mips.c 41.1 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * KVM/MIPS: MIPS specific KVM APIs
 *
 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10
 */
11

J
James Hogan 已提交
12
#include <linux/bitops.h>
13 14
#include <linux/errno.h>
#include <linux/err.h>
15
#include <linux/kdebug.h>
16
#include <linux/module.h>
17
#include <linux/uaccess.h>
18
#include <linux/vmalloc.h>
19
#include <linux/sched/signal.h>
20 21
#include <linux/fs.h>
#include <linux/bootmem.h>
22

23
#include <asm/fpu.h>
24 25 26
#include <asm/page.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>
27
#include <asm/pgalloc.h>
28
#include <asm/pgtable.h>
29 30 31

#include <linux/kvm_host.h>

32 33
#include "interrupt.h"
#include "commpage.h"
34 35 36 37 38 39 40 41

#define CREATE_TRACE_POINTS
#include "trace.h"

#ifndef VECTORSPACING
#define VECTORSPACING 0x100	/* for EI/VI mode */
#endif

42
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
43
struct kvm_stats_debugfs_item debugfs_entries[] = {
44 45 46 47 48 49 50 51 52 53 54 55 56
	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU },
	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU },
	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU },
	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU },
	{ "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU },
	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU },
	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU },
	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU },
	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU },
	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU },
	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU },
	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU },
57
	{ "trap_inst",	  VCPU_STAT(trap_inst_exits),	 KVM_STAT_VCPU },
58
	{ "msa_fpe",	  VCPU_STAT(msa_fpe_exits),	 KVM_STAT_VCPU },
59
	{ "fpe",	  VCPU_STAT(fpe_exits),		 KVM_STAT_VCPU },
60
	{ "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
61
	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
62 63 64 65 66 67 68 69 70 71
#ifdef CONFIG_KVM_MIPS_VZ
	{ "vz_gpsi",	  VCPU_STAT(vz_gpsi_exits),	 KVM_STAT_VCPU },
	{ "vz_gsfc",	  VCPU_STAT(vz_gsfc_exits),	 KVM_STAT_VCPU },
	{ "vz_hc",	  VCPU_STAT(vz_hc_exits),	 KVM_STAT_VCPU },
	{ "vz_grr",	  VCPU_STAT(vz_grr_exits),	 KVM_STAT_VCPU },
	{ "vz_gva",	  VCPU_STAT(vz_gva_exits),	 KVM_STAT_VCPU },
	{ "vz_ghfc",	  VCPU_STAT(vz_ghfc_exits),	 KVM_STAT_VCPU },
	{ "vz_gpa",	  VCPU_STAT(vz_gpa_exits),	 KVM_STAT_VCPU },
	{ "vz_resvd",	  VCPU_STAT(vz_resvd_exits),	 KVM_STAT_VCPU },
#endif
72
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
73
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
74
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
75
	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU },
76 77 78
	{NULL}
};

79 80 81
/*
 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
 * Config7, so we are "runnable" if interrupts are pending
82 83 84 85 86 87 88 89 90 91 92
 */
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
	return !!(vcpu->arch.pending_exceptions);
}

int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return 1;
}

93
int kvm_arch_hardware_enable(void)
94
{
95 96 97 98 99 100
	return kvm_mips_callbacks->hardware_enable();
}

void kvm_arch_hardware_disable(void)
{
	kvm_mips_callbacks->hardware_disable();
101 102 103 104 105 106 107 108 109
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
110
	*(int *)rtn = 0;
111 112 113 114
}

int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
115 116 117 118 119 120 121 122
	switch (type) {
	case KVM_VM_MIPS_TE:
		break;
	default:
		/* Unsupported KVM type */
		return -EINVAL;
	};

123 124 125 126 127
	/* Allocate page table to map GPA -> RPA */
	kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
	if (!kvm->arch.gpa_mm.pgd)
		return -ENOMEM;

128 129 130
	return 0;
}

131 132 133 134 135 136 137 138 139 140
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
void kvm_mips_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_arch_vcpu_free(vcpu);
	}

	mutex_lock(&kvm->lock);

	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);

	mutex_unlock(&kvm->lock);
}

160 161 162 163 164 165 166
static void kvm_mips_free_gpa_pt(struct kvm *kvm)
{
	/* It should always be safe to remove after flushing the whole range */
	WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
	pgd_free(NULL, kvm->arch.gpa_mm.pgd);
}

167 168 169
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	kvm_mips_free_vcpus(kvm);
170
	kvm_mips_free_gpa_pt(kvm);
171 172
}

173 174
long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
			unsigned long arg)
175
{
176
	return -ENOIOCTLCMD;
177 178
}

179 180
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
181 182 183 184
{
	return 0;
}

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
	/* Flush whole GPA */
	kvm_mips_flush_gpa_pt(kvm, 0, ~0);

	/* Let implementation do the rest */
	kvm_mips_callbacks->flush_shadow_all(kvm);
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
	/*
	 * The slot has been made invalid (ready for moving or deletion), so we
	 * need to ensure that it can no longer be accessed by any guest VCPUs.
	 */

	spin_lock(&kvm->mmu_lock);
	/* Flush slot from GPA */
	kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
			      slot->base_gfn + slot->npages - 1);
	/* Let implementation do the rest */
	kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
	spin_unlock(&kvm->mmu_lock);
}

211
int kvm_arch_prepare_memory_region(struct kvm *kvm,
212
				   struct kvm_memory_slot *memslot,
213
				   const struct kvm_userspace_memory_region *mem,
214
				   enum kvm_mr_change change)
215 216 217 218 219
{
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
220
				   const struct kvm_userspace_memory_region *mem,
221
				   const struct kvm_memory_slot *old,
222
				   const struct kvm_memory_slot *new,
223
				   enum kvm_mr_change change)
224
{
225 226
	int needs_flush;

227 228 229
	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
		  __func__, kvm, mem->slot, mem->guest_phys_addr,
		  mem->memory_size, mem->userspace_addr);
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

	/*
	 * If dirty page logging is enabled, write protect all pages in the slot
	 * ready for dirty logging.
	 *
	 * There is no need to do this in any of the following cases:
	 * CREATE:	No dirty mappings will already exist.
	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
	 *		kvm_arch_flush_shadow_memslot()
	 */
	if (change == KVM_MR_FLAGS_ONLY &&
	    (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
	     new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
		spin_lock(&kvm->mmu_lock);
		/* Write protect GPA page table entries */
		needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
					new->base_gfn + new->npages - 1);
		/* Let implementation do the rest */
		if (needs_flush)
			kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
		spin_unlock(&kvm->mmu_lock);
	}
252 253
}

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
static inline void dump_handler(const char *symbol, void *start, void *end)
{
	u32 *p;

	pr_debug("LEAF(%s)\n", symbol);

	pr_debug("\t.set push\n");
	pr_debug("\t.set noreorder\n");

	for (p = start; p < (u32 *)end; ++p)
		pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);

	pr_debug("\t.set\tpop\n");

	pr_debug("\tEND(%s)\n", symbol);
}

271 272
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
273
	int err, size;
274
	void *gebase, *p, *handler, *refill_start, *refill_end;
275 276 277 278 279 280 281 282 283 284 285 286 287 288
	int i;

	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);

	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);

	if (err)
		goto out_free_cpu;

289
	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
290

291 292
	/*
	 * Allocate space for host mode exception handlers that handle
293 294
	 * guest mode exits
	 */
295
	if (cpu_has_veic || cpu_has_vint)
296
		size = 0x200 + VECTORSPACING * 64;
297
	else
298
		size = 0x4000;
299 300 301 302 303

	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);

	if (!gebase) {
		err = -ENOMEM;
304
		goto out_uninit_cpu;
305
	}
306 307
	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
		  ALIGN(size, PAGE_SIZE), gebase);
308

309 310 311 312 313 314 315 316 317 318 319 320
	/*
	 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
	 * limits us to the low 512MB of physical address space. If the memory
	 * we allocate is out of range, just give up now.
	 */
	if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
		kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
			gebase);
		err = -ENOMEM;
		goto out_free_gebase;
	}

321 322 323
	/* Save new ebase */
	vcpu->arch.guest_ebase = gebase;

324
	/* Build guest exception vectors dynamically in unmapped memory */
325
	handler = gebase + 0x2000;
326

327 328 329
	/* TLB refill */
	refill_start = gebase;
	refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
330 331

	/* General Exception Entry point */
332
	kvm_mips_build_exception(gebase + 0x180, handler);
333 334 335 336 337

	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
	for (i = 0; i < 8; i++) {
		kvm_debug("L1 Vectored handler @ %p\n",
			  gebase + 0x200 + (i * VECTORSPACING));
338 339
		kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
					 handler);
340 341
	}

342
	/* General exit handler */
343
	p = handler;
344 345 346 347 348
	p = kvm_mips_build_exit(p);

	/* Guest entry routine */
	vcpu->arch.vcpu_run = p;
	p = kvm_mips_build_vcpu_run(p);
349

350 351 352 353 354
	/* Dump the generated code */
	pr_debug("#include <asm/asm.h>\n");
	pr_debug("#include <asm/regdef.h>\n");
	pr_debug("\n");
	dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
355
	dump_handler("kvm_tlb_refill", refill_start, refill_end);
356 357 358
	dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
	dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);

359
	/* Invalidate the icache for these ranges */
360 361
	flush_icache_range((unsigned long)gebase,
			   (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
362

363 364 365 366
	/*
	 * Allocate comm page for guest kernel, a TLB will be reserved for
	 * mapping GVA @ 0xFFFF8000 to this page
	 */
367 368 369 370 371 372 373
	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);

	if (!vcpu->arch.kseg0_commpage) {
		err = -ENOMEM;
		goto out_free_gebase;
	}

374
	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
375 376 377 378 379 380 381 382 383 384
	kvm_mips_commpage_init(vcpu);

	/* Init */
	vcpu->arch.last_sched_cpu = -1;

	return vcpu;

out_free_gebase:
	kfree(gebase);

385 386 387
out_uninit_cpu:
	kvm_vcpu_uninit(vcpu);

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
out_free_cpu:
	kfree(vcpu);

out:
	return ERR_PTR(err);
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
	hrtimer_cancel(&vcpu->arch.comparecount_timer);

	kvm_vcpu_uninit(vcpu);

	kvm_mips_dump_stats(vcpu);

403
	kvm_mmu_free_memory_caches(vcpu);
404 405
	kfree(vcpu->arch.guest_ebase);
	kfree(vcpu->arch.kseg0_commpage);
406
	kfree(vcpu);
407 408 409 410 411 412 413
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

414 415
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
416
{
417
	return -ENOIOCTLCMD;
418 419 420 421
}

int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
422
	int r = -EINTR;
423 424 425 426 427 428 429 430 431 432 433
	sigset_t sigsaved;

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	if (vcpu->mmio_needed) {
		if (!vcpu->mmio_is_write)
			kvm_mips_complete_mmio_load(vcpu, run);
		vcpu->mmio_needed = 0;
	}

434 435 436
	if (run->immediate_exit)
		goto out;

437 438
	lose_fpu(1);

439
	local_irq_disable();
440
	guest_enter_irqoff();
441
	trace_kvm_enter(vcpu);
442

443 444 445 446 447 448 449 450
	/*
	 * Make sure the read of VCPU requests in vcpu_run() callback is not
	 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
	 * flush request while the requester sees the VCPU as outside of guest
	 * mode and not needing an IPI.
	 */
	smp_store_mb(vcpu->mode, IN_GUEST_MODE);

451
	r = kvm_mips_callbacks->vcpu_run(run, vcpu);
452

453
	trace_kvm_out(vcpu);
454
	guest_exit_irqoff();
455 456
	local_irq_enable();

457
out:
458 459 460 461 462 463
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	return r;
}

464 465
int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
			     struct kvm_mips_interrupt *irq)
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
{
	int intr = (int)irq->irq;
	struct kvm_vcpu *dvcpu = NULL;

	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
			  (int)intr);

	if (irq->cpu == -1)
		dvcpu = vcpu;
	else
		dvcpu = vcpu->kvm->vcpus[irq->cpu];

	if (intr == 2 || intr == 3 || intr == 4) {
		kvm_mips_callbacks->queue_io_int(dvcpu, irq);

	} else if (intr == -2 || intr == -3 || intr == -4) {
		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
	} else {
		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
			irq->cpu, irq->irq);
		return -EINVAL;
	}

	dvcpu->arch.wait = 0;

492 493
	if (swait_active(&dvcpu->wq))
		swake_up(&dvcpu->wq);
494 495 496 497

	return 0;
}

498 499
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
500
{
501
	return -ENOIOCTLCMD;
502 503
}

504 505
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
506
{
507
	return -ENOIOCTLCMD;
508 509
}

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
static u64 kvm_mips_get_one_regs[] = {
	KVM_REG_MIPS_R0,
	KVM_REG_MIPS_R1,
	KVM_REG_MIPS_R2,
	KVM_REG_MIPS_R3,
	KVM_REG_MIPS_R4,
	KVM_REG_MIPS_R5,
	KVM_REG_MIPS_R6,
	KVM_REG_MIPS_R7,
	KVM_REG_MIPS_R8,
	KVM_REG_MIPS_R9,
	KVM_REG_MIPS_R10,
	KVM_REG_MIPS_R11,
	KVM_REG_MIPS_R12,
	KVM_REG_MIPS_R13,
	KVM_REG_MIPS_R14,
	KVM_REG_MIPS_R15,
	KVM_REG_MIPS_R16,
	KVM_REG_MIPS_R17,
	KVM_REG_MIPS_R18,
	KVM_REG_MIPS_R19,
	KVM_REG_MIPS_R20,
	KVM_REG_MIPS_R21,
	KVM_REG_MIPS_R22,
	KVM_REG_MIPS_R23,
	KVM_REG_MIPS_R24,
	KVM_REG_MIPS_R25,
	KVM_REG_MIPS_R26,
	KVM_REG_MIPS_R27,
	KVM_REG_MIPS_R28,
	KVM_REG_MIPS_R29,
	KVM_REG_MIPS_R30,
	KVM_REG_MIPS_R31,

544
#ifndef CONFIG_CPU_MIPSR6
545 546
	KVM_REG_MIPS_HI,
	KVM_REG_MIPS_LO,
547
#endif
548 549 550
	KVM_REG_MIPS_PC,
};

J
James Hogan 已提交
551 552 553 554 555 556 557 558 559 560
static u64 kvm_mips_get_one_regs_fpu[] = {
	KVM_REG_MIPS_FCR_IR,
	KVM_REG_MIPS_FCR_CSR,
};

static u64 kvm_mips_get_one_regs_msa[] = {
	KVM_REG_MIPS_MSA_IR,
	KVM_REG_MIPS_MSA_CSR,
};

561 562 563 564 565
static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
{
	unsigned long ret;

	ret = ARRAY_SIZE(kvm_mips_get_one_regs);
J
James Hogan 已提交
566 567 568 569 570 571 572 573
	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
		ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
		/* odd doubles */
		if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
			ret += 16;
	}
	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
		ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
574 575 576 577 578 579 580
	ret += kvm_mips_callbacks->num_regs(vcpu);

	return ret;
}

static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
{
J
James Hogan 已提交
581 582 583
	u64 index;
	unsigned int i;

584 585 586 587 588
	if (copy_to_user(indices, kvm_mips_get_one_regs,
			 sizeof(kvm_mips_get_one_regs)))
		return -EFAULT;
	indices += ARRAY_SIZE(kvm_mips_get_one_regs);

J
James Hogan 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
		if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
				 sizeof(kvm_mips_get_one_regs_fpu)))
			return -EFAULT;
		indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);

		for (i = 0; i < 32; ++i) {
			index = KVM_REG_MIPS_FPR_32(i);
			if (copy_to_user(indices, &index, sizeof(index)))
				return -EFAULT;
			++indices;

			/* skip odd doubles if no F64 */
			if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
				continue;

			index = KVM_REG_MIPS_FPR_64(i);
			if (copy_to_user(indices, &index, sizeof(index)))
				return -EFAULT;
			++indices;
		}
	}

	if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
		if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
				 sizeof(kvm_mips_get_one_regs_msa)))
			return -EFAULT;
		indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);

		for (i = 0; i < 32; ++i) {
			index = KVM_REG_MIPS_VEC_128(i);
			if (copy_to_user(indices, &index, sizeof(index)))
				return -EFAULT;
			++indices;
		}
	}

626 627 628
	return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
}

629 630 631 632
static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
			    const struct kvm_one_reg *reg)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
J
James Hogan 已提交
633
	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
634
	int ret;
635
	s64 v;
J
James Hogan 已提交
636
	s64 vs[2];
J
James Hogan 已提交
637
	unsigned int idx;
638 639

	switch (reg->id) {
J
James Hogan 已提交
640
	/* General purpose registers */
641 642 643
	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
		break;
644
#ifndef CONFIG_CPU_MIPSR6
645 646 647 648 649 650
	case KVM_REG_MIPS_HI:
		v = (long)vcpu->arch.hi;
		break;
	case KVM_REG_MIPS_LO:
		v = (long)vcpu->arch.lo;
		break;
651
#endif
652 653 654 655
	case KVM_REG_MIPS_PC:
		v = (long)vcpu->arch.pc;
		break;

J
James Hogan 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
	/* Floating point registers */
	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
		/* Odd singles in top of even double when FR=0 */
		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
			v = get_fpr32(&fpu->fpr[idx], 0);
		else
			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
		break;
	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
		/* Can't access odd doubles in FR=0 mode */
		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
			return -EINVAL;
		v = get_fpr64(&fpu->fpr[idx], 0);
		break;
	case KVM_REG_MIPS_FCR_IR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		v = boot_cpu_data.fpu_id;
		break;
	case KVM_REG_MIPS_FCR_CSR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		v = fpu->fcr31;
		break;

J
James Hogan 已提交
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
	/* MIPS SIMD Architecture (MSA) registers */
	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		/* Can't access MSA registers in FR=0 mode */
		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
#ifdef CONFIG_CPU_LITTLE_ENDIAN
		/* least significant byte first */
		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
#else
		/* most significant byte first */
		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
#endif
		break;
	case KVM_REG_MIPS_MSA_IR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		v = boot_cpu_data.msa_id;
		break;
	case KVM_REG_MIPS_MSA_CSR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		v = fpu->msacsr;
		break;

716
	/* registers to be handled specially */
717
	default:
718 719 720 721
		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
		if (ret)
			return ret;
		break;
722
	}
723 724
	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
725

726 727 728 729
		return put_user(v, uaddr64);
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
		u32 v32 = (u32)v;
730

731
		return put_user(v32, uaddr32);
J
James Hogan 已提交
732 733 734
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
		void __user *uaddr = (void __user *)(long)reg->addr;

735
		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
736 737 738
	} else {
		return -EINVAL;
	}
739 740 741 742 743 744
}

static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
			    const struct kvm_one_reg *reg)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
J
James Hogan 已提交
745 746
	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
	s64 v;
J
James Hogan 已提交
747
	s64 vs[2];
J
James Hogan 已提交
748
	unsigned int idx;
749

750 751 752 753 754 755 756 757 758 759 760 761
	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;

		if (get_user(v, uaddr64) != 0)
			return -EFAULT;
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
		s32 v32;

		if (get_user(v32, uaddr32) != 0)
			return -EFAULT;
		v = (s64)v32;
J
James Hogan 已提交
762 763 764
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
		void __user *uaddr = (void __user *)(long)reg->addr;

765
		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
766 767 768
	} else {
		return -EINVAL;
	}
769 770

	switch (reg->id) {
J
James Hogan 已提交
771
	/* General purpose registers */
772 773 774 775 776 777
	case KVM_REG_MIPS_R0:
		/* Silently ignore requests to set $0 */
		break;
	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
		break;
778
#ifndef CONFIG_CPU_MIPSR6
779 780 781 782 783 784
	case KVM_REG_MIPS_HI:
		vcpu->arch.hi = v;
		break;
	case KVM_REG_MIPS_LO:
		vcpu->arch.lo = v;
		break;
785
#endif
786 787 788 789
	case KVM_REG_MIPS_PC:
		vcpu->arch.pc = v;
		break;

J
James Hogan 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
	/* Floating point registers */
	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
		/* Odd singles in top of even double when FR=0 */
		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
			set_fpr32(&fpu->fpr[idx], 0, v);
		else
			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
		break;
	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
		/* Can't access odd doubles in FR=0 mode */
		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
			return -EINVAL;
		set_fpr64(&fpu->fpr[idx], 0, v);
		break;
	case KVM_REG_MIPS_FCR_IR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		/* Read-only */
		break;
	case KVM_REG_MIPS_FCR_CSR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		fpu->fcr31 = v;
		break;

J
James Hogan 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
	/* MIPS SIMD Architecture (MSA) registers */
	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
#ifdef CONFIG_CPU_LITTLE_ENDIAN
		/* least significant byte first */
		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
#else
		/* most significant byte first */
		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
#endif
		break;
	case KVM_REG_MIPS_MSA_IR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		/* Read-only */
		break;
	case KVM_REG_MIPS_MSA_CSR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		fpu->msacsr = v;
		break;

847
	/* registers to be handled specially */
848
	default:
849
		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
850 851 852 853
	}
	return 0;
}

J
James Hogan 已提交
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r = 0;

	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
		return -EINVAL;
	if (cap->flags)
		return -EINVAL;
	if (cap->args[0])
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_MIPS_FPU:
		vcpu->arch.fpu_enabled = true;
		break;
J
James Hogan 已提交
870 871 872
	case KVM_CAP_MIPS_MSA:
		vcpu->arch.msa_enabled = true;
		break;
J
James Hogan 已提交
873 874 875 876 877 878 879 880
	default:
		r = -EINVAL;
		break;
	}

	return r;
}

881 882
long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
			 unsigned long arg)
883 884 885 886 887 888
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {
889 890 891
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
892

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_mips_set_reg(vcpu, &reg);
		else
			return kvm_mips_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
908
		reg_list.n = kvm_mips_num_regs(vcpu);
909 910 911 912
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
913
		return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
914
	}
915 916 917
	case KVM_INTERRUPT:
		{
			struct kvm_mips_interrupt irq;
918

919
			if (copy_from_user(&irq, argp, sizeof(irq)))
920
				return -EFAULT;
921 922 923 924 925 926
			kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
				  irq.irq);

			r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
			break;
		}
J
James Hogan 已提交
927 928 929 930
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;

		if (copy_from_user(&cap, argp, sizeof(cap)))
931
			return -EFAULT;
J
James Hogan 已提交
932 933 934
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
935
	default:
936
		r = -ENOIOCTLCMD;
937 938 939 940
	}
	return r;
}

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
960 961
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
962
	struct kvm_memslots *slots;
963
	struct kvm_memory_slot *memslot;
964
	bool is_dirty = false;
965 966 967 968
	int r;

	mutex_lock(&kvm->slots_lock);

969
	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
970 971

	if (is_dirty) {
972 973
		slots = kvm_memslots(kvm);
		memslot = id_to_memslot(slots, log->slot);
974

975 976
		/* Let implementation handle TLB/GVA invalidation */
		kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
977 978 979 980 981 982 983 984 985 986 987 988
	}

	mutex_unlock(&kvm->slots_lock);
	return r;
}

long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
{
	long r;

	switch (ioctl) {
	default:
989
		r = -ENOIOCTLCMD;
990 991 992 993 994 995 996 997 998 999 1000 1001
	}

	return r;
}

int kvm_arch_init(void *opaque)
{
	if (kvm_mips_callbacks) {
		kvm_err("kvm: module already exists\n");
		return -EEXIST;
	}

1002
	return kvm_mips_emulation_init(&kvm_mips_callbacks);
1003 1004 1005 1006 1007 1008 1009
}

void kvm_arch_exit(void)
{
	kvm_mips_callbacks = NULL;
}

1010 1011
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
1012
{
1013
	return -ENOIOCTLCMD;
1014 1015
}

1016 1017
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
1018
{
1019
	return -ENOIOCTLCMD;
1020 1021
}

1022
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1023 1024 1025 1026 1027
{
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1028
	return -ENOIOCTLCMD;
1029 1030 1031 1032
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1033
	return -ENOIOCTLCMD;
1034 1035 1036 1037 1038 1039 1040
}

int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}

1041
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1042 1043 1044 1045
{
	int r;

	switch (ext) {
1046
	case KVM_CAP_ONE_REG:
J
James Hogan 已提交
1047
	case KVM_CAP_ENABLE_CAP:
1048
	case KVM_CAP_READONLY_MEM:
1049
	case KVM_CAP_SYNC_MMU:
1050
	case KVM_CAP_IMMEDIATE_EXIT:
1051 1052
		r = 1;
		break;
1053 1054 1055
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
1056 1057 1058 1059 1060 1061
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
J
James Hogan 已提交
1062
	case KVM_CAP_MIPS_FPU:
1063 1064
		/* We don't handle systems with inconsistent cpu_has_fpu */
		r = !!raw_cpu_has_fpu;
J
James Hogan 已提交
1065
		break;
J
James Hogan 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	case KVM_CAP_MIPS_MSA:
		/*
		 * We don't support MSA vector partitioning yet:
		 * 1) It would require explicit support which can't be tested
		 *    yet due to lack of support in current hardware.
		 * 2) It extends the state that would need to be saved/restored
		 *    by e.g. QEMU for migration.
		 *
		 * When vector partitioning hardware becomes available, support
		 * could be added by requiring a flag when enabling
		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
		 * to save/restore the appropriate extra state.
		 */
		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
		break;
1081
	default:
1082
		r = kvm_mips_callbacks->check_extension(kvm, ext);
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
		break;
	}
	return r;
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
	return kvm_mips_pending_timer(vcpu);
}

int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
{
	int i;
	struct mips_coproc *cop0;

	if (!vcpu)
		return -1;

1101 1102 1103
	kvm_debug("VCPU Register Dump:\n");
	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1104 1105

	for (i = 0; i < 32; i += 4) {
1106
		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1107 1108 1109 1110
		       vcpu->arch.gprs[i],
		       vcpu->arch.gprs[i + 1],
		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
	}
1111 1112
	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1113 1114

	cop0 = vcpu->arch.cop0;
1115 1116 1117
	kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
		  kvm_read_c0_guest_status(cop0),
		  kvm_read_c0_guest_cause(cop0));
1118

1119
	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1120 1121 1122 1123 1124 1125 1126 1127

	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

1128
	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1129
		vcpu->arch.gprs[i] = regs->gpr[i];
1130
	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1131 1132 1133 1134
	vcpu->arch.hi = regs->hi;
	vcpu->arch.lo = regs->lo;
	vcpu->arch.pc = regs->pc;

1135
	return 0;
1136 1137 1138 1139 1140 1141
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

1142
	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1143
		regs->gpr[i] = vcpu->arch.gprs[i];
1144 1145 1146 1147 1148

	regs->hi = vcpu->arch.hi;
	regs->lo = vcpu->arch.lo;
	regs->pc = vcpu->arch.pc;

1149
	return 0;
1150 1151
}

1152
static void kvm_mips_comparecount_func(unsigned long data)
1153 1154 1155 1156 1157 1158
{
	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;

	kvm_mips_callbacks->queue_timer_int(vcpu);

	vcpu->arch.wait = 0;
1159 1160
	if (swait_active(&vcpu->wq))
		swake_up(&vcpu->wq);
1161 1162
}

1163
/* low level hrtimer wake routine */
1164
static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1165 1166 1167 1168 1169
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
	kvm_mips_comparecount_func((unsigned long) vcpu);
1170
	return kvm_mips_count_timeout(vcpu);
1171 1172 1173 1174
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1175 1176 1177 1178 1179 1180
	int err;

	err = kvm_mips_callbacks->vcpu_init(vcpu);
	if (err)
		return err;

1181 1182 1183 1184 1185 1186
	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
		     HRTIMER_MODE_REL);
	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
	return 0;
}

J
James Hogan 已提交
1187 1188 1189 1190 1191
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
	kvm_mips_callbacks->vcpu_uninit(vcpu);
}

1192 1193
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
{
	return 0;
}

/* Initial guest state */
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	return kvm_mips_callbacks->vcpu_setup(vcpu);
}

1204
static void kvm_mips_set_c0_status(void)
1205
{
1206
	u32 status = read_c0_status();
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

	if (cpu_has_dsp)
		status |= (ST0_MX);

	write_c0_status(status);
	ehb();
}

/*
 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
 */
int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
1220 1221 1222
	u32 cause = vcpu->arch.host_cp0_cause;
	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1223 1224
	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
	enum emulation_result er = EMULATE_DONE;
1225
	u32 inst;
1226 1227
	int ret = RESUME_GUEST;

1228 1229
	vcpu->mode = OUTSIDE_GUEST_MODE;

1230 1231 1232
	/* re-enable HTW before enabling interrupts */
	htw_start();

1233 1234 1235 1236
	/* Set a default exit reason */
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

1237 1238 1239 1240
	/*
	 * Set the appropriate status bits based on host CPU features,
	 * before we hit the scheduler
	 */
1241 1242 1243 1244 1245 1246
	kvm_mips_set_c0_status();

	local_irq_enable();

	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
			cause, opc, run, vcpu);
1247
	trace_kvm_exit(vcpu, exccode);
1248

1249 1250
	/*
	 * Do a privilege check, if in UM most of these exit conditions end up
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	 * causing an exception to be delivered to the Guest Kernel
	 */
	er = kvm_mips_check_privilege(cause, opc, run, vcpu);
	if (er == EMULATE_PRIV_FAIL) {
		goto skip_emul;
	} else if (er == EMULATE_FAIL) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		goto skip_emul;
	}

	switch (exccode) {
1263 1264
	case EXCCODE_INT:
		kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1265 1266 1267

		++vcpu->stat.int_exits;

1268
		if (need_resched())
1269 1270 1271 1272 1273
			cond_resched();

		ret = RESUME_GUEST;
		break;

1274 1275
	case EXCCODE_CPU:
		kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1276 1277 1278 1279

		++vcpu->stat.cop_unusable_exits;
		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
		/* XXXKYMA: Might need to return to user space */
1280
		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1281 1282 1283
			ret = RESUME_HOST;
		break;

1284
	case EXCCODE_MOD:
1285 1286 1287 1288
		++vcpu->stat.tlbmod_exits;
		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
		break;

1289
	case EXCCODE_TLBS:
1290 1291 1292
		kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
			  badvaddr);
1293 1294 1295 1296 1297

		++vcpu->stat.tlbmiss_st_exits;
		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
		break;

1298
	case EXCCODE_TLBL:
1299 1300 1301 1302 1303 1304 1305
		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
			  cause, opc, badvaddr);

		++vcpu->stat.tlbmiss_ld_exits;
		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
		break;

1306
	case EXCCODE_ADES:
1307 1308 1309 1310
		++vcpu->stat.addrerr_st_exits;
		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
		break;

1311
	case EXCCODE_ADEL:
1312 1313 1314 1315
		++vcpu->stat.addrerr_ld_exits;
		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
		break;

1316
	case EXCCODE_SYS:
1317 1318 1319 1320
		++vcpu->stat.syscall_exits;
		ret = kvm_mips_callbacks->handle_syscall(vcpu);
		break;

1321
	case EXCCODE_RI:
1322 1323 1324 1325
		++vcpu->stat.resvd_inst_exits;
		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
		break;

1326
	case EXCCODE_BP:
1327 1328 1329 1330
		++vcpu->stat.break_inst_exits;
		ret = kvm_mips_callbacks->handle_break(vcpu);
		break;

1331
	case EXCCODE_TR:
1332 1333 1334 1335
		++vcpu->stat.trap_inst_exits;
		ret = kvm_mips_callbacks->handle_trap(vcpu);
		break;

1336
	case EXCCODE_MSAFPE:
1337 1338 1339 1340
		++vcpu->stat.msa_fpe_exits;
		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
		break;

1341
	case EXCCODE_FPE:
1342 1343 1344 1345
		++vcpu->stat.fpe_exits;
		ret = kvm_mips_callbacks->handle_fpe(vcpu);
		break;

1346
	case EXCCODE_MSADIS:
1347
		++vcpu->stat.msa_disabled_exits;
1348 1349 1350
		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
		break;

1351
	default:
1352 1353 1354
		if (cause & CAUSEF_BD)
			opc += 1;
		inst = 0;
1355
		kvm_get_badinstr(opc, vcpu, &inst);
1356
		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1357
			exccode, opc, inst, badvaddr,
1358
			kvm_read_c0_guest_status(vcpu->arch.cop0));
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
		kvm_arch_vcpu_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		break;

	}

skip_emul:
	local_irq_disable();

	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
		kvm_mips_deliver_interrupts(vcpu, cause);

	if (!(ret & RESUME_HOST)) {
1373
		/* Only check for signals if not already exiting to userspace */
1374 1375 1376 1377
		if (signal_pending(current)) {
			run->exit_reason = KVM_EXIT_INTR;
			ret = (-EINTR << 2) | RESUME_HOST;
			++vcpu->stat.signal_exits;
1378
			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1379 1380 1381
		}
	}

1382
	if (ret == RESUME_GUEST) {
1383 1384
		trace_kvm_reenter(vcpu);

1385 1386 1387 1388 1389 1390 1391 1392
		/*
		 * Make sure the read of VCPU requests in vcpu_reenter()
		 * callback is not reordered ahead of the write to vcpu->mode,
		 * or we could miss a TLB flush request while the requester sees
		 * the VCPU as outside of guest mode and not needing an IPI.
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

1393
		kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1394

1395
		/*
1396 1397
		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
		 * is live), restore FCR31 / MSACSR.
1398 1399
		 *
		 * This should be before returning to the guest exception
1400 1401
		 * vector, as it may well cause an [MSA] FP exception if there
		 * are pending exception bits unmasked. (see
1402 1403 1404 1405 1406
		 * kvm_mips_csr_die_notifier() for how that is handled).
		 */
		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
		    read_c0_status() & ST0_CU1)
			__kvm_restore_fcsr(&vcpu->arch);
1407 1408 1409 1410

		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
		    read_c0_config5() & MIPS_CONF5_MSAEN)
			__kvm_restore_msacsr(&vcpu->arch);
1411 1412
	}

1413 1414 1415
	/* Disable HTW before returning to guest or host */
	htw_stop();

1416 1417 1418
	return ret;
}

1419 1420 1421 1422 1423 1424 1425 1426
/* Enable FPU for guest and restore context */
void kvm_own_fpu(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	unsigned int sr, cfg5;

	preempt_disable();

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	sr = kvm_read_c0_guest_status(cop0);

	/*
	 * If MSA state is already live, it is undefined how it interacts with
	 * FR=0 FPU state, and we don't want to hit reserved instruction
	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
	 * play it safe and save it first.
	 *
	 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
	 * get called when guest CU1 is set, however we can't trust the guest
	 * not to clobber the status register directly via the commpage.
	 */
	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1440
	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1441 1442
		kvm_lose_fpu(vcpu);

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	/*
	 * Enable FPU for guest
	 * We set FR and FRE according to guest context
	 */
	change_c0_status(ST0_CU1 | ST0_FR, sr);
	if (cpu_has_fre) {
		cfg5 = kvm_read_c0_guest_config5(cop0);
		change_c0_config5(MIPS_CONF5_FRE, cfg5);
	}
	enable_fpu_hazard();

	/* If guest FPU state not active, restore it now */
1455
	if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1456
		__kvm_restore_fpu(&vcpu->arch);
1457
		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
J
James Hogan 已提交
1458 1459 1460
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
	} else {
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1461 1462 1463 1464 1465
	}

	preempt_enable();
}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
#ifdef CONFIG_CPU_HAS_MSA
/* Enable MSA for guest and restore context */
void kvm_own_msa(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	unsigned int sr, cfg5;

	preempt_disable();

	/*
	 * Enable FPU if enabled in guest, since we're restoring FPU context
	 * anyway. We set FR and FRE according to guest context.
	 */
	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
		sr = kvm_read_c0_guest_status(cop0);

		/*
		 * If FR=0 FPU state is already live, it is undefined how it
		 * interacts with MSA state, so play it safe and save it first.
		 */
		if (!(sr & ST0_FR) &&
1487 1488
		    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
				KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
			kvm_lose_fpu(vcpu);

		change_c0_status(ST0_CU1 | ST0_FR, sr);
		if (sr & ST0_CU1 && cpu_has_fre) {
			cfg5 = kvm_read_c0_guest_config5(cop0);
			change_c0_config5(MIPS_CONF5_FRE, cfg5);
		}
	}

	/* Enable MSA for guest */
	set_c0_config5(MIPS_CONF5_MSAEN);
	enable_fpu_hazard();

1502 1503
	switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
	case KVM_MIPS_AUX_FPU:
1504 1505 1506 1507
		/*
		 * Guest FPU state already loaded, only restore upper MSA state
		 */
		__kvm_restore_msa_upper(&vcpu->arch);
1508
		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
J
James Hogan 已提交
1509
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1510 1511 1512 1513
		break;
	case 0:
		/* Neither FPU or MSA already active, restore full MSA state */
		__kvm_restore_msa(&vcpu->arch);
1514
		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1515
		if (kvm_mips_guest_has_fpu(&vcpu->arch))
1516
			vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
J
James Hogan 已提交
1517 1518
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
			      KVM_TRACE_AUX_FPU_MSA);
1519 1520
		break;
	default:
J
James Hogan 已提交
1521
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1522 1523 1524 1525 1526 1527 1528 1529
		break;
	}

	preempt_enable();
}
#endif

/* Drop FPU & MSA without saving it */
1530 1531 1532
void kvm_drop_fpu(struct kvm_vcpu *vcpu)
{
	preempt_disable();
1533
	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1534
		disable_msa();
J
James Hogan 已提交
1535
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1536
		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1537
	}
1538
	if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1539
		clear_c0_status(ST0_CU1 | ST0_FR);
J
James Hogan 已提交
1540
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1541
		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1542 1543 1544 1545
	}
	preempt_enable();
}

1546
/* Save and disable FPU & MSA */
1547 1548 1549
void kvm_lose_fpu(struct kvm_vcpu *vcpu)
{
	/*
1550 1551 1552 1553
	 * With T&E, FPU & MSA get disabled in root context (hardware) when it
	 * is disabled in guest context (software), but the register state in
	 * the hardware may still be in use.
	 * This is why we explicitly re-enable the hardware before saving.
1554 1555 1556
	 */

	preempt_disable();
1557
	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1558 1559 1560 1561
		if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
			set_c0_config5(MIPS_CONF5_MSAEN);
			enable_fpu_hazard();
		}
1562 1563

		__kvm_save_msa(&vcpu->arch);
J
James Hogan 已提交
1564
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1565 1566 1567

		/* Disable MSA & FPU */
		disable_msa();
1568
		if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1569
			clear_c0_status(ST0_CU1 | ST0_FR);
1570 1571
			disable_fpu_hazard();
		}
1572 1573
		vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
	} else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1574 1575 1576 1577
		if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
			set_c0_status(ST0_CU1);
			enable_fpu_hazard();
		}
1578 1579

		__kvm_save_fpu(&vcpu->arch);
1580
		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
J
James Hogan 已提交
1581
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1582 1583 1584

		/* Disable FPU */
		clear_c0_status(ST0_CU1 | ST0_FR);
1585
		disable_fpu_hazard();
1586 1587 1588 1589 1590
	}
	preempt_enable();
}

/*
1591 1592 1593
 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
 * exception if cause bits are set in the value being written.
1594 1595 1596 1597 1598 1599 1600 1601
 */
static int kvm_mips_csr_die_notify(struct notifier_block *self,
				   unsigned long cmd, void *ptr)
{
	struct die_args *args = (struct die_args *)ptr;
	struct pt_regs *regs = args->regs;
	unsigned long pc;

1602 1603
	/* Only interested in FPE and MSAFPE */
	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
		return NOTIFY_DONE;

	/* Return immediately if guest context isn't active */
	if (!(current->flags & PF_VCPU))
		return NOTIFY_DONE;

	/* Should never get here from user mode */
	BUG_ON(user_mode(regs));

	pc = instruction_pointer(regs);
	switch (cmd) {
	case DIE_FP:
		/* match 2nd instruction in __kvm_restore_fcsr */
		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
			return NOTIFY_DONE;
		break;
1620 1621 1622 1623 1624 1625 1626
	case DIE_MSAFP:
		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
		if (!cpu_has_msa ||
		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
			return NOTIFY_DONE;
		break;
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	}

	/* Move PC forward a little and continue executing */
	instruction_pointer(regs) += 4;

	return NOTIFY_STOP;
}

static struct notifier_block kvm_mips_csr_die_notifier = {
	.notifier_call = kvm_mips_csr_die_notify,
};

1639
static int __init kvm_mips_init(void)
1640 1641 1642
{
	int ret;

1643 1644 1645 1646
	ret = kvm_mips_entry_setup();
	if (ret)
		return ret;

1647 1648 1649 1650 1651
	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);

	if (ret)
		return ret;

1652 1653
	register_die_notifier(&kvm_mips_csr_die_notifier);

1654 1655 1656
	return 0;
}

1657
static void __exit kvm_mips_exit(void)
1658 1659 1660
{
	kvm_exit();

1661
	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1662 1663 1664 1665 1666 1667
}

module_init(kvm_mips_init);
module_exit(kvm_mips_exit);

EXPORT_TRACEPOINT_SYMBOL(kvm_exit);