mips.c 40.1 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * KVM/MIPS: MIPS specific KVM APIs
 *
 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10
 */
11

J
James Hogan 已提交
12
#include <linux/bitops.h>
13 14
#include <linux/errno.h>
#include <linux/err.h>
15
#include <linux/kdebug.h>
16
#include <linux/module.h>
17
#include <linux/uaccess.h>
18 19 20
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/bootmem.h>
21
#include <asm/fpu.h>
22 23 24
#include <asm/page.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>
25
#include <asm/pgalloc.h>
26
#include <asm/pgtable.h>
27 28 29

#include <linux/kvm_host.h>

30 31
#include "interrupt.h"
#include "commpage.h"
32 33 34 35 36 37 38 39

#define CREATE_TRACE_POINTS
#include "trace.h"

#ifndef VECTORSPACING
#define VECTORSPACING 0x100	/* for EI/VI mode */
#endif

40
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
41
struct kvm_stats_debugfs_item debugfs_entries[] = {
42 43 44 45 46 47 48 49 50 51 52 53 54
	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU },
	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU },
	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU },
	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU },
	{ "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU },
	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU },
	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU },
	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU },
	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU },
	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU },
	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU },
	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU },
55
	{ "trap_inst",	  VCPU_STAT(trap_inst_exits),	 KVM_STAT_VCPU },
56
	{ "msa_fpe",	  VCPU_STAT(msa_fpe_exits),	 KVM_STAT_VCPU },
57
	{ "fpe",	  VCPU_STAT(fpe_exits),		 KVM_STAT_VCPU },
58
	{ "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
59
	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
60
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
61
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
62
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
63
	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU },
64 65 66
	{NULL}
};

67 68 69
/*
 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
 * Config7, so we are "runnable" if interrupts are pending
70 71 72 73 74 75 76 77 78 79 80
 */
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
	return !!(vcpu->arch.pending_exceptions);
}

int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return 1;
}

81
int kvm_arch_hardware_enable(void)
82 83 84 85 86 87 88 89 90 91 92
{
	return 0;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
93
	*(int *)rtn = 0;
94 95 96 97
}

int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
98 99 100 101 102
	/* Allocate page table to map GPA -> RPA */
	kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
	if (!kvm->arch.gpa_mm.pgd)
		return -ENOMEM;

103 104 105
	return 0;
}

106 107 108 109 110 111 112 113 114 115
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
void kvm_mips_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_arch_vcpu_free(vcpu);
	}

	mutex_lock(&kvm->lock);

	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);

	mutex_unlock(&kvm->lock);
}

135 136 137 138 139 140 141
static void kvm_mips_free_gpa_pt(struct kvm *kvm)
{
	/* It should always be safe to remove after flushing the whole range */
	WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
	pgd_free(NULL, kvm->arch.gpa_mm.pgd);
}

142 143 144
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	kvm_mips_free_vcpus(kvm);
145
	kvm_mips_free_gpa_pt(kvm);
146 147
}

148 149
long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
			unsigned long arg)
150
{
151
	return -ENOIOCTLCMD;
152 153
}

154 155
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
156 157 158 159
{
	return 0;
}

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
	/* Flush whole GPA */
	kvm_mips_flush_gpa_pt(kvm, 0, ~0);

	/* Let implementation do the rest */
	kvm_mips_callbacks->flush_shadow_all(kvm);
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
	/*
	 * The slot has been made invalid (ready for moving or deletion), so we
	 * need to ensure that it can no longer be accessed by any guest VCPUs.
	 */

	spin_lock(&kvm->mmu_lock);
	/* Flush slot from GPA */
	kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
			      slot->base_gfn + slot->npages - 1);
	/* Let implementation do the rest */
	kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
	spin_unlock(&kvm->mmu_lock);
}

186
int kvm_arch_prepare_memory_region(struct kvm *kvm,
187
				   struct kvm_memory_slot *memslot,
188
				   const struct kvm_userspace_memory_region *mem,
189
				   enum kvm_mr_change change)
190 191 192 193 194
{
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
195
				   const struct kvm_userspace_memory_region *mem,
196
				   const struct kvm_memory_slot *old,
197
				   const struct kvm_memory_slot *new,
198
				   enum kvm_mr_change change)
199
{
200 201
	int needs_flush;

202 203 204
	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
		  __func__, kvm, mem->slot, mem->guest_phys_addr,
		  mem->memory_size, mem->userspace_addr);
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

	/*
	 * If dirty page logging is enabled, write protect all pages in the slot
	 * ready for dirty logging.
	 *
	 * There is no need to do this in any of the following cases:
	 * CREATE:	No dirty mappings will already exist.
	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
	 *		kvm_arch_flush_shadow_memslot()
	 */
	if (change == KVM_MR_FLAGS_ONLY &&
	    (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
	     new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
		spin_lock(&kvm->mmu_lock);
		/* Write protect GPA page table entries */
		needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
					new->base_gfn + new->npages - 1);
		/* Let implementation do the rest */
		if (needs_flush)
			kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
		spin_unlock(&kvm->mmu_lock);
	}
227 228
}

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
static inline void dump_handler(const char *symbol, void *start, void *end)
{
	u32 *p;

	pr_debug("LEAF(%s)\n", symbol);

	pr_debug("\t.set push\n");
	pr_debug("\t.set noreorder\n");

	for (p = start; p < (u32 *)end; ++p)
		pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);

	pr_debug("\t.set\tpop\n");

	pr_debug("\tEND(%s)\n", symbol);
}

246 247
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
248
	int err, size;
249
	void *gebase, *p, *handler, *refill_start, *refill_end;
250 251 252 253 254 255 256 257 258 259 260 261 262 263
	int i;

	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);

	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);

	if (err)
		goto out_free_cpu;

264
	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
265

266 267
	/*
	 * Allocate space for host mode exception handlers that handle
268 269
	 * guest mode exits
	 */
270
	if (cpu_has_veic || cpu_has_vint)
271
		size = 0x200 + VECTORSPACING * 64;
272
	else
273
		size = 0x4000;
274 275 276 277 278

	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);

	if (!gebase) {
		err = -ENOMEM;
279
		goto out_uninit_cpu;
280
	}
281 282
	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
		  ALIGN(size, PAGE_SIZE), gebase);
283

284 285 286 287 288 289 290 291 292 293 294 295
	/*
	 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
	 * limits us to the low 512MB of physical address space. If the memory
	 * we allocate is out of range, just give up now.
	 */
	if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
		kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
			gebase);
		err = -ENOMEM;
		goto out_free_gebase;
	}

296 297 298
	/* Save new ebase */
	vcpu->arch.guest_ebase = gebase;

299
	/* Build guest exception vectors dynamically in unmapped memory */
300
	handler = gebase + 0x2000;
301

302 303 304
	/* TLB refill */
	refill_start = gebase;
	refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
305 306

	/* General Exception Entry point */
307
	kvm_mips_build_exception(gebase + 0x180, handler);
308 309 310 311 312

	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
	for (i = 0; i < 8; i++) {
		kvm_debug("L1 Vectored handler @ %p\n",
			  gebase + 0x200 + (i * VECTORSPACING));
313 314
		kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
					 handler);
315 316
	}

317
	/* General exit handler */
318
	p = handler;
319 320 321 322 323
	p = kvm_mips_build_exit(p);

	/* Guest entry routine */
	vcpu->arch.vcpu_run = p;
	p = kvm_mips_build_vcpu_run(p);
324

325 326 327 328 329
	/* Dump the generated code */
	pr_debug("#include <asm/asm.h>\n");
	pr_debug("#include <asm/regdef.h>\n");
	pr_debug("\n");
	dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
330
	dump_handler("kvm_tlb_refill", refill_start, refill_end);
331 332 333
	dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
	dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);

334
	/* Invalidate the icache for these ranges */
335 336
	flush_icache_range((unsigned long)gebase,
			   (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
337

338 339 340 341
	/*
	 * Allocate comm page for guest kernel, a TLB will be reserved for
	 * mapping GVA @ 0xFFFF8000 to this page
	 */
342 343 344 345 346 347 348
	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);

	if (!vcpu->arch.kseg0_commpage) {
		err = -ENOMEM;
		goto out_free_gebase;
	}

349
	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
350 351 352 353 354 355
	kvm_mips_commpage_init(vcpu);

	/* Init */
	vcpu->arch.last_sched_cpu = -1;

	/* Start off the timer */
356
	kvm_mips_init_count(vcpu);
357 358 359 360 361 362

	return vcpu;

out_free_gebase:
	kfree(gebase);

363 364 365
out_uninit_cpu:
	kvm_vcpu_uninit(vcpu);

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
out_free_cpu:
	kfree(vcpu);

out:
	return ERR_PTR(err);
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
	hrtimer_cancel(&vcpu->arch.comparecount_timer);

	kvm_vcpu_uninit(vcpu);

	kvm_mips_dump_stats(vcpu);

381
	kvm_mmu_free_memory_caches(vcpu);
382 383
	kfree(vcpu->arch.guest_ebase);
	kfree(vcpu->arch.kseg0_commpage);
384
	kfree(vcpu);
385 386 387 388 389 390 391
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

392 393
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
394
{
395
	return -ENOIOCTLCMD;
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
}

int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	int r = 0;
	sigset_t sigsaved;

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	if (vcpu->mmio_needed) {
		if (!vcpu->mmio_is_write)
			kvm_mips_complete_mmio_load(vcpu, run);
		vcpu->mmio_needed = 0;
	}

412 413
	lose_fpu(1);

414
	local_irq_disable();
415
	guest_enter_irqoff();
416
	trace_kvm_enter(vcpu);
417

418 419 420 421 422 423 424 425
	/*
	 * Make sure the read of VCPU requests in vcpu_run() callback is not
	 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
	 * flush request while the requester sees the VCPU as outside of guest
	 * mode and not needing an IPI.
	 */
	smp_store_mb(vcpu->mode, IN_GUEST_MODE);

426
	r = kvm_mips_callbacks->vcpu_run(run, vcpu);
427

428
	trace_kvm_out(vcpu);
429
	guest_exit_irqoff();
430 431 432 433 434 435 436 437
	local_irq_enable();

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	return r;
}

438 439
int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
			     struct kvm_mips_interrupt *irq)
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
{
	int intr = (int)irq->irq;
	struct kvm_vcpu *dvcpu = NULL;

	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
			  (int)intr);

	if (irq->cpu == -1)
		dvcpu = vcpu;
	else
		dvcpu = vcpu->kvm->vcpus[irq->cpu];

	if (intr == 2 || intr == 3 || intr == 4) {
		kvm_mips_callbacks->queue_io_int(dvcpu, irq);

	} else if (intr == -2 || intr == -3 || intr == -4) {
		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
	} else {
		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
			irq->cpu, irq->irq);
		return -EINVAL;
	}

	dvcpu->arch.wait = 0;

466 467
	if (swait_active(&dvcpu->wq))
		swake_up(&dvcpu->wq);
468 469 470 471

	return 0;
}

472 473
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
474
{
475
	return -ENOIOCTLCMD;
476 477
}

478 479
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
480
{
481
	return -ENOIOCTLCMD;
482 483
}

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
static u64 kvm_mips_get_one_regs[] = {
	KVM_REG_MIPS_R0,
	KVM_REG_MIPS_R1,
	KVM_REG_MIPS_R2,
	KVM_REG_MIPS_R3,
	KVM_REG_MIPS_R4,
	KVM_REG_MIPS_R5,
	KVM_REG_MIPS_R6,
	KVM_REG_MIPS_R7,
	KVM_REG_MIPS_R8,
	KVM_REG_MIPS_R9,
	KVM_REG_MIPS_R10,
	KVM_REG_MIPS_R11,
	KVM_REG_MIPS_R12,
	KVM_REG_MIPS_R13,
	KVM_REG_MIPS_R14,
	KVM_REG_MIPS_R15,
	KVM_REG_MIPS_R16,
	KVM_REG_MIPS_R17,
	KVM_REG_MIPS_R18,
	KVM_REG_MIPS_R19,
	KVM_REG_MIPS_R20,
	KVM_REG_MIPS_R21,
	KVM_REG_MIPS_R22,
	KVM_REG_MIPS_R23,
	KVM_REG_MIPS_R24,
	KVM_REG_MIPS_R25,
	KVM_REG_MIPS_R26,
	KVM_REG_MIPS_R27,
	KVM_REG_MIPS_R28,
	KVM_REG_MIPS_R29,
	KVM_REG_MIPS_R30,
	KVM_REG_MIPS_R31,

518
#ifndef CONFIG_CPU_MIPSR6
519 520
	KVM_REG_MIPS_HI,
	KVM_REG_MIPS_LO,
521
#endif
522 523 524
	KVM_REG_MIPS_PC,
};

J
James Hogan 已提交
525 526 527 528 529 530 531 532 533 534
static u64 kvm_mips_get_one_regs_fpu[] = {
	KVM_REG_MIPS_FCR_IR,
	KVM_REG_MIPS_FCR_CSR,
};

static u64 kvm_mips_get_one_regs_msa[] = {
	KVM_REG_MIPS_MSA_IR,
	KVM_REG_MIPS_MSA_CSR,
};

535 536 537 538 539
static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
{
	unsigned long ret;

	ret = ARRAY_SIZE(kvm_mips_get_one_regs);
J
James Hogan 已提交
540 541 542 543 544 545 546 547
	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
		ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
		/* odd doubles */
		if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
			ret += 16;
	}
	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
		ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
548 549 550 551 552 553 554
	ret += kvm_mips_callbacks->num_regs(vcpu);

	return ret;
}

static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
{
J
James Hogan 已提交
555 556 557
	u64 index;
	unsigned int i;

558 559 560 561 562
	if (copy_to_user(indices, kvm_mips_get_one_regs,
			 sizeof(kvm_mips_get_one_regs)))
		return -EFAULT;
	indices += ARRAY_SIZE(kvm_mips_get_one_regs);

J
James Hogan 已提交
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
		if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
				 sizeof(kvm_mips_get_one_regs_fpu)))
			return -EFAULT;
		indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);

		for (i = 0; i < 32; ++i) {
			index = KVM_REG_MIPS_FPR_32(i);
			if (copy_to_user(indices, &index, sizeof(index)))
				return -EFAULT;
			++indices;

			/* skip odd doubles if no F64 */
			if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
				continue;

			index = KVM_REG_MIPS_FPR_64(i);
			if (copy_to_user(indices, &index, sizeof(index)))
				return -EFAULT;
			++indices;
		}
	}

	if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
		if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
				 sizeof(kvm_mips_get_one_regs_msa)))
			return -EFAULT;
		indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);

		for (i = 0; i < 32; ++i) {
			index = KVM_REG_MIPS_VEC_128(i);
			if (copy_to_user(indices, &index, sizeof(index)))
				return -EFAULT;
			++indices;
		}
	}

600 601 602
	return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
}

603 604 605 606
static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
			    const struct kvm_one_reg *reg)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
J
James Hogan 已提交
607
	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
608
	int ret;
609
	s64 v;
J
James Hogan 已提交
610
	s64 vs[2];
J
James Hogan 已提交
611
	unsigned int idx;
612 613

	switch (reg->id) {
J
James Hogan 已提交
614
	/* General purpose registers */
615 616 617
	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
		break;
618
#ifndef CONFIG_CPU_MIPSR6
619 620 621 622 623 624
	case KVM_REG_MIPS_HI:
		v = (long)vcpu->arch.hi;
		break;
	case KVM_REG_MIPS_LO:
		v = (long)vcpu->arch.lo;
		break;
625
#endif
626 627 628 629
	case KVM_REG_MIPS_PC:
		v = (long)vcpu->arch.pc;
		break;

J
James Hogan 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
	/* Floating point registers */
	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
		/* Odd singles in top of even double when FR=0 */
		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
			v = get_fpr32(&fpu->fpr[idx], 0);
		else
			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
		break;
	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
		/* Can't access odd doubles in FR=0 mode */
		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
			return -EINVAL;
		v = get_fpr64(&fpu->fpr[idx], 0);
		break;
	case KVM_REG_MIPS_FCR_IR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		v = boot_cpu_data.fpu_id;
		break;
	case KVM_REG_MIPS_FCR_CSR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		v = fpu->fcr31;
		break;

J
James Hogan 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
	/* MIPS SIMD Architecture (MSA) registers */
	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		/* Can't access MSA registers in FR=0 mode */
		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
#ifdef CONFIG_CPU_LITTLE_ENDIAN
		/* least significant byte first */
		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
#else
		/* most significant byte first */
		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
#endif
		break;
	case KVM_REG_MIPS_MSA_IR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		v = boot_cpu_data.msa_id;
		break;
	case KVM_REG_MIPS_MSA_CSR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		v = fpu->msacsr;
		break;

690
	/* registers to be handled specially */
691
	default:
692 693 694 695
		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
		if (ret)
			return ret;
		break;
696
	}
697 698
	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
699

700 701 702 703
		return put_user(v, uaddr64);
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
		u32 v32 = (u32)v;
704

705
		return put_user(v32, uaddr32);
J
James Hogan 已提交
706 707 708
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
		void __user *uaddr = (void __user *)(long)reg->addr;

709
		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
710 711 712
	} else {
		return -EINVAL;
	}
713 714 715 716 717 718
}

static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
			    const struct kvm_one_reg *reg)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
J
James Hogan 已提交
719 720
	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
	s64 v;
J
James Hogan 已提交
721
	s64 vs[2];
J
James Hogan 已提交
722
	unsigned int idx;
723

724 725 726 727 728 729 730 731 732 733 734 735
	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;

		if (get_user(v, uaddr64) != 0)
			return -EFAULT;
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
		s32 v32;

		if (get_user(v32, uaddr32) != 0)
			return -EFAULT;
		v = (s64)v32;
J
James Hogan 已提交
736 737 738
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
		void __user *uaddr = (void __user *)(long)reg->addr;

739
		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
740 741 742
	} else {
		return -EINVAL;
	}
743 744

	switch (reg->id) {
J
James Hogan 已提交
745
	/* General purpose registers */
746 747 748 749 750 751
	case KVM_REG_MIPS_R0:
		/* Silently ignore requests to set $0 */
		break;
	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
		break;
752
#ifndef CONFIG_CPU_MIPSR6
753 754 755 756 757 758
	case KVM_REG_MIPS_HI:
		vcpu->arch.hi = v;
		break;
	case KVM_REG_MIPS_LO:
		vcpu->arch.lo = v;
		break;
759
#endif
760 761 762 763
	case KVM_REG_MIPS_PC:
		vcpu->arch.pc = v;
		break;

J
James Hogan 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
	/* Floating point registers */
	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
		/* Odd singles in top of even double when FR=0 */
		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
			set_fpr32(&fpu->fpr[idx], 0, v);
		else
			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
		break;
	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
		/* Can't access odd doubles in FR=0 mode */
		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
			return -EINVAL;
		set_fpr64(&fpu->fpr[idx], 0, v);
		break;
	case KVM_REG_MIPS_FCR_IR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		/* Read-only */
		break;
	case KVM_REG_MIPS_FCR_CSR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		fpu->fcr31 = v;
		break;

J
James Hogan 已提交
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
	/* MIPS SIMD Architecture (MSA) registers */
	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
#ifdef CONFIG_CPU_LITTLE_ENDIAN
		/* least significant byte first */
		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
#else
		/* most significant byte first */
		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
#endif
		break;
	case KVM_REG_MIPS_MSA_IR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		/* Read-only */
		break;
	case KVM_REG_MIPS_MSA_CSR:
		if (!kvm_mips_guest_has_msa(&vcpu->arch))
			return -EINVAL;
		fpu->msacsr = v;
		break;

821
	/* registers to be handled specially */
822
	default:
823
		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
824 825 826 827
	}
	return 0;
}

J
James Hogan 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r = 0;

	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
		return -EINVAL;
	if (cap->flags)
		return -EINVAL;
	if (cap->args[0])
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_MIPS_FPU:
		vcpu->arch.fpu_enabled = true;
		break;
J
James Hogan 已提交
844 845 846
	case KVM_CAP_MIPS_MSA:
		vcpu->arch.msa_enabled = true;
		break;
J
James Hogan 已提交
847 848 849 850 851 852 853 854
	default:
		r = -EINVAL;
		break;
	}

	return r;
}

855 856
long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
			 unsigned long arg)
857 858 859 860 861 862
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {
863 864 865
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
866

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_mips_set_reg(vcpu, &reg);
		else
			return kvm_mips_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
882
		reg_list.n = kvm_mips_num_regs(vcpu);
883 884 885 886
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
887
		return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
888
	}
889 890 891
	case KVM_INTERRUPT:
		{
			struct kvm_mips_interrupt irq;
892

893
			if (copy_from_user(&irq, argp, sizeof(irq)))
894
				return -EFAULT;
895 896 897 898 899 900
			kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
				  irq.irq);

			r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
			break;
		}
J
James Hogan 已提交
901 902 903 904
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;

		if (copy_from_user(&cap, argp, sizeof(cap)))
905
			return -EFAULT;
J
James Hogan 已提交
906 907 908
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
909
	default:
910
		r = -ENOIOCTLCMD;
911 912 913 914
	}
	return r;
}

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
934 935
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
936
	struct kvm_memslots *slots;
937
	struct kvm_memory_slot *memslot;
938
	bool is_dirty = false;
939 940 941 942
	int r;

	mutex_lock(&kvm->slots_lock);

943
	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
944 945

	if (is_dirty) {
946 947
		slots = kvm_memslots(kvm);
		memslot = id_to_memslot(slots, log->slot);
948

949 950
		/* Let implementation handle TLB/GVA invalidation */
		kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
951 952 953 954 955 956 957 958 959 960 961 962
	}

	mutex_unlock(&kvm->slots_lock);
	return r;
}

long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
{
	long r;

	switch (ioctl) {
	default:
963
		r = -ENOIOCTLCMD;
964 965 966 967 968 969 970 971 972 973 974 975
	}

	return r;
}

int kvm_arch_init(void *opaque)
{
	if (kvm_mips_callbacks) {
		kvm_err("kvm: module already exists\n");
		return -EEXIST;
	}

976
	return kvm_mips_emulation_init(&kvm_mips_callbacks);
977 978 979 980 981 982 983
}

void kvm_arch_exit(void)
{
	kvm_mips_callbacks = NULL;
}

984 985
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
986
{
987
	return -ENOIOCTLCMD;
988 989
}

990 991
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
992
{
993
	return -ENOIOCTLCMD;
994 995
}

996
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
997 998 999 1000 1001
{
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1002
	return -ENOIOCTLCMD;
1003 1004 1005 1006
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1007
	return -ENOIOCTLCMD;
1008 1009 1010 1011 1012 1013 1014
}

int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}

1015
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1016 1017 1018 1019
{
	int r;

	switch (ext) {
1020
	case KVM_CAP_ONE_REG:
J
James Hogan 已提交
1021
	case KVM_CAP_ENABLE_CAP:
1022
	case KVM_CAP_READONLY_MEM:
1023
	case KVM_CAP_SYNC_MMU:
1024 1025
		r = 1;
		break;
1026 1027 1028
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
J
James Hogan 已提交
1029
	case KVM_CAP_MIPS_FPU:
1030 1031
		/* We don't handle systems with inconsistent cpu_has_fpu */
		r = !!raw_cpu_has_fpu;
J
James Hogan 已提交
1032
		break;
J
James Hogan 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	case KVM_CAP_MIPS_MSA:
		/*
		 * We don't support MSA vector partitioning yet:
		 * 1) It would require explicit support which can't be tested
		 *    yet due to lack of support in current hardware.
		 * 2) It extends the state that would need to be saved/restored
		 *    by e.g. QEMU for migration.
		 *
		 * When vector partitioning hardware becomes available, support
		 * could be added by requiring a flag when enabling
		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
		 * to save/restore the appropriate extra state.
		 */
		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
		break;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	default:
		r = 0;
		break;
	}
	return r;
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
	return kvm_mips_pending_timer(vcpu);
}

int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
{
	int i;
	struct mips_coproc *cop0;

	if (!vcpu)
		return -1;

1068 1069 1070
	kvm_debug("VCPU Register Dump:\n");
	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1071 1072

	for (i = 0; i < 32; i += 4) {
1073
		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1074 1075 1076 1077
		       vcpu->arch.gprs[i],
		       vcpu->arch.gprs[i + 1],
		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
	}
1078 1079
	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1080 1081

	cop0 = vcpu->arch.cop0;
1082 1083 1084
	kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
		  kvm_read_c0_guest_status(cop0),
		  kvm_read_c0_guest_cause(cop0));
1085

1086
	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1087 1088 1089 1090 1091 1092 1093 1094

	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

1095
	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1096
		vcpu->arch.gprs[i] = regs->gpr[i];
1097
	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1098 1099 1100 1101
	vcpu->arch.hi = regs->hi;
	vcpu->arch.lo = regs->lo;
	vcpu->arch.pc = regs->pc;

1102
	return 0;
1103 1104 1105 1106 1107 1108
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

1109
	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1110
		regs->gpr[i] = vcpu->arch.gprs[i];
1111 1112 1113 1114 1115

	regs->hi = vcpu->arch.hi;
	regs->lo = vcpu->arch.lo;
	regs->pc = vcpu->arch.pc;

1116
	return 0;
1117 1118
}

1119
static void kvm_mips_comparecount_func(unsigned long data)
1120 1121 1122 1123 1124 1125
{
	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;

	kvm_mips_callbacks->queue_timer_int(vcpu);

	vcpu->arch.wait = 0;
1126 1127
	if (swait_active(&vcpu->wq))
		swake_up(&vcpu->wq);
1128 1129
}

1130
/* low level hrtimer wake routine */
1131
static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1132 1133 1134 1135 1136
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
	kvm_mips_comparecount_func((unsigned long) vcpu);
1137
	return kvm_mips_count_timeout(vcpu);
1138 1139 1140 1141
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1142 1143 1144 1145 1146 1147
	int err;

	err = kvm_mips_callbacks->vcpu_init(vcpu);
	if (err)
		return err;

1148 1149 1150 1151 1152 1153
	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
		     HRTIMER_MODE_REL);
	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
	return 0;
}

J
James Hogan 已提交
1154 1155 1156 1157 1158
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
	kvm_mips_callbacks->vcpu_uninit(vcpu);
}

1159 1160
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
{
	return 0;
}

/* Initial guest state */
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	return kvm_mips_callbacks->vcpu_setup(vcpu);
}

1171
static void kvm_mips_set_c0_status(void)
1172
{
1173
	u32 status = read_c0_status();
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

	if (cpu_has_dsp)
		status |= (ST0_MX);

	write_c0_status(status);
	ehb();
}

/*
 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
 */
int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
1187 1188 1189
	u32 cause = vcpu->arch.host_cp0_cause;
	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1190 1191
	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
	enum emulation_result er = EMULATE_DONE;
1192
	u32 inst;
1193 1194
	int ret = RESUME_GUEST;

1195 1196
	vcpu->mode = OUTSIDE_GUEST_MODE;

1197 1198 1199
	/* re-enable HTW before enabling interrupts */
	htw_start();

1200 1201 1202 1203
	/* Set a default exit reason */
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

1204 1205 1206 1207
	/*
	 * Set the appropriate status bits based on host CPU features,
	 * before we hit the scheduler
	 */
1208 1209 1210 1211 1212 1213
	kvm_mips_set_c0_status();

	local_irq_enable();

	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
			cause, opc, run, vcpu);
1214
	trace_kvm_exit(vcpu, exccode);
1215

1216 1217
	/*
	 * Do a privilege check, if in UM most of these exit conditions end up
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	 * causing an exception to be delivered to the Guest Kernel
	 */
	er = kvm_mips_check_privilege(cause, opc, run, vcpu);
	if (er == EMULATE_PRIV_FAIL) {
		goto skip_emul;
	} else if (er == EMULATE_FAIL) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		goto skip_emul;
	}

	switch (exccode) {
1230 1231
	case EXCCODE_INT:
		kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1232 1233 1234

		++vcpu->stat.int_exits;

1235
		if (need_resched())
1236 1237 1238 1239 1240
			cond_resched();

		ret = RESUME_GUEST;
		break;

1241 1242
	case EXCCODE_CPU:
		kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1243 1244 1245 1246

		++vcpu->stat.cop_unusable_exits;
		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
		/* XXXKYMA: Might need to return to user space */
1247
		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1248 1249 1250
			ret = RESUME_HOST;
		break;

1251
	case EXCCODE_MOD:
1252 1253 1254 1255
		++vcpu->stat.tlbmod_exits;
		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
		break;

1256
	case EXCCODE_TLBS:
1257 1258 1259
		kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
			  badvaddr);
1260 1261 1262 1263 1264

		++vcpu->stat.tlbmiss_st_exits;
		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
		break;

1265
	case EXCCODE_TLBL:
1266 1267 1268 1269 1270 1271 1272
		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
			  cause, opc, badvaddr);

		++vcpu->stat.tlbmiss_ld_exits;
		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
		break;

1273
	case EXCCODE_ADES:
1274 1275 1276 1277
		++vcpu->stat.addrerr_st_exits;
		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
		break;

1278
	case EXCCODE_ADEL:
1279 1280 1281 1282
		++vcpu->stat.addrerr_ld_exits;
		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
		break;

1283
	case EXCCODE_SYS:
1284 1285 1286 1287
		++vcpu->stat.syscall_exits;
		ret = kvm_mips_callbacks->handle_syscall(vcpu);
		break;

1288
	case EXCCODE_RI:
1289 1290 1291 1292
		++vcpu->stat.resvd_inst_exits;
		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
		break;

1293
	case EXCCODE_BP:
1294 1295 1296 1297
		++vcpu->stat.break_inst_exits;
		ret = kvm_mips_callbacks->handle_break(vcpu);
		break;

1298
	case EXCCODE_TR:
1299 1300 1301 1302
		++vcpu->stat.trap_inst_exits;
		ret = kvm_mips_callbacks->handle_trap(vcpu);
		break;

1303
	case EXCCODE_MSAFPE:
1304 1305 1306 1307
		++vcpu->stat.msa_fpe_exits;
		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
		break;

1308
	case EXCCODE_FPE:
1309 1310 1311 1312
		++vcpu->stat.fpe_exits;
		ret = kvm_mips_callbacks->handle_fpe(vcpu);
		break;

1313
	case EXCCODE_MSADIS:
1314
		++vcpu->stat.msa_disabled_exits;
1315 1316 1317
		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
		break;

1318
	default:
1319 1320 1321
		if (cause & CAUSEF_BD)
			opc += 1;
		inst = 0;
1322
		kvm_get_badinstr(opc, vcpu, &inst);
1323
		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1324
			exccode, opc, inst, badvaddr,
1325
			kvm_read_c0_guest_status(vcpu->arch.cop0));
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
		kvm_arch_vcpu_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		break;

	}

skip_emul:
	local_irq_disable();

	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
		kvm_mips_deliver_interrupts(vcpu, cause);

	if (!(ret & RESUME_HOST)) {
1340
		/* Only check for signals if not already exiting to userspace */
1341 1342 1343 1344
		if (signal_pending(current)) {
			run->exit_reason = KVM_EXIT_INTR;
			ret = (-EINTR << 2) | RESUME_HOST;
			++vcpu->stat.signal_exits;
1345
			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1346 1347 1348
		}
	}

1349
	if (ret == RESUME_GUEST) {
1350 1351
		trace_kvm_reenter(vcpu);

1352 1353 1354 1355 1356 1357 1358 1359
		/*
		 * Make sure the read of VCPU requests in vcpu_reenter()
		 * callback is not reordered ahead of the write to vcpu->mode,
		 * or we could miss a TLB flush request while the requester sees
		 * the VCPU as outside of guest mode and not needing an IPI.
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

1360
		kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1361

1362
		/*
1363 1364
		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
		 * is live), restore FCR31 / MSACSR.
1365 1366
		 *
		 * This should be before returning to the guest exception
1367 1368
		 * vector, as it may well cause an [MSA] FP exception if there
		 * are pending exception bits unmasked. (see
1369 1370 1371 1372 1373
		 * kvm_mips_csr_die_notifier() for how that is handled).
		 */
		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
		    read_c0_status() & ST0_CU1)
			__kvm_restore_fcsr(&vcpu->arch);
1374 1375 1376 1377

		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
		    read_c0_config5() & MIPS_CONF5_MSAEN)
			__kvm_restore_msacsr(&vcpu->arch);
1378 1379
	}

1380 1381 1382
	/* Disable HTW before returning to guest or host */
	htw_stop();

1383 1384 1385
	return ret;
}

1386 1387 1388 1389 1390 1391 1392 1393
/* Enable FPU for guest and restore context */
void kvm_own_fpu(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	unsigned int sr, cfg5;

	preempt_disable();

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	sr = kvm_read_c0_guest_status(cop0);

	/*
	 * If MSA state is already live, it is undefined how it interacts with
	 * FR=0 FPU state, and we don't want to hit reserved instruction
	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
	 * play it safe and save it first.
	 *
	 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
	 * get called when guest CU1 is set, however we can't trust the guest
	 * not to clobber the status register directly via the commpage.
	 */
	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1407
	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1408 1409
		kvm_lose_fpu(vcpu);

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
	/*
	 * Enable FPU for guest
	 * We set FR and FRE according to guest context
	 */
	change_c0_status(ST0_CU1 | ST0_FR, sr);
	if (cpu_has_fre) {
		cfg5 = kvm_read_c0_guest_config5(cop0);
		change_c0_config5(MIPS_CONF5_FRE, cfg5);
	}
	enable_fpu_hazard();

	/* If guest FPU state not active, restore it now */
1422
	if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1423
		__kvm_restore_fpu(&vcpu->arch);
1424
		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
J
James Hogan 已提交
1425 1426 1427
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
	} else {
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1428 1429 1430 1431 1432
	}

	preempt_enable();
}

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
#ifdef CONFIG_CPU_HAS_MSA
/* Enable MSA for guest and restore context */
void kvm_own_msa(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	unsigned int sr, cfg5;

	preempt_disable();

	/*
	 * Enable FPU if enabled in guest, since we're restoring FPU context
	 * anyway. We set FR and FRE according to guest context.
	 */
	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
		sr = kvm_read_c0_guest_status(cop0);

		/*
		 * If FR=0 FPU state is already live, it is undefined how it
		 * interacts with MSA state, so play it safe and save it first.
		 */
		if (!(sr & ST0_FR) &&
1454 1455
		    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
				KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
			kvm_lose_fpu(vcpu);

		change_c0_status(ST0_CU1 | ST0_FR, sr);
		if (sr & ST0_CU1 && cpu_has_fre) {
			cfg5 = kvm_read_c0_guest_config5(cop0);
			change_c0_config5(MIPS_CONF5_FRE, cfg5);
		}
	}

	/* Enable MSA for guest */
	set_c0_config5(MIPS_CONF5_MSAEN);
	enable_fpu_hazard();

1469 1470
	switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
	case KVM_MIPS_AUX_FPU:
1471 1472 1473 1474
		/*
		 * Guest FPU state already loaded, only restore upper MSA state
		 */
		__kvm_restore_msa_upper(&vcpu->arch);
1475
		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
J
James Hogan 已提交
1476
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1477 1478 1479 1480
		break;
	case 0:
		/* Neither FPU or MSA already active, restore full MSA state */
		__kvm_restore_msa(&vcpu->arch);
1481
		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1482
		if (kvm_mips_guest_has_fpu(&vcpu->arch))
1483
			vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
J
James Hogan 已提交
1484 1485
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
			      KVM_TRACE_AUX_FPU_MSA);
1486 1487
		break;
	default:
J
James Hogan 已提交
1488
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1489 1490 1491 1492 1493 1494 1495 1496
		break;
	}

	preempt_enable();
}
#endif

/* Drop FPU & MSA without saving it */
1497 1498 1499
void kvm_drop_fpu(struct kvm_vcpu *vcpu)
{
	preempt_disable();
1500
	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1501
		disable_msa();
J
James Hogan 已提交
1502
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1503
		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1504
	}
1505
	if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1506
		clear_c0_status(ST0_CU1 | ST0_FR);
J
James Hogan 已提交
1507
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1508
		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1509 1510 1511 1512
	}
	preempt_enable();
}

1513
/* Save and disable FPU & MSA */
1514 1515 1516
void kvm_lose_fpu(struct kvm_vcpu *vcpu)
{
	/*
1517 1518 1519
	 * FPU & MSA get disabled in root context (hardware) when it is disabled
	 * in guest context (software), but the register state in the hardware
	 * may still be in use. This is why we explicitly re-enable the hardware
1520 1521 1522 1523
	 * before saving.
	 */

	preempt_disable();
1524
	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1525 1526 1527 1528
		set_c0_config5(MIPS_CONF5_MSAEN);
		enable_fpu_hazard();

		__kvm_save_msa(&vcpu->arch);
J
James Hogan 已提交
1529
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1530 1531 1532

		/* Disable MSA & FPU */
		disable_msa();
1533
		if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1534
			clear_c0_status(ST0_CU1 | ST0_FR);
1535 1536
			disable_fpu_hazard();
		}
1537 1538
		vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
	} else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1539 1540 1541 1542
		set_c0_status(ST0_CU1);
		enable_fpu_hazard();

		__kvm_save_fpu(&vcpu->arch);
1543
		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
J
James Hogan 已提交
1544
		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1545 1546 1547

		/* Disable FPU */
		clear_c0_status(ST0_CU1 | ST0_FR);
1548
		disable_fpu_hazard();
1549 1550 1551 1552 1553
	}
	preempt_enable();
}

/*
1554 1555 1556
 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
 * exception if cause bits are set in the value being written.
1557 1558 1559 1560 1561 1562 1563 1564
 */
static int kvm_mips_csr_die_notify(struct notifier_block *self,
				   unsigned long cmd, void *ptr)
{
	struct die_args *args = (struct die_args *)ptr;
	struct pt_regs *regs = args->regs;
	unsigned long pc;

1565 1566
	/* Only interested in FPE and MSAFPE */
	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
		return NOTIFY_DONE;

	/* Return immediately if guest context isn't active */
	if (!(current->flags & PF_VCPU))
		return NOTIFY_DONE;

	/* Should never get here from user mode */
	BUG_ON(user_mode(regs));

	pc = instruction_pointer(regs);
	switch (cmd) {
	case DIE_FP:
		/* match 2nd instruction in __kvm_restore_fcsr */
		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
			return NOTIFY_DONE;
		break;
1583 1584 1585 1586 1587 1588 1589
	case DIE_MSAFP:
		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
		if (!cpu_has_msa ||
		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
			return NOTIFY_DONE;
		break;
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
	}

	/* Move PC forward a little and continue executing */
	instruction_pointer(regs) += 4;

	return NOTIFY_STOP;
}

static struct notifier_block kvm_mips_csr_die_notifier = {
	.notifier_call = kvm_mips_csr_die_notify,
};

1602
static int __init kvm_mips_init(void)
1603 1604 1605
{
	int ret;

1606 1607 1608 1609
	ret = kvm_mips_entry_setup();
	if (ret)
		return ret;

1610 1611 1612 1613 1614
	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);

	if (ret)
		return ret;

1615 1616
	register_die_notifier(&kvm_mips_csr_die_notifier);

1617 1618 1619
	return 0;
}

1620
static void __exit kvm_mips_exit(void)
1621 1622 1623
{
	kvm_exit();

1624
	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1625 1626 1627 1628 1629 1630
}

module_init(kvm_mips_init);
module_exit(kvm_mips_exit);

EXPORT_TRACEPOINT_SYMBOL(kvm_exit);