mips.c 41.5 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * KVM/MIPS: MIPS specific KVM APIs
 *
 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10
 */
11

J
James Hogan 已提交
12
#include <linux/bitops.h>
13 14
#include <linux/errno.h>
#include <linux/err.h>
15
#include <linux/kdebug.h>
16
#include <linux/module.h>
17
#include <linux/uaccess.h>
18
#include <linux/vmalloc.h>
19
#include <linux/sched/signal.h>
20 21
#include <linux/fs.h>
#include <linux/bootmem.h>
22

23
#include <asm/fpu.h>
24 25 26
#include <asm/page.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>
27
#include <asm/pgalloc.h>
28
#include <asm/pgtable.h>
29 30 31

#include <linux/kvm_host.h>

32 33
#include "interrupt.h"
#include "commpage.h"
34 35 36 37 38 39 40 41

#define CREATE_TRACE_POINTS
#include "trace.h"

#ifndef VECTORSPACING
#define VECTORSPACING 0x100	/* for EI/VI mode */
#endif

42
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
43
struct kvm_stats_debugfs_item debugfs_entries[] = {
44 45 46 47 48 49 50 51 52 53 54 55 56
	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU },
	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU },
	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU },
	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU },
	{ "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU },
	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU },
	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU },
	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU },
	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU },
	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU },
	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU },
	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU },
57
	{ "trap_inst",	  VCPU_STAT(trap_inst_exits),	 KVM_STAT_VCPU },
58
	{ "msa_fpe",	  VCPU_STAT(msa_fpe_exits),	 KVM_STAT_VCPU },
59
	{ "fpe",	  VCPU_STAT(fpe_exits),		 KVM_STAT_VCPU },
60
	{ "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
61
	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
62 63 64 65 66 67 68 69 70 71
#ifdef CONFIG_KVM_MIPS_VZ
	{ "vz_gpsi",	  VCPU_STAT(vz_gpsi_exits),	 KVM_STAT_VCPU },
	{ "vz_gsfc",	  VCPU_STAT(vz_gsfc_exits),	 KVM_STAT_VCPU },
	{ "vz_hc",	  VCPU_STAT(vz_hc_exits),	 KVM_STAT_VCPU },
	{ "vz_grr",	  VCPU_STAT(vz_grr_exits),	 KVM_STAT_VCPU },
	{ "vz_gva",	  VCPU_STAT(vz_gva_exits),	 KVM_STAT_VCPU },
	{ "vz_ghfc",	  VCPU_STAT(vz_ghfc_exits),	 KVM_STAT_VCPU },
	{ "vz_gpa",	  VCPU_STAT(vz_gpa_exits),	 KVM_STAT_VCPU },
	{ "vz_resvd",	  VCPU_STAT(vz_resvd_exits),	 KVM_STAT_VCPU },
#endif
72
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
73
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
74
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
75
	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU },
76 77 78
	{NULL}
};

79 80 81
/*
 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
 * Config7, so we are "runnable" if interrupts are pending
82 83 84 85 86 87 88 89 90 91 92
 */
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
	return !!(vcpu->arch.pending_exceptions);
}

int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return 1;
}

93
int kvm_arch_hardware_enable(void)
94
{
95 96 97 98 99 100
	return kvm_mips_callbacks->hardware_enable();
}

void kvm_arch_hardware_disable(void)
{
	kvm_mips_callbacks->hardware_disable();
101 102 103 104 105 106 107 108 109
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
110
	*(int *)rtn = 0;
111 112 113 114
}

int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
115 116 117 118 119 120 121 122
	switch (type) {
	case KVM_VM_MIPS_TE:
		break;
	default:
		/* Unsupported KVM type */
		return -EINVAL;
	};

123 124 125 126 127
	/* Allocate page table to map GPA -> RPA */
	kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
	if (!kvm->arch.gpa_mm.pgd)
		return -ENOMEM;

128 129 130
	return 0;
}

131 132 133 134 135 136 137 138 139 140
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
void kvm_mips_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_arch_vcpu_free(vcpu);
	}

	mutex_lock(&kvm->lock);

	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);

	mutex_unlock(&kvm->lock);
}

160 161 162 163 164 165 166
static void kvm_mips_free_gpa_pt(struct kvm *kvm)
{
	/* It should always be safe to remove after flushing the whole range */
	WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
	pgd_free(NULL, kvm->arch.gpa_mm.pgd);
}

167 168 169
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	kvm_mips_free_vcpus(kvm);
170
	kvm_mips_free_gpa_pt(kvm);
171 172
}

173 174
long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
			unsigned long arg)
175
{
176
	return -ENOIOCTLCMD;
177 178
}

179 180
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
181 182 183 184
{
	return 0;
}

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
	/* Flush whole GPA */
	kvm_mips_flush_gpa_pt(kvm, 0, ~0);

	/* Let implementation do the rest */
	kvm_mips_callbacks->flush_shadow_all(kvm);
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
	/*
	 * The slot has been made invalid (ready for moving or deletion), so we
	 * need to ensure that it can no longer be accessed by any guest VCPUs.
	 */

	spin_lock(&kvm->mmu_lock);
	/* Flush slot from GPA */
	kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
			      slot->base_gfn + slot->npages - 1);
	/* Let implementation do the rest */
	kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
	spin_unlock(&kvm->mmu_lock);
}

211
int kvm_arch_prepare_memory_region(struct kvm *kvm,
212
				   struct kvm_memory_slot *memslot,
213
				   const struct kvm_userspace_memory_region *mem,
214
				   enum kvm_mr_change change)
215 216 217 218 219
{
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
220
				   const struct kvm_userspace_memory_region *mem,
221
				   const struct kvm_memory_slot *old,
222
				   const struct kvm_memory_slot *new,
223
				   enum kvm_mr_change change)
224
{
225 226
	int needs_flush;

227 228 229
	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
		  __func__, kvm, mem->slot, mem->guest_phys_addr,
		  mem->memory_size, mem->userspace_addr);
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

	/*
	 * If dirty page logging is enabled, write protect all pages in the slot
	 * ready for dirty logging.
	 *
	 * There is no need to do this in any of the following cases:
	 * CREATE:	No dirty mappings will already exist.
	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
	 *		kvm_arch_flush_shadow_memslot()
	 */
	if (change == KVM_MR_FLAGS_ONLY &&
	    (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
	     new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
		spin_lock(&kvm->mmu_lock);
		/* Write protect GPA page table entries */
		needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
					new->base_gfn + new->npages - 1);
		/* Let implementation do the rest */
		if (needs_flush)
			kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
		spin_unlock(&kvm->mmu_lock);
	}
252 253
}

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
static inline void dump_handler(const char *symbol, void *start, void *end)
{
	u32 *p;

	pr_debug("LEAF(%s)\n", symbol);

	pr_debug("\t.set push\n");
	pr_debug("\t.set noreorder\n");

	for (p = start; p < (u32 *)end; ++p)
		pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);

	pr_debug("\t.set\tpop\n");

	pr_debug("\tEND(%s)\n", symbol);
}

271 272
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
273
	int err, size;
274
	void *gebase, *p, *handler, *refill_start, *refill_end;
275 276 277 278 279 280 281 282 283 284 285 286 287 288
	int i;

	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);

	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);

	if (err)
		goto out_free_cpu;

289
	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
290

291 292
	/*
	 * Allocate space for host mode exception handlers that handle
293 294
	 * guest mode exits
	 */
295
	if (cpu_has_veic || cpu_has_vint)
296
		size = 0x200 + VECTORSPACING * 64;
297
	else
298
		size = 0x4000;
299 300 301 302 303

	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);

	if (!gebase) {
		err = -ENOMEM;
304
		goto out_uninit_cpu;
305
	}
306 307
	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
		  ALIGN(size, PAGE_SIZE), gebase);
308

309 310 311 312 313 314 315 316 317 318 319 320
	/*
	 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
	 * limits us to the low 512MB of physical address space. If the memory
	 * we allocate is out of range, just give up now.
	 */
	if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
		kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
			gebase);
		err = -ENOMEM;
		goto out_free_gebase;
	}

321 322 323
	/* Save new ebase */
	vcpu->arch.guest_ebase = gebase;

324
	/* Build guest exception vectors dynamically in unmapped memory */
325
	handler = gebase + 0x2000;
326

327
	/* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
328
	refill_start = gebase;
329 330
	if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
		refill_start += 0x080;
331
	refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
332 333

	/* General Exception Entry point */
334
	kvm_mips_build_exception(gebase + 0x180, handler);
335 336 337 338 339

	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
	for (i = 0; i < 8; i++) {
		kvm_debug("L1 Vectored handler @ %p\n",
			  gebase + 0x200 + (i * VECTORSPACING));
340 341
		kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
					 handler);
342 343
	}

344
	/* General exit handler */
345
	p = handler;
346 347 348 349 350
	p = kvm_mips_build_exit(p);

	/* Guest entry routine */
	vcpu->arch.vcpu_run = p;
	p = kvm_mips_build_vcpu_run(p);
351

352 353 354 355 356
	/* Dump the generated code */
	pr_debug("#include <asm/asm.h>\n");
	pr_debug("#include <asm/regdef.h>\n");
	pr_debug("\n");
	dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
357
	dump_handler("kvm_tlb_refill", refill_start, refill_end);
358 359 360
	dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
	dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);

361
	/* Invalidate the icache for these ranges */
362 363
	flush_icache_range((unsigned long)gebase,
			   (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
364

365 366 367 368
	/*
	 * Allocate comm page for guest kernel, a TLB will be reserved for
	 * mapping GVA @ 0xFFFF8000 to this page
	 */
369 370 371 372 373 374 375
	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);

	if (!vcpu->arch.kseg0_commpage) {
		err = -ENOMEM;
		goto out_free_gebase;
	}

376
	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
377 378 379 380 381 382 383 384 385 386
	kvm_mips_commpage_init(vcpu);

	/* Init */
	vcpu->arch.last_sched_cpu = -1;

	return vcpu;

out_free_gebase:
	kfree(gebase);

387 388 389
out_uninit_cpu:
	kvm_vcpu_uninit(vcpu);

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
out_free_cpu:
	kfree(vcpu);

out:
	return ERR_PTR(err);
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
	hrtimer_cancel(&vcpu->arch.comparecount_timer);

	kvm_vcpu_uninit(vcpu);

	kvm_mips_dump_stats(vcpu);

405
	kvm_mmu_free_memory_caches(vcpu);
406 407
	kfree(vcpu->arch.guest_ebase);
	kfree(vcpu->arch.kseg0_commpage);
408
	kfree(vcpu);
409 410 411 412 413 414 415
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

416 417
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
418
{
419
	return -ENOIOCTLCMD;
420 421 422 423
}

int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
424
	int r = -EINTR;
425 426 427 428 429 430 431 432 433 434 435
	sigset_t sigsaved;

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	if (vcpu->mmio_needed) {
		if (!vcpu->mmio_is_write)
			kvm_mips_complete_mmio_load(vcpu, run);
		vcpu->mmio_needed = 0;
	}

436 437 438
	if (run->immediate_exit)
		goto out;

439 440
	lose_fpu(1);

441
	local_irq_disable();
442
	guest_enter_irqoff();
443
	trace_kvm_enter(vcpu);
444

445 446 447 448 449 450 451 452
	/*
	 * Make sure the read of VCPU requests in vcpu_run() callback is not
	 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
	 * flush request while the requester sees the VCPU as outside of guest
	 * mode and not needing an IPI.
	 */
	smp_store_mb(vcpu->mode, IN_GUEST_MODE);

453
	r = kvm_mips_callbacks->vcpu_run(run, vcpu);
454

455
	trace_kvm_out(vcpu);
456
	guest_exit_irqoff();
457 458
	local_irq_enable();

459
out:
460 461 462 463 464 465
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	return r;
}

466 467
int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
			     struct kvm_mips_interrupt *irq)
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
{
	int intr = (int)irq->irq;
	struct kvm_vcpu *dvcpu = NULL;

	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
			  (int)intr);

	if (irq->cpu == -1)
		dvcpu = vcpu;
	else
		dvcpu = vcpu->kvm->vcpus[irq->cpu];

	if (intr == 2 || intr == 3 || intr == 4) {
		kvm_mips_callbacks->queue_io_int(dvcpu, irq);

	} else if (intr == -2 || intr == -3 || intr == -4) {
		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
	} else {
		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
			irq->cpu, irq->irq);
		return -EINVAL;
	}

	dvcpu->arch.wait = 0;

494 495
	if (swait_active(&dvcpu->wq))
		swake_up(&dvcpu->wq);
496 497 498 499

	return 0;
}

500 501
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
502
{
503
	return -ENOIOCTLCMD;
504 505
}

506 507
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
508
{
509
	return -ENOIOCTLCMD;
510 511
}

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
static u64 kvm_mips_get_one_regs[] = {
	KVM_REG_MIPS_R0,
	KVM_REG_MIPS_R1,
	KVM_REG_MIPS_R2,
	KVM_REG_MIPS_R3,
	KVM_REG_MIPS_R4,
	KVM_REG_MIPS_R5,
	KVM_REG_MIPS_R6,
	KVM_REG_MIPS_R7,
	KVM_REG_MIPS_R8,
	KVM_REG_MIPS_R9,
	KVM_REG_MIPS_R10,
	KVM_REG_MIPS_R11,
	KVM_REG_MIPS_R12,
	KVM_REG_MIPS_R13,
	KVM_REG_MIPS_R14,
	KVM_REG_MIPS_R15,
	KVM_REG_MIPS_R16,
	KVM_REG_MIPS_R17,
	KVM_REG_MIPS_R18,
	KVM_REG_MIPS_R19,
	KVM_REG_MIPS_R20,
	KVM_REG_MIPS_R21,
	KVM_REG_MIPS_R22,
	KVM_REG_MIPS_R23,
	KVM_REG_MIPS_R24,
	KVM_REG_MIPS_R25,
	KVM_REG_MIPS_R26,
	KVM_REG_MIPS_R27,
	KVM_REG_MIPS_R28,
	KVM_REG_MIPS_R29,
	KVM_REG_MIPS_R30,
	KVM_REG_MIPS_R31,

546
#ifndef CONFIG_CPU_MIPSR6
547 548
	KVM_REG_MIPS_HI,
	KVM_REG_MIPS_LO,
549
#endif
550 551 552
	KVM_REG_MIPS_PC,
};

J
James Hogan 已提交
553 554 555 556 557 558 559 560 561 562
static u64 kvm_mips_get_one_regs_fpu[] = {
	KVM_REG_MIPS_FCR_IR,
	KVM_REG_MIPS_FCR_CSR,
};

static u64 kvm_mips_get_one_regs_msa[] = {
	KVM_REG_MIPS_MSA_IR,
	KVM_REG_MIPS_MSA_CSR,
};

563 564 565 566 567
static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
{
	unsigned long ret;

	ret = ARRAY_SIZE(kvm_mips_get_one_regs);
J
James Hogan 已提交
568 569 570 571 572 573 574 575
	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
		ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
		/* odd doubles */
		if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
			ret += 16;
	}
	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
		ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
576 577 578 579 580 581 582
	ret += kvm_mips_callbacks->num_regs(vcpu);

	return ret;
}

static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
{
J
James Hogan 已提交
583 584 585
	u64 index;
	unsigned int i;

586 587 588 589 590
	if (copy_to_user(indices, kvm_mips_get_one_regs,
			 sizeof(kvm_mips_get_one_regs)))
		return -EFAULT;
	indices += ARRAY_SIZE(kvm_mips_get_one_regs);

J
James Hogan 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
		if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
				 sizeof(kvm_mips_get_one_regs_fpu)))
			return -EFAULT;
		indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);

		for (i = 0; i < 32; ++i) {
			index = KVM_REG_MIPS_FPR_32(i);
			if (copy_to_user(indices, &index, sizeof(index)))
				return -EFAULT;
			++indices;

			/* skip odd doubles if no F64 */
			if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
				continue;

			index = KVM_REG_MIPS_FPR_64(i);
			if (copy_to_user(indices, &index, sizeof(index)))
				return -EFAULT;
			++indices;
		}
	}

	if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
		if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
				 sizeof(kvm_mips_get_one_regs_msa)))
			return -EFAULT;
		indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);

		for (i = 0; i < 32; ++i) {
			index = KVM_REG_MIPS_VEC_128(i);
			if (copy_to_user(indices, &index, sizeof(index)))
				return -EFAULT;
			++indices;
		}
	}

628 629 630
	return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
}

631 632 633 634
static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
			    const struct kvm_one_reg *reg)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
J
James Hogan 已提交
635
	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
636
	int ret;
637
	s64 v;
J
James Hogan 已提交
638
	s64 vs[2];
J
James Hogan 已提交
639
	unsigned int idx;
640 641

	switch (reg->id) {
J
James Hogan 已提交
642
	/* General purpose registers */
643 644 645
	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
		break;
646
#ifndef CONFIG_CPU_MIPSR6
647 648 649 650 651 652
	case KVM_REG_MIPS_HI:
		v = (long)vcpu->arch.hi;
		break;
	case KVM_REG_MIPS_LO:
		v = (long)vcpu->arch.lo;
		break;
653
#endif
654 655 656 657
	case KVM_REG_MIPS_PC:
		v = (long)vcpu->arch.pc;
		break;

J
James Hogan 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
	/* Floating point registers */
	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
		/* Odd singles in top of even double when FR=0 */
		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
			v = get_fpr32(&fpu->fpr[idx], 0);
		else
			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
		break;
	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
		/* Can't access odd doubles in FR=0 mode */
		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
			return -EINVAL;
		v = get_fpr64(&fpu->fpr[idx], 0);
		break;
	case KVM_REG_MIPS_FCR_IR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		v = boot_cpu_data.fpu_id;
		break;
	case KVM_REG_MIPS_FCR_CSR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		v = fpu->fcr31;
		break;

J
James Hogan 已提交
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
	/* MIPS SIMD Architecture (MSA) registers */
	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		/* Can't access MSA registers in FR=0 mode */
		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
#ifdef CONFIG_CPU_LITTLE_ENDIAN
		/* least significant byte first */
		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
#else
		/* most significant byte first */
		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
#endif
		break;
	case KVM_REG_MIPS_MSA_IR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		v = boot_cpu_data.msa_id;
		break;
	case KVM_REG_MIPS_MSA_CSR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		v = fpu->msacsr;
		break;

718
	/* registers to be handled specially */
719
	default:
720 721 722 723
		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
		if (ret)
			return ret;
		break;
724
	}
725 726
	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
727

728 729 730 731
		return put_user(v, uaddr64);
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
		u32 v32 = (u32)v;
732

733
		return put_user(v32, uaddr32);
J
James Hogan 已提交
734 735 736
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
		void __user *uaddr = (void __user *)(long)reg->addr;

737
		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
738 739 740
	} else {
		return -EINVAL;
	}
741 742 743 744 745 746
}

static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
			    const struct kvm_one_reg *reg)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
J
James Hogan 已提交
747 748
	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
	s64 v;
J
James Hogan 已提交
749
	s64 vs[2];
J
James Hogan 已提交
750
	unsigned int idx;
751

752 753 754 755 756 757 758 759 760 761 762 763
	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;

		if (get_user(v, uaddr64) != 0)
			return -EFAULT;
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
		s32 v32;

		if (get_user(v32, uaddr32) != 0)
			return -EFAULT;
		v = (s64)v32;
J
James Hogan 已提交
764 765 766
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
		void __user *uaddr = (void __user *)(long)reg->addr;

767
		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
768 769 770
	} else {
		return -EINVAL;
	}
771 772

	switch (reg->id) {
J
James Hogan 已提交
773
	/* General purpose registers */
774 775 776 777 778 779
	case KVM_REG_MIPS_R0:
		/* Silently ignore requests to set $0 */
		break;
	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
		break;
780
#ifndef CONFIG_CPU_MIPSR6
781 782 783 784 785 786
	case KVM_REG_MIPS_HI:
		vcpu->arch.hi = v;
		break;
	case KVM_REG_MIPS_LO:
		vcpu->arch.lo = v;
		break;
787
#endif
788 789 790 791
	case KVM_REG_MIPS_PC:
		vcpu->arch.pc = v;
		break;

J
James Hogan 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
	/* Floating point registers */
	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
		/* Odd singles in top of even double when FR=0 */
		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
			set_fpr32(&fpu->fpr[idx], 0, v);
		else
			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
		break;
	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
		/* Can't access odd doubles in FR=0 mode */
		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
			return -EINVAL;
		set_fpr64(&fpu->fpr[idx], 0, v);
		break;
	case KVM_REG_MIPS_FCR_IR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		/* Read-only */
		break;
	case KVM_REG_MIPS_FCR_CSR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		fpu->fcr31 = v;
		break;

J
James Hogan 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
	/* MIPS SIMD Architecture (MSA) registers */
	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
#ifdef CONFIG_CPU_LITTLE_ENDIAN
		/* least significant byte first */
		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
#else
		/* most significant byte first */
		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
#endif
		break;
	case KVM_REG_MIPS_MSA_IR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		/* Read-only */
		break;
	case KVM_REG_MIPS_MSA_CSR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		fpu->msacsr = v;
		break;

849
	/* registers to be handled specially */
850
	default:
851
		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
852 853 854 855
	}
	return 0;
}

J
James Hogan 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r = 0;

	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
		return -EINVAL;
	if (cap->flags)
		return -EINVAL;
	if (cap->args[0])
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_MIPS_FPU:
		vcpu->arch.fpu_enabled = true;
		break;
J
James Hogan 已提交
872 873 874
	case KVM_CAP_MIPS_MSA:
		vcpu->arch.msa_enabled = true;
		break;
J
James Hogan 已提交
875 876 877 878 879 880 881 882
	default:
		r = -EINVAL;
		break;
	}

	return r;
}

883 884
long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
			 unsigned long arg)
885 886 887 888 889 890
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {
891 892 893
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
894

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_mips_set_reg(vcpu, &reg);
		else
			return kvm_mips_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
910
		reg_list.n = kvm_mips_num_regs(vcpu);
911 912 913 914
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
915
		return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
916
	}
917 918 919
	case KVM_INTERRUPT:
		{
			struct kvm_mips_interrupt irq;
920

921
			if (copy_from_user(&irq, argp, sizeof(irq)))
922
				return -EFAULT;
923 924 925 926 927 928
			kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
				  irq.irq);

			r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
			break;
		}
J
James Hogan 已提交
929 930 931 932
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;

		if (copy_from_user(&cap, argp, sizeof(cap)))
933
			return -EFAULT;
J
James Hogan 已提交
934 935 936
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
937
	default:
938
		r = -ENOIOCTLCMD;
939 940 941 942
	}
	return r;
}

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
962 963
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
964
	struct kvm_memslots *slots;
965
	struct kvm_memory_slot *memslot;
966
	bool is_dirty = false;
967 968 969 970
	int r;

	mutex_lock(&kvm->slots_lock);

971
	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
972 973

	if (is_dirty) {
974 975
		slots = kvm_memslots(kvm);
		memslot = id_to_memslot(slots, log->slot);
976

977 978
		/* Let implementation handle TLB/GVA invalidation */
		kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
979 980 981 982 983 984 985 986 987 988 989 990
	}

	mutex_unlock(&kvm->slots_lock);
	return r;
}

long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
{
	long r;

	switch (ioctl) {
	default:
991
		r = -ENOIOCTLCMD;
992 993 994 995 996 997 998 999 1000 1001 1002 1003
	}

	return r;
}

int kvm_arch_init(void *opaque)
{
	if (kvm_mips_callbacks) {
		kvm_err("kvm: module already exists\n");
		return -EEXIST;
	}

1004
	return kvm_mips_emulation_init(&kvm_mips_callbacks);
1005 1006 1007 1008 1009 1010 1011
}

void kvm_arch_exit(void)
{
	kvm_mips_callbacks = NULL;
}

1012 1013
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
1014
{
1015
	return -ENOIOCTLCMD;
1016 1017
}

1018 1019
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
1020
{
1021
	return -ENOIOCTLCMD;
1022 1023
}

1024
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1025 1026 1027 1028 1029
{
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1030
	return -ENOIOCTLCMD;
1031 1032 1033 1034
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1035
	return -ENOIOCTLCMD;
1036 1037 1038 1039 1040 1041 1042
}

int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}

1043
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1044 1045 1046 1047
{
	int r;

	switch (ext) {
1048
	case KVM_CAP_ONE_REG:
J
James Hogan 已提交
1049
	case KVM_CAP_ENABLE_CAP:
1050
	case KVM_CAP_READONLY_MEM:
1051
	case KVM_CAP_SYNC_MMU:
1052
	case KVM_CAP_IMMEDIATE_EXIT:
1053 1054
		r = 1;
		break;
1055 1056 1057
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
1058 1059 1060 1061 1062 1063
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
J
James Hogan 已提交
1064
	case KVM_CAP_MIPS_FPU:
1065 1066
		/* We don't handle systems with inconsistent cpu_has_fpu */
		r = !!raw_cpu_has_fpu;
J
James Hogan 已提交
1067
		break;
J
James Hogan 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	case KVM_CAP_MIPS_MSA:
		/*
		 * We don't support MSA vector partitioning yet:
		 * 1) It would require explicit support which can't be tested
		 *    yet due to lack of support in current hardware.
		 * 2) It extends the state that would need to be saved/restored
		 *    by e.g. QEMU for migration.
		 *
		 * When vector partitioning hardware becomes available, support
		 * could be added by requiring a flag when enabling
		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
		 * to save/restore the appropriate extra state.
		 */
		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
		break;
1083
	default:
1084
		r = kvm_mips_callbacks->check_extension(kvm, ext);
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
		break;
	}
	return r;
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
	return kvm_mips_pending_timer(vcpu);
}

int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
{
	int i;
	struct mips_coproc *cop0;

	if (!vcpu)
		return -1;

1103 1104 1105
	kvm_debug("VCPU Register Dump:\n");
	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1106 1107

	for (i = 0; i < 32; i += 4) {
1108
		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1109 1110 1111 1112
		       vcpu->arch.gprs[i],
		       vcpu->arch.gprs[i + 1],
		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
	}
1113 1114
	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1115 1116

	cop0 = vcpu->arch.cop0;
1117
	kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1118 1119
		  kvm_read_c0_guest_status(cop0),
		  kvm_read_c0_guest_cause(cop0));
1120

1121
	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1122 1123 1124 1125 1126 1127 1128 1129

	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

1130
	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1131
		vcpu->arch.gprs[i] = regs->gpr[i];
1132
	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1133 1134 1135 1136
	vcpu->arch.hi = regs->hi;
	vcpu->arch.lo = regs->lo;
	vcpu->arch.pc = regs->pc;

1137
	return 0;
1138 1139 1140 1141 1142 1143
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

1144
	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1145
		regs->gpr[i] = vcpu->arch.gprs[i];
1146 1147 1148 1149 1150

	regs->hi = vcpu->arch.hi;
	regs->lo = vcpu->arch.lo;
	regs->pc = vcpu->arch.pc;

1151
	return 0;
1152 1153
}

1154
static void kvm_mips_comparecount_func(unsigned long data)
1155 1156 1157 1158 1159 1160
{
	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;

	kvm_mips_callbacks->queue_timer_int(vcpu);

	vcpu->arch.wait = 0;
1161 1162
	if (swait_active(&vcpu->wq))
		swake_up(&vcpu->wq);
1163 1164
}

1165
/* low level hrtimer wake routine */
1166
static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1167 1168 1169 1170 1171
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
	kvm_mips_comparecount_func((unsigned long) vcpu);
1172
	return kvm_mips_count_timeout(vcpu);
1173 1174 1175 1176
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1177 1178 1179 1180 1181 1182
	int err;

	err = kvm_mips_callbacks->vcpu_init(vcpu);
	if (err)
		return err;

1183 1184 1185 1186 1187 1188
	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
		     HRTIMER_MODE_REL);
	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
	return 0;
}

J
James Hogan 已提交
1189 1190 1191 1192 1193
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
	kvm_mips_callbacks->vcpu_uninit(vcpu);
}

1194 1195
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
{
	return 0;
}

/* Initial guest state */
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	return kvm_mips_callbacks->vcpu_setup(vcpu);
}

1206
static void kvm_mips_set_c0_status(void)
1207
{
1208
	u32 status = read_c0_status();
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

	if (cpu_has_dsp)
		status |= (ST0_MX);

	write_c0_status(status);
	ehb();
}

/*
 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
 */
int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
1222 1223 1224
	u32 cause = vcpu->arch.host_cp0_cause;
	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1225 1226
	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
	enum emulation_result er = EMULATE_DONE;
1227
	u32 inst;
1228 1229
	int ret = RESUME_GUEST;

1230 1231
	vcpu->mode = OUTSIDE_GUEST_MODE;

1232
	/* re-enable HTW before enabling interrupts */
1233 1234
	if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
		htw_start();
1235

1236 1237 1238 1239
	/* Set a default exit reason */
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

1240 1241 1242 1243
	/*
	 * Set the appropriate status bits based on host CPU features,
	 * before we hit the scheduler
	 */
1244 1245 1246 1247 1248 1249
	kvm_mips_set_c0_status();

	local_irq_enable();

	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
			cause, opc, run, vcpu);
1250
	trace_kvm_exit(vcpu, exccode);
1251

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
		/*
		 * Do a privilege check, if in UM most of these exit conditions
		 * end up causing an exception to be delivered to the Guest
		 * Kernel
		 */
		er = kvm_mips_check_privilege(cause, opc, run, vcpu);
		if (er == EMULATE_PRIV_FAIL) {
			goto skip_emul;
		} else if (er == EMULATE_FAIL) {
			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
			ret = RESUME_HOST;
			goto skip_emul;
		}
1266 1267 1268
	}

	switch (exccode) {
1269 1270
	case EXCCODE_INT:
		kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1271 1272 1273

		++vcpu->stat.int_exits;

1274
		if (need_resched())
1275 1276 1277 1278 1279
			cond_resched();

		ret = RESUME_GUEST;
		break;

1280 1281
	case EXCCODE_CPU:
		kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1282 1283 1284 1285

		++vcpu->stat.cop_unusable_exits;
		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
		/* XXXKYMA: Might need to return to user space */
1286
		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1287 1288 1289
			ret = RESUME_HOST;
		break;

1290
	case EXCCODE_MOD:
1291 1292 1293 1294
		++vcpu->stat.tlbmod_exits;
		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
		break;

1295
	case EXCCODE_TLBS:
1296
		kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1297 1298
			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
			  badvaddr);
1299 1300 1301 1302 1303

		++vcpu->stat.tlbmiss_st_exits;
		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
		break;

1304
	case EXCCODE_TLBL:
1305 1306 1307 1308 1309 1310 1311
		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
			  cause, opc, badvaddr);

		++vcpu->stat.tlbmiss_ld_exits;
		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
		break;

1312
	case EXCCODE_ADES:
1313 1314 1315 1316
		++vcpu->stat.addrerr_st_exits;
		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
		break;

1317
	case EXCCODE_ADEL:
1318 1319 1320 1321
		++vcpu->stat.addrerr_ld_exits;
		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
		break;

1322
	case EXCCODE_SYS:
1323 1324 1325 1326
		++vcpu->stat.syscall_exits;
		ret = kvm_mips_callbacks->handle_syscall(vcpu);
		break;

1327
	case EXCCODE_RI:
1328 1329 1330 1331
		++vcpu->stat.resvd_inst_exits;
		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
		break;

1332
	case EXCCODE_BP:
1333 1334 1335 1336
		++vcpu->stat.break_inst_exits;
		ret = kvm_mips_callbacks->handle_break(vcpu);
		break;

1337
	case EXCCODE_TR:
1338 1339 1340 1341
		++vcpu->stat.trap_inst_exits;
		ret = kvm_mips_callbacks->handle_trap(vcpu);
		break;

1342
	case EXCCODE_MSAFPE:
1343 1344 1345 1346
		++vcpu->stat.msa_fpe_exits;
		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
		break;

1347
	case EXCCODE_FPE:
1348 1349 1350 1351
		++vcpu->stat.fpe_exits;
		ret = kvm_mips_callbacks->handle_fpe(vcpu);
		break;

1352
	case EXCCODE_MSADIS:
1353
		++vcpu->stat.msa_disabled_exits;
1354 1355 1356
		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
		break;

1357 1358 1359 1360 1361
	case EXCCODE_GE:
		/* defer exit accounting to handler */
		ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
		break;

1362
	default:
1363 1364 1365
		if (cause & CAUSEF_BD)
			opc += 1;
		inst = 0;
1366
		kvm_get_badinstr(opc, vcpu, &inst);
1367
		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1368
			exccode, opc, inst, badvaddr,
1369
			kvm_read_c0_guest_status(vcpu->arch.cop0));
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
		kvm_arch_vcpu_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		break;

	}

skip_emul:
	local_irq_disable();

	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
		kvm_mips_deliver_interrupts(vcpu, cause);

	if (!(ret & RESUME_HOST)) {
1384
		/* Only check for signals if not already exiting to userspace */
1385 1386 1387 1388
		if (signal_pending(current)) {
			run->exit_reason = KVM_EXIT_INTR;
			ret = (-EINTR << 2) | RESUME_HOST;
			++vcpu->stat.signal_exits;
1389
			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1390 1391 1392
		}
	}

1393
	if (ret == RESUME_GUEST) {
1394 1395
		trace_kvm_reenter(vcpu);

1396 1397 1398 1399 1400 1401 1402 1403
		/*
		 * Make sure the read of VCPU requests in vcpu_reenter()
		 * callback is not reordered ahead of the write to vcpu->mode,
		 * or we could miss a TLB flush request while the requester sees
		 * the VCPU as outside of guest mode and not needing an IPI.
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

1404
		kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1405

1406
		/*
1407 1408
		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
		 * is live), restore FCR31 / MSACSR.
1409 1410
		 *
		 * This should be before returning to the guest exception
1411 1412
		 * vector, as it may well cause an [MSA] FP exception if there
		 * are pending exception bits unmasked. (see
1413 1414 1415 1416 1417
		 * kvm_mips_csr_die_notifier() for how that is handled).
		 */
		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
		    read_c0_status() & ST0_CU1)
			__kvm_restore_fcsr(&vcpu->arch);
1418 1419 1420 1421

		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
		    read_c0_config5() & MIPS_CONF5_MSAEN)
			__kvm_restore_msacsr(&vcpu->arch);
1422 1423
	}

1424
	/* Disable HTW before returning to guest or host */
1425 1426
	if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
		htw_stop();
1427

1428 1429 1430
	return ret;
}

1431 1432 1433 1434 1435 1436 1437 1438
/* Enable FPU for guest and restore context */
void kvm_own_fpu(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	unsigned int sr, cfg5;

	preempt_disable();

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
	sr = kvm_read_c0_guest_status(cop0);

	/*
	 * If MSA state is already live, it is undefined how it interacts with
	 * FR=0 FPU state, and we don't want to hit reserved instruction
	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
	 * play it safe and save it first.
	 *
	 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
	 * get called when guest CU1 is set, however we can't trust the guest
	 * not to clobber the status register directly via the commpage.
	 */
	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1452
	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1453 1454
		kvm_lose_fpu(vcpu);

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	/*
	 * Enable FPU for guest
	 * We set FR and FRE according to guest context
	 */
	change_c0_status(ST0_CU1 | ST0_FR, sr);
	if (cpu_has_fre) {
		cfg5 = kvm_read_c0_guest_config5(cop0);
		change_c0_config5(MIPS_CONF5_FRE, cfg5);
	}
	enable_fpu_hazard();

	/* If guest FPU state not active, restore it now */
1467
	if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1468
		__kvm_restore_fpu(&vcpu->arch);
1469
		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
J
James Hogan 已提交
1470 1471 1472
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
	} else {
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1473 1474 1475 1476 1477
	}

	preempt_enable();
}

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
#ifdef CONFIG_CPU_HAS_MSA
/* Enable MSA for guest and restore context */
void kvm_own_msa(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	unsigned int sr, cfg5;

	preempt_disable();

	/*
	 * Enable FPU if enabled in guest, since we're restoring FPU context
	 * anyway. We set FR and FRE according to guest context.
	 */
	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
		sr = kvm_read_c0_guest_status(cop0);

		/*
		 * If FR=0 FPU state is already live, it is undefined how it
		 * interacts with MSA state, so play it safe and save it first.
		 */
		if (!(sr & ST0_FR) &&
1499 1500
		    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
				KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
			kvm_lose_fpu(vcpu);

		change_c0_status(ST0_CU1 | ST0_FR, sr);
		if (sr & ST0_CU1 && cpu_has_fre) {
			cfg5 = kvm_read_c0_guest_config5(cop0);
			change_c0_config5(MIPS_CONF5_FRE, cfg5);
		}
	}

	/* Enable MSA for guest */
	set_c0_config5(MIPS_CONF5_MSAEN);
	enable_fpu_hazard();

1514 1515
	switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
	case KVM_MIPS_AUX_FPU:
1516 1517 1518 1519
		/*
		 * Guest FPU state already loaded, only restore upper MSA state
		 */
		__kvm_restore_msa_upper(&vcpu->arch);
1520
		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
J
James Hogan 已提交
1521
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1522 1523 1524 1525
		break;
	case 0:
		/* Neither FPU or MSA already active, restore full MSA state */
		__kvm_restore_msa(&vcpu->arch);
1526
		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1527
		if (kvm_mips_guest_has_fpu(&vcpu->arch))
1528
			vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
J
James Hogan 已提交
1529 1530
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
			      KVM_TRACE_AUX_FPU_MSA);
1531 1532
		break;
	default:
J
James Hogan 已提交
1533
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1534 1535 1536 1537 1538 1539 1540 1541
		break;
	}

	preempt_enable();
}
#endif

/* Drop FPU & MSA without saving it */
1542 1543 1544
void kvm_drop_fpu(struct kvm_vcpu *vcpu)
{
	preempt_disable();
1545
	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1546
		disable_msa();
J
James Hogan 已提交
1547
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1548
		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1549
	}
1550
	if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1551
		clear_c0_status(ST0_CU1 | ST0_FR);
J
James Hogan 已提交
1552
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1553
		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1554 1555 1556 1557
	}
	preempt_enable();
}

1558
/* Save and disable FPU & MSA */
1559 1560 1561
void kvm_lose_fpu(struct kvm_vcpu *vcpu)
{
	/*
1562 1563 1564 1565
	 * With T&E, FPU & MSA get disabled in root context (hardware) when it
	 * is disabled in guest context (software), but the register state in
	 * the hardware may still be in use.
	 * This is why we explicitly re-enable the hardware before saving.
1566 1567 1568
	 */

	preempt_disable();
1569
	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1570 1571 1572 1573
		if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
			set_c0_config5(MIPS_CONF5_MSAEN);
			enable_fpu_hazard();
		}
1574 1575

		__kvm_save_msa(&vcpu->arch);
J
James Hogan 已提交
1576
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1577 1578 1579

		/* Disable MSA & FPU */
		disable_msa();
1580
		if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1581
			clear_c0_status(ST0_CU1 | ST0_FR);
1582 1583
			disable_fpu_hazard();
		}
1584 1585
		vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
	} else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1586 1587 1588 1589
		if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
			set_c0_status(ST0_CU1);
			enable_fpu_hazard();
		}
1590 1591

		__kvm_save_fpu(&vcpu->arch);
1592
		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
J
James Hogan 已提交
1593
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1594 1595 1596

		/* Disable FPU */
		clear_c0_status(ST0_CU1 | ST0_FR);
1597
		disable_fpu_hazard();
1598 1599 1600 1601 1602
	}
	preempt_enable();
}

/*
1603 1604 1605
 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
 * exception if cause bits are set in the value being written.
1606 1607 1608 1609 1610 1611 1612 1613
 */
static int kvm_mips_csr_die_notify(struct notifier_block *self,
				   unsigned long cmd, void *ptr)
{
	struct die_args *args = (struct die_args *)ptr;
	struct pt_regs *regs = args->regs;
	unsigned long pc;

1614 1615
	/* Only interested in FPE and MSAFPE */
	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
		return NOTIFY_DONE;

	/* Return immediately if guest context isn't active */
	if (!(current->flags & PF_VCPU))
		return NOTIFY_DONE;

	/* Should never get here from user mode */
	BUG_ON(user_mode(regs));

	pc = instruction_pointer(regs);
	switch (cmd) {
	case DIE_FP:
		/* match 2nd instruction in __kvm_restore_fcsr */
		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
			return NOTIFY_DONE;
		break;
1632 1633 1634 1635 1636 1637 1638
	case DIE_MSAFP:
		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
		if (!cpu_has_msa ||
		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
			return NOTIFY_DONE;
		break;
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	}

	/* Move PC forward a little and continue executing */
	instruction_pointer(regs) += 4;

	return NOTIFY_STOP;
}

static struct notifier_block kvm_mips_csr_die_notifier = {
	.notifier_call = kvm_mips_csr_die_notify,
};

1651
static int __init kvm_mips_init(void)
1652 1653 1654
{
	int ret;

1655 1656 1657 1658
	ret = kvm_mips_entry_setup();
	if (ret)
		return ret;

1659 1660 1661 1662 1663
	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);

	if (ret)
		return ret;

1664 1665
	register_die_notifier(&kvm_mips_csr_die_notifier);

1666 1667 1668
	return 0;
}

1669
static void __exit kvm_mips_exit(void)
1670 1671 1672
{
	kvm_exit();

1673
	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1674 1675 1676 1677 1678 1679
}

module_init(kvm_mips_init);
module_exit(kvm_mips_exit);

EXPORT_TRACEPOINT_SYMBOL(kvm_exit);