calc_dbuf_bw(struct intel_bw_state *bw_state,
				  const struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
	struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[crtc->pipe];
	enum plane_id plane_id;

	memset(&crtc_bw->used_bw, 0, sizeof(crtc_bw->used_bw));

	if (!crtc_state->hw.active)
		return;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		const struct skl_ddb_entry *ddb_y =
			&crtc_state->wm.skl.plane_ddb_y[plane_id];
		const struct skl_ddb_entry *ddb_uv =
			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
		unsigned int data_rate = crtc_state->data_rate[plane_id];
		unsigned int dbuf_mask = 0;
		enum dbuf_slice slice;

		dbuf_mask |= skl_ddb_dbuf_slice_mask(i915, ddb_y);
		dbuf_mask |= skl_ddb_dbuf_slice_mask(i915, ddb_uv);

		/*
		 * FIXME: To calculate that more properly we probably
		 * need to split per plane data_rate into data_rate_y
		 * and data_rate_uv for multiplanar formats in order not
		 * to get accounted those twice if they happen to reside
		 * on different slices.
		 * However for pre-icl this would work anyway because
		 * we have only single slice and for icl+ uv plane has
		 * non-zero data rate.
		 * So in worst case those calculation are a bit
		 * pessimistic, which shouldn't pose any significant
		 * problem anyway.
		 */
		for_each_dbuf_slice_in_mask(i915, slice, dbuf_mask)
			crtc_bw->used_bw[slice] += data_rate;
	}
}

719 720 721
int skl_bw_calc_min_cdclk(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
722 723
	struct intel_bw_state *new_bw_state = NULL;
	struct intel_bw_state *old_bw_state = NULL;
724 725 726
	const struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int max_bw = 0;
727
	enum pipe pipe;
728
	int i;
729 730 731 732 733 734

	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
		new_bw_state = intel_atomic_get_bw_state(state);
		if (IS_ERR(new_bw_state))
			return PTR_ERR(new_bw_state);

735 736
		old_bw_state = intel_atomic_get_old_bw_state(state);

737
		skl_crtc_calc_dbuf_bw(new_bw_state, crtc_state);
738 739 740 741 742 743 744
	}

	if (!old_bw_state)
		return 0;

	for_each_pipe(dev_priv, pipe) {
		struct intel_dbuf_bw *crtc_bw;
745
		enum dbuf_slice slice;
746 747

		crtc_bw = &new_bw_state->dbuf_bw[pipe];
748

749
		for_each_dbuf_slice(dev_priv, slice) {
750
			/*
751 752 753 754 755 756
			 * Current experimental observations show that contrary
			 * to BSpec we get underruns once we exceed 64 * CDCLK
			 * for slices in total.
			 * As a temporary measure in order not to keep CDCLK
			 * bumped up all the time we calculate CDCLK according
			 * to this formula for  overall bw consumed by slices.
757
			 */
758
			max_bw += crtc_bw->used_bw[slice];
759 760 761
		}
	}

762
	new_bw_state->min_cdclk = max_bw / 64;
763 764 765 766 767 768 769 770 771 772 773 774 775

	if (new_bw_state->min_cdclk != old_bw_state->min_cdclk) {
		int ret = intel_atomic_lock_global_state(&new_bw_state->base);

		if (ret)
			return ret;
	}

	return 0;
}

int intel_bw_calc_min_cdclk(struct intel_atomic_state *state)
{
776 777 778
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_bw_state *new_bw_state = NULL;
	struct intel_bw_state *old_bw_state = NULL;
779 780 781
	const struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int min_cdclk = 0;
782 783
	enum pipe pipe;
	int i;
784 785 786 787 788 789 790 791 792 793 794 795

	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
		new_bw_state = intel_atomic_get_bw_state(state);
		if (IS_ERR(new_bw_state))
			return PTR_ERR(new_bw_state);

		old_bw_state = intel_atomic_get_old_bw_state(state);
	}

	if (!old_bw_state)
		return 0;

796 797 798 799 800 801 802 803 804 805 806 807
	for_each_pipe(dev_priv, pipe) {
		struct intel_cdclk_state *cdclk_state;

		cdclk_state = intel_atomic_get_new_cdclk_state(state);
		if (!cdclk_state)
			return 0;

		min_cdclk = max(cdclk_state->min_cdclk[pipe], min_cdclk);
	}

	new_bw_state->min_cdclk = min_cdclk;

808 809 810 811 812 813 814 815 816 817
	if (new_bw_state->min_cdclk != old_bw_state->min_cdclk) {
		int ret = intel_atomic_lock_global_state(&new_bw_state->base);

		if (ret)
			return ret;
	}

	return 0;
}

818 819 820 821
int intel_bw_atomic_check(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc_state *new_crtc_state, *old_crtc_state;
822
	struct intel_bw_state *new_bw_state = NULL;
823 824
	const struct intel_bw_state *old_bw_state = NULL;
	unsigned int data_rate;
825 826
	unsigned int num_active_planes;
	struct intel_crtc *crtc;
827
	int i, ret;
828 829 830
	u32 allowed_points = 0;
	unsigned int max_bw_point = 0, max_bw = 0;
	unsigned int num_qgv_points = dev_priv->max_bw[0].num_qgv_points;
831 832
	unsigned int num_psf_gv_points = dev_priv->max_bw[0].num_psf_gv_points;
	u32 mask = 0;
833 834

	/* FIXME earlier gens need some checks too */
835
	if (DISPLAY_VER(dev_priv) < 11)
836 837
		return 0;

838 839 840 841 842 843 844 845 846 847 848
	/*
	 * We can _not_ use the whole ADLS_QGV_PT_MASK here, as PCode rejects
	 * it with failure if we try masking any unadvertised points.
	 * So need to operate only with those returned from PCode.
	 */
	if (num_qgv_points > 0)
		mask |= REG_GENMASK(num_qgv_points - 1, 0);

	if (num_psf_gv_points > 0)
		mask |= REG_GENMASK(num_psf_gv_points - 1, 0) << ADLS_PSF_PT_SHIFT;

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
		unsigned int old_data_rate =
			intel_bw_crtc_data_rate(old_crtc_state);
		unsigned int new_data_rate =
			intel_bw_crtc_data_rate(new_crtc_state);
		unsigned int old_active_planes =
			intel_bw_crtc_num_active_planes(old_crtc_state);
		unsigned int new_active_planes =
			intel_bw_crtc_num_active_planes(new_crtc_state);

		/*
		 * Avoid locking the bw state when
		 * nothing significant has changed.
		 */
		if (old_data_rate == new_data_rate &&
		    old_active_planes == new_active_planes)
			continue;

868 869 870
		new_bw_state = intel_atomic_get_bw_state(state);
		if (IS_ERR(new_bw_state))
			return PTR_ERR(new_bw_state);
871

872 873
		new_bw_state->data_rate[crtc->pipe] = new_data_rate;
		new_bw_state->num_active_planes[crtc->pipe] = new_active_planes;
874

875 876 877
		drm_dbg_kms(&dev_priv->drm,
			    "pipe %c data rate %u num active planes %u\n",
			    pipe_name(crtc->pipe),
878 879
			    new_bw_state->data_rate[crtc->pipe],
			    new_bw_state->num_active_planes[crtc->pipe]);
880 881
	}

882
	if (!new_bw_state)
883 884
		return 0;

885
	ret = intel_atomic_lock_global_state(&new_bw_state->base);
886 887 888
	if (ret)
		return ret;

889
	data_rate = intel_bw_data_rate(dev_priv, new_bw_state);
890 891
	data_rate = DIV_ROUND_UP(data_rate, 1000);

892
	num_active_planes = intel_bw_num_active_planes(dev_priv, new_bw_state);
893

894 895
	for (i = 0; i < num_qgv_points; i++) {
		unsigned int max_data_rate;
896

897 898 899 900
		if (DISPLAY_VER(dev_priv) > 11)
			max_data_rate = tgl_max_bw(dev_priv, num_active_planes, i);
		else
			max_data_rate = icl_max_bw(dev_priv, num_active_planes, i);
901 902 903 904 905 906 907 908 909 910 911 912 913
		/*
		 * We need to know which qgv point gives us
		 * maximum bandwidth in order to disable SAGV
		 * if we find that we exceed SAGV block time
		 * with watermarks. By that moment we already
		 * have those, as it is calculated earlier in
		 * intel_atomic_check,
		 */
		if (max_data_rate > max_bw) {
			max_bw_point = i;
			max_bw = max_data_rate;
		}
		if (max_data_rate >= data_rate)
914 915
			allowed_points |= REG_FIELD_PREP(ADLS_QGV_PT_MASK, BIT(i));

916 917 918
		drm_dbg_kms(&dev_priv->drm, "QGV point %d: max bw %d required %d\n",
			    i, max_data_rate, data_rate);
	}
919

920 921 922 923 924 925 926 927 928 929 930
	for (i = 0; i < num_psf_gv_points; i++) {
		unsigned int max_data_rate = adl_psf_bw(dev_priv, i);

		if (max_data_rate >= data_rate)
			allowed_points |= REG_FIELD_PREP(ADLS_PSF_PT_MASK, BIT(i));

		drm_dbg_kms(&dev_priv->drm, "PSF GV point %d: max bw %d"
			    " required %d\n",
			    i, max_data_rate, data_rate);
	}

931 932 933 934 935
	/*
	 * BSpec states that we always should have at least one allowed point
	 * left, so if we couldn't - simply reject the configuration for obvious
	 * reasons.
	 */
936
	if ((allowed_points & ADLS_QGV_PT_MASK) == 0) {
937 938 939
		drm_dbg_kms(&dev_priv->drm, "No QGV points provide sufficient memory"
			    " bandwidth %d for display configuration(%d active planes).\n",
			    data_rate, num_active_planes);
940 941 942
		return -EINVAL;
	}

943 944 945 946 947 948 949 950 951
	if (num_psf_gv_points > 0) {
		if ((allowed_points & ADLS_PSF_PT_MASK) == 0) {
			drm_dbg_kms(&dev_priv->drm, "No PSF GV points provide sufficient memory"
				    " bandwidth %d for display configuration(%d active planes).\n",
				    data_rate, num_active_planes);
			return -EINVAL;
		}
	}

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
	/*
	 * Leave only single point with highest bandwidth, if
	 * we can't enable SAGV due to the increased memory latency it may
	 * cause.
	 */
	if (!intel_can_enable_sagv(dev_priv, new_bw_state)) {
		allowed_points = BIT(max_bw_point);
		drm_dbg_kms(&dev_priv->drm, "No SAGV, using single QGV point %d\n",
			    max_bw_point);
	}
	/*
	 * We store the ones which need to be masked as that is what PCode
	 * actually accepts as a parameter.
	 */
	new_bw_state->qgv_points_mask = ~allowed_points & mask;

	old_bw_state = intel_atomic_get_old_bw_state(state);
	/*
	 * If the actual mask had changed we need to make sure that
	 * the commits are serialized(in case this is a nomodeset, nonblocking)
	 */
	if (new_bw_state->qgv_points_mask != old_bw_state->qgv_points_mask) {
		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	}

979 980 981
	return 0;
}

982 983
static struct intel_global_state *
intel_bw_duplicate_state(struct intel_global_obj *obj)
984 985 986 987 988 989 990 991 992 993
{
	struct intel_bw_state *state;

	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
	if (!state)
		return NULL;

	return &state->base;
}

994 995
static void intel_bw_destroy_state(struct intel_global_obj *obj,
				   struct intel_global_state *state)
996 997 998 999
{
	kfree(state);
}

1000
static const struct intel_global_state_funcs intel_bw_funcs = {
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	.atomic_duplicate_state = intel_bw_duplicate_state,
	.atomic_destroy_state = intel_bw_destroy_state,
};

int intel_bw_init(struct drm_i915_private *dev_priv)
{
	struct intel_bw_state *state;

	state = kzalloc(sizeof(*state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;

1013 1014
	intel_atomic_global_obj_init(dev_priv, &dev_priv->bw_obj,
				     &state->base, &intel_bw_funcs);
1015 1016 1017

	return 0;
}