mips.c 41.0 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * KVM/MIPS: MIPS specific KVM APIs
 *
 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10
 */
11

J
James Hogan 已提交
12
#include <linux/bitops.h>
13 14
#include <linux/errno.h>
#include <linux/err.h>
15
#include <linux/kdebug.h>
16
#include <linux/module.h>
17
#include <linux/uaccess.h>
18
#include <linux/vmalloc.h>
19
#include <linux/sched/signal.h>
20 21
#include <linux/fs.h>
#include <linux/bootmem.h>
22

23
#include <asm/fpu.h>
24 25 26
#include <asm/page.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>
27
#include <asm/pgalloc.h>
28
#include <asm/pgtable.h>
29 30 31

#include <linux/kvm_host.h>

32 33
#include "interrupt.h"
#include "commpage.h"
34 35 36 37 38 39 40 41

#define CREATE_TRACE_POINTS
#include "trace.h"

#ifndef VECTORSPACING
#define VECTORSPACING 0x100	/* for EI/VI mode */
#endif

42
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
43
struct kvm_stats_debugfs_item debugfs_entries[] = {
44 45 46 47 48 49 50 51 52 53 54 55 56
	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU },
	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU },
	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU },
	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU },
	{ "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU },
	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU },
	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU },
	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU },
	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU },
	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU },
	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU },
	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU },
57
	{ "trap_inst",	  VCPU_STAT(trap_inst_exits),	 KVM_STAT_VCPU },
58
	{ "msa_fpe",	  VCPU_STAT(msa_fpe_exits),	 KVM_STAT_VCPU },
59
	{ "fpe",	  VCPU_STAT(fpe_exits),		 KVM_STAT_VCPU },
60
	{ "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
61
	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
62 63 64 65 66 67 68 69 70 71
#ifdef CONFIG_KVM_MIPS_VZ
	{ "vz_gpsi",	  VCPU_STAT(vz_gpsi_exits),	 KVM_STAT_VCPU },
	{ "vz_gsfc",	  VCPU_STAT(vz_gsfc_exits),	 KVM_STAT_VCPU },
	{ "vz_hc",	  VCPU_STAT(vz_hc_exits),	 KVM_STAT_VCPU },
	{ "vz_grr",	  VCPU_STAT(vz_grr_exits),	 KVM_STAT_VCPU },
	{ "vz_gva",	  VCPU_STAT(vz_gva_exits),	 KVM_STAT_VCPU },
	{ "vz_ghfc",	  VCPU_STAT(vz_ghfc_exits),	 KVM_STAT_VCPU },
	{ "vz_gpa",	  VCPU_STAT(vz_gpa_exits),	 KVM_STAT_VCPU },
	{ "vz_resvd",	  VCPU_STAT(vz_resvd_exits),	 KVM_STAT_VCPU },
#endif
72
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
73
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
74
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
75
	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU },
76 77 78
	{NULL}
};

79 80 81
/*
 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
 * Config7, so we are "runnable" if interrupts are pending
82 83 84 85 86 87 88 89 90 91 92
 */
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
	return !!(vcpu->arch.pending_exceptions);
}

int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return 1;
}

93
int kvm_arch_hardware_enable(void)
94 95 96 97 98 99 100 101 102 103 104
{
	return 0;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
105
	*(int *)rtn = 0;
106 107 108 109
}

int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
110 111 112 113 114 115 116 117
	switch (type) {
	case KVM_VM_MIPS_TE:
		break;
	default:
		/* Unsupported KVM type */
		return -EINVAL;
	};

118 119 120 121 122
	/* Allocate page table to map GPA -> RPA */
	kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
	if (!kvm->arch.gpa_mm.pgd)
		return -ENOMEM;

123 124 125
	return 0;
}

126 127 128 129 130 131 132 133 134 135
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
void kvm_mips_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_arch_vcpu_free(vcpu);
	}

	mutex_lock(&kvm->lock);

	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);

	mutex_unlock(&kvm->lock);
}

155 156 157 158 159 160 161
static void kvm_mips_free_gpa_pt(struct kvm *kvm)
{
	/* It should always be safe to remove after flushing the whole range */
	WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
	pgd_free(NULL, kvm->arch.gpa_mm.pgd);
}

162 163 164
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	kvm_mips_free_vcpus(kvm);
165
	kvm_mips_free_gpa_pt(kvm);
166 167
}

168 169
long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
			unsigned long arg)
170
{
171
	return -ENOIOCTLCMD;
172 173
}

174 175
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
176 177 178 179
{
	return 0;
}

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
	/* Flush whole GPA */
	kvm_mips_flush_gpa_pt(kvm, 0, ~0);

	/* Let implementation do the rest */
	kvm_mips_callbacks->flush_shadow_all(kvm);
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
	/*
	 * The slot has been made invalid (ready for moving or deletion), so we
	 * need to ensure that it can no longer be accessed by any guest VCPUs.
	 */

	spin_lock(&kvm->mmu_lock);
	/* Flush slot from GPA */
	kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
			      slot->base_gfn + slot->npages - 1);
	/* Let implementation do the rest */
	kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
	spin_unlock(&kvm->mmu_lock);
}

206
int kvm_arch_prepare_memory_region(struct kvm *kvm,
207
				   struct kvm_memory_slot *memslot,
208
				   const struct kvm_userspace_memory_region *mem,
209
				   enum kvm_mr_change change)
210 211 212 213 214
{
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
215
				   const struct kvm_userspace_memory_region *mem,
216
				   const struct kvm_memory_slot *old,
217
				   const struct kvm_memory_slot *new,
218
				   enum kvm_mr_change change)
219
{
220 221
	int needs_flush;

222 223 224
	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
		  __func__, kvm, mem->slot, mem->guest_phys_addr,
		  mem->memory_size, mem->userspace_addr);
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

	/*
	 * If dirty page logging is enabled, write protect all pages in the slot
	 * ready for dirty logging.
	 *
	 * There is no need to do this in any of the following cases:
	 * CREATE:	No dirty mappings will already exist.
	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
	 *		kvm_arch_flush_shadow_memslot()
	 */
	if (change == KVM_MR_FLAGS_ONLY &&
	    (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
	     new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
		spin_lock(&kvm->mmu_lock);
		/* Write protect GPA page table entries */
		needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
					new->base_gfn + new->npages - 1);
		/* Let implementation do the rest */
		if (needs_flush)
			kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
		spin_unlock(&kvm->mmu_lock);
	}
247 248
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
static inline void dump_handler(const char *symbol, void *start, void *end)
{
	u32 *p;

	pr_debug("LEAF(%s)\n", symbol);

	pr_debug("\t.set push\n");
	pr_debug("\t.set noreorder\n");

	for (p = start; p < (u32 *)end; ++p)
		pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);

	pr_debug("\t.set\tpop\n");

	pr_debug("\tEND(%s)\n", symbol);
}

266 267
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
268
	int err, size;
269
	void *gebase, *p, *handler, *refill_start, *refill_end;
270 271 272 273 274 275 276 277 278 279 280 281 282 283
	int i;

	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);

	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);

	if (err)
		goto out_free_cpu;

284
	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
285

286 287
	/*
	 * Allocate space for host mode exception handlers that handle
288 289
	 * guest mode exits
	 */
290
	if (cpu_has_veic || cpu_has_vint)
291
		size = 0x200 + VECTORSPACING * 64;
292
	else
293
		size = 0x4000;
294 295 296 297 298

	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);

	if (!gebase) {
		err = -ENOMEM;
299
		goto out_uninit_cpu;
300
	}
301 302
	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
		  ALIGN(size, PAGE_SIZE), gebase);
303

304 305 306 307 308 309 310 311 312 313 314 315
	/*
	 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
	 * limits us to the low 512MB of physical address space. If the memory
	 * we allocate is out of range, just give up now.
	 */
	if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
		kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
			gebase);
		err = -ENOMEM;
		goto out_free_gebase;
	}

316 317 318
	/* Save new ebase */
	vcpu->arch.guest_ebase = gebase;

319
	/* Build guest exception vectors dynamically in unmapped memory */
320
	handler = gebase + 0x2000;
321

322 323 324
	/* TLB refill */
	refill_start = gebase;
	refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
325 326

	/* General Exception Entry point */
327
	kvm_mips_build_exception(gebase + 0x180, handler);
328 329 330 331 332

	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
	for (i = 0; i < 8; i++) {
		kvm_debug("L1 Vectored handler @ %p\n",
			  gebase + 0x200 + (i * VECTORSPACING));
333 334
		kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
					 handler);
335 336
	}

337
	/* General exit handler */
338
	p = handler;
339 340 341 342 343
	p = kvm_mips_build_exit(p);

	/* Guest entry routine */
	vcpu->arch.vcpu_run = p;
	p = kvm_mips_build_vcpu_run(p);
344

345 346 347 348 349
	/* Dump the generated code */
	pr_debug("#include <asm/asm.h>\n");
	pr_debug("#include <asm/regdef.h>\n");
	pr_debug("\n");
	dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
350
	dump_handler("kvm_tlb_refill", refill_start, refill_end);
351 352 353
	dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
	dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);

354
	/* Invalidate the icache for these ranges */
355 356
	flush_icache_range((unsigned long)gebase,
			   (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
357

358 359 360 361
	/*
	 * Allocate comm page for guest kernel, a TLB will be reserved for
	 * mapping GVA @ 0xFFFF8000 to this page
	 */
362 363 364 365 366 367 368
	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);

	if (!vcpu->arch.kseg0_commpage) {
		err = -ENOMEM;
		goto out_free_gebase;
	}

369
	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
370 371 372 373 374 375 376 377 378 379
	kvm_mips_commpage_init(vcpu);

	/* Init */
	vcpu->arch.last_sched_cpu = -1;

	return vcpu;

out_free_gebase:
	kfree(gebase);

380 381 382
out_uninit_cpu:
	kvm_vcpu_uninit(vcpu);

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
out_free_cpu:
	kfree(vcpu);

out:
	return ERR_PTR(err);
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
	hrtimer_cancel(&vcpu->arch.comparecount_timer);

	kvm_vcpu_uninit(vcpu);

	kvm_mips_dump_stats(vcpu);

398
	kvm_mmu_free_memory_caches(vcpu);
399 400
	kfree(vcpu->arch.guest_ebase);
	kfree(vcpu->arch.kseg0_commpage);
401
	kfree(vcpu);
402 403 404 405 406 407 408
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

409 410
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
411
{
412
	return -ENOIOCTLCMD;
413 414 415 416
}

int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
417
	int r = -EINTR;
418 419 420 421 422 423 424 425 426 427 428
	sigset_t sigsaved;

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	if (vcpu->mmio_needed) {
		if (!vcpu->mmio_is_write)
			kvm_mips_complete_mmio_load(vcpu, run);
		vcpu->mmio_needed = 0;
	}

429 430 431
	if (run->immediate_exit)
		goto out;

432 433
	lose_fpu(1);

434
	local_irq_disable();
435
	guest_enter_irqoff();
436
	trace_kvm_enter(vcpu);
437

438 439 440 441 442 443 444 445
	/*
	 * Make sure the read of VCPU requests in vcpu_run() callback is not
	 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
	 * flush request while the requester sees the VCPU as outside of guest
	 * mode and not needing an IPI.
	 */
	smp_store_mb(vcpu->mode, IN_GUEST_MODE);

446
	r = kvm_mips_callbacks->vcpu_run(run, vcpu);
447

448
	trace_kvm_out(vcpu);
449
	guest_exit_irqoff();
450 451
	local_irq_enable();

452
out:
453 454 455 456 457 458
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	return r;
}

459 460
int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
			     struct kvm_mips_interrupt *irq)
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
{
	int intr = (int)irq->irq;
	struct kvm_vcpu *dvcpu = NULL;

	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
			  (int)intr);

	if (irq->cpu == -1)
		dvcpu = vcpu;
	else
		dvcpu = vcpu->kvm->vcpus[irq->cpu];

	if (intr == 2 || intr == 3 || intr == 4) {
		kvm_mips_callbacks->queue_io_int(dvcpu, irq);

	} else if (intr == -2 || intr == -3 || intr == -4) {
		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
	} else {
		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
			irq->cpu, irq->irq);
		return -EINVAL;
	}

	dvcpu->arch.wait = 0;

487 488
	if (swait_active(&dvcpu->wq))
		swake_up(&dvcpu->wq);
489 490 491 492

	return 0;
}

493 494
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
495
{
496
	return -ENOIOCTLCMD;
497 498
}

499 500
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
501
{
502
	return -ENOIOCTLCMD;
503 504
}

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
static u64 kvm_mips_get_one_regs[] = {
	KVM_REG_MIPS_R0,
	KVM_REG_MIPS_R1,
	KVM_REG_MIPS_R2,
	KVM_REG_MIPS_R3,
	KVM_REG_MIPS_R4,
	KVM_REG_MIPS_R5,
	KVM_REG_MIPS_R6,
	KVM_REG_MIPS_R7,
	KVM_REG_MIPS_R8,
	KVM_REG_MIPS_R9,
	KVM_REG_MIPS_R10,
	KVM_REG_MIPS_R11,
	KVM_REG_MIPS_R12,
	KVM_REG_MIPS_R13,
	KVM_REG_MIPS_R14,
	KVM_REG_MIPS_R15,
	KVM_REG_MIPS_R16,
	KVM_REG_MIPS_R17,
	KVM_REG_MIPS_R18,
	KVM_REG_MIPS_R19,
	KVM_REG_MIPS_R20,
	KVM_REG_MIPS_R21,
	KVM_REG_MIPS_R22,
	KVM_REG_MIPS_R23,
	KVM_REG_MIPS_R24,
	KVM_REG_MIPS_R25,
	KVM_REG_MIPS_R26,
	KVM_REG_MIPS_R27,
	KVM_REG_MIPS_R28,
	KVM_REG_MIPS_R29,
	KVM_REG_MIPS_R30,
	KVM_REG_MIPS_R31,

539
#ifndef CONFIG_CPU_MIPSR6
540 541
	KVM_REG_MIPS_HI,
	KVM_REG_MIPS_LO,
542
#endif
543 544 545
	KVM_REG_MIPS_PC,
};

J
James Hogan 已提交
546 547 548 549 550 551 552 553 554 555
static u64 kvm_mips_get_one_regs_fpu[] = {
	KVM_REG_MIPS_FCR_IR,
	KVM_REG_MIPS_FCR_CSR,
};

static u64 kvm_mips_get_one_regs_msa[] = {
	KVM_REG_MIPS_MSA_IR,
	KVM_REG_MIPS_MSA_CSR,
};

556 557 558 559 560
static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
{
	unsigned long ret;

	ret = ARRAY_SIZE(kvm_mips_get_one_regs);
J
James Hogan 已提交
561 562 563 564 565 566 567 568
	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
		ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
		/* odd doubles */
		if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
			ret += 16;
	}
	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
		ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
569 570 571 572 573 574 575
	ret += kvm_mips_callbacks->num_regs(vcpu);

	return ret;
}

static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
{
J
James Hogan 已提交
576 577 578
	u64 index;
	unsigned int i;

579 580 581 582 583
	if (copy_to_user(indices, kvm_mips_get_one_regs,
			 sizeof(kvm_mips_get_one_regs)))
		return -EFAULT;
	indices += ARRAY_SIZE(kvm_mips_get_one_regs);

J
James Hogan 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
		if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
				 sizeof(kvm_mips_get_one_regs_fpu)))
			return -EFAULT;
		indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);

		for (i = 0; i < 32; ++i) {
			index = KVM_REG_MIPS_FPR_32(i);
			if (copy_to_user(indices, &index, sizeof(index)))
				return -EFAULT;
			++indices;

			/* skip odd doubles if no F64 */
			if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
				continue;

			index = KVM_REG_MIPS_FPR_64(i);
			if (copy_to_user(indices, &index, sizeof(index)))
				return -EFAULT;
			++indices;
		}
	}

	if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
		if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
				 sizeof(kvm_mips_get_one_regs_msa)))
			return -EFAULT;
		indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);

		for (i = 0; i < 32; ++i) {
			index = KVM_REG_MIPS_VEC_128(i);
			if (copy_to_user(indices, &index, sizeof(index)))
				return -EFAULT;
			++indices;
		}
	}

621 622 623
	return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
}

624 625 626 627
static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
			    const struct kvm_one_reg *reg)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
J
James Hogan 已提交
628
	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
629
	int ret;
630
	s64 v;
J
James Hogan 已提交
631
	s64 vs[2];
J
James Hogan 已提交
632
	unsigned int idx;
633 634

	switch (reg->id) {
J
James Hogan 已提交
635
	/* General purpose registers */
636 637 638
	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
		break;
639
#ifndef CONFIG_CPU_MIPSR6
640 641 642 643 644 645
	case KVM_REG_MIPS_HI:
		v = (long)vcpu->arch.hi;
		break;
	case KVM_REG_MIPS_LO:
		v = (long)vcpu->arch.lo;
		break;
646
#endif
647 648 649 650
	case KVM_REG_MIPS_PC:
		v = (long)vcpu->arch.pc;
		break;

J
James Hogan 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
	/* Floating point registers */
	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
		/* Odd singles in top of even double when FR=0 */
		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
			v = get_fpr32(&fpu->fpr[idx], 0);
		else
			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
		break;
	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
		/* Can't access odd doubles in FR=0 mode */
		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
			return -EINVAL;
		v = get_fpr64(&fpu->fpr[idx], 0);
		break;
	case KVM_REG_MIPS_FCR_IR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		v = boot_cpu_data.fpu_id;
		break;
	case KVM_REG_MIPS_FCR_CSR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		v = fpu->fcr31;
		break;

J
James Hogan 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	/* MIPS SIMD Architecture (MSA) registers */
	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		/* Can't access MSA registers in FR=0 mode */
		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
#ifdef CONFIG_CPU_LITTLE_ENDIAN
		/* least significant byte first */
		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
#else
		/* most significant byte first */
		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
#endif
		break;
	case KVM_REG_MIPS_MSA_IR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		v = boot_cpu_data.msa_id;
		break;
	case KVM_REG_MIPS_MSA_CSR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		v = fpu->msacsr;
		break;

711
	/* registers to be handled specially */
712
	default:
713 714 715 716
		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
		if (ret)
			return ret;
		break;
717
	}
718 719
	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
720

721 722 723 724
		return put_user(v, uaddr64);
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
		u32 v32 = (u32)v;
725

726
		return put_user(v32, uaddr32);
J
James Hogan 已提交
727 728 729
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
		void __user *uaddr = (void __user *)(long)reg->addr;

730
		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
731 732 733
	} else {
		return -EINVAL;
	}
734 735 736 737 738 739
}

static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
			    const struct kvm_one_reg *reg)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
J
James Hogan 已提交
740 741
	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
	s64 v;
J
James Hogan 已提交
742
	s64 vs[2];
J
James Hogan 已提交
743
	unsigned int idx;
744

745 746 747 748 749 750 751 752 753 754 755 756
	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;

		if (get_user(v, uaddr64) != 0)
			return -EFAULT;
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
		s32 v32;

		if (get_user(v32, uaddr32) != 0)
			return -EFAULT;
		v = (s64)v32;
J
James Hogan 已提交
757 758 759
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
		void __user *uaddr = (void __user *)(long)reg->addr;

760
		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
761 762 763
	} else {
		return -EINVAL;
	}
764 765

	switch (reg->id) {
J
James Hogan 已提交
766
	/* General purpose registers */
767 768 769 770 771 772
	case KVM_REG_MIPS_R0:
		/* Silently ignore requests to set $0 */
		break;
	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
		break;
773
#ifndef CONFIG_CPU_MIPSR6
774 775 776 777 778 779
	case KVM_REG_MIPS_HI:
		vcpu->arch.hi = v;
		break;
	case KVM_REG_MIPS_LO:
		vcpu->arch.lo = v;
		break;
780
#endif
781 782 783 784
	case KVM_REG_MIPS_PC:
		vcpu->arch.pc = v;
		break;

J
James Hogan 已提交
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
	/* Floating point registers */
	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
		/* Odd singles in top of even double when FR=0 */
		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
			set_fpr32(&fpu->fpr[idx], 0, v);
		else
			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
		break;
	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
		/* Can't access odd doubles in FR=0 mode */
		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
			return -EINVAL;
		set_fpr64(&fpu->fpr[idx], 0, v);
		break;
	case KVM_REG_MIPS_FCR_IR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		/* Read-only */
		break;
	case KVM_REG_MIPS_FCR_CSR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		fpu->fcr31 = v;
		break;

J
James Hogan 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	/* MIPS SIMD Architecture (MSA) registers */
	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
#ifdef CONFIG_CPU_LITTLE_ENDIAN
		/* least significant byte first */
		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
#else
		/* most significant byte first */
		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
#endif
		break;
	case KVM_REG_MIPS_MSA_IR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		/* Read-only */
		break;
	case KVM_REG_MIPS_MSA_CSR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		fpu->msacsr = v;
		break;

842
	/* registers to be handled specially */
843
	default:
844
		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
845 846 847 848
	}
	return 0;
}

J
James Hogan 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r = 0;

	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
		return -EINVAL;
	if (cap->flags)
		return -EINVAL;
	if (cap->args[0])
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_MIPS_FPU:
		vcpu->arch.fpu_enabled = true;
		break;
J
James Hogan 已提交
865 866 867
	case KVM_CAP_MIPS_MSA:
		vcpu->arch.msa_enabled = true;
		break;
J
James Hogan 已提交
868 869 870 871 872 873 874 875
	default:
		r = -EINVAL;
		break;
	}

	return r;
}

876 877
long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
			 unsigned long arg)
878 879 880 881 882 883
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {
884 885 886
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
887

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_mips_set_reg(vcpu, &reg);
		else
			return kvm_mips_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
903
		reg_list.n = kvm_mips_num_regs(vcpu);
904 905 906 907
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
908
		return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
909
	}
910 911 912
	case KVM_INTERRUPT:
		{
			struct kvm_mips_interrupt irq;
913

914
			if (copy_from_user(&irq, argp, sizeof(irq)))
915
				return -EFAULT;
916 917 918 919 920 921
			kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
				  irq.irq);

			r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
			break;
		}
J
James Hogan 已提交
922 923 924 925
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;

		if (copy_from_user(&cap, argp, sizeof(cap)))
926
			return -EFAULT;
J
James Hogan 已提交
927 928 929
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
930
	default:
931
		r = -ENOIOCTLCMD;
932 933 934 935
	}
	return r;
}

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
955 956
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
957
	struct kvm_memslots *slots;
958
	struct kvm_memory_slot *memslot;
959
	bool is_dirty = false;
960 961 962 963
	int r;

	mutex_lock(&kvm->slots_lock);

964
	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
965 966

	if (is_dirty) {
967 968
		slots = kvm_memslots(kvm);
		memslot = id_to_memslot(slots, log->slot);
969

970 971
		/* Let implementation handle TLB/GVA invalidation */
		kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
972 973 974 975 976 977 978 979 980 981 982 983
	}

	mutex_unlock(&kvm->slots_lock);
	return r;
}

long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
{
	long r;

	switch (ioctl) {
	default:
984
		r = -ENOIOCTLCMD;
985 986 987 988 989 990 991 992 993 994 995 996
	}

	return r;
}

int kvm_arch_init(void *opaque)
{
	if (kvm_mips_callbacks) {
		kvm_err("kvm: module already exists\n");
		return -EEXIST;
	}

997
	return kvm_mips_emulation_init(&kvm_mips_callbacks);
998 999 1000 1001 1002 1003 1004
}

void kvm_arch_exit(void)
{
	kvm_mips_callbacks = NULL;
}

1005 1006
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
1007
{
1008
	return -ENOIOCTLCMD;
1009 1010
}

1011 1012
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
1013
{
1014
	return -ENOIOCTLCMD;
1015 1016
}

1017
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1018 1019 1020 1021 1022
{
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1023
	return -ENOIOCTLCMD;
1024 1025 1026 1027
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1028
	return -ENOIOCTLCMD;
1029 1030 1031 1032 1033 1034 1035
}

int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}

1036
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1037 1038 1039 1040
{
	int r;

	switch (ext) {
1041
	case KVM_CAP_ONE_REG:
J
James Hogan 已提交
1042
	case KVM_CAP_ENABLE_CAP:
1043
	case KVM_CAP_READONLY_MEM:
1044
	case KVM_CAP_SYNC_MMU:
1045
	case KVM_CAP_IMMEDIATE_EXIT:
1046
	case KVM_CAP_MIPS_TE:
1047 1048
		r = 1;
		break;
1049 1050 1051
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
1052 1053 1054 1055 1056 1057
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
J
James Hogan 已提交
1058
	case KVM_CAP_MIPS_FPU:
1059 1060
		/* We don't handle systems with inconsistent cpu_has_fpu */
		r = !!raw_cpu_has_fpu;
J
James Hogan 已提交
1061
		break;
J
James Hogan 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	case KVM_CAP_MIPS_MSA:
		/*
		 * We don't support MSA vector partitioning yet:
		 * 1) It would require explicit support which can't be tested
		 *    yet due to lack of support in current hardware.
		 * 2) It extends the state that would need to be saved/restored
		 *    by e.g. QEMU for migration.
		 *
		 * When vector partitioning hardware becomes available, support
		 * could be added by requiring a flag when enabling
		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
		 * to save/restore the appropriate extra state.
		 */
		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
		break;
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	default:
		r = 0;
		break;
	}
	return r;
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
	return kvm_mips_pending_timer(vcpu);
}

int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
{
	int i;
	struct mips_coproc *cop0;

	if (!vcpu)
		return -1;

1097 1098 1099
	kvm_debug("VCPU Register Dump:\n");
	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1100 1101

	for (i = 0; i < 32; i += 4) {
1102
		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1103 1104 1105 1106
		       vcpu->arch.gprs[i],
		       vcpu->arch.gprs[i + 1],
		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
	}
1107 1108
	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1109 1110

	cop0 = vcpu->arch.cop0;
1111 1112 1113
	kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
		  kvm_read_c0_guest_status(cop0),
		  kvm_read_c0_guest_cause(cop0));
1114

1115
	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1116 1117 1118 1119 1120 1121 1122 1123

	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

1124
	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1125
		vcpu->arch.gprs[i] = regs->gpr[i];
1126
	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1127 1128 1129 1130
	vcpu->arch.hi = regs->hi;
	vcpu->arch.lo = regs->lo;
	vcpu->arch.pc = regs->pc;

1131
	return 0;
1132 1133 1134 1135 1136 1137
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

1138
	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1139
		regs->gpr[i] = vcpu->arch.gprs[i];
1140 1141 1142 1143 1144

	regs->hi = vcpu->arch.hi;
	regs->lo = vcpu->arch.lo;
	regs->pc = vcpu->arch.pc;

1145
	return 0;
1146 1147
}

1148
static void kvm_mips_comparecount_func(unsigned long data)
1149 1150 1151 1152 1153 1154
{
	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;

	kvm_mips_callbacks->queue_timer_int(vcpu);

	vcpu->arch.wait = 0;
1155 1156
	if (swait_active(&vcpu->wq))
		swake_up(&vcpu->wq);
1157 1158
}

1159
/* low level hrtimer wake routine */
1160
static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1161 1162 1163 1164 1165
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
	kvm_mips_comparecount_func((unsigned long) vcpu);
1166
	return kvm_mips_count_timeout(vcpu);
1167 1168 1169 1170
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1171 1172 1173 1174 1175 1176
	int err;

	err = kvm_mips_callbacks->vcpu_init(vcpu);
	if (err)
		return err;

1177 1178 1179 1180 1181 1182
	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
		     HRTIMER_MODE_REL);
	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
	return 0;
}

J
James Hogan 已提交
1183 1184 1185 1186 1187
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
	kvm_mips_callbacks->vcpu_uninit(vcpu);
}

1188 1189
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
{
	return 0;
}

/* Initial guest state */
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	return kvm_mips_callbacks->vcpu_setup(vcpu);
}

1200
static void kvm_mips_set_c0_status(void)
1201
{
1202
	u32 status = read_c0_status();
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

	if (cpu_has_dsp)
		status |= (ST0_MX);

	write_c0_status(status);
	ehb();
}

/*
 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
 */
int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
1216 1217 1218
	u32 cause = vcpu->arch.host_cp0_cause;
	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1219 1220
	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
	enum emulation_result er = EMULATE_DONE;
1221
	u32 inst;
1222 1223
	int ret = RESUME_GUEST;

1224 1225
	vcpu->mode = OUTSIDE_GUEST_MODE;

1226 1227 1228
	/* re-enable HTW before enabling interrupts */
	htw_start();

1229 1230 1231 1232
	/* Set a default exit reason */
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

1233 1234 1235 1236
	/*
	 * Set the appropriate status bits based on host CPU features,
	 * before we hit the scheduler
	 */
1237 1238 1239 1240 1241 1242
	kvm_mips_set_c0_status();

	local_irq_enable();

	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
			cause, opc, run, vcpu);
1243
	trace_kvm_exit(vcpu, exccode);
1244

1245 1246
	/*
	 * Do a privilege check, if in UM most of these exit conditions end up
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	 * causing an exception to be delivered to the Guest Kernel
	 */
	er = kvm_mips_check_privilege(cause, opc, run, vcpu);
	if (er == EMULATE_PRIV_FAIL) {
		goto skip_emul;
	} else if (er == EMULATE_FAIL) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		goto skip_emul;
	}

	switch (exccode) {
1259 1260
	case EXCCODE_INT:
		kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1261 1262 1263

		++vcpu->stat.int_exits;

1264
		if (need_resched())
1265 1266 1267 1268 1269
			cond_resched();

		ret = RESUME_GUEST;
		break;

1270 1271
	case EXCCODE_CPU:
		kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1272 1273 1274 1275

		++vcpu->stat.cop_unusable_exits;
		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
		/* XXXKYMA: Might need to return to user space */
1276
		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1277 1278 1279
			ret = RESUME_HOST;
		break;

1280
	case EXCCODE_MOD:
1281 1282 1283 1284
		++vcpu->stat.tlbmod_exits;
		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
		break;

1285
	case EXCCODE_TLBS:
1286 1287 1288
		kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
			  badvaddr);
1289 1290 1291 1292 1293

		++vcpu->stat.tlbmiss_st_exits;
		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
		break;

1294
	case EXCCODE_TLBL:
1295 1296 1297 1298 1299 1300 1301
		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
			  cause, opc, badvaddr);

		++vcpu->stat.tlbmiss_ld_exits;
		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
		break;

1302
	case EXCCODE_ADES:
1303 1304 1305 1306
		++vcpu->stat.addrerr_st_exits;
		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
		break;

1307
	case EXCCODE_ADEL:
1308 1309 1310 1311
		++vcpu->stat.addrerr_ld_exits;
		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
		break;

1312
	case EXCCODE_SYS:
1313 1314 1315 1316
		++vcpu->stat.syscall_exits;
		ret = kvm_mips_callbacks->handle_syscall(vcpu);
		break;

1317
	case EXCCODE_RI:
1318 1319 1320 1321
		++vcpu->stat.resvd_inst_exits;
		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
		break;

1322
	case EXCCODE_BP:
1323 1324 1325 1326
		++vcpu->stat.break_inst_exits;
		ret = kvm_mips_callbacks->handle_break(vcpu);
		break;

1327
	case EXCCODE_TR:
1328 1329 1330 1331
		++vcpu->stat.trap_inst_exits;
		ret = kvm_mips_callbacks->handle_trap(vcpu);
		break;

1332
	case EXCCODE_MSAFPE:
1333 1334 1335 1336
		++vcpu->stat.msa_fpe_exits;
		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
		break;

1337
	case EXCCODE_FPE:
1338 1339 1340 1341
		++vcpu->stat.fpe_exits;
		ret = kvm_mips_callbacks->handle_fpe(vcpu);
		break;

1342
	case EXCCODE_MSADIS:
1343
		++vcpu->stat.msa_disabled_exits;
1344 1345 1346
		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
		break;

1347
	default:
1348 1349 1350
		if (cause & CAUSEF_BD)
			opc += 1;
		inst = 0;
1351
		kvm_get_badinstr(opc, vcpu, &inst);
1352
		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1353
			exccode, opc, inst, badvaddr,
1354
			kvm_read_c0_guest_status(vcpu->arch.cop0));
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
		kvm_arch_vcpu_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		break;

	}

skip_emul:
	local_irq_disable();

	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
		kvm_mips_deliver_interrupts(vcpu, cause);

	if (!(ret & RESUME_HOST)) {
1369
		/* Only check for signals if not already exiting to userspace */
1370 1371 1372 1373
		if (signal_pending(current)) {
			run->exit_reason = KVM_EXIT_INTR;
			ret = (-EINTR << 2) | RESUME_HOST;
			++vcpu->stat.signal_exits;
1374
			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1375 1376 1377
		}
	}

1378
	if (ret == RESUME_GUEST) {
1379 1380
		trace_kvm_reenter(vcpu);

1381 1382 1383 1384 1385 1386 1387 1388
		/*
		 * Make sure the read of VCPU requests in vcpu_reenter()
		 * callback is not reordered ahead of the write to vcpu->mode,
		 * or we could miss a TLB flush request while the requester sees
		 * the VCPU as outside of guest mode and not needing an IPI.
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

1389
		kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1390

1391
		/*
1392 1393
		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
		 * is live), restore FCR31 / MSACSR.
1394 1395
		 *
		 * This should be before returning to the guest exception
1396 1397
		 * vector, as it may well cause an [MSA] FP exception if there
		 * are pending exception bits unmasked. (see
1398 1399 1400 1401 1402
		 * kvm_mips_csr_die_notifier() for how that is handled).
		 */
		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
		    read_c0_status() & ST0_CU1)
			__kvm_restore_fcsr(&vcpu->arch);
1403 1404 1405 1406

		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
		    read_c0_config5() & MIPS_CONF5_MSAEN)
			__kvm_restore_msacsr(&vcpu->arch);
1407 1408
	}

1409 1410 1411
	/* Disable HTW before returning to guest or host */
	htw_stop();

1412 1413 1414
	return ret;
}

1415 1416 1417 1418 1419 1420 1421 1422
/* Enable FPU for guest and restore context */
void kvm_own_fpu(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	unsigned int sr, cfg5;

	preempt_disable();

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
	sr = kvm_read_c0_guest_status(cop0);

	/*
	 * If MSA state is already live, it is undefined how it interacts with
	 * FR=0 FPU state, and we don't want to hit reserved instruction
	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
	 * play it safe and save it first.
	 *
	 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
	 * get called when guest CU1 is set, however we can't trust the guest
	 * not to clobber the status register directly via the commpage.
	 */
	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1436
	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1437 1438
		kvm_lose_fpu(vcpu);

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	/*
	 * Enable FPU for guest
	 * We set FR and FRE according to guest context
	 */
	change_c0_status(ST0_CU1 | ST0_FR, sr);
	if (cpu_has_fre) {
		cfg5 = kvm_read_c0_guest_config5(cop0);
		change_c0_config5(MIPS_CONF5_FRE, cfg5);
	}
	enable_fpu_hazard();

	/* If guest FPU state not active, restore it now */
1451
	if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1452
		__kvm_restore_fpu(&vcpu->arch);
1453
		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
J
James Hogan 已提交
1454 1455 1456
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
	} else {
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1457 1458 1459 1460 1461
	}

	preempt_enable();
}

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
#ifdef CONFIG_CPU_HAS_MSA
/* Enable MSA for guest and restore context */
void kvm_own_msa(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	unsigned int sr, cfg5;

	preempt_disable();

	/*
	 * Enable FPU if enabled in guest, since we're restoring FPU context
	 * anyway. We set FR and FRE according to guest context.
	 */
	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
		sr = kvm_read_c0_guest_status(cop0);

		/*
		 * If FR=0 FPU state is already live, it is undefined how it
		 * interacts with MSA state, so play it safe and save it first.
		 */
		if (!(sr & ST0_FR) &&
1483 1484
		    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
				KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
			kvm_lose_fpu(vcpu);

		change_c0_status(ST0_CU1 | ST0_FR, sr);
		if (sr & ST0_CU1 && cpu_has_fre) {
			cfg5 = kvm_read_c0_guest_config5(cop0);
			change_c0_config5(MIPS_CONF5_FRE, cfg5);
		}
	}

	/* Enable MSA for guest */
	set_c0_config5(MIPS_CONF5_MSAEN);
	enable_fpu_hazard();

1498 1499
	switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
	case KVM_MIPS_AUX_FPU:
1500 1501 1502 1503
		/*
		 * Guest FPU state already loaded, only restore upper MSA state
		 */
		__kvm_restore_msa_upper(&vcpu->arch);
1504
		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
J
James Hogan 已提交
1505
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1506 1507 1508 1509
		break;
	case 0:
		/* Neither FPU or MSA already active, restore full MSA state */
		__kvm_restore_msa(&vcpu->arch);
1510
		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1511
		if (kvm_mips_guest_has_fpu(&vcpu->arch))
1512
			vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
J
James Hogan 已提交
1513 1514
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
			      KVM_TRACE_AUX_FPU_MSA);
1515 1516
		break;
	default:
J
James Hogan 已提交
1517
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1518 1519 1520 1521 1522 1523 1524 1525
		break;
	}

	preempt_enable();
}
#endif

/* Drop FPU & MSA without saving it */
1526 1527 1528
void kvm_drop_fpu(struct kvm_vcpu *vcpu)
{
	preempt_disable();
1529
	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1530
		disable_msa();
J
James Hogan 已提交
1531
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1532
		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1533
	}
1534
	if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1535
		clear_c0_status(ST0_CU1 | ST0_FR);
J
James Hogan 已提交
1536
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1537
		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1538 1539 1540 1541
	}
	preempt_enable();
}

1542
/* Save and disable FPU & MSA */
1543 1544 1545
void kvm_lose_fpu(struct kvm_vcpu *vcpu)
{
	/*
1546 1547 1548 1549
	 * With T&E, FPU & MSA get disabled in root context (hardware) when it
	 * is disabled in guest context (software), but the register state in
	 * the hardware may still be in use.
	 * This is why we explicitly re-enable the hardware before saving.
1550 1551 1552
	 */

	preempt_disable();
1553
	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1554 1555 1556 1557
		if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
			set_c0_config5(MIPS_CONF5_MSAEN);
			enable_fpu_hazard();
		}
1558 1559

		__kvm_save_msa(&vcpu->arch);
J
James Hogan 已提交
1560
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1561 1562 1563

		/* Disable MSA & FPU */
		disable_msa();
1564
		if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1565
			clear_c0_status(ST0_CU1 | ST0_FR);
1566 1567
			disable_fpu_hazard();
		}
1568 1569
		vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
	} else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1570 1571 1572 1573
		if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
			set_c0_status(ST0_CU1);
			enable_fpu_hazard();
		}
1574 1575

		__kvm_save_fpu(&vcpu->arch);
1576
		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
J
James Hogan 已提交
1577
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1578 1579 1580

		/* Disable FPU */
		clear_c0_status(ST0_CU1 | ST0_FR);
1581
		disable_fpu_hazard();
1582 1583 1584 1585 1586
	}
	preempt_enable();
}

/*
1587 1588 1589
 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
 * exception if cause bits are set in the value being written.
1590 1591 1592 1593 1594 1595 1596 1597
 */
static int kvm_mips_csr_die_notify(struct notifier_block *self,
				   unsigned long cmd, void *ptr)
{
	struct die_args *args = (struct die_args *)ptr;
	struct pt_regs *regs = args->regs;
	unsigned long pc;

1598 1599
	/* Only interested in FPE and MSAFPE */
	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
		return NOTIFY_DONE;

	/* Return immediately if guest context isn't active */
	if (!(current->flags & PF_VCPU))
		return NOTIFY_DONE;

	/* Should never get here from user mode */
	BUG_ON(user_mode(regs));

	pc = instruction_pointer(regs);
	switch (cmd) {
	case DIE_FP:
		/* match 2nd instruction in __kvm_restore_fcsr */
		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
			return NOTIFY_DONE;
		break;
1616 1617 1618 1619 1620 1621 1622
	case DIE_MSAFP:
		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
		if (!cpu_has_msa ||
		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
			return NOTIFY_DONE;
		break;
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
	}

	/* Move PC forward a little and continue executing */
	instruction_pointer(regs) += 4;

	return NOTIFY_STOP;
}

static struct notifier_block kvm_mips_csr_die_notifier = {
	.notifier_call = kvm_mips_csr_die_notify,
};

1635
static int __init kvm_mips_init(void)
1636 1637 1638
{
	int ret;

1639 1640 1641 1642
	ret = kvm_mips_entry_setup();
	if (ret)
		return ret;

1643 1644 1645 1646 1647
	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);

	if (ret)
		return ret;

1648 1649
	register_die_notifier(&kvm_mips_csr_die_notifier);

1650 1651 1652
	return 0;
}

1653
static void __exit kvm_mips_exit(void)
1654 1655 1656
{
	kvm_exit();

1657
	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1658 1659 1660 1661 1662 1663
}

module_init(kvm_mips_init);
module_exit(kvm_mips_exit);

EXPORT_TRACEPOINT_SYMBOL(kvm_exit);