hns3_enet.c 124.3 KB
Newer Older
1 2
// SPDX-License-Identifier: GPL-2.0+
// Copyright (c) 2016-2017 Hisilicon Limited.
3 4 5 6

#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
7 8 9
#ifdef CONFIG_RFS_ACCEL
#include <linux/cpu_rmap.h>
#endif
10
#include <linux/if_vlan.h>
11
#include <linux/irq.h>
12 13 14 15
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/module.h>
#include <linux/pci.h>
16
#include <linux/aer.h>
17 18 19
#include <linux/skbuff.h>
#include <linux/sctp.h>
#include <net/gre.h>
20
#include <net/ip6_checksum.h>
21
#include <net/pkt_cls.h>
22
#include <net/tcp.h>
23
#include <net/vxlan.h>
24
#include <net/geneve.h>
25 26 27

#include "hnae3.h"
#include "hns3_enet.h"
28 29 30 31 32 33
/* All hns3 tracepoints are defined by the include below, which
 * must be included exactly once across the whole kernel with
 * CREATE_TRACE_POINTS defined
 */
#define CREATE_TRACE_POINTS
#include "hns3_trace.h"
34

35
#define hns3_set_field(origin, shift, val)	((origin) |= ((val) << (shift)))
36
#define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
37

38 39 40 41 42 43
#define hns3_rl_err(fmt, ...)						\
	do {								\
		if (net_ratelimit())					\
			netdev_err(fmt, ##__VA_ARGS__);			\
	} while (0)

44
static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
45

46
static const char hns3_driver_name[] = "hns3";
47 48 49 50 51
static const char hns3_driver_string[] =
			"Hisilicon Ethernet Network Driver for Hip08 Family";
static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
static struct hnae3_client client;

52 53 54 55 56 57 58
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, " Network interface message level setting");

#define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)

59 60 61
#define HNS3_INNER_VLAN_TAG	1
#define HNS3_OUTER_VLAN_TAG	2

62 63
#define HNS3_MIN_TX_LEN		33U

64 65 66 67 68 69 70 71 72 73
/* hns3_pci_tbl - PCI Device ID Table
 *
 * Last entry must be all 0s
 *
 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
 *   Class, Class Mask, private data (not used) }
 */
static const struct pci_device_id hns3_pci_tbl[] = {
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
74
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
75
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
76
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
77
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
78
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
79
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
80
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
81
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
82
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
83
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
84 85
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
86 87
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
88
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
89 90 91 92 93
	/* required last entry */
	{0, }
};
MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);

94
static irqreturn_t hns3_irq_handle(int irq, void *vector)
95
{
96
	struct hns3_enet_tqp_vector *tqp_vector = vector;
97

98
	napi_schedule_irqoff(&tqp_vector->napi);
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

	return IRQ_HANDLED;
}

static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
{
	struct hns3_enet_tqp_vector *tqp_vectors;
	unsigned int i;

	for (i = 0; i < priv->vector_num; i++) {
		tqp_vectors = &priv->tqp_vector[i];

		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
			continue;

114
		/* clear the affinity mask */
P
Peng Li 已提交
115 116
		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
		/* release the irq resource */
		free_irq(tqp_vectors->vector_irq, tqp_vectors);
		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
	}
}

static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
{
	struct hns3_enet_tqp_vector *tqp_vectors;
	int txrx_int_idx = 0;
	int rx_int_idx = 0;
	int tx_int_idx = 0;
	unsigned int i;
	int ret;

	for (i = 0; i < priv->vector_num; i++) {
		tqp_vectors = &priv->tqp_vector[i];

		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
			continue;

		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
139 140 141 142
			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
				 "%s-%s-%s-%d", hns3_driver_name,
				 pci_name(priv->ae_handle->pdev),
				 "TxRx", txrx_int_idx++);
143 144
			txrx_int_idx++;
		} else if (tqp_vectors->rx_group.ring) {
145 146 147 148
			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
				 "%s-%s-%s-%d", hns3_driver_name,
				 pci_name(priv->ae_handle->pdev),
				 "Rx", rx_int_idx++);
149
		} else if (tqp_vectors->tx_group.ring) {
150 151 152 153
			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
				 "%s-%s-%s-%d", hns3_driver_name,
				 pci_name(priv->ae_handle->pdev),
				 "Tx", tx_int_idx++);
154 155 156 157 158 159 160
		} else {
			/* Skip this unused q_vector */
			continue;
		}

		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';

161
		irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
162
		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
163
				  tqp_vectors->name, tqp_vectors);
164 165 166
		if (ret) {
			netdev_err(priv->netdev, "request irq(%d) fail\n",
				   tqp_vectors->vector_irq);
167
			hns3_nic_uninit_irq(priv);
168 169 170
			return ret;
		}

P
Peng Li 已提交
171 172 173
		irq_set_affinity_hint(tqp_vectors->vector_irq,
				      &tqp_vectors->affinity_mask);

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
	}

	return 0;
}

static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
				 u32 mask_en)
{
	writel(mask_en, tqp_vector->mask_addr);
}

static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
{
	napi_enable(&tqp_vector->napi);
189
	enable_irq(tqp_vector->vector_irq);
190 191 192 193 194 195 196 197 198 199 200 201 202 203

	/* enable vector */
	hns3_mask_vector_irq(tqp_vector, 1);
}

static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
{
	/* disable vector */
	hns3_mask_vector_irq(tqp_vector, 0);

	disable_irq(tqp_vector->vector_irq);
	napi_disable(&tqp_vector->napi);
}

204 205
void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
				 u32 rl_value)
206
{
207 208
	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);

209 210 211 212
	/* this defines the configuration for RL (Interrupt Rate Limiter).
	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
	 */
213

214 215
	if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable &&
	    !tqp_vector->rx_group.coal.adapt_enable)
216 217 218 219 220 221 222 223 224 225 226
		/* According to the hardware, the range of rl_reg is
		 * 0-59 and the unit is 4.
		 */
		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;

	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
}

void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
				    u32 gl_value)
{
227
	u32 new_val;
228

229 230 231 232 233 234
	if (tqp_vector->rx_group.coal.unit_1us)
		new_val = gl_value | HNS3_INT_GL_1US;
	else
		new_val = hns3_gl_usec_to_reg(gl_value);

	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
235 236 237 238 239
}

void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
				    u32 gl_value)
{
240 241 242 243 244 245
	u32 new_val;

	if (tqp_vector->tx_group.coal.unit_1us)
		new_val = gl_value | HNS3_INT_GL_1US;
	else
		new_val = hns3_gl_usec_to_reg(gl_value);
246

247
	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
248 249
}

250 251
void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector,
				    u32 ql_value)
252
{
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET);
}

void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector,
				    u32 ql_value)
{
	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET);
}

static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector,
				      struct hns3_nic_priv *priv)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;

269 270 271
	/* initialize the configuration for interrupt coalescing.
	 * 1. GL (Interrupt Gap Limiter)
	 * 2. RL (Interrupt Rate Limiter)
272
	 * 3. QL (Interrupt Quantity Limiter)
G
Guojia Liao 已提交
273 274
	 *
	 * Default: enable interrupt coalescing self-adaptive and GL
275
	 */
276 277
	tx_coal->adapt_enable = 1;
	rx_coal->adapt_enable = 1;
278 279 280

	tx_coal->int_gl = HNS3_INT_GL_50K;
	rx_coal->int_gl = HNS3_INT_GL_50K;
281

282 283
	rx_coal->flow_level = HNS3_FLOW_LOW;
	tx_coal->flow_level = HNS3_FLOW_LOW;
284

285 286 287 288 289 290 291 292
	/* device version above V3(include V3), GL can configure 1us
	 * unit, so uses 1us unit.
	 */
	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
		tx_coal->unit_1us = 1;
		rx_coal->unit_1us = 1;
	}

293 294 295 296 297 298 299 300
	if (ae_dev->dev_specs.int_ql_max) {
		tx_coal->ql_enable = 1;
		rx_coal->ql_enable = 1;
		tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
		rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
		tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
		rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
	}
301 302
}

303 304 305
static void
hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
			     struct hns3_nic_priv *priv)
306
{
307 308
	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
309 310
	struct hnae3_handle *h = priv->ae_handle;

311 312
	hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl);
	hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl);
313
	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
314 315 316 317 318 319

	if (tx_coal->ql_enable)
		hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql);

	if (rx_coal->ql_enable)
		hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql);
320 321
}

322 323
static int hns3_nic_set_real_num_queue(struct net_device *netdev)
{
324
	struct hnae3_handle *h = hns3_get_handle(netdev);
325
	struct hnae3_knic_private_info *kinfo = &h->kinfo;
326 327
	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
	unsigned int queue_size = kinfo->rss_size * tc_info->num_tc;
328 329
	int i, ret;

330
	if (tc_info->num_tc <= 1) {
331 332
		netdev_reset_tc(netdev);
	} else {
333
		ret = netdev_set_num_tc(netdev, tc_info->num_tc);
334 335 336 337 338 339 340
		if (ret) {
			netdev_err(netdev,
				   "netdev_set_num_tc fail, ret=%d!\n", ret);
			return ret;
		}

		for (i = 0; i < HNAE3_MAX_TC; i++) {
341
			if (!test_bit(i, &tc_info->tc_en))
342 343
				continue;

344 345
			netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i],
					    tc_info->tqp_offset[i]);
346 347
		}
	}
348 349 350 351

	ret = netif_set_real_num_tx_queues(netdev, queue_size);
	if (ret) {
		netdev_err(netdev,
352
			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
353 354 355 356 357 358 359 360 361 362 363 364 365
		return ret;
	}

	ret = netif_set_real_num_rx_queues(netdev, queue_size);
	if (ret) {
		netdev_err(netdev,
			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
		return ret;
	}

	return 0;
}

366 367
static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
{
368
	u16 alloc_tqps, max_rss_size, rss_size;
369

370
	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
371
	rss_size = alloc_tqps / h->kinfo.tc_info.num_tc;
372

373
	return min_t(u16, rss_size, max_rss_size);
374 375
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
static void hns3_tqp_enable(struct hnae3_queue *tqp)
{
	u32 rcb_reg;

	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
	rcb_reg |= BIT(HNS3_RING_EN_B);
	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
}

static void hns3_tqp_disable(struct hnae3_queue *tqp)
{
	u32 rcb_reg;

	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
	rcb_reg &= ~BIT(HNS3_RING_EN_B);
	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
}

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
{
#ifdef CONFIG_RFS_ACCEL
	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
	netdev->rx_cpu_rmap = NULL;
#endif
}

static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
{
#ifdef CONFIG_RFS_ACCEL
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hns3_enet_tqp_vector *tqp_vector;
	int i, ret;

	if (!netdev->rx_cpu_rmap) {
		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
		if (!netdev->rx_cpu_rmap)
			return -ENOMEM;
	}

	for (i = 0; i < priv->vector_num; i++) {
		tqp_vector = &priv->tqp_vector[i];
		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
				       tqp_vector->vector_irq);
		if (ret) {
			hns3_free_rx_cpu_rmap(netdev);
			return ret;
		}
	}
#endif
	return 0;
}

428 429 430 431 432 433 434
static int hns3_nic_net_up(struct net_device *netdev)
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hnae3_handle *h = priv->ae_handle;
	int i, j;
	int ret;

435 436 437 438
	ret = hns3_nic_reset_all_ring(h);
	if (ret)
		return ret;

439 440
	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);

441 442 443 444
	/* enable the vectors */
	for (i = 0; i < priv->vector_num; i++)
		hns3_vector_enable(&priv->tqp_vector[i]);

445 446 447 448
	/* enable rcb */
	for (j = 0; j < h->kinfo.num_tqps; j++)
		hns3_tqp_enable(h->kinfo.tqp[j]);

449 450
	/* start the ae_dev */
	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
451 452 453 454
	if (ret) {
		set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
		while (j--)
			hns3_tqp_disable(h->kinfo.tqp[j]);
455

456 457 458
		for (j = i - 1; j >= 0; j--)
			hns3_vector_disable(&priv->tqp_vector[j]);
	}
459 460 461 462

	return ret;
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
static void hns3_config_xps(struct hns3_nic_priv *priv)
{
	int i;

	for (i = 0; i < priv->vector_num; i++) {
		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;

		while (ring) {
			int ret;

			ret = netif_set_xps_queue(priv->netdev,
						  &tqp_vector->affinity_mask,
						  ring->tqp->tqp_index);
			if (ret)
				netdev_warn(priv->netdev,
					    "set xps queue failed: %d", ret);

			ring = ring->next;
		}
	}
}

486 487
static int hns3_nic_net_open(struct net_device *netdev)
{
488
	struct hns3_nic_priv *priv = netdev_priv(netdev);
489 490 491
	struct hnae3_handle *h = hns3_get_handle(netdev);
	struct hnae3_knic_private_info *kinfo;
	int i, ret;
492

493 494 495
	if (hns3_nic_resetting(netdev))
		return -EBUSY;

496 497
	netif_carrier_off(netdev);

498 499
	ret = hns3_nic_set_real_num_queue(netdev);
	if (ret)
500 501 502 503
		return ret;

	ret = hns3_nic_net_up(netdev);
	if (ret) {
504
		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
505 506 507
		return ret;
	}

508
	kinfo = &h->kinfo;
509
	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
510
		netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]);
511

512 513 514
	if (h->ae_algo->ops->set_timer_task)
		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);

515
	hns3_config_xps(priv);
516 517 518

	netif_dbg(h, drv, netdev, "net open\n");

519 520 521
	return 0;
}

522 523 524 525 526 527 528 529 530
static void hns3_reset_tx_queue(struct hnae3_handle *h)
{
	struct net_device *ndev = h->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(ndev);
	struct netdev_queue *dev_queue;
	u32 i;

	for (i = 0; i < h->kinfo.num_tqps; i++) {
		dev_queue = netdev_get_tx_queue(ndev,
531
						priv->ring[i].queue_index);
532 533 534 535
		netdev_tx_reset_queue(dev_queue);
	}
}

536 537 538
static void hns3_nic_net_down(struct net_device *netdev)
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
539
	struct hnae3_handle *h = hns3_get_handle(netdev);
540 541 542
	const struct hnae3_ae_ops *ops;
	int i;

543 544 545
	/* disable vectors */
	for (i = 0; i < priv->vector_num; i++)
		hns3_vector_disable(&priv->tqp_vector[i]);
546 547 548 549

	/* disable rcb */
	for (i = 0; i < h->kinfo.num_tqps; i++)
		hns3_tqp_disable(h->kinfo.tqp[i]);
550

551 552 553 554 555
	/* stop ae_dev */
	ops = priv->ae_handle->ae_algo->ops;
	if (ops->stop)
		ops->stop(priv->ae_handle);

556 557 558 559 560
	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
	 * during reset process, because driver may not be able
	 * to disable the ring through firmware when downing the netdev.
	 */
	if (!hns3_nic_resetting(netdev))
561 562 563
		hns3_clear_all_ring(priv->ae_handle, false);

	hns3_reset_tx_queue(priv->ae_handle);
564 565 566 567
}

static int hns3_nic_net_stop(struct net_device *netdev)
{
568
	struct hns3_nic_priv *priv = netdev_priv(netdev);
569
	struct hnae3_handle *h = hns3_get_handle(netdev);
570 571 572 573

	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
		return 0;

574 575
	netif_dbg(h, drv, netdev, "net stop\n");

576 577 578
	if (h->ae_algo->ops->set_timer_task)
		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);

579
	netif_carrier_off(netdev);
580
	netif_tx_disable(netdev);
581 582 583 584 585 586 587 588 589

	hns3_nic_net_down(netdev);

	return 0;
}

static int hns3_nic_uc_sync(struct net_device *netdev,
			    const unsigned char *addr)
{
590
	struct hnae3_handle *h = hns3_get_handle(netdev);
591 592 593 594 595 596 597 598 599 600

	if (h->ae_algo->ops->add_uc_addr)
		return h->ae_algo->ops->add_uc_addr(h, addr);

	return 0;
}

static int hns3_nic_uc_unsync(struct net_device *netdev,
			      const unsigned char *addr)
{
601
	struct hnae3_handle *h = hns3_get_handle(netdev);
602

603 604 605 606 607 608 609
	/* need ignore the request of removing device address, because
	 * we store the device address and other addresses of uc list
	 * in the function's mac filter list.
	 */
	if (ether_addr_equal(addr, netdev->dev_addr))
		return 0;

610 611 612 613 614 615 616 617 618
	if (h->ae_algo->ops->rm_uc_addr)
		return h->ae_algo->ops->rm_uc_addr(h, addr);

	return 0;
}

static int hns3_nic_mc_sync(struct net_device *netdev,
			    const unsigned char *addr)
{
619
	struct hnae3_handle *h = hns3_get_handle(netdev);
620

621
	if (h->ae_algo->ops->add_mc_addr)
622 623 624 625 626 627 628 629
		return h->ae_algo->ops->add_mc_addr(h, addr);

	return 0;
}

static int hns3_nic_mc_unsync(struct net_device *netdev,
			      const unsigned char *addr)
{
630
	struct hnae3_handle *h = hns3_get_handle(netdev);
631

632
	if (h->ae_algo->ops->rm_mc_addr)
633 634 635 636 637
		return h->ae_algo->ops->rm_mc_addr(h, addr);

	return 0;
}

638 639 640 641 642
static u8 hns3_get_netdev_flags(struct net_device *netdev)
{
	u8 flags = 0;

	if (netdev->flags & IFF_PROMISC) {
643
		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
644 645 646 647 648 649 650 651 652
	} else {
		flags |= HNAE3_VLAN_FLTR;
		if (netdev->flags & IFF_ALLMULTI)
			flags |= HNAE3_USER_MPE;
	}

	return flags;
}

653
static void hns3_nic_set_rx_mode(struct net_device *netdev)
654
{
655
	struct hnae3_handle *h = hns3_get_handle(netdev);
656
	u8 new_flags;
657

658 659
	new_flags = hns3_get_netdev_flags(netdev);

660 661
	__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
	__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
662 663

	/* User mode Promisc mode enable and vlan filtering is disabled to
664
	 * let all packets in.
665 666
	 */
	h->netdev_flags = new_flags;
667 668 669 670 671 672 673 674 675
	hns3_request_update_promisc_mode(h);
}

void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
{
	const struct hnae3_ae_ops *ops = handle->ae_algo->ops;

	if (ops->request_update_promisc_mode)
		ops->request_update_promisc_mode(handle);
676 677 678 679 680 681
}

void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hnae3_handle *h = priv->ae_handle;
682
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(h->pdev);
683 684
	bool last_state;

685 686
	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2 &&
	    h->ae_algo->ops->enable_vlan_filter) {
687 688 689 690 691 692 693
		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
		if (enable != last_state) {
			netdev_info(netdev,
				    "%s vlan filter\n",
				    enable ? "enable" : "disable");
			h->ae_algo->ops->enable_vlan_filter(h, enable);
		}
694
	}
695 696
}

697
static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs,
698 699 700 701 702 703 704 705 706 707 708 709
			u16 *mss, u32 *type_cs_vlan_tso)
{
	u32 l4_offset, hdr_len;
	union l3_hdr_info l3;
	union l4_hdr_info l4;
	u32 l4_paylen;
	int ret;

	if (!skb_is_gso(skb))
		return 0;

	ret = skb_cow_head(skb, 0);
710
	if (unlikely(ret < 0))
711 712 713 714 715 716 717 718 719 720 721
		return ret;

	l3.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);

	/* Software should clear the IPv4's checksum field when tso is
	 * needed.
	 */
	if (l3.v4->version == 4)
		l3.v4->check = 0;

722
	/* tunnel packet */
723 724
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
					 SKB_GSO_GRE_CSUM |
725 726
					 SKB_GSO_UDP_TUNNEL |
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
727 728 729 730 731 732 733 734 735 736 737
		/* reset l3&l4 pointers from outer to inner headers */
		l3.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* Software should clear the IPv4's checksum field when
		 * tso is needed.
		 */
		if (l3.v4->version == 4)
			l3.v4->check = 0;
	}

738
	/* normal or tunnel packet */
739 740
	l4_offset = l4.hdr - skb->data;

741
	/* remove payload length from inner pseudo checksum when tso */
742
	l4_paylen = skb->len - l4_offset;
743 744 745 746 747 748 749 750 751 752

	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
		hdr_len = sizeof(*l4.udp) + l4_offset;
		csum_replace_by_diff(&l4.udp->check,
				     (__force __wsum)htonl(l4_paylen));
	} else {
		hdr_len = (l4.tcp->doff << 2) + l4_offset;
		csum_replace_by_diff(&l4.tcp->check,
				     (__force __wsum)htonl(l4_paylen));
	}
753 754

	/* find the txbd field values */
755
	*paylen_fdop_ol4cs = skb->len - hdr_len;
756
	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
757

758 759 760 761
	/* offload outer UDP header checksum */
	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
		hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1);

762 763 764
	/* get MSS for TSO */
	*mss = skb_shinfo(skb)->gso_size;

765 766
	trace_hns3_tso(skb);

767 768 769
	return 0;
}

770 771
static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
				u8 *il4_proto)
772
{
773
	union l3_hdr_info l3;
774 775 776 777 778 779 780
	unsigned char *l4_hdr;
	unsigned char *exthdr;
	u8 l4_proto_tmp;
	__be16 frag_off;

	/* find outer header point */
	l3.hdr = skb_network_header(skb);
781
	l4_hdr = skb_transport_header(skb);
782 783 784 785 786 787 788 789 790

	if (skb->protocol == htons(ETH_P_IPV6)) {
		exthdr = l3.hdr + sizeof(*l3.v6);
		l4_proto_tmp = l3.v6->nexthdr;
		if (l4_hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto_tmp, &frag_off);
	} else if (skb->protocol == htons(ETH_P_IP)) {
		l4_proto_tmp = l3.v4->protocol;
791 792
	} else {
		return -EINVAL;
793 794 795 796 797 798 799
	}

	*ol4_proto = l4_proto_tmp;

	/* tunnel packet */
	if (!skb->encapsulation) {
		*il4_proto = 0;
800
		return 0;
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
	}

	/* find inner header point */
	l3.hdr = skb_inner_network_header(skb);
	l4_hdr = skb_inner_transport_header(skb);

	if (l3.v6->version == 6) {
		exthdr = l3.hdr + sizeof(*l3.v6);
		l4_proto_tmp = l3.v6->nexthdr;
		if (l4_hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto_tmp, &frag_off);
	} else if (l3.v4->version == 4) {
		l4_proto_tmp = l3.v4->protocol;
	}

	*il4_proto = l4_proto_tmp;
818 819

	return 0;
820 821
}

822 823 824 825
/* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
 * and it is udp packet, which has a dest port as the IANA assigned.
 * the hardware is expected to do the checksum offload, but the
 * hardware will not do the checksum offload when udp dest port is
826
 * 4789, 4790 or 6081.
827 828 829
 */
static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
{
830 831
	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
832
	union l4_hdr_info l4;
833

834 835 836 837 838 839
	/* device version above V3(include V3), the hardware can
	 * do this checksum offload.
	 */
	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
		return false;

840 841
	l4.hdr = skb_transport_header(skb);

842
	if (!(!skb->encapsulation &&
843
	      (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
844 845
	      l4.udp->dest == htons(GENEVE_UDP_PORT) ||
	      l4.udp->dest == htons(4790))))
846 847 848 849 850
		return false;

	return true;
}

851 852
static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
				  u32 *ol_type_vlan_len_msec)
853
{
854 855
	u32 l2_len, l3_len, l4_len;
	unsigned char *il2_hdr;
856
	union l3_hdr_info l3;
857
	union l4_hdr_info l4;
858 859

	l3.hdr = skb_network_header(skb);
860
	l4.hdr = skb_transport_header(skb);
861

862 863 864 865 866 867 868
	/* compute OL2 header size, defined in 2 Bytes */
	l2_len = l3.hdr - skb->data;
	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);

	/* compute OL3 header size, defined in 4 Bytes */
	l3_len = l4.hdr - l3.hdr;
	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
869

870
	il2_hdr = skb_inner_mac_header(skb);
871
	/* compute OL4 header size, defined in 4 Bytes */
872 873 874 875 876 877
	l4_len = il2_hdr - l4.hdr;
	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);

	/* define outer network header type */
	if (skb->protocol == htons(ETH_P_IP)) {
		if (skb_is_gso(skb))
878
			hns3_set_field(*ol_type_vlan_len_msec,
879 880 881
				       HNS3_TXD_OL3T_S,
				       HNS3_OL3T_IPV4_CSUM);
		else
882
			hns3_set_field(*ol_type_vlan_len_msec,
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
				       HNS3_TXD_OL3T_S,
				       HNS3_OL3T_IPV4_NO_CSUM);

	} else if (skb->protocol == htons(ETH_P_IPV6)) {
		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
			       HNS3_OL3T_IPV6);
	}

	if (ol4_proto == IPPROTO_UDP)
		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
			       HNS3_TUN_MAC_IN_UDP);
	else if (ol4_proto == IPPROTO_GRE)
		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
			       HNS3_TUN_NVGRE);
}

static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
			   u8 il4_proto, u32 *type_cs_vlan_tso,
			   u32 *ol_type_vlan_len_msec)
{
903
	unsigned char *l2_hdr = skb->data;
904 905 906 907 908 909 910 911 912 913 914 915
	u32 l4_proto = ol4_proto;
	union l4_hdr_info l4;
	union l3_hdr_info l3;
	u32 l2_len, l3_len;

	l4.hdr = skb_transport_header(skb);
	l3.hdr = skb_network_header(skb);

	/* handle encapsulation skb */
	if (skb->encapsulation) {
		/* If this is a not UDP/GRE encapsulation skb */
		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
916 917 918 919 920 921 922 923 924
			/* drop the skb tunnel packet if hardware don't support,
			 * because hardware can't calculate csum when TSO.
			 */
			if (skb_is_gso(skb))
				return -EDOM;

			/* the stack computes the IP header already,
			 * driver calculate l4 checksum when not TSO.
			 */
925
			return skb_checksum_help(skb);
926 927
		}

928 929 930 931
		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);

		/* switch to inner header */
		l2_hdr = skb_inner_mac_header(skb);
932
		l3.hdr = skb_inner_network_header(skb);
933
		l4.hdr = skb_inner_transport_header(skb);
934 935 936 937
		l4_proto = il4_proto;
	}

	if (l3.v4->version == 4) {
938 939
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
			       HNS3_L3T_IPV4);
940 941 942 943 944

		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
		if (skb_is_gso(skb))
945
			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
946
	} else if (l3.v6->version == 6) {
947 948
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
			       HNS3_L3T_IPV6);
949 950
	}

951 952 953 954 955 956 957 958 959
	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
	l2_len = l3.hdr - l2_hdr;
	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);

	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
	l3_len = l4.hdr - l3.hdr;
	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);

	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
960 961
	switch (l4_proto) {
	case IPPROTO_TCP:
962 963 964
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
			       HNS3_L4T_TCP);
965 966
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
			       l4.tcp->doff);
967 968
		break;
	case IPPROTO_UDP:
969
		if (hns3_tunnel_csum_bug(skb))
970
			return skb_checksum_help(skb);
971

972 973 974
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
			       HNS3_L4T_UDP);
975 976
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
			       (sizeof(struct udphdr) >> 2));
977 978
		break;
	case IPPROTO_SCTP:
979 980 981
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
			       HNS3_L4T_SCTP);
982 983
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
			       (sizeof(struct sctphdr) >> 2));
984 985 986 987 988 989 990 991 992 993 994
		break;
	default:
		/* drop the skb tunnel packet if hardware don't support,
		 * because hardware can't calculate csum when TSO.
		 */
		if (skb_is_gso(skb))
			return -EDOM;

		/* the stack computes the IP header already,
		 * driver calculate l4 checksum when not TSO.
		 */
995
		return skb_checksum_help(skb);
996 997 998 999 1000
	}

	return 0;
}

1001 1002
static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
			     struct sk_buff *skb)
1003
{
1004
	struct hnae3_handle *handle = tx_ring->tqp->handle;
1005
	struct hnae3_ae_dev *ae_dev;
1006 1007 1008 1009 1010 1011
	struct vlan_ethhdr *vhdr;
	int rc;

	if (!(skb->protocol == htons(ETH_P_8021Q) ||
	      skb_vlan_tag_present(skb)))
		return 0;
1012

1013 1014 1015
	/* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert
	 * VLAN enabled, only one VLAN header is allowed in skb, otherwise it
	 * will cause RAS error.
1016
	 */
1017
	ae_dev = pci_get_drvdata(handle->pdev);
1018
	if (unlikely(skb_vlan_tagged_multi(skb) &&
1019
		     ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
1020 1021 1022 1023
		     handle->port_base_vlan_state ==
		     HNAE3_PORT_BASE_VLAN_ENABLE))
		return -EINVAL;

1024
	if (skb->protocol == htons(ETH_P_8021Q) &&
1025
	    !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		/* When HW VLAN acceleration is turned off, and the stack
		 * sets the protocol to 802.1q, the driver just need to
		 * set the protocol to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		return 0;
	}

	if (skb_vlan_tag_present(skb)) {
		/* Based on hw strategy, use out_vtag in two layer tag case,
		 * and use inner_vtag in one tag case.
		 */
1038 1039 1040 1041 1042 1043 1044 1045 1046
		if (skb->protocol == htons(ETH_P_8021Q) &&
		    handle->port_base_vlan_state ==
		    HNAE3_PORT_BASE_VLAN_DISABLE)
			rc = HNS3_OUTER_VLAN_TAG;
		else
			rc = HNS3_INNER_VLAN_TAG;

		skb->protocol = vlan_get_protocol(skb);
		return rc;
1047 1048
	}

1049 1050 1051 1052 1053 1054 1055 1056
	rc = skb_cow_head(skb, 0);
	if (unlikely(rc < 0))
		return rc;

	vhdr = (struct vlan_ethhdr *)skb->data;
	vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
					 & VLAN_PRIO_MASK);

1057 1058 1059 1060
	skb->protocol = vlan_get_protocol(skb);
	return 0;
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
/* check if the hardware is capable of checksum offloading */
static bool hns3_check_hw_tx_csum(struct sk_buff *skb)
{
	struct hns3_nic_priv *priv = netdev_priv(skb->dev);

	/* Kindly note, due to backward compatibility of the TX descriptor,
	 * HW checksum of the non-IP packets and GSO packets is handled at
	 * different place in the following code
	 */
	if (skb->csum_not_inet || skb_is_gso(skb) ||
	    !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state))
		return false;

	return true;
}

1077 1078 1079 1080
static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
			      struct sk_buff *skb, struct hns3_desc *desc)
{
	u32 ol_type_vlan_len_msec = 0;
1081
	u32 paylen_ol4cs = skb->len;
1082
	u32 type_cs_vlan_tso = 0;
1083
	u16 mss_hw_csum = 0;
1084 1085 1086 1087 1088 1089
	u16 inner_vtag = 0;
	u16 out_vtag = 0;
	int ret;

	ret = hns3_handle_vtags(ring, skb);
	if (unlikely(ret < 0)) {
1090 1091 1092
		u64_stats_update_begin(&ring->syncp);
		ring->stats.tx_vlan_err++;
		u64_stats_update_end(&ring->syncp);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
		return ret;
	} else if (ret == HNS3_INNER_VLAN_TAG) {
		inner_vtag = skb_vlan_tag_get(skb);
		inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
				VLAN_PRIO_MASK;
		hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
	} else if (ret == HNS3_OUTER_VLAN_TAG) {
		out_vtag = skb_vlan_tag_get(skb);
		out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
				VLAN_PRIO_MASK;
		hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
			       1);
	}

	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		u8 ol4_proto, il4_proto;

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
		if (hns3_check_hw_tx_csum(skb)) {
			/* set checksum start and offset, defined in 2 Bytes */
			hns3_set_field(type_cs_vlan_tso, HNS3_TXD_CSUM_START_S,
				       skb_checksum_start_offset(skb) >> 1);
			hns3_set_field(ol_type_vlan_len_msec,
				       HNS3_TXD_CSUM_OFFSET_S,
				       skb->csum_offset >> 1);
			mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B);
			goto out_hw_tx_csum;
		}

1121 1122 1123
		skb_reset_mac_len(skb);

		ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1124
		if (unlikely(ret < 0)) {
1125 1126 1127
			u64_stats_update_begin(&ring->syncp);
			ring->stats.tx_l4_proto_err++;
			u64_stats_update_end(&ring->syncp);
1128
			return ret;
1129
		}
1130 1131 1132 1133

		ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
				      &type_cs_vlan_tso,
				      &ol_type_vlan_len_msec);
1134
		if (unlikely(ret < 0)) {
1135 1136 1137
			u64_stats_update_begin(&ring->syncp);
			ring->stats.tx_l2l3l4_err++;
			u64_stats_update_end(&ring->syncp);
1138
			return ret;
1139
		}
1140

1141
		ret = hns3_set_tso(skb, &paylen_ol4cs, &mss_hw_csum,
1142
				   &type_cs_vlan_tso);
1143
		if (unlikely(ret < 0)) {
1144 1145 1146
			u64_stats_update_begin(&ring->syncp);
			ring->stats.tx_tso_err++;
			u64_stats_update_end(&ring->syncp);
1147
			return ret;
1148
		}
1149 1150
	}

1151
out_hw_tx_csum:
1152 1153 1154 1155
	/* Set txbd */
	desc->tx.ol_type_vlan_len_msec =
		cpu_to_le32(ol_type_vlan_len_msec);
	desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1156
	desc->tx.paylen_ol4cs = cpu_to_le32(paylen_ol4cs);
1157
	desc->tx.mss_hw_csum = cpu_to_le16(mss_hw_csum);
1158 1159 1160 1161 1162 1163
	desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
	desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);

	return 0;
}

1164
static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1165
			  unsigned int size, enum hns_desc_type type)
1166
{
1167 1168
#define HNS3_LIKELY_BD_NUM	1

1169 1170
	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1171
	struct device *dev = ring_to_dev(ring);
1172
	skb_frag_t *frag;
1173
	unsigned int frag_buf_num;
1174
	int k, sizeoflast;
1175
	dma_addr_t dma;
1176

1177 1178
	if (type == DESC_TYPE_FRAGLIST_SKB ||
	    type == DESC_TYPE_SKB) {
1179 1180
		struct sk_buff *skb = (struct sk_buff *)priv;

1181 1182
		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
	} else {
1183
		frag = (skb_frag_t *)priv;
1184 1185 1186
		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
	}

1187
	if (unlikely(dma_mapping_error(dev, dma))) {
1188
		u64_stats_update_begin(&ring->syncp);
1189
		ring->stats.sw_err_cnt++;
1190
		u64_stats_update_end(&ring->syncp);
1191
		return -ENOMEM;
1192 1193
	}

1194
	desc_cb->priv = priv;
1195
	desc_cb->length = size;
1196 1197
	desc_cb->dma = dma;
	desc_cb->type = type;
1198

1199 1200 1201 1202
	if (likely(size <= HNS3_MAX_BD_SIZE)) {
		desc->addr = cpu_to_le64(dma);
		desc->tx.send_size = cpu_to_le16(size);
		desc->tx.bdtp_fe_sc_vld_ra_ri =
1203
			cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1204

1205
		trace_hns3_tx_desc(ring, ring->next_to_use);
1206
		ring_ptr_move_fw(ring, next_to_use);
1207
		return HNS3_LIKELY_BD_NUM;
1208 1209
	}

1210
	frag_buf_num = hns3_tx_bd_count(size);
1211
	sizeoflast = size % HNS3_MAX_BD_SIZE;
1212 1213 1214 1215 1216 1217
	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;

	/* When frag size is bigger than hardware limit, split this frag */
	for (k = 0; k < frag_buf_num; k++) {
		/* now, fill the descriptor */
		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1218
		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1219
				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1220
		desc->tx.bdtp_fe_sc_vld_ra_ri =
1221
				cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1222

1223
		trace_hns3_tx_desc(ring, ring->next_to_use);
1224
		/* move ring pointer to next */
1225 1226 1227 1228
		ring_ptr_move_fw(ring, next_to_use);

		desc = &ring->desc[ring->next_to_use];
	}
1229

1230
	return frag_buf_num;
1231 1232
}

1233 1234
static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
				    unsigned int bd_num)
1235
{
1236
	unsigned int size;
1237
	int i;
1238

1239 1240 1241 1242 1243 1244 1245 1246
	size = skb_headlen(skb);
	while (size > HNS3_MAX_BD_SIZE) {
		bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
		size -= HNS3_MAX_BD_SIZE;

		if (bd_num > HNS3_MAX_TSO_BD_NUM)
			return bd_num;
	}
1247

1248 1249 1250 1251 1252
	if (size) {
		bd_size[bd_num++] = size;
		if (bd_num > HNS3_MAX_TSO_BD_NUM)
			return bd_num;
	}
1253

1254
	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1255
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
		size = skb_frag_size(frag);
		if (!size)
			continue;

		while (size > HNS3_MAX_BD_SIZE) {
			bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
			size -= HNS3_MAX_BD_SIZE;

			if (bd_num > HNS3_MAX_TSO_BD_NUM)
				return bd_num;
		}

		bd_size[bd_num++] = size;
		if (bd_num > HNS3_MAX_TSO_BD_NUM)
			return bd_num;
	}

	return bd_num;
}

1276
static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1277 1278
				   u8 max_non_tso_bd_num, unsigned int bd_num,
				   unsigned int recursion_level)
1279
{
1280 1281
#define HNS3_MAX_RECURSION_LEVEL	24

1282 1283 1284
	struct sk_buff *frag_skb;

	/* If the total len is within the max bd limit */
1285 1286
	if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level &&
		   !skb_has_frag_list(skb) &&
1287
		   skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1288 1289
		return skb_shinfo(skb)->nr_frags + 1U;

1290 1291
	if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL))
		return UINT_MAX;
1292 1293 1294 1295 1296 1297 1298

	bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);

	if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
		return bd_num;

	skb_walk_frags(skb, frag_skb) {
1299 1300
		bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num,
					bd_num, recursion_level + 1);
1301 1302
		if (bd_num > HNS3_MAX_TSO_BD_NUM)
			return bd_num;
1303
	}
1304

1305
	return bd_num;
1306 1307
}

1308 1309 1310 1311 1312 1313 1314 1315
static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
{
	if (!skb->encapsulation)
		return skb_transport_offset(skb) + tcp_hdrlen(skb);

	return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
}

1316 1317 1318 1319 1320
/* HW need every continuous max_non_tso_bd_num buffer data to be larger
 * than MSS, we simplify it by ensuring skb_headlen + the first continuous
 * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
 * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
 * than MSS except the last max_non_tso_bd_num - 1 frags.
1321
 */
1322
static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1323
				     unsigned int bd_num, u8 max_non_tso_bd_num)
1324 1325 1326 1327
{
	unsigned int tot_len = 0;
	int i;

1328
	for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1329
		tot_len += bd_size[i];
1330

1331 1332 1333 1334
	/* ensure the first max_non_tso_bd_num frags is greater than
	 * mss + header
	 */
	if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1335
	    skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1336 1337
		return true;

1338 1339
	/* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
	 * than mss except the last one.
1340
	 */
1341
	for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1342
		tot_len -= bd_size[i];
1343
		tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1344 1345 1346 1347 1348 1349 1350 1351

		if (tot_len < skb_shinfo(skb)->gso_size)
			return true;
	}

	return false;
}

1352 1353
void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
{
1354
	int i;
1355 1356 1357 1358 1359

	for (i = 0; i < MAX_SKB_FRAGS; i++)
		size[i] = skb_frag_size(&shinfo->frags[i]);
}

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
static int hns3_skb_linearize(struct hns3_enet_ring *ring,
			      struct sk_buff *skb,
			      u8 max_non_tso_bd_num,
			      unsigned int bd_num)
{
	/* 'bd_num == UINT_MAX' means the skb' fraglist has a
	 * recursion level of over HNS3_MAX_RECURSION_LEVEL.
	 */
	if (bd_num == UINT_MAX) {
		u64_stats_update_begin(&ring->syncp);
		ring->stats.over_max_recursion++;
		u64_stats_update_end(&ring->syncp);
		return -ENOMEM;
	}

	/* The skb->len has exceeded the hw limitation, linearization
	 * will not help.
	 */
	if (skb->len > HNS3_MAX_TSO_SIZE ||
	    (!skb_is_gso(skb) && skb->len >
	     HNS3_MAX_NON_TSO_SIZE(max_non_tso_bd_num))) {
		u64_stats_update_begin(&ring->syncp);
		ring->stats.hw_limitation++;
		u64_stats_update_end(&ring->syncp);
		return -ENOMEM;
	}

	if (__skb_linearize(skb)) {
		u64_stats_update_begin(&ring->syncp);
		ring->stats.sw_err_cnt++;
		u64_stats_update_end(&ring->syncp);
		return -ENOMEM;
	}

	return 0;
}

1397
static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1398
				  struct net_device *netdev,
1399
				  struct sk_buff *skb)
1400
{
1401
	struct hns3_nic_priv *priv = netdev_priv(netdev);
1402
	u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1403
	unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1404
	unsigned int bd_num;
1405

1406
	bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0);
1407
	if (unlikely(bd_num > max_non_tso_bd_num)) {
1408
		if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1409 1410
		    !hns3_skb_need_linearized(skb, bd_size, bd_num,
					      max_non_tso_bd_num)) {
1411
			trace_hns3_over_max_bd(skb);
1412
			goto out;
1413
		}
1414

1415 1416
		if (hns3_skb_linearize(ring, skb, max_non_tso_bd_num,
				       bd_num))
P
Peng Li 已提交
1417
			return -ENOMEM;
1418

1419
		bd_num = hns3_tx_bd_count(skb->len);
1420

1421 1422 1423
		u64_stats_update_begin(&ring->syncp);
		ring->stats.tx_copy++;
		u64_stats_update_end(&ring->syncp);
P
Peng Li 已提交
1424 1425
	}

1426
out:
1427 1428
	if (likely(ring_space(ring) >= bd_num))
		return bd_num;
1429

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	netif_stop_subqueue(netdev, ring->queue_index);
	smp_mb(); /* Memory barrier before checking ring_space */

	/* Start queue in case hns3_clean_tx_ring has just made room
	 * available and has not seen the queue stopped state performed
	 * by netif_stop_subqueue above.
	 */
	if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
	    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
		netif_start_subqueue(netdev, ring->queue_index);
		return bd_num;
	}

1443 1444 1445 1446
	u64_stats_update_begin(&ring->syncp);
	ring->stats.tx_busy++;
	u64_stats_update_end(&ring->syncp);

1447
	return -EBUSY;
1448 1449
}

F
Fuyun Liang 已提交
1450
static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1451 1452 1453 1454 1455
{
	struct device *dev = ring_to_dev(ring);
	unsigned int i;

	for (i = 0; i < ring->desc_num; i++) {
1456 1457 1458 1459
		struct hns3_desc *desc = &ring->desc[ring->next_to_use];

		memset(desc, 0, sizeof(*desc));

1460 1461 1462 1463
		/* check if this is where we started */
		if (ring->next_to_use == next_to_use_orig)
			break;

1464 1465 1466
		/* rollback one */
		ring_ptr_move_bw(ring, next_to_use);

1467 1468 1469
		if (!ring->desc_cb[ring->next_to_use].dma)
			continue;

1470
		/* unmap the descriptor dma address */
1471 1472 1473
		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB ||
		    ring->desc_cb[ring->next_to_use].type ==
		    DESC_TYPE_FRAGLIST_SKB)
1474 1475 1476 1477
			dma_unmap_single(dev,
					 ring->desc_cb[ring->next_to_use].dma,
					ring->desc_cb[ring->next_to_use].length,
					DMA_TO_DEVICE);
1478
		else if (ring->desc_cb[ring->next_to_use].length)
1479 1480 1481 1482 1483
			dma_unmap_page(dev,
				       ring->desc_cb[ring->next_to_use].dma,
				       ring->desc_cb[ring->next_to_use].length,
				       DMA_TO_DEVICE);

1484
		ring->desc_cb[ring->next_to_use].length = 0;
1485
		ring->desc_cb[ring->next_to_use].dma = 0;
1486
		ring->desc_cb[ring->next_to_use].type = DESC_TYPE_UNKNOWN;
1487 1488 1489
	}
}

1490 1491 1492 1493
static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
				 struct sk_buff *skb, enum hns_desc_type type)
{
	unsigned int size = skb_headlen(skb);
1494
	struct sk_buff *frag_skb;
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	int i, ret, bd_num = 0;

	if (size) {
		ret = hns3_fill_desc(ring, skb, size, type);
		if (unlikely(ret < 0))
			return ret;

		bd_num += ret;
	}

	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

		size = skb_frag_size(frag);
		if (!size)
			continue;

		ret = hns3_fill_desc(ring, frag, size, DESC_TYPE_PAGE);
		if (unlikely(ret < 0))
			return ret;

		bd_num += ret;
	}

1519 1520 1521 1522 1523 1524 1525 1526 1527
	skb_walk_frags(skb, frag_skb) {
		ret = hns3_fill_skb_to_desc(ring, frag_skb,
					    DESC_TYPE_FRAGLIST_SKB);
		if (unlikely(ret < 0))
			return ret;

		bd_num += ret;
	}

1528 1529 1530
	return bd_num;
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
			     bool doorbell)
{
	ring->pending_buf += num;

	if (!doorbell) {
		u64_stats_update_begin(&ring->syncp);
		ring->stats.tx_more++;
		u64_stats_update_end(&ring->syncp);
		return;
	}

	if (!ring->pending_buf)
		return;

1546 1547
	writel(ring->pending_buf,
	       ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
1548
	ring->pending_buf = 0;
1549
	WRITE_ONCE(ring->last_to_use, ring->next_to_use);
1550 1551
}

1552
netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1553 1554
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
1555
	struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
1556
	struct netdev_queue *dev_queue;
1557
	int pre_ntu, next_to_use_head;
1558
	bool doorbell;
1559 1560
	int ret;

1561
	/* Hardware can only handle short frames above 32 bytes */
1562 1563
	if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
		hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1564
		return NETDEV_TX_OK;
1565
	}
1566

1567 1568 1569
	/* Prefetch the data used later */
	prefetch(skb->data);

1570
	ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
1571 1572
	if (unlikely(ret <= 0)) {
		if (ret == -EBUSY) {
1573
			hns3_tx_doorbell(ring, 0, true);
1574
			return NETDEV_TX_BUSY;
1575
		}
1576

1577
		hns3_rl_err(netdev, "xmit error: %d!\n", ret);
1578 1579 1580 1581 1582
		goto out_err_tx_ok;
	}

	next_to_use_head = ring->next_to_use;

1583 1584 1585 1586
	ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use]);
	if (unlikely(ret < 0))
		goto fill_err;

1587 1588 1589 1590
	/* 'ret < 0' means filling error, 'ret == 0' means skb->len is
	 * zero, which is unlikely, and 'ret > 0' means how many tx desc
	 * need to be notified to the hw.
	 */
1591
	ret = hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
1592
	if (unlikely(ret <= 0))
1593
		goto fill_err;
1594

1595 1596 1597 1598
	pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
					(ring->desc_num - 1);
	ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
				cpu_to_le16(BIT(HNS3_TXD_FE_B));
1599
	trace_hns3_tx_desc(ring, pre_ntu);
1600 1601

	/* Complete translate all packets */
1602
	dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
1603 1604
	doorbell = __netdev_tx_sent_queue(dev_queue, skb->len,
					  netdev_xmit_more());
1605
	hns3_tx_doorbell(ring, ret, doorbell);
1606 1607 1608

	return NETDEV_TX_OK;

1609
fill_err:
F
Fuyun Liang 已提交
1610
	hns3_clear_desc(ring, next_to_use_head);
1611 1612 1613

out_err_tx_ok:
	dev_kfree_skb_any(skb);
1614
	hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1615 1616 1617 1618 1619
	return NETDEV_TX_OK;
}

static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
{
1620
	struct hnae3_handle *h = hns3_get_handle(netdev);
1621 1622 1623 1624 1625 1626
	struct sockaddr *mac_addr = p;
	int ret;

	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
		return -EADDRNOTAVAIL;

1627 1628 1629 1630 1631 1632
	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
		netdev_info(netdev, "already using mac address %pM\n",
			    mac_addr->sa_data);
		return 0;
	}

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	/* For VF device, if there is a perm_addr, then the user will not
	 * be allowed to change the address.
	 */
	if (!hns3_is_phys_func(h->pdev) &&
	    !is_zero_ether_addr(netdev->perm_addr)) {
		netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
			   netdev->perm_addr, mac_addr->sa_data);
		return -EPERM;
	}

1643
	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
	if (ret) {
		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
		return ret;
	}

	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);

	return 0;
}

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
static int hns3_nic_do_ioctl(struct net_device *netdev,
			     struct ifreq *ifr, int cmd)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);

	if (!netif_running(netdev))
		return -EINVAL;

	if (!h->ae_algo->ops->do_ioctl)
		return -EOPNOTSUPP;

	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
}

1668 1669 1670
static int hns3_nic_set_features(struct net_device *netdev,
				 netdev_features_t features)
{
1671
	netdev_features_t changed = netdev->features ^ features;
1672
	struct hns3_nic_priv *priv = netdev_priv(netdev);
1673
	struct hnae3_handle *h = priv->ae_handle;
1674
	bool enable;
1675
	int ret;
1676

1677
	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1678 1679
		enable = !!(features & NETIF_F_GRO_HW);
		ret = h->ae_algo->ops->set_gro_en(h, enable);
1680 1681 1682 1683
		if (ret)
			return ret;
	}

1684 1685
	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1686 1687
		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1688 1689 1690 1691
		if (ret)
			return ret;
	}

1692
	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1693 1694
		enable = !!(features & NETIF_F_NTUPLE);
		h->ae_algo->ops->enable_fd(h, enable);
1695 1696
	}

1697 1698 1699 1700
	netdev->features = features;
	return 0;
}

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
static netdev_features_t hns3_features_check(struct sk_buff *skb,
					     struct net_device *dev,
					     netdev_features_t features)
{
#define HNS3_MAX_HDR_LEN	480U
#define HNS3_MAX_L4_HDR_LEN	60U

	size_t len;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return features;

	if (skb->encapsulation)
		len = skb_inner_transport_header(skb) - skb->data;
	else
		len = skb_transport_header(skb) - skb->data;

	/* Assume L4 is 60 byte as TCP is the only protocol with a
	 * a flexible value, and it's max len is 60 bytes.
	 */
	len += HNS3_MAX_L4_HDR_LEN;

	/* Hardware only supports checksum on the skb with a max header
	 * len of 480 bytes.
	 */
	if (len > HNS3_MAX_HDR_LEN)
		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);

	return features;
}

1732 1733
static void hns3_nic_get_stats64(struct net_device *netdev,
				 struct rtnl_link_stats64 *stats)
1734 1735 1736
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	int queue_num = priv->ae_handle->kinfo.num_tqps;
1737
	struct hnae3_handle *handle = priv->ae_handle;
1738
	struct hns3_enet_ring *ring;
1739 1740 1741
	u64 rx_length_errors = 0;
	u64 rx_crc_errors = 0;
	u64 rx_multicast = 0;
1742
	unsigned int start;
1743 1744
	u64 tx_errors = 0;
	u64 rx_errors = 0;
1745 1746 1747 1748 1749
	unsigned int idx;
	u64 tx_bytes = 0;
	u64 rx_bytes = 0;
	u64 tx_pkts = 0;
	u64 rx_pkts = 0;
1750 1751
	u64 tx_drop = 0;
	u64 rx_drop = 0;
1752

1753 1754 1755
	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
		return;

1756 1757
	handle->ae_algo->ops->update_stats(handle, &netdev->stats);

1758 1759
	for (idx = 0; idx < queue_num; idx++) {
		/* fetch the tx stats */
1760
		ring = &priv->ring[idx];
1761
		do {
1762
			start = u64_stats_fetch_begin_irq(&ring->syncp);
1763 1764
			tx_bytes += ring->stats.tx_bytes;
			tx_pkts += ring->stats.tx_pkts;
1765
			tx_drop += ring->stats.sw_err_cnt;
1766 1767 1768 1769
			tx_drop += ring->stats.tx_vlan_err;
			tx_drop += ring->stats.tx_l4_proto_err;
			tx_drop += ring->stats.tx_l2l3l4_err;
			tx_drop += ring->stats.tx_tso_err;
1770 1771
			tx_drop += ring->stats.over_max_recursion;
			tx_drop += ring->stats.hw_limitation;
1772
			tx_errors += ring->stats.sw_err_cnt;
1773 1774 1775 1776
			tx_errors += ring->stats.tx_vlan_err;
			tx_errors += ring->stats.tx_l4_proto_err;
			tx_errors += ring->stats.tx_l2l3l4_err;
			tx_errors += ring->stats.tx_tso_err;
1777 1778
			tx_errors += ring->stats.over_max_recursion;
			tx_errors += ring->stats.hw_limitation;
1779 1780 1781
		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));

		/* fetch the rx stats */
1782
		ring = &priv->ring[idx + queue_num];
1783
		do {
1784
			start = u64_stats_fetch_begin_irq(&ring->syncp);
1785 1786
			rx_bytes += ring->stats.rx_bytes;
			rx_pkts += ring->stats.rx_pkts;
1787
			rx_drop += ring->stats.l2_err;
1788
			rx_errors += ring->stats.l2_err;
1789
			rx_errors += ring->stats.l3l4_csum_err;
1790 1791 1792
			rx_crc_errors += ring->stats.l2_err;
			rx_multicast += ring->stats.rx_multicast;
			rx_length_errors += ring->stats.err_pkt_len;
1793 1794 1795 1796 1797 1798 1799 1800
		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
	}

	stats->tx_bytes = tx_bytes;
	stats->tx_packets = tx_pkts;
	stats->rx_bytes = rx_bytes;
	stats->rx_packets = rx_pkts;

1801 1802 1803 1804
	stats->rx_errors = rx_errors;
	stats->multicast = rx_multicast;
	stats->rx_length_errors = rx_length_errors;
	stats->rx_crc_errors = rx_crc_errors;
1805 1806
	stats->rx_missed_errors = netdev->stats.rx_missed_errors;

1807 1808 1809
	stats->tx_errors = tx_errors;
	stats->rx_dropped = rx_drop;
	stats->tx_dropped = tx_drop;
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	stats->collisions = netdev->stats.collisions;
	stats->rx_over_errors = netdev->stats.rx_over_errors;
	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
	stats->tx_window_errors = netdev->stats.tx_window_errors;
	stats->rx_compressed = netdev->stats.rx_compressed;
	stats->tx_compressed = netdev->stats.tx_compressed;
}

1823
static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1824
{
1825 1826
	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1827
	struct hnae3_knic_private_info *kinfo;
1828 1829 1830
	u8 tc = mqprio_qopt->qopt.num_tc;
	u16 mode = mqprio_qopt->mode;
	u8 hw = mqprio_qopt->qopt.hw;
1831
	struct hnae3_handle *h;
1832

1833 1834 1835 1836
	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
		return -EOPNOTSUPP;

1837 1838 1839 1840 1841 1842
	if (tc > HNAE3_MAX_TC)
		return -EINVAL;

	if (!netdev)
		return -EINVAL;

1843 1844 1845
	h = hns3_get_handle(netdev);
	kinfo = &h->kinfo;

1846 1847
	netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);

1848
	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1849
		kinfo->dcb_ops->setup_tc(h, tc ? tc : 1, prio_tc) : -EOPNOTSUPP;
1850 1851
}

1852
static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1853
			     void *type_data)
1854
{
1855
	if (type != TC_SETUP_QDISC_MQPRIO)
1856
		return -EOPNOTSUPP;
1857

1858
	return hns3_setup_tc(dev, type_data);
1859 1860 1861 1862 1863
}

static int hns3_vlan_rx_add_vid(struct net_device *netdev,
				__be16 proto, u16 vid)
{
1864
	struct hnae3_handle *h = hns3_get_handle(netdev);
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	int ret = -EIO;

	if (h->ae_algo->ops->set_vlan_filter)
		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);

	return ret;
}

static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
				 __be16 proto, u16 vid)
{
1876
	struct hnae3_handle *h = hns3_get_handle(netdev);
1877 1878 1879 1880 1881
	int ret = -EIO;

	if (h->ae_algo->ops->set_vlan_filter)
		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);

1882
	return ret;
1883 1884
}

1885 1886 1887
static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
				u8 qos, __be16 vlan_proto)
{
1888
	struct hnae3_handle *h = hns3_get_handle(netdev);
1889 1890
	int ret = -EIO;

1891
	netif_dbg(h, drv, netdev,
1892 1893
		  "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
		  vf, vlan, qos, ntohs(vlan_proto));
1894

1895 1896
	if (h->ae_algo->ops->set_vf_vlan_filter)
		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1897
							  qos, vlan_proto);
1898 1899 1900 1901

	return ret;
}

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
{
	struct hnae3_handle *handle = hns3_get_handle(netdev);

	if (hns3_nic_resetting(netdev))
		return -EBUSY;

	if (!handle->ae_algo->ops->set_vf_spoofchk)
		return -EOPNOTSUPP;

	return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
}

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
{
	struct hnae3_handle *handle = hns3_get_handle(netdev);

	if (!handle->ae_algo->ops->set_vf_trust)
		return -EOPNOTSUPP;

	return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
}

1925 1926
static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
{
1927
	struct hnae3_handle *h = hns3_get_handle(netdev);
1928 1929
	int ret;

1930 1931 1932
	if (hns3_nic_resetting(netdev))
		return -EBUSY;

1933 1934 1935
	if (!h->ae_algo->ops->set_mtu)
		return -EOPNOTSUPP;

1936 1937 1938
	netif_dbg(h, drv, netdev,
		  "change mtu from %u to %d\n", netdev->mtu, new_mtu);

1939
	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1940
	if (ret)
1941 1942
		netdev_err(netdev, "failed to change MTU in hardware %d\n",
			   ret);
1943 1944
	else
		netdev->mtu = new_mtu;
F
Fuyun Liang 已提交
1945

1946 1947 1948
	return ret;
}

1949 1950 1951
static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
{
	struct hns3_nic_priv *priv = netdev_priv(ndev);
1952
	struct hnae3_handle *h = hns3_get_handle(ndev);
1953
	struct hns3_enet_ring *tx_ring;
1954
	struct napi_struct *napi;
1955 1956
	int timeout_queue = 0;
	int hw_head, hw_tail;
1957 1958 1959 1960
	int fbd_num, fbd_oft;
	int ebd_num, ebd_oft;
	int bd_num, bd_err;
	int ring_en, tc;
1961 1962 1963
	int i;

	/* Find the stopped queue the same way the stack does */
1964
	for (i = 0; i < ndev->num_tx_queues; i++) {
1965 1966 1967 1968 1969 1970 1971 1972 1973
		struct netdev_queue *q;
		unsigned long trans_start;

		q = netdev_get_tx_queue(ndev, i);
		trans_start = q->trans_start;
		if (netif_xmit_stopped(q) &&
		    time_after(jiffies,
			       (trans_start + ndev->watchdog_timeo))) {
			timeout_queue = i;
1974 1975 1976
			netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
				    q->state,
				    jiffies_to_msecs(jiffies - trans_start));
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
			break;
		}
	}

	if (i == ndev->num_tx_queues) {
		netdev_info(ndev,
			    "no netdev TX timeout queue found, timeout count: %llu\n",
			    priv->tx_timeout_count);
		return false;
	}

1988 1989
	priv->tx_timeout_count++;

1990
	tx_ring = &priv->ring[timeout_queue];
1991 1992 1993 1994 1995 1996 1997 1998
	napi = &tx_ring->tqp_vector->napi;

	netdev_info(ndev,
		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
		    tx_ring->next_to_clean, napi->state);

	netdev_info(ndev,
1999
		    "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
2000
		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
2001
		    tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
2002 2003

	netdev_info(ndev,
2004 2005
		    "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
2006 2007 2008 2009 2010
		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);

	/* When mac received many pause frames continuous, it's unable to send
	 * packets, which may cause tx timeout
	 */
2011 2012
	if (h->ae_algo->ops->get_mac_stats) {
		struct hns3_mac_stats mac_stats;
2013

2014
		h->ae_algo->ops->get_mac_stats(h, &mac_stats);
2015
		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
2016
			    mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
2017
	}
2018 2019 2020 2021 2022

	hw_head = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_HEAD_REG);
	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_TAIL_REG);
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
	fbd_num = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_FBDNUM_REG);
	fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_OFFSET_REG);
	ebd_num = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_EBDNUM_REG);
	ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_EBD_OFFSET_REG);
	bd_num = readl_relaxed(tx_ring->tqp->io_base +
			       HNS3_RING_TX_RING_BD_NUM_REG);
	bd_err = readl_relaxed(tx_ring->tqp->io_base +
			       HNS3_RING_TX_RING_BD_ERR_REG);
	ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
	tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);

2038
	netdev_info(ndev,
2039 2040
		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
		    bd_num, hw_head, hw_tail, bd_err,
2041
		    readl(tx_ring->tqp_vector->mask_addr));
2042 2043 2044
	netdev_info(ndev,
		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
		    ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
2045 2046 2047 2048

	return true;
}

2049
static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
2050 2051 2052 2053 2054 2055 2056
{
	struct hns3_nic_priv *priv = netdev_priv(ndev);
	struct hnae3_handle *h = priv->ae_handle;

	if (!hns3_get_tx_timeo_queue_info(ndev))
		return;

2057 2058 2059
	/* request the reset, and let the hclge to determine
	 * which reset level should be done
	 */
2060
	if (h->ae_algo->ops->reset_event)
2061
		h->ae_algo->ops->reset_event(h->pdev, h);
2062 2063
}

J
Jian Shen 已提交
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
#ifdef CONFIG_RFS_ACCEL
static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
			      u16 rxq_index, u32 flow_id)
{
	struct hnae3_handle *h = hns3_get_handle(dev);
	struct flow_keys fkeys;

	if (!h->ae_algo->ops->add_arfs_entry)
		return -EOPNOTSUPP;

	if (skb->encapsulation)
		return -EPROTONOSUPPORT;

	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
		return -EPROTONOSUPPORT;

	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
	     fkeys.basic.ip_proto != IPPROTO_UDP))
		return -EPROTONOSUPPORT;

	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
}
#endif

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
				  struct ifla_vf_info *ivf)
{
	struct hnae3_handle *h = hns3_get_handle(ndev);

	if (!h->ae_algo->ops->get_vf_config)
		return -EOPNOTSUPP;

	return h->ae_algo->ops->get_vf_config(h, vf, ivf);
}

static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
				      int link_state)
{
	struct hnae3_handle *h = hns3_get_handle(ndev);

	if (!h->ae_algo->ops->set_vf_link_state)
		return -EOPNOTSUPP;

	return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
}

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
				int min_tx_rate, int max_tx_rate)
{
	struct hnae3_handle *h = hns3_get_handle(ndev);

	if (!h->ae_algo->ops->set_vf_rate)
		return -EOPNOTSUPP;

	return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
					    false);
}

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);

	if (!h->ae_algo->ops->set_vf_mac)
		return -EOPNOTSUPP;

	if (is_multicast_ether_addr(mac)) {
		netdev_err(netdev,
			   "Invalid MAC:%pM specified. Could not set MAC\n",
			   mac);
		return -EINVAL;
	}

	return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
}

2141 2142 2143 2144
static const struct net_device_ops hns3_nic_netdev_ops = {
	.ndo_open		= hns3_nic_net_open,
	.ndo_stop		= hns3_nic_net_stop,
	.ndo_start_xmit		= hns3_nic_net_xmit,
2145
	.ndo_tx_timeout		= hns3_nic_net_timeout,
2146
	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
2147
	.ndo_do_ioctl		= hns3_nic_do_ioctl,
2148
	.ndo_change_mtu		= hns3_nic_change_mtu,
2149
	.ndo_set_features	= hns3_nic_set_features,
2150
	.ndo_features_check	= hns3_features_check,
2151 2152 2153 2154 2155 2156
	.ndo_get_stats64	= hns3_nic_get_stats64,
	.ndo_setup_tc		= hns3_nic_setup_tc,
	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
2157
	.ndo_set_vf_spoofchk	= hns3_set_vf_spoofchk,
2158
	.ndo_set_vf_trust	= hns3_set_vf_trust,
J
Jian Shen 已提交
2159 2160 2161
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
#endif
2162 2163
	.ndo_get_vf_config	= hns3_nic_get_vf_config,
	.ndo_set_vf_link_state	= hns3_nic_set_vf_link_state,
2164
	.ndo_set_vf_rate	= hns3_nic_set_vf_rate,
2165
	.ndo_set_vf_mac		= hns3_nic_set_vf_mac,
2166 2167
};

2168
bool hns3_is_phys_func(struct pci_dev *pdev)
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
{
	u32 dev_id = pdev->device;

	switch (dev_id) {
	case HNAE3_DEV_ID_GE:
	case HNAE3_DEV_ID_25GE:
	case HNAE3_DEV_ID_25GE_RDMA:
	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
	case HNAE3_DEV_ID_50GE_RDMA:
	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2180
	case HNAE3_DEV_ID_200G_RDMA:
2181
		return true;
2182 2183
	case HNAE3_DEV_ID_VF:
	case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
2184 2185
		return false;
	default:
2186
		dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
			 dev_id);
	}

	return false;
}

static void hns3_disable_sriov(struct pci_dev *pdev)
{
	/* If our VFs are assigned we cannot shut down SR-IOV
	 * without causing issues, so just leave the hardware
	 * available but disabled
	 */
	if (pci_vfs_assigned(pdev)) {
		dev_warn(&pdev->dev,
			 "disabling driver while VFs are assigned\n");
		return;
	}

	pci_disable_sriov(pdev);
}

2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
/* hns3_probe - Device initialization routine
 * @pdev: PCI device information struct
 * @ent: entry in hns3_pci_tbl
 *
 * hns3_probe initializes a PF identified by a pci_dev structure.
 * The OS initialization, configuring of the PF private structure,
 * and a hardware reset occur.
 *
 * Returns 0 on success, negative on failure
 */
static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
	struct hnae3_ae_dev *ae_dev;
	int ret;

2223
	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2224 2225
	if (!ae_dev)
		return -ENOMEM;
2226 2227

	ae_dev->pdev = pdev;
2228
	ae_dev->flag = ent->driver_data;
2229 2230
	pci_set_drvdata(pdev, ae_dev);

2231
	ret = hnae3_register_ae_dev(ae_dev);
2232
	if (ret)
2233
		pci_set_drvdata(pdev, NULL);
2234

2235
	return ret;
2236 2237 2238 2239 2240 2241 2242 2243 2244
}

/* hns3_remove - Device removal routine
 * @pdev: PCI device information struct
 */
static void hns3_remove(struct pci_dev *pdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);

2245 2246 2247
	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
		hns3_disable_sriov(pdev);

2248
	hnae3_unregister_ae_dev(ae_dev);
2249
	pci_set_drvdata(pdev, NULL);
2250 2251
}

2252 2253 2254 2255 2256 2257 2258 2259
/**
 * hns3_pci_sriov_configure
 * @pdev: pointer to a pci_dev structure
 * @num_vfs: number of VFs to allocate
 *
 * Enable or change the number of VFs. Called when the user updates the number
 * of VFs in sysfs.
 **/
2260
static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
{
	int ret;

	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
		dev_warn(&pdev->dev, "Can not config SRIOV\n");
		return -EINVAL;
	}

	if (num_vfs) {
		ret = pci_enable_sriov(pdev, num_vfs);
		if (ret)
			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2273 2274
		else
			return num_vfs;
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
	} else if (!pci_vfs_assigned(pdev)) {
		pci_disable_sriov(pdev);
	} else {
		dev_warn(&pdev->dev,
			 "Unable to free VFs because some are assigned to VMs.\n");
	}

	return 0;
}

2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
static void hns3_shutdown(struct pci_dev *pdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);

	hnae3_unregister_ae_dev(ae_dev);
	pci_set_drvdata(pdev, NULL);

	if (system_state == SYSTEM_POWER_OFF)
		pci_set_power_state(pdev, PCI_D3hot);
}

2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
					    pci_channel_state_t state)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
	pci_ers_result_t ret;

	dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

2307
	if (!ae_dev || !ae_dev->ops) {
2308
		dev_err(&pdev->dev,
2309
			"Can't recover - error happened before device initialized\n");
2310 2311 2312
		return PCI_ERS_RESULT_NONE;
	}

2313 2314
	if (ae_dev->ops->handle_hw_ras_error)
		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
2315 2316 2317 2318 2319 2320
	else
		return PCI_ERS_RESULT_NONE;

	return ret;
}

2321 2322 2323
static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2324
	const struct hnae3_ae_ops *ops;
2325
	enum hnae3_reset_type reset_type;
2326 2327
	struct device *dev = &pdev->dev;

2328 2329 2330
	if (!ae_dev || !ae_dev->ops)
		return PCI_ERS_RESULT_NONE;

2331
	ops = ae_dev->ops;
2332
	/* request the reset */
2333 2334
	if (ops->reset_event && ops->get_reset_level &&
	    ops->set_default_reset_request) {
2335
		if (ae_dev->hw_err_reset_req) {
2336 2337 2338 2339 2340 2341
			reset_type = ops->get_reset_level(ae_dev,
						&ae_dev->hw_err_reset_req);
			ops->set_default_reset_request(ae_dev, reset_type);
			dev_info(dev, "requesting reset due to PCI error\n");
			ops->reset_event(pdev, NULL);
		}
2342

2343 2344 2345 2346 2347 2348
		return PCI_ERS_RESULT_RECOVERED;
	}

	return PCI_ERS_RESULT_DISCONNECT;
}

2349 2350 2351 2352
static void hns3_reset_prepare(struct pci_dev *pdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);

2353
	dev_info(&pdev->dev, "FLR prepare\n");
2354 2355 2356 2357 2358 2359 2360 2361
	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
		ae_dev->ops->flr_prepare(ae_dev);
}

static void hns3_reset_done(struct pci_dev *pdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);

2362
	dev_info(&pdev->dev, "FLR done\n");
2363 2364 2365 2366
	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
		ae_dev->ops->flr_done(ae_dev);
}

2367 2368
static const struct pci_error_handlers hns3_err_handler = {
	.error_detected = hns3_error_detected,
2369
	.slot_reset     = hns3_slot_reset,
2370 2371
	.reset_prepare	= hns3_reset_prepare,
	.reset_done	= hns3_reset_done,
2372 2373
};

2374 2375 2376 2377 2378
static struct pci_driver hns3_driver = {
	.name     = hns3_driver_name,
	.id_table = hns3_pci_tbl,
	.probe    = hns3_probe,
	.remove   = hns3_remove,
2379
	.shutdown = hns3_shutdown,
2380
	.sriov_configure = hns3_pci_sriov_configure,
2381
	.err_handler    = &hns3_err_handler,
2382 2383 2384 2385 2386
};

/* set default feature to hns3 */
static void hns3_set_default_feature(struct net_device *netdev)
{
2387 2388
	struct hnae3_handle *h = hns3_get_handle(netdev);
	struct pci_dev *pdev = h->pdev;
2389
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2390

2391 2392
	netdev->priv_flags |= IFF_UNICAST_FLT;

2393
	netdev->hw_enc_features |= NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2394 2395
		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2396
		NETIF_F_SCTP_CRC | NETIF_F_TSO_MANGLEID | NETIF_F_FRAGLIST;
2397 2398 2399

	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;

2400
	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2401
		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2402 2403 2404
		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2405
		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2406

2407
	netdev->vlan_features |= NETIF_F_RXCSUM |
2408 2409 2410
		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2411
		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2412

2413 2414
	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
		NETIF_F_HW_VLAN_CTAG_RX |
2415 2416 2417
		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2418
		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2419

2420
	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2421
		netdev->hw_features |= NETIF_F_GRO_HW;
2422
		netdev->features |= NETIF_F_GRO_HW;
2423 2424 2425 2426 2427 2428

		if (!(h->flags & HNAE3_SUPPORT_VF)) {
			netdev->hw_features |= NETIF_F_NTUPLE;
			netdev->features |= NETIF_F_NTUPLE;
		}
	}
2429 2430 2431 2432 2433 2434 2435

	if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps)) {
		netdev->hw_features |= NETIF_F_GSO_UDP_L4;
		netdev->features |= NETIF_F_GSO_UDP_L4;
		netdev->vlan_features |= NETIF_F_GSO_UDP_L4;
		netdev->hw_enc_features |= NETIF_F_GSO_UDP_L4;
	}
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447

	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps)) {
		netdev->hw_features |= NETIF_F_HW_CSUM;
		netdev->features |= NETIF_F_HW_CSUM;
		netdev->vlan_features |= NETIF_F_HW_CSUM;
		netdev->hw_enc_features |= NETIF_F_HW_CSUM;
	} else {
		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
		netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
		netdev->vlan_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
		netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
	}
2448 2449 2450 2451 2452 2453 2454

	if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps)) {
		netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
		netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
		netdev->vlan_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
		netdev->hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
	}
2455 2456 2457 2458 2459
}

static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
			     struct hns3_desc_cb *cb)
{
2460
	unsigned int order = hns3_page_order(ring);
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
	struct page *p;

	p = dev_alloc_pages(order);
	if (!p)
		return -ENOMEM;

	cb->priv = p;
	cb->page_offset = 0;
	cb->reuse_flag = 0;
	cb->buf  = page_address(p);
2471
	cb->length = hns3_page_size(ring);
2472
	cb->type = DESC_TYPE_PAGE;
2473 2474
	page_ref_add(p, USHRT_MAX - 1);
	cb->pagecnt_bias = USHRT_MAX;
2475 2476 2477 2478 2479

	return 0;
}

static void hns3_free_buffer(struct hns3_enet_ring *ring,
2480
			     struct hns3_desc_cb *cb, int budget)
2481 2482
{
	if (cb->type == DESC_TYPE_SKB)
2483
		napi_consume_skb(cb->priv, budget);
2484 2485
	else if (!HNAE3_IS_TX_RING(ring) && cb->pagecnt_bias)
		__page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
2486 2487 2488 2489 2490 2491 2492 2493
	memset(cb, 0, sizeof(*cb));
}

static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
{
	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
			       cb->length, ring_to_dma_dir(ring));

2494
	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2495 2496 2497 2498 2499 2500 2501 2502
		return -EIO;

	return 0;
}

static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
			      struct hns3_desc_cb *cb)
{
2503
	if (cb->type == DESC_TYPE_SKB || cb->type == DESC_TYPE_FRAGLIST_SKB)
2504 2505
		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
				 ring_to_dma_dir(ring));
2506
	else if (cb->length)
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
			       ring_to_dma_dir(ring));
}

static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
{
	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
	ring->desc[i].addr = 0;
}

2517 2518
static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
				    int budget)
2519 2520 2521 2522 2523 2524 2525
{
	struct hns3_desc_cb *cb = &ring->desc_cb[i];

	if (!ring->desc_cb[i].dma)
		return;

	hns3_buffer_detach(ring, i);
2526
	hns3_free_buffer(ring, cb, budget);
2527 2528 2529 2530 2531 2532 2533
}

static void hns3_free_buffers(struct hns3_enet_ring *ring)
{
	int i;

	for (i = 0; i < ring->desc_num; i++)
2534
		hns3_free_buffer_detach(ring, i, 0);
2535 2536 2537 2538 2539
}

/* free desc along with its attached buffer */
static void hns3_free_desc(struct hns3_enet_ring *ring)
{
2540 2541
	int size = ring->desc_num * sizeof(ring->desc[0]);

2542 2543
	hns3_free_buffers(ring);

2544 2545 2546 2547 2548
	if (ring->desc) {
		dma_free_coherent(ring_to_dev(ring), size,
				  ring->desc, ring->desc_dma_addr);
		ring->desc = NULL;
	}
2549 2550 2551 2552 2553 2554
}

static int hns3_alloc_desc(struct hns3_enet_ring *ring)
{
	int size = ring->desc_num * sizeof(ring->desc[0]);

2555 2556
	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
					&ring->desc_dma_addr, GFP_KERNEL);
2557 2558 2559 2560 2561 2562
	if (!ring->desc)
		return -ENOMEM;

	return 0;
}

2563
static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
				   struct hns3_desc_cb *cb)
{
	int ret;

	ret = hns3_alloc_buffer(ring, cb);
	if (ret)
		goto out;

	ret = hns3_map_buffer(ring, cb);
	if (ret)
		goto out_with_buf;

	return 0;

out_with_buf:
2579
	hns3_free_buffer(ring, cb, 0);
2580 2581 2582 2583
out:
	return ret;
}

2584
static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
2585
{
2586
	int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601

	if (ret)
		return ret;

	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);

	return 0;
}

/* Allocate memory for raw pkg, and map with dma */
static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
{
	int i, j, ret;

	for (i = 0; i < ring->desc_num; i++) {
2602
		ret = hns3_alloc_and_attach_buffer(ring, i);
2603 2604 2605 2606 2607 2608 2609 2610
		if (ret)
			goto out_buffer_fail;
	}

	return 0;

out_buffer_fail:
	for (j = i - 1; j >= 0; j--)
2611
		hns3_free_buffer_detach(ring, j, 0);
2612 2613 2614
	return ret;
}

2615
/* detach a in-used buffer and replace with a reserved one */
2616 2617 2618
static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
				struct hns3_desc_cb *res_cb)
{
2619
	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2620 2621
	ring->desc_cb[i] = *res_cb;
	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2622
	ring->desc[i].rx.bd_base_info = 0;
2623 2624 2625 2626 2627
}

static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
{
	ring->desc_cb[i].reuse_flag = 0;
2628 2629
	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
					 ring->desc_cb[i].page_offset);
2630
	ring->desc[i].rx.bd_base_info = 0;
2631 2632 2633 2634 2635

	dma_sync_single_for_device(ring_to_dev(ring),
			ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
			hns3_buf_size(ring),
			DMA_FROM_DEVICE);
2636 2637
}

2638
static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
2639
				  int *bytes, int *pkts, int budget)
2640
{
2641 2642 2643 2644 2645
	/* pair with ring->last_to_use update in hns3_tx_doorbell(),
	 * smp_store_release() is not used in hns3_tx_doorbell() because
	 * the doorbell operation already have the needed barrier operation.
	 */
	int ltu = smp_load_acquire(&ring->last_to_use);
2646 2647
	int ntc = ring->next_to_clean;
	struct hns3_desc_cb *desc_cb;
2648 2649 2650 2651 2652 2653 2654 2655 2656
	bool reclaimed = false;
	struct hns3_desc *desc;

	while (ltu != ntc) {
		desc = &ring->desc[ntc];

		if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
				BIT(HNS3_TXD_VLD_B))
			break;
2657

2658 2659 2660 2661
		desc_cb = &ring->desc_cb[ntc];
		(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
		(*bytes) += desc_cb->length;
		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
2662
		hns3_free_buffer_detach(ring, ntc, budget);
2663

2664 2665 2666 2667 2668
		if (++ntc == ring->desc_num)
			ntc = 0;

		/* Issue prefetch for next Tx descriptor */
		prefetch(&ring->desc_cb[ntc]);
2669
		reclaimed = true;
2670
	}
2671

2672 2673 2674
	if (unlikely(!reclaimed))
		return false;

2675 2676 2677 2678
	/* This smp_store_release() pairs with smp_load_acquire() in
	 * ring_space called by hns3_nic_net_xmit.
	 */
	smp_store_release(&ring->next_to_clean, ntc);
2679
	return true;
2680 2681
}

2682
void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
2683
{
2684
	struct net_device *netdev = ring_to_netdev(ring);
2685
	struct hns3_nic_priv *priv = netdev_priv(netdev);
2686 2687 2688 2689 2690
	struct netdev_queue *dev_queue;
	int bytes, pkts;

	bytes = 0;
	pkts = 0;
2691

2692
	if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
2693
		return;
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705

	ring->tqp_vector->tx_group.total_bytes += bytes;
	ring->tqp_vector->tx_group.total_packets += pkts;

	u64_stats_update_begin(&ring->syncp);
	ring->stats.tx_bytes += bytes;
	ring->stats.tx_pkts += pkts;
	u64_stats_update_end(&ring->syncp);

	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
	netdev_tx_completed_queue(dev_queue, pkts, bytes);

2706
	if (unlikely(netif_carrier_ok(netdev) &&
2707
		     ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
2708 2709 2710 2711
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
2712 2713
		if (netif_tx_queue_stopped(dev_queue) &&
		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
			netif_tx_wake_queue(dev_queue);
			ring->stats.restart_queue++;
		}
	}
}

static int hns3_desc_unused(struct hns3_enet_ring *ring)
{
	int ntc = ring->next_to_clean;
	int ntu = ring->next_to_use;

	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
}

2728 2729
static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
				      int cleand_count)
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
{
	struct hns3_desc_cb *desc_cb;
	struct hns3_desc_cb res_cbs;
	int i, ret;

	for (i = 0; i < cleand_count; i++) {
		desc_cb = &ring->desc_cb[ring->next_to_use];
		if (desc_cb->reuse_flag) {
			u64_stats_update_begin(&ring->syncp);
			ring->stats.reuse_pg_cnt++;
			u64_stats_update_end(&ring->syncp);

			hns3_reuse_buffer(ring, ring->next_to_use);
		} else {
2744
			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
2745 2746 2747 2748 2749
			if (ret) {
				u64_stats_update_begin(&ring->syncp);
				ring->stats.sw_err_cnt++;
				u64_stats_update_end(&ring->syncp);

2750
				hns3_rl_err(ring_to_netdev(ring),
2751 2752
					    "alloc rx buffer failed: %d\n",
					    ret);
2753 2754 2755
				break;
			}
			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2756 2757 2758 2759

			u64_stats_update_begin(&ring->syncp);
			ring->stats.non_reuse_pg++;
			u64_stats_update_end(&ring->syncp);
2760 2761 2762 2763 2764
		}

		ring_ptr_move_fw(ring, next_to_use);
	}

2765
	writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2766 2767
}

2768 2769 2770 2771 2772
static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
{
	return (page_count(cb->priv) - cb->pagecnt_bias) == 1;
}

2773 2774 2775 2776
static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
				struct hns3_enet_ring *ring, int pull_len,
				struct hns3_desc_cb *desc_cb)
{
2777 2778
	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
	int size = le16_to_cpu(desc->rx.size);
2779
	u32 truesize = hns3_buf_size(ring);
2780

2781
	desc_cb->pagecnt_bias--;
2782
	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2783
			size - pull_len, truesize);
2784

2785 2786 2787
	/* Avoid re-using remote and pfmemalloc pages, or the stack is still
	 * using the page when page_offset rollback to zero, flag default
	 * unreuse
2788
	 */
2789
	if (!dev_page_is_reusable(desc_cb->priv) ||
2790 2791
	    (!desc_cb->page_offset && !hns3_can_reuse_page(desc_cb))) {
		__page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
2792
		return;
2793
	}
2794 2795 2796 2797

	/* Move offset up to the next cache line */
	desc_cb->page_offset += truesize;

2798
	if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) {
2799
		desc_cb->reuse_flag = 1;
2800
	} else if (hns3_can_reuse_page(desc_cb)) {
2801 2802
		desc_cb->reuse_flag = 1;
		desc_cb->page_offset = 0;
2803 2804 2805 2806 2807 2808 2809 2810
	} else if (desc_cb->pagecnt_bias) {
		__page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
		return;
	}

	if (unlikely(!desc_cb->pagecnt_bias)) {
		page_ref_add(desc_cb->priv, USHRT_MAX);
		desc_cb->pagecnt_bias = USHRT_MAX;
2811 2812 2813
	}
}

2814
static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2815 2816 2817 2818 2819
{
	__be16 type = skb->protocol;
	struct tcphdr *th;
	int depth = 0;

2820
	while (eth_type_vlan(type)) {
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
		struct vlan_hdr *vh;

		if ((depth + VLAN_HLEN) > skb_headlen(skb))
			return -EFAULT;

		vh = (struct vlan_hdr *)(skb->data + depth);
		type = vh->h_vlan_encapsulated_proto;
		depth += VLAN_HLEN;
	}

2831 2832
	skb_set_network_header(skb, depth);

2833
	if (type == htons(ETH_P_IP)) {
2834 2835
		const struct iphdr *iph = ip_hdr(skb);

2836
		depth += sizeof(struct iphdr);
2837 2838 2839 2840
		skb_set_transport_header(skb, depth);
		th = tcp_hdr(skb);
		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
					  iph->daddr, 0);
2841
	} else if (type == htons(ETH_P_IPV6)) {
2842 2843
		const struct ipv6hdr *iph = ipv6_hdr(skb);

2844
		depth += sizeof(struct ipv6hdr);
2845 2846 2847 2848
		skb_set_transport_header(skb, depth);
		th = tcp_hdr(skb);
		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
					  &iph->daddr, 0);
2849
	} else {
2850 2851 2852
		hns3_rl_err(skb->dev,
			    "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
			    be16_to_cpu(type), depth);
2853 2854 2855 2856 2857 2858 2859
		return -EFAULT;
	}

	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
	if (th->cwr)
		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;

2860 2861
	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2862

2863 2864 2865
	skb->csum_start = (unsigned char *)th - skb->head;
	skb->csum_offset = offsetof(struct tcphdr, check);
	skb->ip_summed = CHECKSUM_PARTIAL;
2866 2867 2868

	trace_hns3_gro(skb);

2869 2870 2871
	return 0;
}

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
static void hns3_checksum_complete(struct hns3_enet_ring *ring,
				   struct sk_buff *skb, u32 l234info)
{
	u32 lo, hi;

	u64_stats_update_begin(&ring->syncp);
	ring->stats.csum_complete++;
	u64_stats_update_end(&ring->syncp);
	skb->ip_summed = CHECKSUM_COMPLETE;
	lo = hnae3_get_field(l234info, HNS3_RXD_L2_CSUM_L_M,
			     HNS3_RXD_L2_CSUM_L_S);
	hi = hnae3_get_field(l234info, HNS3_RXD_L2_CSUM_H_M,
			     HNS3_RXD_L2_CSUM_H_S);
	skb->csum = csum_unfold((__force __sum16)(lo | hi << 8));
}

2888
static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2889
			     u32 l234info, u32 bd_base_info, u32 ol_info)
2890
{
2891
	struct net_device *netdev = ring_to_netdev(ring);
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
	int l3_type, l4_type;
	int ol4_type;

	skb->ip_summed = CHECKSUM_NONE;

	skb_checksum_none_assert(skb);

	if (!(netdev->features & NETIF_F_RXCSUM))
		return;

2902 2903 2904 2905 2906
	if (l234info & BIT(HNS3_RXD_L2_CSUM_B)) {
		hns3_checksum_complete(ring, skb, l234info);
		return;
	}

2907
	/* check if hardware has done checksum */
2908
	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2909 2910
		return;

2911 2912
	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
				 BIT(HNS3_RXD_OL3E_B) |
2913
				 BIT(HNS3_RXD_OL4E_B)))) {
2914 2915 2916 2917 2918 2919 2920
		u64_stats_update_begin(&ring->syncp);
		ring->stats.l3l4_csum_err++;
		u64_stats_update_end(&ring->syncp);

		return;
	}

2921
	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
P
Peng Li 已提交
2922
				   HNS3_RXD_OL4ID_S);
2923 2924 2925 2926
	switch (ol4_type) {
	case HNS3_OL4_TYPE_MAC_IN_UDP:
	case HNS3_OL4_TYPE_NVGRE:
		skb->csum_level = 1;
2927
		fallthrough;
2928
	case HNS3_OL4_TYPE_NO_TUN:
2929 2930 2931 2932 2933
		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
					  HNS3_RXD_L3ID_S);
		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
					  HNS3_RXD_L4ID_S);

2934
		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2935 2936 2937 2938 2939
		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
		     l3_type == HNS3_L3_TYPE_IPV6) &&
		    (l4_type == HNS3_L4_TYPE_UDP ||
		     l4_type == HNS3_L4_TYPE_TCP ||
		     l4_type == HNS3_L4_TYPE_SCTP))
2940 2941
			skb->ip_summed = CHECKSUM_UNNECESSARY;
		break;
2942 2943
	default:
		break;
2944 2945 2946
	}
}

2947 2948
static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
{
2949 2950 2951
	if (skb_has_frag_list(skb))
		napi_gro_flush(&ring->tqp_vector->napi, false);

2952 2953 2954
	napi_gro_receive(&ring->tqp_vector->napi, skb);
}

2955 2956 2957
static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
				struct hns3_desc *desc, u32 l234info,
				u16 *vlan_tag)
2958
{
2959
	struct hnae3_handle *handle = ring->tqp->handle;
2960
	struct pci_dev *pdev = ring->tqp->handle->pdev;
2961
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2962

2963
	if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
2964 2965 2966
		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
		if (!(*vlan_tag & VLAN_VID_MASK))
			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2967

2968
		return (*vlan_tag != 0);
2969 2970 2971 2972
	}

#define HNS3_STRP_OUTER_VLAN	0x1
#define HNS3_STRP_INNER_VLAN	0x2
2973
#define HNS3_STRP_BOTH		0x3
2974

2975 2976 2977 2978
	/* Hardware always insert VLAN tag into RX descriptor when
	 * remove the tag from packet, driver needs to determine
	 * reporting which tag to stack.
	 */
P
Peng Li 已提交
2979 2980
	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
				HNS3_RXD_STRP_TAGP_S)) {
2981
	case HNS3_STRP_OUTER_VLAN:
2982 2983 2984 2985
		if (handle->port_base_vlan_state !=
				HNAE3_PORT_BASE_VLAN_DISABLE)
			return false;

2986 2987
		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
		return true;
2988
	case HNS3_STRP_INNER_VLAN:
2989 2990 2991 2992
		if (handle->port_base_vlan_state !=
				HNAE3_PORT_BASE_VLAN_DISABLE)
			return false;

2993
		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2994 2995 2996 2997 2998 2999 3000 3001
		return true;
	case HNS3_STRP_BOTH:
		if (handle->port_base_vlan_state ==
				HNAE3_PORT_BASE_VLAN_DISABLE)
			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
		else
			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);

3002
		return true;
3003
	default:
3004
		return false;
3005 3006 3007
	}
}

3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
{
	ring->desc[ring->next_to_clean].rx.bd_base_info &=
		cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
	ring->next_to_clean += 1;

	if (unlikely(ring->next_to_clean == ring->desc_num))
		ring->next_to_clean = 0;
}

3018
static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
3019 3020 3021
			  unsigned char *va)
{
	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
3022
	struct net_device *netdev = ring_to_netdev(ring);
3023 3024 3025 3026 3027
	struct sk_buff *skb;

	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
	skb = ring->skb;
	if (unlikely(!skb)) {
3028
		hns3_rl_err(netdev, "alloc rx skb fail\n");
3029 3030 3031 3032 3033 3034 3035 3036

		u64_stats_update_begin(&ring->syncp);
		ring->stats.sw_err_cnt++;
		u64_stats_update_end(&ring->syncp);

		return -ENOMEM;
	}

3037
	trace_hns3_rx_desc(ring);
3038 3039 3040
	prefetchw(skb->data);

	ring->pending_buf = 1;
3041 3042
	ring->frag_num = 0;
	ring->tail_skb = NULL;
3043 3044 3045
	if (length <= HNS3_RX_HEAD_SIZE) {
		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));

3046 3047
		/* We can reuse buffer as-is, just make sure it is reusable */
		if (dev_page_is_reusable(desc_cb->priv))
3048 3049
			desc_cb->reuse_flag = 1;
		else /* This page cannot be reused so discard it */
3050 3051
			__page_frag_cache_drain(desc_cb->priv,
						desc_cb->pagecnt_bias);
3052

3053
		hns3_rx_ring_move_fw(ring);
3054 3055 3056 3057 3058 3059
		return 0;
	}
	u64_stats_update_begin(&ring->syncp);
	ring->stats.seg_pkt_cnt++;
	u64_stats_update_end(&ring->syncp);

3060
	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
3061
	__skb_put(skb, ring->pull_len);
3062
	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
3063
			    desc_cb);
3064
	hns3_rx_ring_move_fw(ring);
3065

3066
	return 0;
3067 3068
}

3069
static int hns3_add_frag(struct hns3_enet_ring *ring)
3070
{
3071 3072
	struct sk_buff *skb = ring->skb;
	struct sk_buff *head_skb = skb;
3073
	struct sk_buff *new_skb;
3074
	struct hns3_desc_cb *desc_cb;
3075
	struct hns3_desc *desc;
3076 3077
	u32 bd_base_info;

3078
	do {
3079 3080 3081
		desc = &ring->desc[ring->next_to_clean];
		desc_cb = &ring->desc_cb[ring->next_to_clean];
		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3082 3083
		/* make sure HW write desc complete */
		dma_rmb();
3084
		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
3085 3086
			return -ENXIO;

3087
		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
3088
			new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
3089
			if (unlikely(!new_skb)) {
3090
				hns3_rl_err(ring_to_netdev(ring),
3091
					    "alloc rx fraglist skb fail\n");
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
				return -ENXIO;
			}
			ring->frag_num = 0;

			if (ring->tail_skb) {
				ring->tail_skb->next = new_skb;
				ring->tail_skb = new_skb;
			} else {
				skb_shinfo(skb)->frag_list = new_skb;
				ring->tail_skb = new_skb;
			}
		}

		if (ring->tail_skb) {
3106
			head_skb->truesize += hns3_buf_size(ring);
3107 3108 3109 3110 3111
			head_skb->data_len += le16_to_cpu(desc->rx.size);
			head_skb->len += le16_to_cpu(desc->rx.size);
			skb = ring->tail_skb;
		}

3112 3113 3114 3115 3116
		dma_sync_single_for_cpu(ring_to_dev(ring),
				desc_cb->dma + desc_cb->page_offset,
				hns3_buf_size(ring),
				DMA_FROM_DEVICE);

3117
		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
3118
		trace_hns3_rx_desc(ring);
3119
		hns3_rx_ring_move_fw(ring);
3120
		ring->pending_buf++;
3121
	} while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
3122 3123 3124 3125

	return 0;
}

3126 3127
static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
				     struct sk_buff *skb, u32 l234info,
3128
				     u32 bd_base_info, u32 ol_info)
3129 3130 3131
{
	u32 l3_type;

3132 3133 3134
	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
						    HNS3_RXD_GRO_SIZE_M,
						    HNS3_RXD_GRO_SIZE_S);
3135
	/* if there is no HW GRO, do not set gro params */
3136
	if (!skb_shinfo(skb)->gso_size) {
3137
		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
3138 3139
		return 0;
	}
3140

3141 3142 3143
	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
						  HNS3_RXD_GRO_COUNT_M,
						  HNS3_RXD_GRO_COUNT_S);
3144

3145
	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
3146 3147 3148 3149 3150
	if (l3_type == HNS3_L3_TYPE_IPV4)
		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
	else if (l3_type == HNS3_L3_TYPE_IPV6)
		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
	else
3151
		return -EFAULT;
3152

3153
	return  hns3_gro_complete(skb, l234info);
3154 3155
}

3156
static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
3157
				     struct sk_buff *skb, u32 rss_hash)
3158 3159 3160 3161
{
	struct hnae3_handle *handle = ring->tqp->handle;
	enum pkt_hash_types rss_type;

3162
	if (rss_hash)
3163 3164 3165 3166
		rss_type = handle->kinfo.rss_type;
	else
		rss_type = PKT_HASH_TYPE_NONE;

3167
	skb_set_hash(skb, rss_hash, rss_type);
3168 3169
}

3170
static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
3171
{
3172
	struct net_device *netdev = ring_to_netdev(ring);
3173
	enum hns3_pkt_l2t_type l2_frame_type;
3174
	u32 bd_base_info, l234info, ol_info;
3175
	struct hns3_desc *desc;
3176
	unsigned int len;
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
	int pre_ntc, ret;

	/* bdinfo handled below is only valid on the last BD of the
	 * current packet, and ring->next_to_clean indicates the first
	 * descriptor of next packet, so need - 1 below.
	 */
	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
					(ring->desc_num - 1);
	desc = &ring->desc[pre_ntc];
	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
	l234info = le32_to_cpu(desc->rx.l234_info);
3188
	ol_info = le32_to_cpu(desc->rx.ol_info);
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219

	/* Based on hw strategy, the tag offloaded will be stored at
	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
	 * in one layer tag case.
	 */
	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
		u16 vlan_tag;

		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
					       vlan_tag);
	}

	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
				  BIT(HNS3_RXD_L2E_B))))) {
		u64_stats_update_begin(&ring->syncp);
		if (l234info & BIT(HNS3_RXD_L2E_B))
			ring->stats.l2_err++;
		else
			ring->stats.err_pkt_len++;
		u64_stats_update_end(&ring->syncp);

		return -EFAULT;
	}

	len = skb->len;

	/* Do update ip stack process */
	skb->protocol = eth_type_trans(skb, netdev);

	/* This is needed in order to enable forwarding support */
3220 3221
	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
					bd_base_info, ol_info);
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
	if (unlikely(ret)) {
		u64_stats_update_begin(&ring->syncp);
		ring->stats.rx_err_cnt++;
		u64_stats_update_end(&ring->syncp);
		return ret;
	}

	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
					HNS3_RXD_DMAC_S);

	u64_stats_update_begin(&ring->syncp);
	ring->stats.rx_pkts++;
	ring->stats.rx_bytes += len;

	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
		ring->stats.rx_multicast++;

	u64_stats_update_end(&ring->syncp);

	ring->tqp_vector->rx_group.total_bytes += len;
3242 3243

	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
3244 3245 3246
	return 0;
}

3247
static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
3248
{
3249
	struct sk_buff *skb = ring->skb;
3250 3251
	struct hns3_desc_cb *desc_cb;
	struct hns3_desc *desc;
3252
	unsigned int length;
3253
	u32 bd_base_info;
3254
	int ret;
3255 3256 3257 3258 3259 3260

	desc = &ring->desc[ring->next_to_clean];
	desc_cb = &ring->desc_cb[ring->next_to_clean];

	prefetch(desc);

3261 3262
	if (!skb) {
		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3263

3264 3265 3266 3267 3268 3269
		/* Check valid BD */
		if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
			return -ENXIO;

		dma_rmb();
		length = le16_to_cpu(desc->rx.size);
3270

3271
		ring->va = desc_cb->buf + desc_cb->page_offset;
3272

3273 3274 3275 3276 3277
		dma_sync_single_for_cpu(ring_to_dev(ring),
				desc_cb->dma + desc_cb->page_offset,
				hns3_buf_size(ring),
				DMA_FROM_DEVICE);

3278 3279 3280 3281 3282 3283 3284 3285
		/* Prefetch first cache line of first page.
		 * Idea is to cache few bytes of the header of the packet.
		 * Our L1 Cache line size is 64B so need to prefetch twice to make
		 * it 128B. But in actual we can have greater size of caches with
		 * 128B Level 1 cache lines. In such a case, single fetch would
		 * suffice to cache in the relevant part of the header.
		 */
		net_prefetch(ring->va);
3286

3287
		ret = hns3_alloc_skb(ring, length, ring->va);
3288
		skb = ring->skb;
3289

3290 3291
		if (ret < 0) /* alloc buffer fail */
			return ret;
3292 3293
		if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
			ret = hns3_add_frag(ring);
3294 3295 3296
			if (ret)
				return ret;
		}
3297
	} else {
3298
		ret = hns3_add_frag(ring);
3299 3300
		if (ret)
			return ret;
3301
	}
3302

3303 3304 3305 3306
	/* As the head data may be changed when GRO enable, copy
	 * the head data in after other data rx completed
	 */
	if (skb->len > HNS3_RX_HEAD_SIZE)
3307 3308
		memcpy(skb->data, ring->va,
		       ALIGN(ring->pull_len, sizeof(long)));
3309

3310
	ret = hns3_handle_bdinfo(ring, skb);
3311
	if (unlikely(ret)) {
3312
		dev_kfree_skb_any(skb);
3313
		return ret;
3314 3315
	}

J
Jian Shen 已提交
3316
	skb_record_rx_queue(skb, ring->tqp->tqp_index);
3317 3318 3319
	return 0;
}

3320 3321
int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
3322 3323
{
#define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
3324
	int unused_count = hns3_desc_unused(ring);
3325
	int recv_pkts = 0;
3326
	int err;
3327

3328
	unused_count -= ring->pending_buf;
3329

3330
	while (recv_pkts < budget) {
3331
		/* Reuse or realloc buffers */
3332 3333
		if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
			hns3_nic_alloc_rx_buffers(ring, unused_count);
3334 3335
			unused_count = hns3_desc_unused(ring) -
					ring->pending_buf;
3336 3337 3338
		}

		/* Poll one pkt */
3339 3340 3341
		err = hns3_handle_rx_bd(ring);
		/* Do not get FE for the packet or failed to alloc skb */
		if (unlikely(!ring->skb || err == -ENXIO)) {
3342
			goto out;
3343 3344 3345
		} else if (likely(!err)) {
			rx_fn(ring, ring->skb);
			recv_pkts++;
3346 3347
		}

3348
		unused_count += ring->pending_buf;
3349 3350
		ring->skb = NULL;
		ring->pending_buf = 0;
3351 3352 3353 3354
	}

out:
	/* Make all data has been write before submit */
3355 3356
	if (unused_count > 0)
		hns3_nic_alloc_rx_buffers(ring, unused_count);
3357 3358 3359 3360

	return recv_pkts;
}

3361
static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
3362
{
3363 3364 3365 3366
#define HNS3_RX_LOW_BYTE_RATE 10000
#define HNS3_RX_MID_BYTE_RATE 20000
#define HNS3_RX_ULTRA_PACKET_RATE 40

3367
	enum hns3_flow_level_range new_flow_level;
3368 3369
	struct hns3_enet_tqp_vector *tqp_vector;
	int packets_per_msecs, bytes_per_msecs;
3370
	u32 time_passed_ms;
3371

3372
	tqp_vector = ring_group->ring->tqp_vector;
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
	time_passed_ms =
		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
	if (!time_passed_ms)
		return false;

	do_div(ring_group->total_packets, time_passed_ms);
	packets_per_msecs = ring_group->total_packets;

	do_div(ring_group->total_bytes, time_passed_ms);
	bytes_per_msecs = ring_group->total_bytes;

3384
	new_flow_level = ring_group->coal.flow_level;
3385

3386 3387 3388 3389 3390 3391
	/* Simple throttlerate management
	 * 0-10MB/s   lower     (50000 ints/s)
	 * 10-20MB/s   middle    (20000 ints/s)
	 * 20-1249MB/s high      (18000 ints/s)
	 * > 40000pps  ultra     (8000 ints/s)
	 */
3392 3393
	switch (new_flow_level) {
	case HNS3_FLOW_LOW:
3394
		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
3395 3396 3397
			new_flow_level = HNS3_FLOW_MID;
		break;
	case HNS3_FLOW_MID:
3398
		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
3399
			new_flow_level = HNS3_FLOW_HIGH;
3400
		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
3401 3402 3403 3404 3405
			new_flow_level = HNS3_FLOW_LOW;
		break;
	case HNS3_FLOW_HIGH:
	case HNS3_FLOW_ULTRA:
	default:
3406
		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
3407 3408 3409 3410
			new_flow_level = HNS3_FLOW_MID;
		break;
	}

3411 3412
	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
	    &tqp_vector->rx_group == ring_group)
3413 3414
		new_flow_level = HNS3_FLOW_ULTRA;

3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
	ring_group->total_bytes = 0;
	ring_group->total_packets = 0;
	ring_group->coal.flow_level = new_flow_level;

	return true;
}

static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
{
	struct hns3_enet_tqp_vector *tqp_vector;
	u16 new_int_gl;

	if (!ring_group->ring)
		return false;

	tqp_vector = ring_group->ring->tqp_vector;
	if (!tqp_vector->last_jiffies)
		return false;

	if (ring_group->total_packets == 0) {
		ring_group->coal.int_gl = HNS3_INT_GL_50K;
		ring_group->coal.flow_level = HNS3_FLOW_LOW;
		return true;
	}

	if (!hns3_get_new_flow_lvl(ring_group))
		return false;

	new_int_gl = ring_group->coal.int_gl;
	switch (ring_group->coal.flow_level) {
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
	case HNS3_FLOW_LOW:
		new_int_gl = HNS3_INT_GL_50K;
		break;
	case HNS3_FLOW_MID:
		new_int_gl = HNS3_INT_GL_20K;
		break;
	case HNS3_FLOW_HIGH:
		new_int_gl = HNS3_INT_GL_18K;
		break;
	case HNS3_FLOW_ULTRA:
		new_int_gl = HNS3_INT_GL_8K;
		break;
	default:
		break;
	}

3461 3462
	if (new_int_gl != ring_group->coal.int_gl) {
		ring_group->coal.int_gl = new_int_gl;
3463 3464 3465 3466 3467 3468 3469
		return true;
	}
	return false;
}

static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
{
3470 3471 3472 3473
	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
	bool rx_update, tx_update;

3474 3475 3476
	/* update param every 1000ms */
	if (time_before(jiffies,
			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
F
Fuyun Liang 已提交
3477 3478
		return;

3479
	if (rx_group->coal.adapt_enable) {
3480 3481 3482
		rx_update = hns3_get_new_int_gl(rx_group);
		if (rx_update)
			hns3_set_vector_coalesce_rx_gl(tqp_vector,
3483
						       rx_group->coal.int_gl);
3484 3485
	}

3486
	if (tx_group->coal.adapt_enable) {
3487
		tx_update = hns3_get_new_int_gl(tx_group);
3488 3489
		if (tx_update)
			hns3_set_vector_coalesce_tx_gl(tqp_vector,
3490
						       tx_group->coal.int_gl);
3491
	}
F
Fuyun Liang 已提交
3492

3493
	tqp_vector->last_jiffies = jiffies;
3494 3495 3496 3497
}

static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
{
3498
	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3499 3500 3501 3502 3503 3504
	struct hns3_enet_ring *ring;
	int rx_pkt_total = 0;

	struct hns3_enet_tqp_vector *tqp_vector =
		container_of(napi, struct hns3_enet_tqp_vector, napi);
	bool clean_complete = true;
3505
	int rx_budget = budget;
3506

3507 3508 3509 3510 3511
	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
		napi_complete(napi);
		return 0;
	}

3512 3513 3514
	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
3515
	hns3_for_each_ring(ring, tqp_vector->tx_group)
3516
		hns3_clean_tx_ring(ring, budget);
3517 3518

	/* make sure rx ring budget not smaller than 1 */
3519 3520
	if (tqp_vector->num_tqps > 1)
		rx_budget = max(budget / tqp_vector->num_tqps, 1);
3521 3522

	hns3_for_each_ring(ring, tqp_vector->rx_group) {
3523 3524
		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
						    hns3_rx_skb);
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536

		if (rx_cleaned >= rx_budget)
			clean_complete = false;

		rx_pkt_total += rx_cleaned;
	}

	tqp_vector->rx_group.total_packets += rx_pkt_total;

	if (!clean_complete)
		return budget;

3537 3538
	if (napi_complete(napi) &&
	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3539 3540 3541
		hns3_update_new_int_gl(tqp_vector);
		hns3_mask_vector_irq(tqp_vector, 1);
	}
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557

	return rx_pkt_total;
}

static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
				      struct hnae3_ring_chain_node *head)
{
	struct pci_dev *pdev = tqp_vector->handle->pdev;
	struct hnae3_ring_chain_node *cur_chain = head;
	struct hnae3_ring_chain_node *chain;
	struct hns3_enet_ring *tx_ring;
	struct hns3_enet_ring *rx_ring;

	tx_ring = tqp_vector->tx_group.ring;
	if (tx_ring) {
		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
P
Peng Li 已提交
3558 3559 3560 3561
		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
			      HNAE3_RING_TYPE_TX);
		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3562 3563 3564 3565 3566 3567 3568 3569 3570

		cur_chain->next = NULL;

		while (tx_ring->next) {
			tx_ring = tx_ring->next;

			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
					     GFP_KERNEL);
			if (!chain)
3571
				goto err_free_chain;
3572 3573 3574

			cur_chain->next = chain;
			chain->tqp_index = tx_ring->tqp->tqp_index;
P
Peng Li 已提交
3575 3576 3577 3578 3579 3580
			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
				      HNAE3_RING_TYPE_TX);
			hnae3_set_field(chain->int_gl_idx,
					HNAE3_RING_GL_IDX_M,
					HNAE3_RING_GL_IDX_S,
					HNAE3_RING_GL_TX);
3581 3582 3583 3584 3585 3586 3587 3588 3589

			cur_chain = chain;
		}
	}

	rx_ring = tqp_vector->rx_group.ring;
	if (!tx_ring && rx_ring) {
		cur_chain->next = NULL;
		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
P
Peng Li 已提交
3590 3591 3592 3593
		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
			      HNAE3_RING_TYPE_RX);
		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3594 3595 3596 3597 3598 3599 3600

		rx_ring = rx_ring->next;
	}

	while (rx_ring) {
		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
		if (!chain)
3601
			goto err_free_chain;
3602 3603 3604

		cur_chain->next = chain;
		chain->tqp_index = rx_ring->tqp->tqp_index;
P
Peng Li 已提交
3605 3606 3607 3608
		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
			      HNAE3_RING_TYPE_RX);
		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3609

3610 3611 3612 3613 3614 3615
		cur_chain = chain;

		rx_ring = rx_ring->next;
	}

	return 0;
3616 3617 3618 3619 3620

err_free_chain:
	cur_chain = head->next;
	while (cur_chain) {
		chain = cur_chain->next;
3621
		devm_kfree(&pdev->dev, cur_chain);
3622 3623
		cur_chain = chain;
	}
3624
	head->next = NULL;
3625 3626

	return -ENOMEM;
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
}

static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
					struct hnae3_ring_chain_node *head)
{
	struct pci_dev *pdev = tqp_vector->handle->pdev;
	struct hnae3_ring_chain_node *chain_tmp, *chain;

	chain = head->next;

	while (chain) {
		chain_tmp = chain->next;
		devm_kfree(&pdev->dev, chain);
		chain = chain_tmp;
	}
}

static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
				   struct hns3_enet_ring *ring)
{
	ring->next = group->ring;
	group->ring = ring;

	group->count++;
}

P
Peng Li 已提交
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
{
	struct pci_dev *pdev = priv->ae_handle->pdev;
	struct hns3_enet_tqp_vector *tqp_vector;
	int num_vectors = priv->vector_num;
	int numa_node;
	int vector_i;

	numa_node = dev_to_node(&pdev->dev);

	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
		tqp_vector = &priv->tqp_vector[vector_i];
		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
				&tqp_vector->affinity_mask);
	}
}

3670 3671 3672 3673
static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
{
	struct hnae3_handle *h = priv->ae_handle;
	struct hns3_enet_tqp_vector *tqp_vector;
3674
	int ret;
3675
	int i;
3676

P
Peng Li 已提交
3677 3678
	hns3_nic_set_cpumask(priv);

3679 3680
	for (i = 0; i < priv->vector_num; i++) {
		tqp_vector = &priv->tqp_vector[i];
3681
		hns3_vector_coalesce_init_hw(tqp_vector, priv);
3682 3683
		tqp_vector->num_tqps = 0;
	}
3684

3685 3686 3687
	for (i = 0; i < h->kinfo.num_tqps; i++) {
		u16 vector_i = i % priv->vector_num;
		u16 tqp_num = h->kinfo.num_tqps;
3688 3689 3690 3691

		tqp_vector = &priv->tqp_vector[vector_i];

		hns3_add_ring_to_group(&tqp_vector->tx_group,
3692
				       &priv->ring[i]);
3693 3694

		hns3_add_ring_to_group(&tqp_vector->rx_group,
3695
				       &priv->ring[i + tqp_num]);
3696

3697 3698
		priv->ring[i].tqp_vector = tqp_vector;
		priv->ring[i + tqp_num].tqp_vector = tqp_vector;
3699
		tqp_vector->num_tqps++;
3700 3701
	}

3702
	for (i = 0; i < priv->vector_num; i++) {
3703 3704
		struct hnae3_ring_chain_node vector_ring_chain;

3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
		tqp_vector = &priv->tqp_vector[i];

		tqp_vector->rx_group.total_bytes = 0;
		tqp_vector->rx_group.total_packets = 0;
		tqp_vector->tx_group.total_bytes = 0;
		tqp_vector->tx_group.total_packets = 0;
		tqp_vector->handle = h;

		ret = hns3_get_vector_ring_chain(tqp_vector,
						 &vector_ring_chain);
		if (ret)
3716
			goto map_ring_fail;
3717 3718 3719 3720 3721 3722

		ret = h->ae_algo->ops->map_ring_to_vector(h,
			tqp_vector->vector_irq, &vector_ring_chain);

		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);

3723
		if (ret)
3724
			goto map_ring_fail;
3725

3726 3727 3728 3729
		netif_napi_add(priv->netdev, &tqp_vector->napi,
			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
	}

3730
	return 0;
3731 3732 3733 3734 3735 3736

map_ring_fail:
	while (i--)
		netif_napi_del(&priv->tqp_vector[i].napi);

	return ret;
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
}

static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
{
	struct hnae3_handle *h = priv->ae_handle;
	struct hns3_enet_tqp_vector *tqp_vector;
	struct hnae3_vector_info *vector;
	struct pci_dev *pdev = h->pdev;
	u16 tqp_num = h->kinfo.num_tqps;
	u16 vector_num;
	int ret = 0;
	u16 i;

	/* RSS size, cpu online and vector_num should be the same */
	/* Should consider 2p/4p later */
	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3753

3754 3755 3756 3757 3758
	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
			      GFP_KERNEL);
	if (!vector)
		return -ENOMEM;

3759
	/* save the actual available vector number */
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);

	priv->vector_num = vector_num;
	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
			     GFP_KERNEL);
	if (!priv->tqp_vector) {
		ret = -ENOMEM;
		goto out;
	}

	for (i = 0; i < priv->vector_num; i++) {
		tqp_vector = &priv->tqp_vector[i];
		tqp_vector->idx = i;
		tqp_vector->mask_addr = vector[i].io_addr;
		tqp_vector->vector_irq = vector[i].vector;
3776
		hns3_vector_coalesce_init(tqp_vector, priv);
3777 3778
	}

3779 3780 3781 3782 3783
out:
	devm_kfree(&pdev->dev, vector);
	return ret;
}

3784 3785 3786 3787 3788 3789
static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
{
	group->ring = NULL;
	group->count = 0;
}

3790
static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3791 3792 3793 3794
{
	struct hnae3_ring_chain_node vector_ring_chain;
	struct hnae3_handle *h = priv->ae_handle;
	struct hns3_enet_tqp_vector *tqp_vector;
3795
	int i;
3796 3797 3798 3799

	for (i = 0; i < priv->vector_num; i++) {
		tqp_vector = &priv->tqp_vector[i];

3800 3801 3802
		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
			continue;

3803 3804 3805 3806 3807 3808
		/* Since the mapping can be overwritten, when fail to get the
		 * chain between vector and ring, we should go on to deal with
		 * the remaining options.
		 */
		if (hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain))
			dev_warn(priv->dev, "failed to get ring chain\n");
3809

3810
		h->ae_algo->ops->unmap_ring_from_vector(h,
3811 3812 3813 3814
			tqp_vector->vector_irq, &vector_ring_chain);

		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);

3815 3816
		hns3_clear_ring_group(&tqp_vector->rx_group);
		hns3_clear_ring_group(&tqp_vector->tx_group);
3817 3818
		netif_napi_del(&priv->tqp_vector[i].napi);
	}
3819 3820
}

3821
static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
{
	struct hnae3_handle *h = priv->ae_handle;
	struct pci_dev *pdev = h->pdev;
	int i, ret;

	for (i = 0; i < priv->vector_num; i++) {
		struct hns3_enet_tqp_vector *tqp_vector;

		tqp_vector = &priv->tqp_vector[i];
		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
		if (ret)
3833
			return;
3834
	}
3835

3836
	devm_kfree(&pdev->dev, priv->tqp_vector);
3837 3838
}

3839 3840
static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
			      unsigned int ring_type)
3841 3842 3843
{
	int queue_num = priv->ae_handle->kinfo.num_tqps;
	struct hns3_enet_ring *ring;
3844
	int desc_num;
3845 3846

	if (ring_type == HNAE3_RING_TYPE_TX) {
3847
		ring = &priv->ring[q->tqp_index];
3848
		desc_num = priv->ae_handle->kinfo.num_tx_desc;
3849
		ring->queue_index = q->tqp_index;
3850
	} else {
3851
		ring = &priv->ring[q->tqp_index + queue_num];
3852
		desc_num = priv->ae_handle->kinfo.num_rx_desc;
3853
		ring->queue_index = q->tqp_index;
3854 3855
	}

P
Peng Li 已提交
3856
	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3857 3858 3859 3860 3861 3862 3863

	ring->tqp = q;
	ring->desc = NULL;
	ring->desc_cb = NULL;
	ring->dev = priv->dev;
	ring->desc_dma_addr = 0;
	ring->buf_size = q->buf_size;
3864
	ring->desc_num = desc_num;
3865 3866
	ring->next_to_use = 0;
	ring->next_to_clean = 0;
3867
	ring->last_to_use = 0;
3868 3869
}

3870 3871
static void hns3_queue_to_ring(struct hnae3_queue *tqp,
			       struct hns3_nic_priv *priv)
3872
{
3873 3874
	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3875 3876 3877 3878 3879 3880
}

static int hns3_get_ring_config(struct hns3_nic_priv *priv)
{
	struct hnae3_handle *h = priv->ae_handle;
	struct pci_dev *pdev = h->pdev;
3881
	int i;
3882

3883 3884 3885 3886 3887
	priv->ring = devm_kzalloc(&pdev->dev,
				  array3_size(h->kinfo.num_tqps,
					      sizeof(*priv->ring), 2),
				  GFP_KERNEL);
	if (!priv->ring)
3888 3889
		return -ENOMEM;

3890 3891
	for (i = 0; i < h->kinfo.num_tqps; i++)
		hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3892 3893 3894 3895

	return 0;
}

3896 3897
static void hns3_put_ring_config(struct hns3_nic_priv *priv)
{
3898
	if (!priv->ring)
3899 3900
		return;

3901 3902
	devm_kfree(priv->dev, priv->ring);
	priv->ring = NULL;
3903 3904
}

3905 3906 3907 3908 3909 3910 3911
static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
{
	int ret;

	if (ring->desc_num <= 0 || ring->buf_size <= 0)
		return -EINVAL;

3912 3913
	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
	if (!ring->desc_cb) {
		ret = -ENOMEM;
		goto out;
	}

	ret = hns3_alloc_desc(ring);
	if (ret)
		goto out_with_desc_cb;

	if (!HNAE3_IS_TX_RING(ring)) {
		ret = hns3_alloc_ring_buffers(ring);
		if (ret)
			goto out_with_desc;
	}

	return 0;

out_with_desc:
	hns3_free_desc(ring);
out_with_desc_cb:
3934
	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3935 3936 3937 3938 3939
	ring->desc_cb = NULL;
out:
	return ret;
}

3940
void hns3_fini_ring(struct hns3_enet_ring *ring)
3941 3942
{
	hns3_free_desc(ring);
3943
	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3944 3945 3946
	ring->desc_cb = NULL;
	ring->next_to_clean = 0;
	ring->next_to_use = 0;
3947
	ring->last_to_use = 0;
3948 3949 3950 3951 3952
	ring->pending_buf = 0;
	if (ring->skb) {
		dev_kfree_skb_any(ring->skb);
		ring->skb = NULL;
	}
3953 3954
}

3955
static int hns3_buf_size2type(u32 buf_size)
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
{
	int bd_size_type;

	switch (buf_size) {
	case 512:
		bd_size_type = HNS3_BD_SIZE_512_TYPE;
		break;
	case 1024:
		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
		break;
	case 2048:
		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
		break;
	case 4096:
		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
		break;
	default:
		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
	}

	return bd_size_type;
}

static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
{
	dma_addr_t dma = ring->desc_dma_addr;
	struct hnae3_queue *q = ring->tqp;

	if (!HNAE3_IS_TX_RING(ring)) {
3985
		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
			       (u32)((dma >> 31) >> 1));

		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
			       hns3_buf_size2type(ring->buf_size));
		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
			       ring->desc_num / 8 - 1);

	} else {
		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
			       (u32)dma);
		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
			       (u32)((dma >> 31) >> 1));

		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
			       ring->desc_num / 8 - 1);
	}
}

4005 4006 4007
static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
{
	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4008
	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
4009 4010 4011 4012 4013
	int i;

	for (i = 0; i < HNAE3_MAX_TC; i++) {
		int j;

4014
		if (!test_bit(i, &tc_info->tc_en))
4015 4016
			continue;

4017
		for (j = 0; j < tc_info->tqp_count[i]; j++) {
4018 4019
			struct hnae3_queue *q;

4020 4021
			q = priv->ring[tc_info->tqp_offset[i] + j].tqp;
			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i);
4022 4023 4024 4025
		}
	}
}

L
Lipeng 已提交
4026
int hns3_init_all_ring(struct hns3_nic_priv *priv)
4027 4028 4029 4030 4031 4032 4033
{
	struct hnae3_handle *h = priv->ae_handle;
	int ring_num = h->kinfo.num_tqps * 2;
	int i, j;
	int ret;

	for (i = 0; i < ring_num; i++) {
4034
		ret = hns3_alloc_ring_memory(&priv->ring[i]);
4035 4036 4037 4038 4039 4040
		if (ret) {
			dev_err(priv->dev,
				"Alloc ring memory fail! ret=%d\n", ret);
			goto out_when_alloc_ring_memory;
		}

4041
		u64_stats_init(&priv->ring[i].syncp);
4042 4043 4044 4045 4046 4047
	}

	return 0;

out_when_alloc_ring_memory:
	for (j = i - 1; j >= 0; j--)
4048
		hns3_fini_ring(&priv->ring[j]);
4049 4050 4051 4052

	return -ENOMEM;
}

L
Lipeng 已提交
4053
int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
4054 4055 4056 4057 4058
{
	struct hnae3_handle *h = priv->ae_handle;
	int i;

	for (i = 0; i < h->kinfo.num_tqps; i++) {
4059 4060
		hns3_fini_ring(&priv->ring[i]);
		hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
4061 4062 4063 4064 4065
	}
	return 0;
}

/* Set mac addr if it is configured. or leave it to the AE driver */
4066
static int hns3_init_mac_addr(struct net_device *netdev)
4067 4068 4069 4070
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hnae3_handle *h = priv->ae_handle;
	u8 mac_addr_temp[ETH_ALEN];
4071
	int ret = 0;
4072

4073
	if (h->ae_algo->ops->get_mac_addr)
4074 4075 4076
		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);

	/* Check if the MAC address is valid, if not get a random one */
4077
	if (!is_valid_ether_addr(mac_addr_temp)) {
4078 4079 4080
		eth_hw_addr_random(netdev);
		dev_warn(priv->dev, "using random MAC address %pM\n",
			 netdev->dev_addr);
4081
	} else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
4082 4083
		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
		ether_addr_copy(netdev->perm_addr, mac_addr_temp);
4084 4085
	} else {
		return 0;
4086
	}
4087 4088

	if (h->ae_algo->ops->set_mac_addr)
4089
		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
4090

4091
	return ret;
4092 4093
}

4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
static int hns3_init_phy(struct net_device *netdev)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);
	int ret = 0;

	if (h->ae_algo->ops->mac_connect_phy)
		ret = h->ae_algo->ops->mac_connect_phy(h);

	return ret;
}

static void hns3_uninit_phy(struct net_device *netdev)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);

	if (h->ae_algo->ops->mac_disconnect_phy)
		h->ae_algo->ops->mac_disconnect_phy(h);
}

4113 4114 4115 4116 4117 4118 4119 4120
static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);

	if (h->ae_algo->ops->del_all_fd_entries)
		h->ae_algo->ops->del_all_fd_entries(h, clear_list);
}

4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
static int hns3_client_start(struct hnae3_handle *handle)
{
	if (!handle->ae_algo->ops->client_start)
		return 0;

	return handle->ae_algo->ops->client_start(handle);
}

static void hns3_client_stop(struct hnae3_handle *handle)
{
	if (!handle->ae_algo->ops->client_stop)
		return;

	handle->ae_algo->ops->client_stop(handle);
}

4137 4138 4139 4140 4141
static void hns3_info_show(struct hns3_nic_priv *priv)
{
	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;

	dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
4142 4143 4144 4145 4146 4147
	dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
	dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
	dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
	dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
	dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
	dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
4148 4149
	dev_info(priv->dev, "Total number of enabled TCs: %u\n",
		 kinfo->tc_info.num_tc);
4150
	dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
4151 4152
}

4153 4154 4155
static int hns3_client_init(struct hnae3_handle *handle)
{
	struct pci_dev *pdev = handle->pdev;
4156
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
4157
	u16 alloc_tqps, max_rss_size;
4158 4159 4160 4161
	struct hns3_nic_priv *priv;
	struct net_device *netdev;
	int ret;

4162 4163 4164
	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
						    &max_rss_size);
	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
4165 4166 4167 4168 4169 4170 4171
	if (!netdev)
		return -ENOMEM;

	priv = netdev_priv(netdev);
	priv->dev = &pdev->dev;
	priv->netdev = netdev;
	priv->ae_handle = handle;
4172
	priv->tx_timeout_count = 0;
4173
	priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
4174
	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
4175

4176 4177
	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);

4178 4179 4180
	handle->kinfo.netdev = netdev;
	handle->priv = (void *)priv;

4181
	hns3_init_mac_addr(netdev);
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199

	hns3_set_default_feature(netdev);

	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
	netdev->priv_flags |= IFF_UNICAST_FLT;
	netdev->netdev_ops = &hns3_nic_netdev_ops;
	SET_NETDEV_DEV(netdev, &pdev->dev);
	hns3_ethtool_set_ops(netdev);

	/* Carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

	ret = hns3_get_ring_config(priv);
	if (ret) {
		ret = -ENOMEM;
		goto out_get_ring_cfg;
	}

4200 4201 4202 4203 4204 4205
	ret = hns3_nic_alloc_vector_data(priv);
	if (ret) {
		ret = -ENOMEM;
		goto out_alloc_vector_data;
	}

4206 4207 4208 4209 4210 4211 4212 4213 4214
	ret = hns3_nic_init_vector_data(priv);
	if (ret) {
		ret = -ENOMEM;
		goto out_init_vector_data;
	}

	ret = hns3_init_all_ring(priv);
	if (ret) {
		ret = -ENOMEM;
4215
		goto out_init_ring;
4216 4217
	}

4218 4219 4220 4221
	ret = hns3_init_phy(netdev);
	if (ret)
		goto out_init_phy;

4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
	/* the device can work without cpu rmap, only aRFS needs it */
	ret = hns3_set_rx_cpu_rmap(netdev);
	if (ret)
		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);

	ret = hns3_nic_init_irq(priv);
	if (ret) {
		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
		hns3_free_rx_cpu_rmap(netdev);
		goto out_init_irq_fail;
	}

4234 4235 4236
	ret = hns3_client_start(handle);
	if (ret) {
		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4237
		goto out_client_start;
4238 4239
	}

4240 4241
	hns3_dcbnl_setup(handle);

4242 4243
	hns3_dbg_init(handle);

4244
	/* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
4245
	netdev->max_mtu = HNS3_MAX_MTU;
4246

4247 4248 4249
	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
		set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state);

4250 4251
	set_bit(HNS3_NIC_STATE_INITED, &priv->state);

4252 4253 4254
	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
		set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags);

4255 4256 4257 4258 4259 4260
	ret = register_netdev(netdev);
	if (ret) {
		dev_err(priv->dev, "probe register netdev fail!\n");
		goto out_reg_netdev_fail;
	}

4261 4262 4263
	if (netif_msg_drv(handle))
		hns3_info_show(priv);

4264 4265
	return ret;

4266 4267
out_reg_netdev_fail:
	hns3_dbg_uninit(handle);
4268
out_client_start:
4269 4270 4271
	hns3_free_rx_cpu_rmap(netdev);
	hns3_nic_uninit_irq(priv);
out_init_irq_fail:
4272 4273 4274
	hns3_uninit_phy(netdev);
out_init_phy:
	hns3_uninit_all_ring(priv);
4275
out_init_ring:
4276
	hns3_nic_uninit_vector_data(priv);
4277
out_init_vector_data:
4278 4279
	hns3_nic_dealloc_vector_data(priv);
out_alloc_vector_data:
4280
	priv->ring = NULL;
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
out_get_ring_cfg:
	priv->ae_handle = NULL;
	free_netdev(netdev);
	return ret;
}

static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
{
	struct net_device *netdev = handle->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	int ret;

	if (netdev->reg_state != NETREG_UNINITIALIZED)
		unregister_netdev(netdev);

4296 4297
	hns3_client_stop(handle);

4298 4299
	hns3_uninit_phy(netdev);

4300 4301 4302 4303 4304
	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
		netdev_warn(netdev, "already uninitialized\n");
		goto out_netdev_free;
	}

4305 4306 4307 4308
	hns3_free_rx_cpu_rmap(netdev);

	hns3_nic_uninit_irq(priv);

4309 4310
	hns3_del_all_fd_rules(netdev, true);

4311
	hns3_clear_all_ring(handle, true);
4312

4313
	hns3_nic_uninit_vector_data(priv);
4314

4315
	hns3_nic_dealloc_vector_data(priv);
4316

4317 4318 4319 4320
	ret = hns3_uninit_all_ring(priv);
	if (ret)
		netdev_err(netdev, "uninit ring error\n");

4321 4322
	hns3_put_ring_config(priv);

4323
out_netdev_free:
4324
	hns3_dbg_uninit(handle);
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
	free_netdev(netdev);
}

static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
{
	struct net_device *netdev = handle->kinfo.netdev;

	if (!netdev)
		return;

	if (linkup) {
		netif_tx_wake_all_queues(netdev);
Y
Yonglong Liu 已提交
4337
		netif_carrier_on(netdev);
4338 4339
		if (netif_msg_link(handle))
			netdev_info(netdev, "link up\n");
4340 4341 4342
	} else {
		netif_carrier_off(netdev);
		netif_tx_stop_all_queues(netdev);
4343 4344
		if (netif_msg_link(handle))
			netdev_info(netdev, "link down\n");
4345 4346 4347
	}
}

4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct net_device *ndev = kinfo->netdev;

	if (tc > HNAE3_MAX_TC)
		return -EINVAL;

	if (!ndev)
		return -ENODEV;

4359
	return hns3_nic_set_real_num_queue(ndev);
4360 4361
}

4362
static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4363
{
4364
	while (ring->next_to_clean != ring->next_to_use) {
4365
		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4366
		hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
4367 4368
		ring_ptr_move_fw(ring, next_to_clean);
	}
4369 4370

	ring->pending_buf = 0;
4371 4372
}

4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
{
	struct hns3_desc_cb res_cbs;
	int ret;

	while (ring->next_to_use != ring->next_to_clean) {
		/* When a buffer is not reused, it's memory has been
		 * freed in hns3_handle_rx_bd or will be freed by
		 * stack, so we need to replace the buffer here.
		 */
		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4384
			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
4385 4386 4387 4388 4389 4390 4391
			if (ret) {
				u64_stats_update_begin(&ring->syncp);
				ring->stats.sw_err_cnt++;
				u64_stats_update_end(&ring->syncp);
				/* if alloc new buffer fail, exit directly
				 * and reclear in up flow.
				 */
4392
				netdev_warn(ring_to_netdev(ring),
4393 4394 4395 4396
					    "reserve buffer map failed, ret = %d\n",
					    ret);
				return ret;
			}
4397
			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4398 4399 4400 4401
		}
		ring_ptr_move_fw(ring, next_to_use);
	}

4402 4403 4404 4405 4406 4407 4408
	/* Free the pending skb in rx ring */
	if (ring->skb) {
		dev_kfree_skb_any(ring->skb);
		ring->skb = NULL;
		ring->pending_buf = 0;
	}

4409 4410 4411 4412
	return 0;
}

static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
{
	while (ring->next_to_use != ring->next_to_clean) {
		/* When a buffer is not reused, it's memory has been
		 * freed in hns3_handle_rx_bd or will be freed by
		 * stack, so only need to unmap the buffer here.
		 */
		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
			hns3_unmap_buffer(ring,
					  &ring->desc_cb[ring->next_to_use]);
			ring->desc_cb[ring->next_to_use].dma = 0;
		}

		ring_ptr_move_fw(ring, next_to_use);
	}
4427 4428
}

4429
static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4430 4431 4432 4433 4434 4435 4436 4437
{
	struct net_device *ndev = h->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(ndev);
	u32 i;

	for (i = 0; i < h->kinfo.num_tqps; i++) {
		struct hns3_enet_ring *ring;

4438
		ring = &priv->ring[i];
4439
		hns3_clear_tx_ring(ring);
4440

4441
		ring = &priv->ring[i + h->kinfo.num_tqps];
4442 4443 4444
		/* Continue to clear other rings even if clearing some
		 * rings failed.
		 */
4445 4446 4447 4448
		if (force)
			hns3_force_clear_rx_ring(ring);
		else
			hns3_clear_rx_ring(ring);
4449 4450 4451
	}
}

4452 4453 4454 4455 4456 4457 4458 4459 4460
int hns3_nic_reset_all_ring(struct hnae3_handle *h)
{
	struct net_device *ndev = h->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(ndev);
	struct hns3_enet_ring *rx_ring;
	int i, j;
	int ret;

	for (i = 0; i < h->kinfo.num_tqps; i++) {
4461 4462 4463 4464
		ret = h->ae_algo->ops->reset_queue(h, i);
		if (ret)
			return ret;

4465
		hns3_init_ring_hw(&priv->ring[i]);
4466 4467 4468 4469

		/* We need to clear tx ring here because self test will
		 * use the ring and will not run down before up
		 */
4470 4471 4472
		hns3_clear_tx_ring(&priv->ring[i]);
		priv->ring[i].next_to_clean = 0;
		priv->ring[i].next_to_use = 0;
4473
		priv->ring[i].last_to_use = 0;
4474

4475
		rx_ring = &priv->ring[i + h->kinfo.num_tqps];
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
		hns3_init_ring_hw(rx_ring);
		ret = hns3_clear_rx_ring(rx_ring);
		if (ret)
			return ret;

		/* We can not know the hardware head and tail when this
		 * function is called in reset flow, so we reuse all desc.
		 */
		for (j = 0; j < rx_ring->desc_num; j++)
			hns3_reuse_buffer(rx_ring, j);

		rx_ring->next_to_clean = 0;
		rx_ring->next_to_use = 0;
	}

4491 4492
	hns3_init_tx_ring_tc(priv);

4493 4494 4495
	return 0;
}

4496 4497 4498
static void hns3_store_coal(struct hns3_nic_priv *priv)
{
	/* ethtool only support setting and querying one coal
G
Guojia Liao 已提交
4499 4500
	 * configuration for now, so save the vector 0' coal
	 * configuration here in order to restore it.
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
	 */
	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
	       sizeof(struct hns3_enet_coalesce));
	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
	       sizeof(struct hns3_enet_coalesce));
}

static void hns3_restore_coal(struct hns3_nic_priv *priv)
{
	u16 vector_num = priv->vector_num;
	int i;

	for (i = 0; i < vector_num; i++) {
		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
		       sizeof(struct hns3_enet_coalesce));
		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
		       sizeof(struct hns3_enet_coalesce));
	}
}

4521 4522 4523 4524
static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct net_device *ndev = kinfo->netdev;
4525 4526 4527 4528
	struct hns3_nic_priv *priv = netdev_priv(ndev);

	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
		return 0;
4529 4530

	if (!netif_running(ndev))
4531
		return 0;
4532 4533 4534 4535 4536 4537 4538

	return hns3_nic_net_stop(ndev);
}

static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4539
	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4540 4541
	int ret = 0;

4542 4543 4544 4545 4546
	if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
		netdev_err(kinfo->netdev, "device is not initialized yet\n");
		return -EFAULT;
	}

4547 4548
	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);

4549
	if (netif_running(kinfo->netdev)) {
4550
		ret = hns3_nic_net_open(kinfo->netdev);
4551
		if (ret) {
4552
			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4553
			netdev_err(kinfo->netdev,
4554
				   "net up fail, ret=%d!\n", ret);
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
			return ret;
		}
	}

	return ret;
}

static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
{
	struct net_device *netdev = handle->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	int ret;

	/* Carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

4571
	ret = hns3_get_ring_config(priv);
4572 4573 4574
	if (ret)
		return ret;

4575 4576 4577 4578
	ret = hns3_nic_alloc_vector_data(priv);
	if (ret)
		goto err_put_ring;

4579 4580
	hns3_restore_coal(priv);

4581 4582
	ret = hns3_nic_init_vector_data(priv);
	if (ret)
4583
		goto err_dealloc_vector;
4584 4585

	ret = hns3_init_all_ring(priv);
4586 4587
	if (ret)
		goto err_uninit_vector;
4588

4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
	/* the device can work without cpu rmap, only aRFS needs it */
	ret = hns3_set_rx_cpu_rmap(netdev);
	if (ret)
		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);

	ret = hns3_nic_init_irq(priv);
	if (ret) {
		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
		hns3_free_rx_cpu_rmap(netdev);
		goto err_init_irq_fail;
	}

4601 4602 4603
	if (!hns3_is_phys_func(handle->pdev))
		hns3_init_mac_addr(netdev);

4604 4605 4606
	ret = hns3_client_start(handle);
	if (ret) {
		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4607
		goto err_client_start_fail;
4608 4609
	}

4610 4611
	set_bit(HNS3_NIC_STATE_INITED, &priv->state);

4612 4613
	return ret;

4614 4615 4616 4617
err_client_start_fail:
	hns3_free_rx_cpu_rmap(netdev);
	hns3_nic_uninit_irq(priv);
err_init_irq_fail:
4618
	hns3_uninit_all_ring(priv);
4619 4620 4621 4622
err_uninit_vector:
	hns3_nic_uninit_vector_data(priv);
err_dealloc_vector:
	hns3_nic_dealloc_vector_data(priv);
4623 4624
err_put_ring:
	hns3_put_ring_config(priv);
4625

4626 4627 4628 4629 4630 4631 4632 4633 4634
	return ret;
}

static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
{
	struct net_device *netdev = handle->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	int ret;

4635
	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4636 4637 4638 4639
		netdev_warn(netdev, "already uninitialized\n");
		return 0;
	}

4640 4641
	hns3_free_rx_cpu_rmap(netdev);
	hns3_nic_uninit_irq(priv);
4642 4643
	hns3_clear_all_ring(handle, true);
	hns3_reset_tx_queue(priv->ae_handle);
4644

4645
	hns3_nic_uninit_vector_data(priv);
4646

4647 4648
	hns3_store_coal(priv);

4649
	hns3_nic_dealloc_vector_data(priv);
4650

4651 4652 4653 4654
	ret = hns3_uninit_all_ring(priv);
	if (ret)
		netdev_err(netdev, "uninit ring error\n");

4655 4656
	hns3_put_ring_config(priv);

4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
	return ret;
}

static int hns3_reset_notify(struct hnae3_handle *handle,
			     enum hnae3_reset_notify_type type)
{
	int ret = 0;

	switch (type) {
	case HNAE3_UP_CLIENT:
4667 4668
		ret = hns3_reset_notify_up_enet(handle);
		break;
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
	case HNAE3_DOWN_CLIENT:
		ret = hns3_reset_notify_down_enet(handle);
		break;
	case HNAE3_INIT_CLIENT:
		ret = hns3_reset_notify_init_enet(handle);
		break;
	case HNAE3_UNINIT_CLIENT:
		ret = hns3_reset_notify_uninit_enet(handle);
		break;
	default:
		break;
	}

	return ret;
}

4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
				bool rxfh_configured)
{
	int ret;

	ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
						 rxfh_configured);
	if (ret) {
		dev_err(&handle->pdev->dev,
			"Change tqp num(%u) fail.\n", new_tqp_num);
		return ret;
	}

	ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
	if (ret)
		return ret;

	ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
	if (ret)
		hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);

	return ret;
}

4709 4710 4711 4712 4713
int hns3_set_channels(struct net_device *netdev,
		      struct ethtool_channels *ch)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);
	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4714
	bool rxfh_configured = netif_is_rxfh_configured(netdev);
4715 4716 4717 4718
	u32 new_tqp_num = ch->combined_count;
	u16 org_tqp_num;
	int ret;

4719 4720 4721
	if (hns3_nic_resetting(netdev))
		return -EBUSY;

4722 4723 4724
	if (ch->rx_count || ch->tx_count)
		return -EINVAL;

4725
	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4726
	    new_tqp_num < 1) {
4727
		dev_err(&netdev->dev,
4728
			"Change tqps fail, the tqp range is from 1 to %u",
4729
			hns3_get_max_available_channels(h));
4730 4731 4732
		return -EINVAL;
	}

4733
	if (kinfo->rss_size == new_tqp_num)
4734 4735
		return 0;

4736 4737 4738 4739
	netif_dbg(h, drv, netdev,
		  "set channels: tqp_num=%u, rxfh=%d\n",
		  new_tqp_num, rxfh_configured);

4740 4741 4742
	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
	if (ret)
		return ret;
4743

4744 4745 4746
	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
	if (ret)
		return ret;
4747 4748

	org_tqp_num = h->kinfo.num_tqps;
4749
	ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
4750
	if (ret) {
4751 4752 4753 4754 4755 4756 4757 4758 4759
		int ret1;

		netdev_warn(netdev,
			    "Change channels fail, revert to old value\n");
		ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
		if (ret1) {
			netdev_err(netdev,
				   "revert to old channel fail\n");
			return ret1;
4760
		}
4761

4762
		return ret;
4763
	}
4764

4765
	return 0;
4766 4767
}

4768 4769 4770 4771 4772 4773 4774
static const struct hns3_hw_error_info hns3_hw_err[] = {
	{ .type = HNAE3_PPU_POISON_ERROR,
	  .msg = "PPU poison" },
	{ .type = HNAE3_CMDQ_ECC_ERROR,
	  .msg = "IMP CMDQ error" },
	{ .type = HNAE3_IMP_RD_POISON_ERROR,
	  .msg = "IMP RD poison" },
4775 4776
	{ .type = HNAE3_ROCEE_AXI_RESP_ERROR,
	  .msg = "ROCEE AXI RESP error" },
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
};

static void hns3_process_hw_error(struct hnae3_handle *handle,
				  enum hnae3_hw_error_type type)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
		if (hns3_hw_err[i].type == type) {
			dev_err(&handle->pdev->dev, "Detected %s!\n",
				hns3_hw_err[i].msg);
			break;
		}
	}
}

4793
static const struct hnae3_client_ops client_ops = {
4794 4795 4796
	.init_instance = hns3_client_init,
	.uninit_instance = hns3_client_uninit,
	.link_status_change = hns3_link_status_change,
4797
	.setup_tc = hns3_client_setup_tc,
4798
	.reset_notify = hns3_reset_notify,
4799
	.process_hw_error = hns3_process_hw_error,
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
};

/* hns3_init_module - Driver registration routine
 * hns3_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 */
static int __init hns3_init_module(void)
{
	int ret;

	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);

	client.type = HNAE3_CLIENT_KNIC;
4814
	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
4815 4816 4817 4818
		 hns3_driver_name);

	client.ops = &client_ops;

4819 4820
	INIT_LIST_HEAD(&client.node);

4821 4822
	hns3_dbg_register_debugfs(hns3_driver_name);

4823 4824
	ret = hnae3_register_client(&client);
	if (ret)
4825
		goto err_reg_client;
4826 4827 4828

	ret = pci_register_driver(&hns3_driver);
	if (ret)
4829
		goto err_reg_driver;
4830 4831

	return ret;
4832 4833 4834 4835 4836 4837

err_reg_driver:
	hnae3_unregister_client(&client);
err_reg_client:
	hns3_dbg_unregister_debugfs();
	return ret;
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
}
module_init(hns3_init_module);

/* hns3_exit_module - Driver exit cleanup routine
 * hns3_exit_module is called just before the driver is removed
 * from memory.
 */
static void __exit hns3_exit_module(void)
{
	pci_unregister_driver(&hns3_driver);
	hnae3_unregister_client(&client);
4849
	hns3_dbg_unregister_debugfs();
4850 4851 4852 4853 4854 4855 4856
}
module_exit(hns3_exit_module);

MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
MODULE_LICENSE("GPL");
MODULE_ALIAS("pci:hns-nic");