hns3_enet.c 114.4 KB
Newer Older
1 2
// SPDX-License-Identifier: GPL-2.0+
// Copyright (c) 2016-2017 Hisilicon Limited.
3 4 5 6

#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
7 8 9
#ifdef CONFIG_RFS_ACCEL
#include <linux/cpu_rmap.h>
#endif
10 11 12 13 14
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/module.h>
#include <linux/pci.h>
15
#include <linux/aer.h>
16 17 18 19
#include <linux/skbuff.h>
#include <linux/sctp.h>
#include <linux/vermagic.h>
#include <net/gre.h>
20
#include <net/ip6_checksum.h>
21
#include <net/pkt_cls.h>
22
#include <net/tcp.h>
23 24 25 26 27
#include <net/vxlan.h>

#include "hnae3.h"
#include "hns3_enet.h"

28
#define hns3_set_field(origin, shift, val)	((origin) |= ((val) << (shift)))
29
#define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
30

31
static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
32
static void hns3_remove_hw_addr(struct net_device *netdev);
33

34
static const char hns3_driver_name[] = "hns3";
35 36 37 38 39 40
const char hns3_driver_version[] = VERMAGIC_STRING;
static const char hns3_driver_string[] =
			"Hisilicon Ethernet Network Driver for Hip08 Family";
static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
static struct hnae3_client client;

41 42 43 44 45 46 47
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, " Network interface message level setting");

#define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)

48 49 50
#define HNS3_INNER_VLAN_TAG	1
#define HNS3_OUTER_VLAN_TAG	2

51 52 53 54 55 56 57 58 59 60
/* hns3_pci_tbl - PCI Device ID Table
 *
 * Last entry must be all 0s
 *
 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
 *   Class, Class Mask, private data (not used) }
 */
static const struct pci_device_id hns3_pci_tbl[] = {
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
61
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
62
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
63
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
64
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
65
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
66
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
67
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
68
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
69
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
70
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
71
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
72 73
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
74 75 76 77 78
	/* required last entry */
	{0, }
};
MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);

79
static irqreturn_t hns3_irq_handle(int irq, void *vector)
80
{
81
	struct hns3_enet_tqp_vector *tqp_vector = vector;
82

83
	napi_schedule_irqoff(&tqp_vector->napi);
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

	return IRQ_HANDLED;
}

static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
{
	struct hns3_enet_tqp_vector *tqp_vectors;
	unsigned int i;

	for (i = 0; i < priv->vector_num; i++) {
		tqp_vectors = &priv->tqp_vector[i];

		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
			continue;

99
		/* clear the affinity mask */
P
Peng Li 已提交
100 101
		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
		/* release the irq resource */
		free_irq(tqp_vectors->vector_irq, tqp_vectors);
		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
	}
}

static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
{
	struct hns3_enet_tqp_vector *tqp_vectors;
	int txrx_int_idx = 0;
	int rx_int_idx = 0;
	int tx_int_idx = 0;
	unsigned int i;
	int ret;

	for (i = 0; i < priv->vector_num; i++) {
		tqp_vectors = &priv->tqp_vector[i];

		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
			continue;

		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
				 "%s-%s-%d", priv->netdev->name, "TxRx",
				 txrx_int_idx++);
			txrx_int_idx++;
		} else if (tqp_vectors->rx_group.ring) {
			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
				 "%s-%s-%d", priv->netdev->name, "Rx",
				 rx_int_idx++);
		} else if (tqp_vectors->tx_group.ring) {
			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
				 "%s-%s-%d", priv->netdev->name, "Tx",
				 tx_int_idx++);
		} else {
			/* Skip this unused q_vector */
			continue;
		}

		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';

		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
144
				  tqp_vectors->name, tqp_vectors);
145 146 147
		if (ret) {
			netdev_err(priv->netdev, "request irq(%d) fail\n",
				   tqp_vectors->vector_irq);
148
			hns3_nic_uninit_irq(priv);
149 150 151
			return ret;
		}

P
Peng Li 已提交
152 153 154
		irq_set_affinity_hint(tqp_vectors->vector_irq,
				      &tqp_vectors->affinity_mask);

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
	}

	return 0;
}

static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
				 u32 mask_en)
{
	writel(mask_en, tqp_vector->mask_addr);
}

static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
{
	napi_enable(&tqp_vector->napi);

	/* enable vector */
	hns3_mask_vector_irq(tqp_vector, 1);
}

static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
{
	/* disable vector */
	hns3_mask_vector_irq(tqp_vector, 0);

	disable_irq(tqp_vector->vector_irq);
	napi_disable(&tqp_vector->napi);
}

184 185
void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
				 u32 rl_value)
186
{
187 188
	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);

189 190 191 192
	/* this defines the configuration for RL (Interrupt Rate Limiter).
	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
	 */
193

194 195
	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
	    !tqp_vector->rx_group.coal.gl_adapt_enable)
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
		/* According to the hardware, the range of rl_reg is
		 * 0-59 and the unit is 4.
		 */
		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;

	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
}

void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
				    u32 gl_value)
{
	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);

	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
}

void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
				    u32 gl_value)
{
	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);

	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
218 219
}

220 221
static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
				   struct hns3_nic_priv *priv)
222 223 224 225 226 227
{
	/* initialize the configuration for interrupt coalescing.
	 * 1. GL (Interrupt Gap Limiter)
	 * 2. RL (Interrupt Rate Limiter)
	 */

228
	/* Default: enable interrupt coalescing self-adaptive and GL */
229 230
	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
231

232 233
	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
234

235 236
	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
237 238
}

239 240 241 242 243 244
static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
				      struct hns3_nic_priv *priv)
{
	struct hnae3_handle *h = priv->ae_handle;

	hns3_set_vector_coalesce_tx_gl(tqp_vector,
245
				       tqp_vector->tx_group.coal.int_gl);
246
	hns3_set_vector_coalesce_rx_gl(tqp_vector,
247
				       tqp_vector->rx_group.coal.int_gl);
248 249 250
	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
}

251 252
static int hns3_nic_set_real_num_queue(struct net_device *netdev)
{
253
	struct hnae3_handle *h = hns3_get_handle(netdev);
254 255
	struct hnae3_knic_private_info *kinfo = &h->kinfo;
	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
	int i, ret;

	if (kinfo->num_tc <= 1) {
		netdev_reset_tc(netdev);
	} else {
		ret = netdev_set_num_tc(netdev, kinfo->num_tc);
		if (ret) {
			netdev_err(netdev,
				   "netdev_set_num_tc fail, ret=%d!\n", ret);
			return ret;
		}

		for (i = 0; i < HNAE3_MAX_TC; i++) {
			if (!kinfo->tc_info[i].enable)
				continue;

			netdev_set_tc_queue(netdev,
					    kinfo->tc_info[i].tc,
					    kinfo->tc_info[i].tqp_count,
					    kinfo->tc_info[i].tqp_offset);
		}
	}
278 279 280 281

	ret = netif_set_real_num_tx_queues(netdev, queue_size);
	if (ret) {
		netdev_err(netdev,
282
			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
283 284 285 286 287 288 289 290 291 292 293 294 295
		return ret;
	}

	ret = netif_set_real_num_rx_queues(netdev, queue_size);
	if (ret) {
		netdev_err(netdev,
			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
		return ret;
	}

	return 0;
}

296 297
static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
{
298
	u16 alloc_tqps, max_rss_size, rss_size;
299

300 301
	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
	rss_size = alloc_tqps / h->kinfo.num_tc;
302

303
	return min_t(u16, rss_size, max_rss_size);
304 305
}

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
static void hns3_tqp_enable(struct hnae3_queue *tqp)
{
	u32 rcb_reg;

	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
	rcb_reg |= BIT(HNS3_RING_EN_B);
	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
}

static void hns3_tqp_disable(struct hnae3_queue *tqp)
{
	u32 rcb_reg;

	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
	rcb_reg &= ~BIT(HNS3_RING_EN_B);
	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
{
#ifdef CONFIG_RFS_ACCEL
	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
	netdev->rx_cpu_rmap = NULL;
#endif
}

static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
{
#ifdef CONFIG_RFS_ACCEL
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hns3_enet_tqp_vector *tqp_vector;
	int i, ret;

	if (!netdev->rx_cpu_rmap) {
		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
		if (!netdev->rx_cpu_rmap)
			return -ENOMEM;
	}

	for (i = 0; i < priv->vector_num; i++) {
		tqp_vector = &priv->tqp_vector[i];
		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
				       tqp_vector->vector_irq);
		if (ret) {
			hns3_free_rx_cpu_rmap(netdev);
			return ret;
		}
	}
#endif
	return 0;
}

358 359 360 361 362 363 364
static int hns3_nic_net_up(struct net_device *netdev)
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hnae3_handle *h = priv->ae_handle;
	int i, j;
	int ret;

365 366 367 368
	ret = hns3_nic_reset_all_ring(h);
	if (ret)
		return ret;

369 370 371 372 373
	/* the device can work without cpu rmap, only aRFS needs it */
	ret = hns3_set_rx_cpu_rmap(netdev);
	if (ret)
		netdev_warn(netdev, "set rx cpu rmap fail, ret=%d!\n", ret);

374 375 376
	/* get irq resource for all vectors */
	ret = hns3_nic_init_irq(priv);
	if (ret) {
377
		netdev_err(netdev, "init irq failed! ret=%d\n", ret);
378
		goto free_rmap;
379 380
	}

381 382
	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);

383 384 385 386
	/* enable the vectors */
	for (i = 0; i < priv->vector_num; i++)
		hns3_vector_enable(&priv->tqp_vector[i]);

387 388 389 390
	/* enable rcb */
	for (j = 0; j < h->kinfo.num_tqps; j++)
		hns3_tqp_enable(h->kinfo.tqp[j]);

391 392 393 394 395 396 397 398
	/* start the ae_dev */
	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
	if (ret)
		goto out_start_err;

	return 0;

out_start_err:
399
	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
400 401 402
	while (j--)
		hns3_tqp_disable(h->kinfo.tqp[j]);

403 404 405 406
	for (j = i - 1; j >= 0; j--)
		hns3_vector_disable(&priv->tqp_vector[j]);

	hns3_nic_uninit_irq(priv);
407 408
free_rmap:
	hns3_free_rx_cpu_rmap(netdev);
409 410 411
	return ret;
}

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
static void hns3_config_xps(struct hns3_nic_priv *priv)
{
	int i;

	for (i = 0; i < priv->vector_num; i++) {
		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;

		while (ring) {
			int ret;

			ret = netif_set_xps_queue(priv->netdev,
						  &tqp_vector->affinity_mask,
						  ring->tqp->tqp_index);
			if (ret)
				netdev_warn(priv->netdev,
					    "set xps queue failed: %d", ret);

			ring = ring->next;
		}
	}
}

435 436
static int hns3_nic_net_open(struct net_device *netdev)
{
437
	struct hns3_nic_priv *priv = netdev_priv(netdev);
438 439 440
	struct hnae3_handle *h = hns3_get_handle(netdev);
	struct hnae3_knic_private_info *kinfo;
	int i, ret;
441

442 443 444
	if (hns3_nic_resetting(netdev))
		return -EBUSY;

445 446
	netif_carrier_off(netdev);

447 448
	ret = hns3_nic_set_real_num_queue(netdev);
	if (ret)
449 450 451 452
		return ret;

	ret = hns3_nic_net_up(netdev);
	if (ret) {
453
		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
454 455 456
		return ret;
	}

457
	kinfo = &h->kinfo;
458 459
	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
		netdev_set_prio_tc_map(netdev, i, kinfo->prio_tc[i]);
460

461 462 463
	if (h->ae_algo->ops->set_timer_task)
		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);

464
	hns3_config_xps(priv);
465 466 467

	netif_dbg(h, drv, netdev, "net open\n");

468 469 470
	return 0;
}

471 472 473 474 475 476 477 478 479 480 481 482 483 484
static void hns3_reset_tx_queue(struct hnae3_handle *h)
{
	struct net_device *ndev = h->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(ndev);
	struct netdev_queue *dev_queue;
	u32 i;

	for (i = 0; i < h->kinfo.num_tqps; i++) {
		dev_queue = netdev_get_tx_queue(ndev,
						priv->ring_data[i].queue_index);
		netdev_tx_reset_queue(dev_queue);
	}
}

485 486 487
static void hns3_nic_net_down(struct net_device *netdev)
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
488
	struct hnae3_handle *h = hns3_get_handle(netdev);
489 490 491
	const struct hnae3_ae_ops *ops;
	int i;

492 493 494
	/* disable vectors */
	for (i = 0; i < priv->vector_num; i++)
		hns3_vector_disable(&priv->tqp_vector[i]);
495 496 497 498

	/* disable rcb */
	for (i = 0; i < h->kinfo.num_tqps; i++)
		hns3_tqp_disable(h->kinfo.tqp[i]);
499

500 501 502 503 504
	/* stop ae_dev */
	ops = priv->ae_handle->ae_algo->ops;
	if (ops->stop)
		ops->stop(priv->ae_handle);

505 506
	hns3_free_rx_cpu_rmap(netdev);

507 508
	/* free irq resources */
	hns3_nic_uninit_irq(priv);
509

510 511 512 513 514
	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
	 * during reset process, because driver may not be able
	 * to disable the ring through firmware when downing the netdev.
	 */
	if (!hns3_nic_resetting(netdev))
515 516 517
		hns3_clear_all_ring(priv->ae_handle, false);

	hns3_reset_tx_queue(priv->ae_handle);
518 519 520 521
}

static int hns3_nic_net_stop(struct net_device *netdev)
{
522
	struct hns3_nic_priv *priv = netdev_priv(netdev);
523
	struct hnae3_handle *h = hns3_get_handle(netdev);
524 525 526 527

	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
		return 0;

528 529
	netif_dbg(h, drv, netdev, "net stop\n");

530 531 532
	if (h->ae_algo->ops->set_timer_task)
		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);

533 534 535 536 537 538 539 540 541 542 543
	netif_tx_stop_all_queues(netdev);
	netif_carrier_off(netdev);

	hns3_nic_net_down(netdev);

	return 0;
}

static int hns3_nic_uc_sync(struct net_device *netdev,
			    const unsigned char *addr)
{
544
	struct hnae3_handle *h = hns3_get_handle(netdev);
545 546 547 548 549 550 551 552 553 554

	if (h->ae_algo->ops->add_uc_addr)
		return h->ae_algo->ops->add_uc_addr(h, addr);

	return 0;
}

static int hns3_nic_uc_unsync(struct net_device *netdev,
			      const unsigned char *addr)
{
555
	struct hnae3_handle *h = hns3_get_handle(netdev);
556 557 558 559 560 561 562 563 564 565

	if (h->ae_algo->ops->rm_uc_addr)
		return h->ae_algo->ops->rm_uc_addr(h, addr);

	return 0;
}

static int hns3_nic_mc_sync(struct net_device *netdev,
			    const unsigned char *addr)
{
566
	struct hnae3_handle *h = hns3_get_handle(netdev);
567

568
	if (h->ae_algo->ops->add_mc_addr)
569 570 571 572 573 574 575 576
		return h->ae_algo->ops->add_mc_addr(h, addr);

	return 0;
}

static int hns3_nic_mc_unsync(struct net_device *netdev,
			      const unsigned char *addr)
{
577
	struct hnae3_handle *h = hns3_get_handle(netdev);
578

579
	if (h->ae_algo->ops->rm_mc_addr)
580 581 582 583 584
		return h->ae_algo->ops->rm_mc_addr(h, addr);

	return 0;
}

585 586 587 588 589
static u8 hns3_get_netdev_flags(struct net_device *netdev)
{
	u8 flags = 0;

	if (netdev->flags & IFF_PROMISC) {
590
		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
591 592 593 594 595 596 597 598 599
	} else {
		flags |= HNAE3_VLAN_FLTR;
		if (netdev->flags & IFF_ALLMULTI)
			flags |= HNAE3_USER_MPE;
	}

	return flags;
}

600
static void hns3_nic_set_rx_mode(struct net_device *netdev)
601
{
602
	struct hnae3_handle *h = hns3_get_handle(netdev);
603 604
	u8 new_flags;
	int ret;
605

606 607 608 609
	new_flags = hns3_get_netdev_flags(netdev);

	ret = __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
	if (ret) {
610
		netdev_err(netdev, "sync uc address fail\n");
611 612 613 614
		if (ret == -ENOSPC)
			new_flags |= HNAE3_OVERFLOW_UPE;
	}

615
	if (netdev->flags & IFF_MULTICAST) {
616 617 618
		ret = __dev_mc_sync(netdev, hns3_nic_mc_sync,
				    hns3_nic_mc_unsync);
		if (ret) {
619
			netdev_err(netdev, "sync mc address fail\n");
620 621 622 623 624 625 626 627 628 629 630
			if (ret == -ENOSPC)
				new_flags |= HNAE3_OVERFLOW_MPE;
		}
	}

	/* User mode Promisc mode enable and vlan filtering is disabled to
	 * let all packets in. MAC-VLAN Table overflow Promisc enabled and
	 * vlan fitering is enabled
	 */
	hns3_enable_vlan_filter(netdev, new_flags & HNAE3_VLAN_FLTR);
	h->netdev_flags = new_flags;
631
	hns3_update_promisc_mode(netdev, new_flags);
632 633
}

634
int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
635 636 637 638 639
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hnae3_handle *h = priv->ae_handle;

	if (h->ae_algo->ops->set_promisc_mode) {
640 641 642
		return h->ae_algo->ops->set_promisc_mode(h,
						promisc_flags & HNAE3_UPE,
						promisc_flags & HNAE3_MPE);
643
	}
644 645

	return 0;
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
}

void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hnae3_handle *h = priv->ae_handle;
	bool last_state;

	if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
		if (enable != last_state) {
			netdev_info(netdev,
				    "%s vlan filter\n",
				    enable ? "enable" : "disable");
			h->ae_algo->ops->enable_vlan_filter(h, enable);
		}
662
	}
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
}

static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
			u16 *mss, u32 *type_cs_vlan_tso)
{
	u32 l4_offset, hdr_len;
	union l3_hdr_info l3;
	union l4_hdr_info l4;
	u32 l4_paylen;
	int ret;

	if (!skb_is_gso(skb))
		return 0;

	ret = skb_cow_head(skb, 0);
678
	if (unlikely(ret))
679 680 681 682 683 684 685 686 687 688 689
		return ret;

	l3.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);

	/* Software should clear the IPv4's checksum field when tso is
	 * needed.
	 */
	if (l3.v4->version == 4)
		l3.v4->check = 0;

690
	/* tunnel packet */
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
					 SKB_GSO_GRE_CSUM |
					 SKB_GSO_UDP_TUNNEL |
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
		if ((!(skb_shinfo(skb)->gso_type &
		    SKB_GSO_PARTIAL)) &&
		    (skb_shinfo(skb)->gso_type &
		    SKB_GSO_UDP_TUNNEL_CSUM)) {
			/* Software should clear the udp's checksum
			 * field when tso is needed.
			 */
			l4.udp->check = 0;
		}
		/* reset l3&l4 pointers from outer to inner headers */
		l3.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* Software should clear the IPv4's checksum field when
		 * tso is needed.
		 */
		if (l3.v4->version == 4)
			l3.v4->check = 0;
	}

715
	/* normal or tunnel packet */
716
	l4_offset = l4.hdr - skb->data;
717
	hdr_len = (l4.tcp->doff << 2) + l4_offset;
718

719
	/* remove payload length from inner pseudo checksum when tso */
720 721 722 723 724 725
	l4_paylen = skb->len - l4_offset;
	csum_replace_by_diff(&l4.tcp->check,
			     (__force __wsum)htonl(l4_paylen));

	/* find the txbd field values */
	*paylen = skb->len - hdr_len;
726
	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
727 728 729 730 731 732 733

	/* get MSS for TSO */
	*mss = skb_shinfo(skb)->gso_size;

	return 0;
}

734 735
static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
				u8 *il4_proto)
736
{
737
	union l3_hdr_info l3;
738 739 740 741 742 743 744
	unsigned char *l4_hdr;
	unsigned char *exthdr;
	u8 l4_proto_tmp;
	__be16 frag_off;

	/* find outer header point */
	l3.hdr = skb_network_header(skb);
745
	l4_hdr = skb_transport_header(skb);
746 747 748 749 750 751 752 753 754

	if (skb->protocol == htons(ETH_P_IPV6)) {
		exthdr = l3.hdr + sizeof(*l3.v6);
		l4_proto_tmp = l3.v6->nexthdr;
		if (l4_hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto_tmp, &frag_off);
	} else if (skb->protocol == htons(ETH_P_IP)) {
		l4_proto_tmp = l3.v4->protocol;
755 756
	} else {
		return -EINVAL;
757 758 759 760 761 762 763
	}

	*ol4_proto = l4_proto_tmp;

	/* tunnel packet */
	if (!skb->encapsulation) {
		*il4_proto = 0;
764
		return 0;
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
	}

	/* find inner header point */
	l3.hdr = skb_inner_network_header(skb);
	l4_hdr = skb_inner_transport_header(skb);

	if (l3.v6->version == 6) {
		exthdr = l3.hdr + sizeof(*l3.v6);
		l4_proto_tmp = l3.v6->nexthdr;
		if (l4_hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto_tmp, &frag_off);
	} else if (l3.v4->version == 4) {
		l4_proto_tmp = l3.v4->protocol;
	}

	*il4_proto = l4_proto_tmp;
782 783

	return 0;
784 785
}

786 787 788 789 790 791 792 793
/* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
 * and it is udp packet, which has a dest port as the IANA assigned.
 * the hardware is expected to do the checksum offload, but the
 * hardware will not do the checksum offload when udp dest port is
 * 4789.
 */
static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
{
794
	union l4_hdr_info l4;
795 796 797

	l4.hdr = skb_transport_header(skb);

798 799
	if (!(!skb->encapsulation &&
	      l4.udp->dest == htons(IANA_VXLAN_UDP_PORT)))
800 801 802 803 804 805 806
		return false;

	skb_checksum_help(skb);

	return true;
}

807 808
static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
				  u32 *ol_type_vlan_len_msec)
809
{
810 811
	u32 l2_len, l3_len, l4_len;
	unsigned char *il2_hdr;
812
	union l3_hdr_info l3;
813
	union l4_hdr_info l4;
814 815

	l3.hdr = skb_network_header(skb);
816
	l4.hdr = skb_transport_header(skb);
817

818 819 820 821 822 823 824
	/* compute OL2 header size, defined in 2 Bytes */
	l2_len = l3.hdr - skb->data;
	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);

	/* compute OL3 header size, defined in 4 Bytes */
	l3_len = l4.hdr - l3.hdr;
	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
825

826
	il2_hdr = skb_inner_mac_header(skb);
827
	/* compute OL4 header size, defined in 4 Bytes */
828 829 830 831 832 833
	l4_len = il2_hdr - l4.hdr;
	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);

	/* define outer network header type */
	if (skb->protocol == htons(ETH_P_IP)) {
		if (skb_is_gso(skb))
834
			hns3_set_field(*ol_type_vlan_len_msec,
835 836 837
				       HNS3_TXD_OL3T_S,
				       HNS3_OL3T_IPV4_CSUM);
		else
838
			hns3_set_field(*ol_type_vlan_len_msec,
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
				       HNS3_TXD_OL3T_S,
				       HNS3_OL3T_IPV4_NO_CSUM);

	} else if (skb->protocol == htons(ETH_P_IPV6)) {
		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
			       HNS3_OL3T_IPV6);
	}

	if (ol4_proto == IPPROTO_UDP)
		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
			       HNS3_TUN_MAC_IN_UDP);
	else if (ol4_proto == IPPROTO_GRE)
		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
			       HNS3_TUN_NVGRE);
}

static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
			   u8 il4_proto, u32 *type_cs_vlan_tso,
			   u32 *ol_type_vlan_len_msec)
{
859
	unsigned char *l2_hdr = skb->data;
860 861 862 863 864 865 866 867 868 869 870 871
	u32 l4_proto = ol4_proto;
	union l4_hdr_info l4;
	union l3_hdr_info l3;
	u32 l2_len, l3_len;

	l4.hdr = skb_transport_header(skb);
	l3.hdr = skb_network_header(skb);

	/* handle encapsulation skb */
	if (skb->encapsulation) {
		/* If this is a not UDP/GRE encapsulation skb */
		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
872 873 874 875 876 877 878 879 880 881 882 883 884
			/* drop the skb tunnel packet if hardware don't support,
			 * because hardware can't calculate csum when TSO.
			 */
			if (skb_is_gso(skb))
				return -EDOM;

			/* the stack computes the IP header already,
			 * driver calculate l4 checksum when not TSO.
			 */
			skb_checksum_help(skb);
			return 0;
		}

885 886 887 888
		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);

		/* switch to inner header */
		l2_hdr = skb_inner_mac_header(skb);
889
		l3.hdr = skb_inner_network_header(skb);
890
		l4.hdr = skb_inner_transport_header(skb);
891 892 893 894
		l4_proto = il4_proto;
	}

	if (l3.v4->version == 4) {
895 896
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
			       HNS3_L3T_IPV4);
897 898 899 900 901

		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
		if (skb_is_gso(skb))
902
			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
903
	} else if (l3.v6->version == 6) {
904 905
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
			       HNS3_L3T_IPV6);
906 907
	}

908 909 910 911 912 913 914 915 916
	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
	l2_len = l3.hdr - l2_hdr;
	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);

	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
	l3_len = l4.hdr - l3.hdr;
	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);

	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
917 918
	switch (l4_proto) {
	case IPPROTO_TCP:
919 920 921
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
			       HNS3_L4T_TCP);
922 923
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
			       l4.tcp->doff);
924 925
		break;
	case IPPROTO_UDP:
926 927 928
		if (hns3_tunnel_csum_bug(skb))
			break;

929 930 931
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
			       HNS3_L4T_UDP);
932 933
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
			       (sizeof(struct udphdr) >> 2));
934 935
		break;
	case IPPROTO_SCTP:
936 937 938
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
			       HNS3_L4T_SCTP);
939 940
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
			       (sizeof(struct sctphdr) >> 2));
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
		break;
	default:
		/* drop the skb tunnel packet if hardware don't support,
		 * because hardware can't calculate csum when TSO.
		 */
		if (skb_is_gso(skb))
			return -EDOM;

		/* the stack computes the IP header already,
		 * driver calculate l4 checksum when not TSO.
		 */
		skb_checksum_help(skb);
		return 0;
	}

	return 0;
}

static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
{
	/* Config bd buffer end */
962 963 964
	if (!!frag_end)
		hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, 1U);
	hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1U);
965 966
}

967 968
static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
			     struct sk_buff *skb)
969
{
970
	struct hnae3_handle *handle = tx_ring->tqp->handle;
971 972 973 974 975 976
	struct vlan_ethhdr *vhdr;
	int rc;

	if (!(skb->protocol == htons(ETH_P_8021Q) ||
	      skb_vlan_tag_present(skb)))
		return 0;
977 978 979 980 981 982 983 984 985

	/* Since HW limitation, if port based insert VLAN enabled, only one VLAN
	 * header is allowed in skb, otherwise it will cause RAS error.
	 */
	if (unlikely(skb_vlan_tagged_multi(skb) &&
		     handle->port_base_vlan_state ==
		     HNAE3_PORT_BASE_VLAN_ENABLE))
		return -EINVAL;

986
	if (skb->protocol == htons(ETH_P_8021Q) &&
987
	    !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
988 989 990 991 992 993 994 995 996 997 998 999
		/* When HW VLAN acceleration is turned off, and the stack
		 * sets the protocol to 802.1q, the driver just need to
		 * set the protocol to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		return 0;
	}

	if (skb_vlan_tag_present(skb)) {
		/* Based on hw strategy, use out_vtag in two layer tag case,
		 * and use inner_vtag in one tag case.
		 */
1000 1001 1002 1003 1004 1005 1006 1007 1008
		if (skb->protocol == htons(ETH_P_8021Q) &&
		    handle->port_base_vlan_state ==
		    HNAE3_PORT_BASE_VLAN_DISABLE)
			rc = HNS3_OUTER_VLAN_TAG;
		else
			rc = HNS3_INNER_VLAN_TAG;

		skb->protocol = vlan_get_protocol(skb);
		return rc;
1009 1010
	}

1011 1012 1013 1014 1015 1016 1017 1018
	rc = skb_cow_head(skb, 0);
	if (unlikely(rc < 0))
		return rc;

	vhdr = (struct vlan_ethhdr *)skb->data;
	vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
					 & VLAN_PRIO_MASK);

1019 1020 1021 1022
	skb->protocol = vlan_get_protocol(skb);
	return 0;
}

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
			      struct sk_buff *skb, struct hns3_desc *desc)
{
	u32 ol_type_vlan_len_msec = 0;
	u32 type_cs_vlan_tso = 0;
	u32 paylen = skb->len;
	u16 inner_vtag = 0;
	u16 out_vtag = 0;
	u16 mss = 0;
	int ret;

	ret = hns3_handle_vtags(ring, skb);
	if (unlikely(ret < 0)) {
		return ret;
	} else if (ret == HNS3_INNER_VLAN_TAG) {
		inner_vtag = skb_vlan_tag_get(skb);
		inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
				VLAN_PRIO_MASK;
		hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
	} else if (ret == HNS3_OUTER_VLAN_TAG) {
		out_vtag = skb_vlan_tag_get(skb);
		out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
				VLAN_PRIO_MASK;
		hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
			       1);
	}

	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		u8 ol4_proto, il4_proto;

		skb_reset_mac_len(skb);

		ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
		if (unlikely(ret))
			return ret;

		ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
				      &type_cs_vlan_tso,
				      &ol_type_vlan_len_msec);
		if (unlikely(ret))
			return ret;

		ret = hns3_set_tso(skb, &paylen, &mss,
				   &type_cs_vlan_tso);
		if (unlikely(ret))
			return ret;
	}

	/* Set txbd */
	desc->tx.ol_type_vlan_len_msec =
		cpu_to_le32(ol_type_vlan_len_msec);
	desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
	desc->tx.paylen = cpu_to_le32(paylen);
	desc->tx.mss = cpu_to_le16(mss);
	desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
	desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);

	return 0;
}

1083
static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1084 1085
			  unsigned int size, int frag_end,
			  enum hns_desc_type type)
1086 1087 1088
{
	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1089
	struct device *dev = ring_to_dev(ring);
1090
	skb_frag_t *frag;
1091
	unsigned int frag_buf_num;
1092
	int k, sizeoflast;
1093
	dma_addr_t dma;
1094 1095

	if (type == DESC_TYPE_SKB) {
1096 1097
		struct sk_buff *skb = (struct sk_buff *)priv;
		int ret;
1098

1099
		ret = hns3_fill_skb_desc(ring, skb, desc);
1100 1101 1102
		if (unlikely(ret))
			return ret;

1103 1104
		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
	} else {
1105
		frag = (skb_frag_t *)priv;
1106 1107 1108
		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
	}

1109
	if (unlikely(dma_mapping_error(dev, dma))) {
1110 1111
		ring->stats.sw_err_cnt++;
		return -ENOMEM;
1112 1113
	}

1114 1115
	desc_cb->length = size;

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	if (likely(size <= HNS3_MAX_BD_SIZE)) {
		u16 bdtp_fe_sc_vld_ra_ri = 0;

		desc_cb->priv = priv;
		desc_cb->dma = dma;
		desc_cb->type = type;
		desc->addr = cpu_to_le64(dma);
		desc->tx.send_size = cpu_to_le16(size);
		hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri, frag_end);
		desc->tx.bdtp_fe_sc_vld_ra_ri =
			cpu_to_le16(bdtp_fe_sc_vld_ra_ri);

		ring_ptr_move_fw(ring, next_to_use);
		return 0;
	}

1132
	frag_buf_num = hns3_tx_bd_count(size);
1133
	sizeoflast = size & HNS3_TX_LAST_SIZE_M;
1134 1135 1136 1137
	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;

	/* When frag size is bigger than hardware limit, split this frag */
	for (k = 0; k < frag_buf_num; k++) {
1138 1139
		u16 bdtp_fe_sc_vld_ra_ri = 0;

1140 1141 1142 1143
		/* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
		desc_cb->priv = priv;
		desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k;
		desc_cb->type = (type == DESC_TYPE_SKB && !k) ?
1144
				DESC_TYPE_SKB : DESC_TYPE_PAGE;
1145 1146 1147

		/* now, fill the descriptor */
		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1148
		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1149
				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1150 1151 1152 1153 1154 1155
		hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri,
				       frag_end && (k == frag_buf_num - 1) ?
						1 : 0);
		desc->tx.bdtp_fe_sc_vld_ra_ri =
				cpu_to_le16(bdtp_fe_sc_vld_ra_ri);

1156
		/* move ring pointer to next */
1157 1158 1159 1160 1161
		ring_ptr_move_fw(ring, next_to_use);

		desc_cb = &ring->desc_cb[ring->next_to_use];
		desc = &ring->desc[ring->next_to_use];
	}
1162 1163 1164 1165

	return 0;
}

1166
static int hns3_nic_bd_num(struct sk_buff *skb)
1167
{
1168 1169
	int size = skb_headlen(skb);
	int i, bd_num;
1170

1171 1172 1173
	/* if the total len is within the max bd limit */
	if (likely(skb->len <= HNS3_MAX_BD_SIZE))
		return skb_shinfo(skb)->nr_frags + 1;
1174

1175
	bd_num = hns3_tx_bd_count(size);
1176

1177
	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1178
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1179
		int frag_bd_num;
1180

1181 1182 1183 1184
		size = skb_frag_size(frag);
		frag_bd_num = hns3_tx_bd_count(size);

		if (unlikely(frag_bd_num > HNS3_MAX_BD_PER_FRAG))
P
Peng Li 已提交
1185 1186
			return -ENOMEM;

1187 1188
		bd_num += frag_bd_num;
	}
1189

1190
	return bd_num;
1191 1192
}

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
{
	if (!skb->encapsulation)
		return skb_transport_offset(skb) + tcp_hdrlen(skb);

	return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
}

/* HW need every continuous 8 buffer data to be larger than MSS,
 * we simplify it by ensuring skb_headlen + the first continuous
 * 7 frags to to be larger than gso header len + mss, and the remaining
 * continuous 7 frags to be larger than MSS except the last 7 frags.
 */
static bool hns3_skb_need_linearized(struct sk_buff *skb)
{
	int bd_limit = HNS3_MAX_BD_PER_FRAG - 1;
	unsigned int tot_len = 0;
	int i;

	for (i = 0; i < bd_limit; i++)
		tot_len += skb_frag_size(&skb_shinfo(skb)->frags[i]);

	/* ensure headlen + the first 7 frags is greater than mss + header
	 * and the first 7 frags is greater than mss.
	 */
	if (((tot_len + skb_headlen(skb)) < (skb_shinfo(skb)->gso_size +
	    hns3_gso_hdr_len(skb))) || (tot_len < skb_shinfo(skb)->gso_size))
		return true;

	/* ensure the remaining continuous 7 buffer is greater than mss */
	for (i = 0; i < (skb_shinfo(skb)->nr_frags - bd_limit - 1); i++) {
		tot_len -= skb_frag_size(&skb_shinfo(skb)->frags[i]);
		tot_len += skb_frag_size(&skb_shinfo(skb)->frags[i + bd_limit]);

		if (tot_len < skb_shinfo(skb)->gso_size)
			return true;
	}

	return false;
}

1234 1235
static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
				  struct sk_buff **out_skb)
1236 1237
{
	struct sk_buff *skb = *out_skb;
1238
	int bd_num;
1239

1240 1241 1242 1243 1244 1245
	bd_num = hns3_nic_bd_num(skb);
	if (bd_num < 0)
		return bd_num;

	if (unlikely(bd_num > HNS3_MAX_BD_PER_FRAG)) {
		struct sk_buff *new_skb;
1246

1247 1248 1249
		if (skb_is_gso(skb) && !hns3_skb_need_linearized(skb))
			goto out;

1250 1251
		bd_num = hns3_tx_bd_count(skb->len);
		if (unlikely(ring_space(ring) < bd_num))
P
Peng Li 已提交
1252 1253 1254 1255 1256 1257 1258
			return -EBUSY;
		/* manual split the send packet */
		new_skb = skb_copy(skb, GFP_ATOMIC);
		if (!new_skb)
			return -ENOMEM;
		dev_kfree_skb_any(skb);
		*out_skb = new_skb;
1259 1260 1261 1262

		u64_stats_update_begin(&ring->syncp);
		ring->stats.tx_copy++;
		u64_stats_update_end(&ring->syncp);
P
Peng Li 已提交
1263 1264
	}

1265
out:
1266
	if (unlikely(ring_space(ring) < bd_num))
1267 1268
		return -EBUSY;

1269
	return bd_num;
1270 1271
}

F
Fuyun Liang 已提交
1272
static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1273 1274 1275 1276 1277 1278 1279 1280 1281
{
	struct device *dev = ring_to_dev(ring);
	unsigned int i;

	for (i = 0; i < ring->desc_num; i++) {
		/* check if this is where we started */
		if (ring->next_to_use == next_to_use_orig)
			break;

1282 1283 1284
		/* rollback one */
		ring_ptr_move_bw(ring, next_to_use);

1285 1286 1287 1288 1289 1290
		/* unmap the descriptor dma address */
		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
			dma_unmap_single(dev,
					 ring->desc_cb[ring->next_to_use].dma,
					ring->desc_cb[ring->next_to_use].length,
					DMA_TO_DEVICE);
1291
		else if (ring->desc_cb[ring->next_to_use].length)
1292 1293 1294 1295 1296
			dma_unmap_page(dev,
				       ring->desc_cb[ring->next_to_use].dma,
				       ring->desc_cb[ring->next_to_use].length,
				       DMA_TO_DEVICE);

1297
		ring->desc_cb[ring->next_to_use].length = 0;
1298
		ring->desc_cb[ring->next_to_use].dma = 0;
1299 1300 1301
	}
}

1302
netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1303 1304 1305 1306 1307 1308
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hns3_nic_ring_data *ring_data =
		&tx_ring_data(priv, skb->queue_mapping);
	struct hns3_enet_ring *ring = ring_data->ring;
	struct netdev_queue *dev_queue;
1309
	skb_frag_t *frag;
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
	int next_to_use_head;
	int buf_num;
	int seg_num;
	int size;
	int ret;
	int i;

	/* Prefetch the data used later */
	prefetch(skb->data);

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	buf_num = hns3_nic_maybe_stop_tx(ring, &skb);
	if (unlikely(buf_num <= 0)) {
		if (buf_num == -EBUSY) {
			u64_stats_update_begin(&ring->syncp);
			ring->stats.tx_busy++;
			u64_stats_update_end(&ring->syncp);
			goto out_net_tx_busy;
		} else if (buf_num == -ENOMEM) {
			u64_stats_update_begin(&ring->syncp);
			ring->stats.sw_err_cnt++;
			u64_stats_update_end(&ring->syncp);
		}
1332

1333 1334
		if (net_ratelimit())
			netdev_err(netdev, "xmit error: %d!\n", buf_num);
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345

		goto out_err_tx_ok;
	}

	/* No. of segments (plus a header) */
	seg_num = skb_shinfo(skb)->nr_frags + 1;
	/* Fill the first part */
	size = skb_headlen(skb);

	next_to_use_head = ring->next_to_use;

1346 1347
	ret = hns3_fill_desc(ring, skb, size, seg_num == 1 ? 1 : 0,
			     DESC_TYPE_SKB);
1348
	if (unlikely(ret))
1349
		goto fill_err;
1350 1351 1352 1353 1354

	/* Fill the fragments */
	for (i = 1; i < seg_num; i++) {
		frag = &skb_shinfo(skb)->frags[i - 1];
		size = skb_frag_size(frag);
1355

1356 1357 1358
		ret = hns3_fill_desc(ring, frag, size,
				     seg_num - 1 == i ? 1 : 0,
				     DESC_TYPE_PAGE);
1359

1360
		if (unlikely(ret))
1361
			goto fill_err;
1362 1363 1364 1365 1366 1367 1368 1369
	}

	/* Complete translate all packets */
	dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
	netdev_tx_sent_queue(dev_queue, skb->len);

	wmb(); /* Commit all data before submit */

P
Peng Li 已提交
1370
	hnae3_queue_xmit(ring->tqp, buf_num);
1371 1372 1373

	return NETDEV_TX_OK;

1374
fill_err:
F
Fuyun Liang 已提交
1375
	hns3_clear_desc(ring, next_to_use_head);
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389

out_err_tx_ok:
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;

out_net_tx_busy:
	netif_stop_subqueue(netdev, ring_data->queue_index);
	smp_mb(); /* Commit all data before submit */

	return NETDEV_TX_BUSY;
}

static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
{
1390
	struct hnae3_handle *h = hns3_get_handle(netdev);
1391 1392 1393 1394 1395 1396
	struct sockaddr *mac_addr = p;
	int ret;

	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
		return -EADDRNOTAVAIL;

1397 1398 1399 1400 1401 1402
	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
		netdev_info(netdev, "already using mac address %pM\n",
			    mac_addr->sa_data);
		return 0;
	}

1403
	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	if (ret) {
		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
		return ret;
	}

	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);

	return 0;
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
static int hns3_nic_do_ioctl(struct net_device *netdev,
			     struct ifreq *ifr, int cmd)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);

	if (!netif_running(netdev))
		return -EINVAL;

	if (!h->ae_algo->ops->do_ioctl)
		return -EOPNOTSUPP;

	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
}

1428 1429 1430
static int hns3_nic_set_features(struct net_device *netdev,
				 netdev_features_t features)
{
1431
	netdev_features_t changed = netdev->features ^ features;
1432
	struct hns3_nic_priv *priv = netdev_priv(netdev);
1433
	struct hnae3_handle *h = priv->ae_handle;
1434
	bool enable;
1435
	int ret;
1436

1437
	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1438 1439
		enable = !!(features & NETIF_F_GRO_HW);
		ret = h->ae_algo->ops->set_gro_en(h, enable);
1440 1441 1442 1443
		if (ret)
			return ret;
	}

1444 1445
	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
	    h->ae_algo->ops->enable_vlan_filter) {
1446 1447
		enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
		h->ae_algo->ops->enable_vlan_filter(h, enable);
1448
	}
1449

1450 1451
	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1452 1453
		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1454 1455 1456 1457
		if (ret)
			return ret;
	}

1458
	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1459 1460
		enable = !!(features & NETIF_F_NTUPLE);
		h->ae_algo->ops->enable_fd(h, enable);
1461 1462
	}

1463 1464 1465 1466
	netdev->features = features;
	return 0;
}

1467 1468
static void hns3_nic_get_stats64(struct net_device *netdev,
				 struct rtnl_link_stats64 *stats)
1469 1470 1471
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	int queue_num = priv->ae_handle->kinfo.num_tqps;
1472
	struct hnae3_handle *handle = priv->ae_handle;
1473
	struct hns3_enet_ring *ring;
1474 1475 1476
	u64 rx_length_errors = 0;
	u64 rx_crc_errors = 0;
	u64 rx_multicast = 0;
1477
	unsigned int start;
1478 1479
	u64 tx_errors = 0;
	u64 rx_errors = 0;
1480 1481 1482 1483 1484
	unsigned int idx;
	u64 tx_bytes = 0;
	u64 rx_bytes = 0;
	u64 tx_pkts = 0;
	u64 rx_pkts = 0;
1485 1486
	u64 tx_drop = 0;
	u64 rx_drop = 0;
1487

1488 1489 1490
	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
		return;

1491 1492
	handle->ae_algo->ops->update_stats(handle, &netdev->stats);

1493 1494 1495 1496
	for (idx = 0; idx < queue_num; idx++) {
		/* fetch the tx stats */
		ring = priv->ring_data[idx].ring;
		do {
1497
			start = u64_stats_fetch_begin_irq(&ring->syncp);
1498 1499
			tx_bytes += ring->stats.tx_bytes;
			tx_pkts += ring->stats.tx_pkts;
1500
			tx_drop += ring->stats.sw_err_cnt;
1501
			tx_errors += ring->stats.sw_err_cnt;
1502 1503 1504 1505 1506
		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));

		/* fetch the rx stats */
		ring = priv->ring_data[idx + queue_num].ring;
		do {
1507
			start = u64_stats_fetch_begin_irq(&ring->syncp);
1508 1509
			rx_bytes += ring->stats.rx_bytes;
			rx_pkts += ring->stats.rx_pkts;
1510
			rx_drop += ring->stats.l2_err;
1511
			rx_errors += ring->stats.l2_err;
1512
			rx_errors += ring->stats.l3l4_csum_err;
1513 1514 1515
			rx_crc_errors += ring->stats.l2_err;
			rx_multicast += ring->stats.rx_multicast;
			rx_length_errors += ring->stats.err_pkt_len;
1516 1517 1518 1519 1520 1521 1522 1523
		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
	}

	stats->tx_bytes = tx_bytes;
	stats->tx_packets = tx_pkts;
	stats->rx_bytes = rx_bytes;
	stats->rx_packets = rx_pkts;

1524 1525 1526 1527
	stats->rx_errors = rx_errors;
	stats->multicast = rx_multicast;
	stats->rx_length_errors = rx_length_errors;
	stats->rx_crc_errors = rx_crc_errors;
1528 1529
	stats->rx_missed_errors = netdev->stats.rx_missed_errors;

1530 1531 1532
	stats->tx_errors = tx_errors;
	stats->rx_dropped = rx_drop;
	stats->tx_dropped = tx_drop;
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	stats->collisions = netdev->stats.collisions;
	stats->rx_over_errors = netdev->stats.rx_over_errors;
	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
	stats->tx_window_errors = netdev->stats.tx_window_errors;
	stats->rx_compressed = netdev->stats.rx_compressed;
	stats->tx_compressed = netdev->stats.tx_compressed;
}

1546
static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1547
{
1548 1549
	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1550
	struct hnae3_knic_private_info *kinfo;
1551 1552 1553
	u8 tc = mqprio_qopt->qopt.num_tc;
	u16 mode = mqprio_qopt->mode;
	u8 hw = mqprio_qopt->qopt.hw;
1554
	struct hnae3_handle *h;
1555

1556 1557 1558 1559
	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
		return -EOPNOTSUPP;

1560 1561 1562 1563 1564 1565
	if (tc > HNAE3_MAX_TC)
		return -EINVAL;

	if (!netdev)
		return -EINVAL;

1566 1567 1568
	h = hns3_get_handle(netdev);
	kinfo = &h->kinfo;

1569 1570
	netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);

1571
	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1572
		kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1573 1574
}

1575
static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1576
			     void *type_data)
1577
{
1578
	if (type != TC_SETUP_QDISC_MQPRIO)
1579
		return -EOPNOTSUPP;
1580

1581
	return hns3_setup_tc(dev, type_data);
1582 1583 1584 1585 1586
}

static int hns3_vlan_rx_add_vid(struct net_device *netdev,
				__be16 proto, u16 vid)
{
1587
	struct hnae3_handle *h = hns3_get_handle(netdev);
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	int ret = -EIO;

	if (h->ae_algo->ops->set_vlan_filter)
		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);

	return ret;
}

static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
				 __be16 proto, u16 vid)
{
1599
	struct hnae3_handle *h = hns3_get_handle(netdev);
1600 1601 1602 1603 1604
	int ret = -EIO;

	if (h->ae_algo->ops->set_vlan_filter)
		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);

1605
	return ret;
1606 1607
}

1608 1609 1610
static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
				u8 qos, __be16 vlan_proto)
{
1611
	struct hnae3_handle *h = hns3_get_handle(netdev);
1612 1613
	int ret = -EIO;

1614 1615 1616 1617
	netif_dbg(h, drv, netdev,
		  "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=%u\n",
		  vf, vlan, qos, vlan_proto);

1618 1619
	if (h->ae_algo->ops->set_vf_vlan_filter)
		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1620
							  qos, vlan_proto);
1621 1622 1623 1624

	return ret;
}

1625 1626
static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
{
1627
	struct hnae3_handle *h = hns3_get_handle(netdev);
1628 1629
	int ret;

1630 1631 1632
	if (hns3_nic_resetting(netdev))
		return -EBUSY;

1633 1634 1635
	if (!h->ae_algo->ops->set_mtu)
		return -EOPNOTSUPP;

1636 1637 1638
	netif_dbg(h, drv, netdev,
		  "change mtu from %u to %d\n", netdev->mtu, new_mtu);

1639
	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1640
	if (ret)
1641 1642
		netdev_err(netdev, "failed to change MTU in hardware %d\n",
			   ret);
1643 1644
	else
		netdev->mtu = new_mtu;
F
Fuyun Liang 已提交
1645

1646 1647 1648
	return ret;
}

1649 1650 1651
static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
{
	struct hns3_nic_priv *priv = netdev_priv(ndev);
1652
	struct hnae3_handle *h = hns3_get_handle(ndev);
1653
	struct hns3_enet_ring *tx_ring = NULL;
1654
	struct napi_struct *napi;
1655 1656
	int timeout_queue = 0;
	int hw_head, hw_tail;
1657 1658 1659 1660
	int fbd_num, fbd_oft;
	int ebd_num, ebd_oft;
	int bd_num, bd_err;
	int ring_en, tc;
1661 1662 1663
	int i;

	/* Find the stopped queue the same way the stack does */
1664
	for (i = 0; i < ndev->num_tx_queues; i++) {
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
		struct netdev_queue *q;
		unsigned long trans_start;

		q = netdev_get_tx_queue(ndev, i);
		trans_start = q->trans_start;
		if (netif_xmit_stopped(q) &&
		    time_after(jiffies,
			       (trans_start + ndev->watchdog_timeo))) {
			timeout_queue = i;
			break;
		}
	}

	if (i == ndev->num_tx_queues) {
		netdev_info(ndev,
			    "no netdev TX timeout queue found, timeout count: %llu\n",
			    priv->tx_timeout_count);
		return false;
	}

1685 1686
	priv->tx_timeout_count++;

1687
	tx_ring = priv->ring_data[timeout_queue].ring;
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	napi = &tx_ring->tqp_vector->napi;

	netdev_info(ndev,
		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
		    tx_ring->next_to_clean, napi->state);

	netdev_info(ndev,
		    "tx_pkts: %llu, tx_bytes: %llu, io_err_cnt: %llu, sw_err_cnt: %llu\n",
		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
		    tx_ring->stats.io_err_cnt, tx_ring->stats.sw_err_cnt);

	netdev_info(ndev,
		    "seg_pkt_cnt: %llu, tx_err_cnt: %llu, restart_queue: %llu, tx_busy: %llu\n",
		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_err_cnt,
		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);

	/* When mac received many pause frames continuous, it's unable to send
	 * packets, which may cause tx timeout
	 */
	if (h->ae_algo->ops->update_stats &&
	    h->ae_algo->ops->get_mac_pause_stats) {
		u64 tx_pause_cnt, rx_pause_cnt;

		h->ae_algo->ops->update_stats(h, &ndev->stats);
		h->ae_algo->ops->get_mac_pause_stats(h, &tx_pause_cnt,
						     &rx_pause_cnt);
		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
			    tx_pause_cnt, rx_pause_cnt);
	}
1718 1719 1720 1721 1722

	hw_head = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_HEAD_REG);
	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_TAIL_REG);
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
	fbd_num = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_FBDNUM_REG);
	fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_OFFSET_REG);
	ebd_num = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_EBDNUM_REG);
	ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_EBD_OFFSET_REG);
	bd_num = readl_relaxed(tx_ring->tqp->io_base +
			       HNS3_RING_TX_RING_BD_NUM_REG);
	bd_err = readl_relaxed(tx_ring->tqp->io_base +
			       HNS3_RING_TX_RING_BD_ERR_REG);
	ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
	tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);

1738
	netdev_info(ndev,
1739 1740
		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
		    bd_num, hw_head, hw_tail, bd_err,
1741
		    readl(tx_ring->tqp_vector->mask_addr));
1742 1743 1744
	netdev_info(ndev,
		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
		    ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

	return true;
}

static void hns3_nic_net_timeout(struct net_device *ndev)
{
	struct hns3_nic_priv *priv = netdev_priv(ndev);
	struct hnae3_handle *h = priv->ae_handle;

	if (!hns3_get_tx_timeo_queue_info(ndev))
		return;

1757 1758 1759
	/* request the reset, and let the hclge to determine
	 * which reset level should be done
	 */
1760
	if (h->ae_algo->ops->reset_event)
1761
		h->ae_algo->ops->reset_event(h->pdev, h);
1762 1763
}

J
Jian Shen 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
#ifdef CONFIG_RFS_ACCEL
static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
			      u16 rxq_index, u32 flow_id)
{
	struct hnae3_handle *h = hns3_get_handle(dev);
	struct flow_keys fkeys;

	if (!h->ae_algo->ops->add_arfs_entry)
		return -EOPNOTSUPP;

	if (skb->encapsulation)
		return -EPROTONOSUPPORT;

	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
		return -EPROTONOSUPPORT;

	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
	     fkeys.basic.ip_proto != IPPROTO_UDP))
		return -EPROTONOSUPPORT;

	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
}
#endif

1790 1791 1792 1793
static const struct net_device_ops hns3_nic_netdev_ops = {
	.ndo_open		= hns3_nic_net_open,
	.ndo_stop		= hns3_nic_net_stop,
	.ndo_start_xmit		= hns3_nic_net_xmit,
1794
	.ndo_tx_timeout		= hns3_nic_net_timeout,
1795
	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
1796
	.ndo_do_ioctl		= hns3_nic_do_ioctl,
1797
	.ndo_change_mtu		= hns3_nic_change_mtu,
1798 1799 1800 1801 1802 1803 1804
	.ndo_set_features	= hns3_nic_set_features,
	.ndo_get_stats64	= hns3_nic_get_stats64,
	.ndo_setup_tc		= hns3_nic_setup_tc,
	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
J
Jian Shen 已提交
1805 1806 1807 1808
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
#endif

1809 1810
};

1811
bool hns3_is_phys_func(struct pci_dev *pdev)
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
{
	u32 dev_id = pdev->device;

	switch (dev_id) {
	case HNAE3_DEV_ID_GE:
	case HNAE3_DEV_ID_25GE:
	case HNAE3_DEV_ID_25GE_RDMA:
	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
	case HNAE3_DEV_ID_50GE_RDMA:
	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
		return true;
	case HNAE3_DEV_ID_100G_VF:
	case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
		return false;
	default:
		dev_warn(&pdev->dev, "un-recognized pci device-id %d",
			 dev_id);
	}

	return false;
}

static void hns3_disable_sriov(struct pci_dev *pdev)
{
	/* If our VFs are assigned we cannot shut down SR-IOV
	 * without causing issues, so just leave the hardware
	 * available but disabled
	 */
	if (pci_vfs_assigned(pdev)) {
		dev_warn(&pdev->dev,
			 "disabling driver while VFs are assigned\n");
		return;
	}

	pci_disable_sriov(pdev);
}

1850 1851 1852
static void hns3_get_dev_capability(struct pci_dev *pdev,
				    struct hnae3_ae_dev *ae_dev)
{
1853
	if (pdev->revision >= 0x21) {
1854
		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
1855 1856
		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
	}
1857 1858
}

1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
/* hns3_probe - Device initialization routine
 * @pdev: PCI device information struct
 * @ent: entry in hns3_pci_tbl
 *
 * hns3_probe initializes a PF identified by a pci_dev structure.
 * The OS initialization, configuring of the PF private structure,
 * and a hardware reset occur.
 *
 * Returns 0 on success, negative on failure
 */
static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
	struct hnae3_ae_dev *ae_dev;
	int ret;

1874
	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
1875 1876 1877 1878 1879 1880
	if (!ae_dev) {
		ret = -ENOMEM;
		return ret;
	}

	ae_dev->pdev = pdev;
1881
	ae_dev->flag = ent->driver_data;
1882
	ae_dev->reset_type = HNAE3_NONE_RESET;
1883
	hns3_get_dev_capability(pdev, ae_dev);
1884 1885
	pci_set_drvdata(pdev, ae_dev);

1886 1887 1888 1889 1890
	ret = hnae3_register_ae_dev(ae_dev);
	if (ret) {
		devm_kfree(&pdev->dev, ae_dev);
		pci_set_drvdata(pdev, NULL);
	}
1891

1892
	return ret;
1893 1894 1895 1896 1897 1898 1899 1900 1901
}

/* hns3_remove - Device removal routine
 * @pdev: PCI device information struct
 */
static void hns3_remove(struct pci_dev *pdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);

1902 1903 1904
	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
		hns3_disable_sriov(pdev);

1905
	hnae3_unregister_ae_dev(ae_dev);
1906
	pci_set_drvdata(pdev, NULL);
1907 1908
}

1909 1910 1911 1912 1913 1914 1915 1916
/**
 * hns3_pci_sriov_configure
 * @pdev: pointer to a pci_dev structure
 * @num_vfs: number of VFs to allocate
 *
 * Enable or change the number of VFs. Called when the user updates the number
 * of VFs in sysfs.
 **/
1917
static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
{
	int ret;

	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
		dev_warn(&pdev->dev, "Can not config SRIOV\n");
		return -EINVAL;
	}

	if (num_vfs) {
		ret = pci_enable_sriov(pdev, num_vfs);
		if (ret)
			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
1930 1931
		else
			return num_vfs;
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
	} else if (!pci_vfs_assigned(pdev)) {
		pci_disable_sriov(pdev);
	} else {
		dev_warn(&pdev->dev,
			 "Unable to free VFs because some are assigned to VMs.\n");
	}

	return 0;
}

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
static void hns3_shutdown(struct pci_dev *pdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);

	hnae3_unregister_ae_dev(ae_dev);
	devm_kfree(&pdev->dev, ae_dev);
	pci_set_drvdata(pdev, NULL);

	if (system_state == SYSTEM_POWER_OFF)
		pci_set_power_state(pdev, PCI_D3hot);
}

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
					    pci_channel_state_t state)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
	pci_ers_result_t ret;

	dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

1965
	if (!ae_dev || !ae_dev->ops) {
1966
		dev_err(&pdev->dev,
1967
			"Can't recover - error happened before device initialized\n");
1968 1969 1970
		return PCI_ERS_RESULT_NONE;
	}

1971 1972
	if (ae_dev->ops->handle_hw_ras_error)
		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
1973 1974 1975 1976 1977 1978
	else
		return PCI_ERS_RESULT_NONE;

	return ret;
}

1979 1980 1981
static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1982
	const struct hnae3_ae_ops *ops;
1983
	enum hnae3_reset_type reset_type;
1984 1985
	struct device *dev = &pdev->dev;

1986 1987 1988
	if (!ae_dev || !ae_dev->ops)
		return PCI_ERS_RESULT_NONE;

1989
	ops = ae_dev->ops;
1990
	/* request the reset */
1991
	if (ops->reset_event && ops->get_reset_level) {
1992
		if (ae_dev->hw_err_reset_req) {
1993 1994 1995 1996 1997 1998
			reset_type = ops->get_reset_level(ae_dev,
						&ae_dev->hw_err_reset_req);
			ops->set_default_reset_request(ae_dev, reset_type);
			dev_info(dev, "requesting reset due to PCI error\n");
			ops->reset_event(pdev, NULL);
		}
1999

2000 2001 2002 2003 2004 2005
		return PCI_ERS_RESULT_RECOVERED;
	}

	return PCI_ERS_RESULT_DISCONNECT;
}

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
static void hns3_reset_prepare(struct pci_dev *pdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);

	dev_info(&pdev->dev, "hns3 flr prepare\n");
	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
		ae_dev->ops->flr_prepare(ae_dev);
}

static void hns3_reset_done(struct pci_dev *pdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);

	dev_info(&pdev->dev, "hns3 flr done\n");
	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
		ae_dev->ops->flr_done(ae_dev);
}

2024 2025
static const struct pci_error_handlers hns3_err_handler = {
	.error_detected = hns3_error_detected,
2026
	.slot_reset     = hns3_slot_reset,
2027 2028
	.reset_prepare	= hns3_reset_prepare,
	.reset_done	= hns3_reset_done,
2029 2030
};

2031 2032 2033 2034 2035
static struct pci_driver hns3_driver = {
	.name     = hns3_driver_name,
	.id_table = hns3_pci_tbl,
	.probe    = hns3_probe,
	.remove   = hns3_remove,
2036
	.shutdown = hns3_shutdown,
2037
	.sriov_configure = hns3_pci_sriov_configure,
2038
	.err_handler    = &hns3_err_handler,
2039 2040 2041 2042 2043
};

/* set default feature to hns3 */
static void hns3_set_default_feature(struct net_device *netdev)
{
2044 2045 2046
	struct hnae3_handle *h = hns3_get_handle(netdev);
	struct pci_dev *pdev = h->pdev;

2047 2048 2049 2050 2051 2052
	netdev->priv_flags |= IFF_UNICAST_FLT;

	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2053
		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
2054 2055 2056 2057 2058 2059 2060

	netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;

	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;

	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
		NETIF_F_HW_VLAN_CTAG_FILTER |
2061
		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2062 2063 2064
		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2065
		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
2066 2067 2068 2069 2070 2071

	netdev->vlan_features |=
		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2072
		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
2073 2074

	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2075
		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2076 2077 2078
		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2079
		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
2080

2081
	if (pdev->revision >= 0x21) {
2082
		netdev->hw_features |= NETIF_F_GRO_HW;
2083
		netdev->features |= NETIF_F_GRO_HW;
2084 2085 2086 2087 2088 2089

		if (!(h->flags & HNAE3_SUPPORT_VF)) {
			netdev->hw_features |= NETIF_F_NTUPLE;
			netdev->features |= NETIF_F_NTUPLE;
		}
	}
2090 2091 2092 2093 2094
}

static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
			     struct hns3_desc_cb *cb)
{
2095
	unsigned int order = hns3_page_order(ring);
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	struct page *p;

	p = dev_alloc_pages(order);
	if (!p)
		return -ENOMEM;

	cb->priv = p;
	cb->page_offset = 0;
	cb->reuse_flag = 0;
	cb->buf  = page_address(p);
2106
	cb->length = hns3_page_size(ring);
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	cb->type = DESC_TYPE_PAGE;

	return 0;
}

static void hns3_free_buffer(struct hns3_enet_ring *ring,
			     struct hns3_desc_cb *cb)
{
	if (cb->type == DESC_TYPE_SKB)
		dev_kfree_skb_any((struct sk_buff *)cb->priv);
	else if (!HNAE3_IS_TX_RING(ring))
		put_page((struct page *)cb->priv);
	memset(cb, 0, sizeof(*cb));
}

static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
{
	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
			       cb->length, ring_to_dma_dir(ring));

2127
	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
		return -EIO;

	return 0;
}

static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
			      struct hns3_desc_cb *cb)
{
	if (cb->type == DESC_TYPE_SKB)
		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
				 ring_to_dma_dir(ring));
2139
	else if (cb->length)
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
			       ring_to_dma_dir(ring));
}

static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
{
	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
	ring->desc[i].addr = 0;
}

static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
{
	struct hns3_desc_cb *cb = &ring->desc_cb[i];

	if (!ring->desc_cb[i].dma)
		return;

	hns3_buffer_detach(ring, i);
	hns3_free_buffer(ring, cb);
}

static void hns3_free_buffers(struct hns3_enet_ring *ring)
{
	int i;

	for (i = 0; i < ring->desc_num; i++)
		hns3_free_buffer_detach(ring, i);
}

/* free desc along with its attached buffer */
static void hns3_free_desc(struct hns3_enet_ring *ring)
{
2172 2173
	int size = ring->desc_num * sizeof(ring->desc[0]);

2174 2175
	hns3_free_buffers(ring);

2176 2177 2178 2179 2180
	if (ring->desc) {
		dma_free_coherent(ring_to_dev(ring), size,
				  ring->desc, ring->desc_dma_addr);
		ring->desc = NULL;
	}
2181 2182 2183 2184 2185 2186
}

static int hns3_alloc_desc(struct hns3_enet_ring *ring)
{
	int size = ring->desc_num * sizeof(ring->desc[0]);

2187 2188
	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
					&ring->desc_dma_addr, GFP_KERNEL);
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	if (!ring->desc)
		return -ENOMEM;

	return 0;
}

static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
				   struct hns3_desc_cb *cb)
{
	int ret;

	ret = hns3_alloc_buffer(ring, cb);
	if (ret)
		goto out;

	ret = hns3_map_buffer(ring, cb);
	if (ret)
		goto out_with_buf;

	return 0;

out_with_buf:
2211
	hns3_free_buffer(ring, cb);
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
out:
	return ret;
}

static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
{
	int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);

	if (ret)
		return ret;

	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);

	return 0;
}

/* Allocate memory for raw pkg, and map with dma */
static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
{
	int i, j, ret;

	for (i = 0; i < ring->desc_num; i++) {
		ret = hns3_alloc_buffer_attach(ring, i);
		if (ret)
			goto out_buffer_fail;
	}

	return 0;

out_buffer_fail:
	for (j = i - 1; j >= 0; j--)
		hns3_free_buffer_detach(ring, j);
	return ret;
}

2247
/* detach a in-used buffer and replace with a reserved one */
2248 2249 2250
static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
				struct hns3_desc_cb *res_cb)
{
2251
	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2252 2253
	ring->desc_cb[i] = *res_cb;
	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2254
	ring->desc[i].rx.bd_base_info = 0;
2255 2256 2257 2258 2259
}

static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
{
	ring->desc_cb[i].reuse_flag = 0;
2260 2261
	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
					 ring->desc_cb[i].page_offset);
2262
	ring->desc[i].rx.bd_base_info = 0;
2263 2264
}

2265 2266
static void hns3_nic_reclaim_desc(struct hns3_enet_ring *ring, int head,
				  int *bytes, int *pkts)
2267
{
2268 2269
	int ntc = ring->next_to_clean;
	struct hns3_desc_cb *desc_cb;
2270

2271 2272 2273 2274 2275 2276
	while (head != ntc) {
		desc_cb = &ring->desc_cb[ntc];
		(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
		(*bytes) += desc_cb->length;
		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
		hns3_free_buffer_detach(ring, ntc);
2277

2278 2279 2280 2281 2282 2283
		if (++ntc == ring->desc_num)
			ntc = 0;

		/* Issue prefetch for next Tx descriptor */
		prefetch(&ring->desc_cb[ntc]);
	}
2284 2285 2286 2287 2288

	/* This smp_store_release() pairs with smp_load_acquire() in
	 * ring_space called by hns3_nic_net_xmit.
	 */
	smp_store_release(&ring->next_to_clean, ntc);
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
}

static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
{
	int u = ring->next_to_use;
	int c = ring->next_to_clean;

	if (unlikely(h > ring->desc_num))
		return 0;

	return u > c ? (h > c && h <= u) : (h > c || h <= u);
}

2302
void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2303 2304
{
	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2305
	struct hns3_nic_priv *priv = netdev_priv(netdev);
2306 2307 2308 2309 2310 2311 2312 2313
	struct netdev_queue *dev_queue;
	int bytes, pkts;
	int head;

	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
	rmb(); /* Make sure head is ready before touch any data */

	if (is_ring_empty(ring) || head == ring->next_to_clean)
2314
		return; /* no data to poll */
2315

2316
	if (unlikely(!is_valid_clean_head(ring, head))) {
2317 2318 2319 2320 2321 2322
		netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
			   ring->next_to_use, ring->next_to_clean);

		u64_stats_update_begin(&ring->syncp);
		ring->stats.io_err_cnt++;
		u64_stats_update_end(&ring->syncp);
2323
		return;
2324 2325 2326 2327
	}

	bytes = 0;
	pkts = 0;
2328
	hns3_nic_reclaim_desc(ring, head, &bytes, &pkts);
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346

	ring->tqp_vector->tx_group.total_bytes += bytes;
	ring->tqp_vector->tx_group.total_packets += pkts;

	u64_stats_update_begin(&ring->syncp);
	ring->stats.tx_bytes += bytes;
	ring->stats.tx_pkts += pkts;
	u64_stats_update_end(&ring->syncp);

	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
	netdev_tx_completed_queue(dev_queue, pkts, bytes);

	if (unlikely(pkts && netif_carrier_ok(netdev) &&
		     (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
2347 2348
		if (netif_tx_queue_stopped(dev_queue) &&
		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
			netif_tx_wake_queue(dev_queue);
			ring->stats.restart_queue++;
		}
	}
}

static int hns3_desc_unused(struct hns3_enet_ring *ring)
{
	int ntc = ring->next_to_clean;
	int ntu = ring->next_to_use;

	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
}

2363 2364
static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
				      int cleand_count)
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
{
	struct hns3_desc_cb *desc_cb;
	struct hns3_desc_cb res_cbs;
	int i, ret;

	for (i = 0; i < cleand_count; i++) {
		desc_cb = &ring->desc_cb[ring->next_to_use];
		if (desc_cb->reuse_flag) {
			u64_stats_update_begin(&ring->syncp);
			ring->stats.reuse_pg_cnt++;
			u64_stats_update_end(&ring->syncp);

			hns3_reuse_buffer(ring, ring->next_to_use);
		} else {
			ret = hns3_reserve_buffer_map(ring, &res_cbs);
			if (ret) {
				u64_stats_update_begin(&ring->syncp);
				ring->stats.sw_err_cnt++;
				u64_stats_update_end(&ring->syncp);

				netdev_err(ring->tqp->handle->kinfo.netdev,
					   "hnae reserve buffer map failed.\n");
				break;
			}
			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2390 2391 2392 2393

			u64_stats_update_begin(&ring->syncp);
			ring->stats.non_reuse_pg++;
			u64_stats_update_end(&ring->syncp);
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
		}

		ring_ptr_move_fw(ring, next_to_use);
	}

	wmb(); /* Make all data has been write before submit */
	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
}

static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
				struct hns3_enet_ring *ring, int pull_len,
				struct hns3_desc_cb *desc_cb)
{
2407 2408
	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
	int size = le16_to_cpu(desc->rx.size);
2409
	u32 truesize = hns3_buf_size(ring);
2410 2411

	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2412
			size - pull_len, truesize);
2413

2414 2415 2416
	/* Avoid re-using remote pages, or the stack is still using the page
	 * when page_offset rollback to zero, flag default unreuse
	 */
2417
	if (unlikely(page_to_nid(desc_cb->priv) != numa_mem_id()) ||
2418
	    (!desc_cb->page_offset && page_count(desc_cb->priv) > 1))
2419 2420 2421 2422 2423
		return;

	/* Move offset up to the next cache line */
	desc_cb->page_offset += truesize;

2424
	if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) {
2425
		desc_cb->reuse_flag = 1;
2426
		/* Bump ref count on page before it is given */
2427
		get_page(desc_cb->priv);
2428 2429 2430 2431
	} else if (page_count(desc_cb->priv) == 1) {
		desc_cb->reuse_flag = 1;
		desc_cb->page_offset = 0;
		get_page(desc_cb->priv);
2432 2433 2434
	}
}

2435
static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2436 2437 2438 2439 2440
{
	__be16 type = skb->protocol;
	struct tcphdr *th;
	int depth = 0;

2441
	while (eth_type_vlan(type)) {
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
		struct vlan_hdr *vh;

		if ((depth + VLAN_HLEN) > skb_headlen(skb))
			return -EFAULT;

		vh = (struct vlan_hdr *)(skb->data + depth);
		type = vh->h_vlan_encapsulated_proto;
		depth += VLAN_HLEN;
	}

2452 2453
	skb_set_network_header(skb, depth);

2454
	if (type == htons(ETH_P_IP)) {
2455 2456
		const struct iphdr *iph = ip_hdr(skb);

2457
		depth += sizeof(struct iphdr);
2458 2459 2460 2461
		skb_set_transport_header(skb, depth);
		th = tcp_hdr(skb);
		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
					  iph->daddr, 0);
2462
	} else if (type == htons(ETH_P_IPV6)) {
2463 2464
		const struct ipv6hdr *iph = ipv6_hdr(skb);

2465
		depth += sizeof(struct ipv6hdr);
2466 2467 2468 2469
		skb_set_transport_header(skb, depth);
		th = tcp_hdr(skb);
		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
					  &iph->daddr, 0);
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
	} else {
		netdev_err(skb->dev,
			   "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
			   be16_to_cpu(type), depth);
		return -EFAULT;
	}

	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
	if (th->cwr)
		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;

2481 2482
	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2483

2484 2485 2486
	skb->csum_start = (unsigned char *)th - skb->head;
	skb->csum_offset = offsetof(struct tcphdr, check);
	skb->ip_summed = CHECKSUM_PARTIAL;
2487 2488 2489
	return 0;
}

2490
static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2491
			     u32 l234info, u32 bd_base_info, u32 ol_info)
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
{
	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
	int l3_type, l4_type;
	int ol4_type;

	skb->ip_summed = CHECKSUM_NONE;

	skb_checksum_none_assert(skb);

	if (!(netdev->features & NETIF_F_RXCSUM))
		return;

	/* check if hardware has done checksum */
2505
	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2506 2507
		return;

2508 2509
	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
				 BIT(HNS3_RXD_OL3E_B) |
2510
				 BIT(HNS3_RXD_OL4E_B)))) {
2511 2512 2513 2514 2515 2516 2517
		u64_stats_update_begin(&ring->syncp);
		ring->stats.l3l4_csum_err++;
		u64_stats_update_end(&ring->syncp);

		return;
	}

2518
	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
P
Peng Li 已提交
2519
				   HNS3_RXD_OL4ID_S);
2520 2521 2522 2523
	switch (ol4_type) {
	case HNS3_OL4_TYPE_MAC_IN_UDP:
	case HNS3_OL4_TYPE_NVGRE:
		skb->csum_level = 1;
2524
		/* fall through */
2525
	case HNS3_OL4_TYPE_NO_TUN:
2526 2527 2528 2529 2530
		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
					  HNS3_RXD_L3ID_S);
		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
					  HNS3_RXD_L4ID_S);

2531
		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2532 2533 2534 2535 2536
		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
		     l3_type == HNS3_L3_TYPE_IPV6) &&
		    (l4_type == HNS3_L4_TYPE_UDP ||
		     l4_type == HNS3_L4_TYPE_TCP ||
		     l4_type == HNS3_L4_TYPE_SCTP))
2537 2538
			skb->ip_summed = CHECKSUM_UNNECESSARY;
		break;
2539 2540
	default:
		break;
2541 2542 2543
	}
}

2544 2545
static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
{
2546 2547 2548
	if (skb_has_frag_list(skb))
		napi_gro_flush(&ring->tqp_vector->napi, false);

2549 2550 2551
	napi_gro_receive(&ring->tqp_vector->napi, skb);
}

2552 2553 2554
static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
				struct hns3_desc *desc, u32 l234info,
				u16 *vlan_tag)
2555
{
2556
	struct hnae3_handle *handle = ring->tqp->handle;
2557 2558 2559
	struct pci_dev *pdev = ring->tqp->handle->pdev;

	if (pdev->revision == 0x20) {
2560 2561 2562
		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
		if (!(*vlan_tag & VLAN_VID_MASK))
			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2563

2564
		return (*vlan_tag != 0);
2565 2566 2567 2568
	}

#define HNS3_STRP_OUTER_VLAN	0x1
#define HNS3_STRP_INNER_VLAN	0x2
2569
#define HNS3_STRP_BOTH		0x3
2570

2571 2572 2573 2574
	/* Hardware always insert VLAN tag into RX descriptor when
	 * remove the tag from packet, driver needs to determine
	 * reporting which tag to stack.
	 */
P
Peng Li 已提交
2575 2576
	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
				HNS3_RXD_STRP_TAGP_S)) {
2577
	case HNS3_STRP_OUTER_VLAN:
2578 2579 2580 2581
		if (handle->port_base_vlan_state !=
				HNAE3_PORT_BASE_VLAN_DISABLE)
			return false;

2582 2583
		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
		return true;
2584
	case HNS3_STRP_INNER_VLAN:
2585 2586 2587 2588
		if (handle->port_base_vlan_state !=
				HNAE3_PORT_BASE_VLAN_DISABLE)
			return false;

2589
		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2590 2591 2592 2593 2594 2595 2596 2597
		return true;
	case HNS3_STRP_BOTH:
		if (handle->port_base_vlan_state ==
				HNAE3_PORT_BASE_VLAN_DISABLE)
			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
		else
			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);

2598
		return true;
2599
	default:
2600
		return false;
2601 2602 2603
	}
}

2604
static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
			  unsigned char *va)
{
#define HNS3_NEED_ADD_FRAG	1
	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
	struct sk_buff *skb;

	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
	skb = ring->skb;
	if (unlikely(!skb)) {
		netdev_err(netdev, "alloc rx skb fail\n");

		u64_stats_update_begin(&ring->syncp);
		ring->stats.sw_err_cnt++;
		u64_stats_update_end(&ring->syncp);

		return -ENOMEM;
	}

	prefetchw(skb->data);

	ring->pending_buf = 1;
2627 2628
	ring->frag_num = 0;
	ring->tail_skb = NULL;
2629 2630 2631 2632
	if (length <= HNS3_RX_HEAD_SIZE) {
		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));

		/* We can reuse buffer as-is, just make sure it is local */
2633
		if (likely(page_to_nid(desc_cb->priv) == numa_mem_id()))
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
			desc_cb->reuse_flag = 1;
		else /* This page cannot be reused so discard it */
			put_page(desc_cb->priv);

		ring_ptr_move_fw(ring, next_to_clean);
		return 0;
	}
	u64_stats_update_begin(&ring->syncp);
	ring->stats.seg_pkt_cnt++;
	u64_stats_update_end(&ring->syncp);

2645
	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
2646
	__skb_put(skb, ring->pull_len);
2647
	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
			    desc_cb);
	ring_ptr_move_fw(ring, next_to_clean);

	return HNS3_NEED_ADD_FRAG;
}

static int hns3_add_frag(struct hns3_enet_ring *ring, struct hns3_desc *desc,
			 struct sk_buff **out_skb, bool pending)
{
	struct sk_buff *skb = *out_skb;
2658 2659
	struct sk_buff *head_skb = *out_skb;
	struct sk_buff *new_skb;
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
	struct hns3_desc_cb *desc_cb;
	struct hns3_desc *pre_desc;
	u32 bd_base_info;
	int pre_bd;

	/* if there is pending bd, the SW param next_to_clean has moved
	 * to next and the next is NULL
	 */
	if (pending) {
		pre_bd = (ring->next_to_clean - 1 + ring->desc_num) %
2670
			 ring->desc_num;
2671 2672 2673 2674 2675 2676
		pre_desc = &ring->desc[pre_bd];
		bd_base_info = le32_to_cpu(pre_desc->rx.bd_base_info);
	} else {
		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
	}

2677
	while (!(bd_base_info & BIT(HNS3_RXD_FE_B))) {
2678 2679 2680
		desc = &ring->desc[ring->next_to_clean];
		desc_cb = &ring->desc_cb[ring->next_to_clean];
		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2681 2682
		/* make sure HW write desc complete */
		dma_rmb();
2683
		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
2684 2685
			return -ENXIO;

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
			new_skb = napi_alloc_skb(&ring->tqp_vector->napi,
						 HNS3_RX_HEAD_SIZE);
			if (unlikely(!new_skb)) {
				netdev_err(ring->tqp->handle->kinfo.netdev,
					   "alloc rx skb frag fail\n");
				return -ENXIO;
			}
			ring->frag_num = 0;

			if (ring->tail_skb) {
				ring->tail_skb->next = new_skb;
				ring->tail_skb = new_skb;
			} else {
				skb_shinfo(skb)->frag_list = new_skb;
				ring->tail_skb = new_skb;
			}
		}

		if (ring->tail_skb) {
2706
			head_skb->truesize += hns3_buf_size(ring);
2707 2708 2709 2710 2711 2712
			head_skb->data_len += le16_to_cpu(desc->rx.size);
			head_skb->len += le16_to_cpu(desc->rx.size);
			skb = ring->tail_skb;
		}

		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2713 2714 2715 2716 2717 2718 2719
		ring_ptr_move_fw(ring, next_to_clean);
		ring->pending_buf++;
	}

	return 0;
}

2720 2721
static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
				     struct sk_buff *skb, u32 l234info,
2722
				     u32 bd_base_info, u32 ol_info)
2723 2724 2725
{
	u32 l3_type;

2726 2727 2728
	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
						    HNS3_RXD_GRO_SIZE_M,
						    HNS3_RXD_GRO_SIZE_S);
2729
	/* if there is no HW GRO, do not set gro params */
2730
	if (!skb_shinfo(skb)->gso_size) {
2731
		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
2732 2733
		return 0;
	}
2734

2735 2736 2737
	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
						  HNS3_RXD_GRO_COUNT_M,
						  HNS3_RXD_GRO_COUNT_S);
2738

2739
	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
2740 2741 2742 2743 2744
	if (l3_type == HNS3_L3_TYPE_IPV4)
		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
	else if (l3_type == HNS3_L3_TYPE_IPV6)
		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
	else
2745
		return -EFAULT;
2746

2747
	return  hns3_gro_complete(skb, l234info);
2748 2749
}

2750
static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2751
				     struct sk_buff *skb, u32 rss_hash)
2752 2753 2754 2755
{
	struct hnae3_handle *handle = ring->tqp->handle;
	enum pkt_hash_types rss_type;

2756
	if (rss_hash)
2757 2758 2759 2760
		rss_type = handle->kinfo.rss_type;
	else
		rss_type = PKT_HASH_TYPE_NONE;

2761
	skb_set_hash(skb, rss_hash, rss_type);
2762 2763
}

2764
static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
2765 2766
{
	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2767
	enum hns3_pkt_l2t_type l2_frame_type;
2768
	u32 bd_base_info, l234info, ol_info;
2769
	struct hns3_desc *desc;
2770
	unsigned int len;
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
	int pre_ntc, ret;

	/* bdinfo handled below is only valid on the last BD of the
	 * current packet, and ring->next_to_clean indicates the first
	 * descriptor of next packet, so need - 1 below.
	 */
	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
					(ring->desc_num - 1);
	desc = &ring->desc[pre_ntc];
	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
	l234info = le32_to_cpu(desc->rx.l234_info);
2782
	ol_info = le32_to_cpu(desc->rx.ol_info);
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813

	/* Based on hw strategy, the tag offloaded will be stored at
	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
	 * in one layer tag case.
	 */
	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
		u16 vlan_tag;

		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
					       vlan_tag);
	}

	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
				  BIT(HNS3_RXD_L2E_B))))) {
		u64_stats_update_begin(&ring->syncp);
		if (l234info & BIT(HNS3_RXD_L2E_B))
			ring->stats.l2_err++;
		else
			ring->stats.err_pkt_len++;
		u64_stats_update_end(&ring->syncp);

		return -EFAULT;
	}

	len = skb->len;

	/* Do update ip stack process */
	skb->protocol = eth_type_trans(skb, netdev);

	/* This is needed in order to enable forwarding support */
2814 2815
	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
					bd_base_info, ol_info);
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
	if (unlikely(ret)) {
		u64_stats_update_begin(&ring->syncp);
		ring->stats.rx_err_cnt++;
		u64_stats_update_end(&ring->syncp);
		return ret;
	}

	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
					HNS3_RXD_DMAC_S);

	u64_stats_update_begin(&ring->syncp);
	ring->stats.rx_pkts++;
	ring->stats.rx_bytes += len;

	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
		ring->stats.rx_multicast++;

	u64_stats_update_end(&ring->syncp);

	ring->tqp_vector->rx_group.total_bytes += len;
2836 2837

	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
2838 2839 2840 2841 2842 2843
	return 0;
}

static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
			     struct sk_buff **out_skb)
{
2844
	struct sk_buff *skb = ring->skb;
2845 2846
	struct hns3_desc_cb *desc_cb;
	struct hns3_desc *desc;
2847
	unsigned int length;
2848
	u32 bd_base_info;
2849
	int ret;
2850 2851 2852 2853 2854 2855

	desc = &ring->desc[ring->next_to_clean];
	desc_cb = &ring->desc_cb[ring->next_to_clean];

	prefetch(desc);

2856
	length = le16_to_cpu(desc->rx.size);
2857 2858 2859
	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);

	/* Check valid BD */
2860
	if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
2861
		return -ENXIO;
2862

2863 2864
	if (!skb)
		ring->va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
2865 2866 2867 2868 2869 2870 2871 2872

	/* Prefetch first cache line of first page
	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
	 * line size is 64B so need to prefetch twice to make it 128B. But in
	 * actual we can have greater size of caches with 128B Level 1 cache
	 * lines. In such a case, single fetch would suffice to cache in the
	 * relevant part of the header.
	 */
2873
	prefetch(ring->va);
2874
#if L1_CACHE_BYTES < 128
2875
	prefetch(ring->va + L1_CACHE_BYTES);
2876 2877
#endif

2878 2879 2880
	if (!skb) {
		ret = hns3_alloc_skb(ring, length, ring->va);
		*out_skb = skb = ring->skb;
2881

2882 2883 2884 2885 2886 2887
		if (ret < 0) /* alloc buffer fail */
			return ret;
		if (ret > 0) { /* need add frag */
			ret = hns3_add_frag(ring, desc, &skb, false);
			if (ret)
				return ret;
2888

2889 2890 2891 2892 2893 2894
			/* As the head data may be changed when GRO enable, copy
			 * the head data in after other data rx completed
			 */
			memcpy(skb->data, ring->va,
			       ALIGN(ring->pull_len, sizeof(long)));
		}
2895
	} else {
2896 2897 2898
		ret = hns3_add_frag(ring, desc, &skb, true);
		if (ret)
			return ret;
2899

2900 2901 2902 2903 2904
		/* As the head data may be changed when GRO enable, copy
		 * the head data in after other data rx completed
		 */
		memcpy(skb->data, ring->va,
		       ALIGN(ring->pull_len, sizeof(long)));
2905 2906
	}

2907
	ret = hns3_handle_bdinfo(ring, skb);
2908
	if (unlikely(ret)) {
2909
		dev_kfree_skb_any(skb);
2910
		return ret;
2911 2912
	}

J
Jian Shen 已提交
2913
	skb_record_rx_queue(skb, ring->tqp->tqp_index);
2914
	*out_skb = skb;
2915

2916 2917 2918
	return 0;
}

2919 2920
int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2921 2922
{
#define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
2923
	int unused_count = hns3_desc_unused(ring);
2924
	struct sk_buff *skb = ring->skb;
2925 2926 2927
	int recv_pkts = 0;
	int recv_bds = 0;
	int err, num;
2928 2929 2930 2931 2932

	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
	rmb(); /* Make sure num taken effect before the other data is touched */

	num -= unused_count;
2933
	unused_count -= ring->pending_buf;
2934 2935 2936

	while (recv_pkts < budget && recv_bds < num) {
		/* Reuse or realloc buffers */
2937 2938
		if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
			hns3_nic_alloc_rx_buffers(ring, unused_count);
2939 2940
			unused_count = hns3_desc_unused(ring) -
					ring->pending_buf;
2941 2942 2943
		}

		/* Poll one pkt */
2944
		err = hns3_handle_rx_bd(ring, &skb);
2945 2946 2947
		if (unlikely(!skb)) /* This fault cannot be repaired */
			goto out;

2948 2949 2950 2951
		if (err == -ENXIO) { /* Do not get FE for the packet */
			goto out;
		} else if (unlikely(err)) {  /* Do jump the err */
			recv_bds += ring->pending_buf;
2952
			unused_count += ring->pending_buf;
2953 2954
			ring->skb = NULL;
			ring->pending_buf = 0;
2955 2956 2957
			continue;
		}

2958
		rx_fn(ring, skb);
2959
		recv_bds += ring->pending_buf;
2960
		unused_count += ring->pending_buf;
2961 2962
		ring->skb = NULL;
		ring->pending_buf = 0;
2963 2964 2965 2966 2967 2968

		recv_pkts++;
	}

out:
	/* Make all data has been write before submit */
2969 2970
	if (unused_count > 0)
		hns3_nic_alloc_rx_buffers(ring, unused_count);
2971 2972 2973 2974

	return recv_pkts;
}

2975
static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
2976
{
2977 2978 2979 2980
#define HNS3_RX_LOW_BYTE_RATE 10000
#define HNS3_RX_MID_BYTE_RATE 20000
#define HNS3_RX_ULTRA_PACKET_RATE 40

2981
	enum hns3_flow_level_range new_flow_level;
2982 2983
	struct hns3_enet_tqp_vector *tqp_vector;
	int packets_per_msecs, bytes_per_msecs;
2984
	u32 time_passed_ms;
2985

2986
	tqp_vector = ring_group->ring->tqp_vector;
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
	time_passed_ms =
		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
	if (!time_passed_ms)
		return false;

	do_div(ring_group->total_packets, time_passed_ms);
	packets_per_msecs = ring_group->total_packets;

	do_div(ring_group->total_bytes, time_passed_ms);
	bytes_per_msecs = ring_group->total_bytes;

2998
	new_flow_level = ring_group->coal.flow_level;
2999

3000 3001 3002 3003 3004 3005
	/* Simple throttlerate management
	 * 0-10MB/s   lower     (50000 ints/s)
	 * 10-20MB/s   middle    (20000 ints/s)
	 * 20-1249MB/s high      (18000 ints/s)
	 * > 40000pps  ultra     (8000 ints/s)
	 */
3006 3007
	switch (new_flow_level) {
	case HNS3_FLOW_LOW:
3008
		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
3009 3010 3011
			new_flow_level = HNS3_FLOW_MID;
		break;
	case HNS3_FLOW_MID:
3012
		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
3013
			new_flow_level = HNS3_FLOW_HIGH;
3014
		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
3015 3016 3017 3018 3019
			new_flow_level = HNS3_FLOW_LOW;
		break;
	case HNS3_FLOW_HIGH:
	case HNS3_FLOW_ULTRA:
	default:
3020
		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
3021 3022 3023 3024
			new_flow_level = HNS3_FLOW_MID;
		break;
	}

3025 3026
	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
	    &tqp_vector->rx_group == ring_group)
3027 3028
		new_flow_level = HNS3_FLOW_ULTRA;

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
	ring_group->total_bytes = 0;
	ring_group->total_packets = 0;
	ring_group->coal.flow_level = new_flow_level;

	return true;
}

static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
{
	struct hns3_enet_tqp_vector *tqp_vector;
	u16 new_int_gl;

	if (!ring_group->ring)
		return false;

	tqp_vector = ring_group->ring->tqp_vector;
	if (!tqp_vector->last_jiffies)
		return false;

	if (ring_group->total_packets == 0) {
		ring_group->coal.int_gl = HNS3_INT_GL_50K;
		ring_group->coal.flow_level = HNS3_FLOW_LOW;
		return true;
	}

	if (!hns3_get_new_flow_lvl(ring_group))
		return false;

	new_int_gl = ring_group->coal.int_gl;
	switch (ring_group->coal.flow_level) {
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
	case HNS3_FLOW_LOW:
		new_int_gl = HNS3_INT_GL_50K;
		break;
	case HNS3_FLOW_MID:
		new_int_gl = HNS3_INT_GL_20K;
		break;
	case HNS3_FLOW_HIGH:
		new_int_gl = HNS3_INT_GL_18K;
		break;
	case HNS3_FLOW_ULTRA:
		new_int_gl = HNS3_INT_GL_8K;
		break;
	default:
		break;
	}

3075 3076
	if (new_int_gl != ring_group->coal.int_gl) {
		ring_group->coal.int_gl = new_int_gl;
3077 3078 3079 3080 3081 3082 3083
		return true;
	}
	return false;
}

static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
{
3084 3085 3086 3087
	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
	bool rx_update, tx_update;

3088 3089 3090
	/* update param every 1000ms */
	if (time_before(jiffies,
			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
F
Fuyun Liang 已提交
3091 3092
		return;

3093
	if (rx_group->coal.gl_adapt_enable) {
3094 3095 3096
		rx_update = hns3_get_new_int_gl(rx_group);
		if (rx_update)
			hns3_set_vector_coalesce_rx_gl(tqp_vector,
3097
						       rx_group->coal.int_gl);
3098 3099
	}

3100
	if (tx_group->coal.gl_adapt_enable) {
3101
		tx_update = hns3_get_new_int_gl(tx_group);
3102 3103
		if (tx_update)
			hns3_set_vector_coalesce_tx_gl(tqp_vector,
3104
						       tx_group->coal.int_gl);
3105
	}
F
Fuyun Liang 已提交
3106

3107
	tqp_vector->last_jiffies = jiffies;
3108 3109 3110 3111
}

static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
{
3112
	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3113 3114 3115 3116 3117 3118
	struct hns3_enet_ring *ring;
	int rx_pkt_total = 0;

	struct hns3_enet_tqp_vector *tqp_vector =
		container_of(napi, struct hns3_enet_tqp_vector, napi);
	bool clean_complete = true;
3119
	int rx_budget = budget;
3120

3121 3122 3123 3124 3125
	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
		napi_complete(napi);
		return 0;
	}

3126 3127 3128
	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
3129 3130
	hns3_for_each_ring(ring, tqp_vector->tx_group)
		hns3_clean_tx_ring(ring);
3131 3132

	/* make sure rx ring budget not smaller than 1 */
3133 3134
	if (tqp_vector->num_tqps > 1)
		rx_budget = max(budget / tqp_vector->num_tqps, 1);
3135 3136

	hns3_for_each_ring(ring, tqp_vector->rx_group) {
3137 3138
		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
						    hns3_rx_skb);
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150

		if (rx_cleaned >= rx_budget)
			clean_complete = false;

		rx_pkt_total += rx_cleaned;
	}

	tqp_vector->rx_group.total_packets += rx_pkt_total;

	if (!clean_complete)
		return budget;

3151 3152
	if (napi_complete(napi) &&
	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3153 3154 3155
		hns3_update_new_int_gl(tqp_vector);
		hns3_mask_vector_irq(tqp_vector, 1);
	}
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171

	return rx_pkt_total;
}

static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
				      struct hnae3_ring_chain_node *head)
{
	struct pci_dev *pdev = tqp_vector->handle->pdev;
	struct hnae3_ring_chain_node *cur_chain = head;
	struct hnae3_ring_chain_node *chain;
	struct hns3_enet_ring *tx_ring;
	struct hns3_enet_ring *rx_ring;

	tx_ring = tqp_vector->tx_group.ring;
	if (tx_ring) {
		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
P
Peng Li 已提交
3172 3173 3174 3175
		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
			      HNAE3_RING_TYPE_TX);
		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3176 3177 3178 3179 3180 3181 3182 3183 3184

		cur_chain->next = NULL;

		while (tx_ring->next) {
			tx_ring = tx_ring->next;

			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
					     GFP_KERNEL);
			if (!chain)
3185
				goto err_free_chain;
3186 3187 3188

			cur_chain->next = chain;
			chain->tqp_index = tx_ring->tqp->tqp_index;
P
Peng Li 已提交
3189 3190 3191 3192 3193 3194
			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
				      HNAE3_RING_TYPE_TX);
			hnae3_set_field(chain->int_gl_idx,
					HNAE3_RING_GL_IDX_M,
					HNAE3_RING_GL_IDX_S,
					HNAE3_RING_GL_TX);
3195 3196 3197 3198 3199 3200 3201 3202 3203

			cur_chain = chain;
		}
	}

	rx_ring = tqp_vector->rx_group.ring;
	if (!tx_ring && rx_ring) {
		cur_chain->next = NULL;
		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
P
Peng Li 已提交
3204 3205 3206 3207
		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
			      HNAE3_RING_TYPE_RX);
		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3208 3209 3210 3211 3212 3213 3214

		rx_ring = rx_ring->next;
	}

	while (rx_ring) {
		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
		if (!chain)
3215
			goto err_free_chain;
3216 3217 3218

		cur_chain->next = chain;
		chain->tqp_index = rx_ring->tqp->tqp_index;
P
Peng Li 已提交
3219 3220 3221 3222
		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
			      HNAE3_RING_TYPE_RX);
		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3223

3224 3225 3226 3227 3228 3229
		cur_chain = chain;

		rx_ring = rx_ring->next;
	}

	return 0;
3230 3231 3232 3233 3234

err_free_chain:
	cur_chain = head->next;
	while (cur_chain) {
		chain = cur_chain->next;
3235
		devm_kfree(&pdev->dev, cur_chain);
3236 3237
		cur_chain = chain;
	}
3238
	head->next = NULL;
3239 3240

	return -ENOMEM;
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
}

static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
					struct hnae3_ring_chain_node *head)
{
	struct pci_dev *pdev = tqp_vector->handle->pdev;
	struct hnae3_ring_chain_node *chain_tmp, *chain;

	chain = head->next;

	while (chain) {
		chain_tmp = chain->next;
		devm_kfree(&pdev->dev, chain);
		chain = chain_tmp;
	}
}

static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
				   struct hns3_enet_ring *ring)
{
	ring->next = group->ring;
	group->ring = ring;

	group->count++;
}

P
Peng Li 已提交
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
{
	struct pci_dev *pdev = priv->ae_handle->pdev;
	struct hns3_enet_tqp_vector *tqp_vector;
	int num_vectors = priv->vector_num;
	int numa_node;
	int vector_i;

	numa_node = dev_to_node(&pdev->dev);

	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
		tqp_vector = &priv->tqp_vector[vector_i];
		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
				&tqp_vector->affinity_mask);
	}
}

3284 3285 3286 3287 3288 3289
static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
{
	struct hnae3_ring_chain_node vector_ring_chain;
	struct hnae3_handle *h = priv->ae_handle;
	struct hns3_enet_tqp_vector *tqp_vector;
	int ret = 0;
3290
	int i;
3291

P
Peng Li 已提交
3292 3293
	hns3_nic_set_cpumask(priv);

3294 3295 3296 3297 3298
	for (i = 0; i < priv->vector_num; i++) {
		tqp_vector = &priv->tqp_vector[i];
		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
		tqp_vector->num_tqps = 0;
	}
3299

3300 3301 3302
	for (i = 0; i < h->kinfo.num_tqps; i++) {
		u16 vector_i = i % priv->vector_num;
		u16 tqp_num = h->kinfo.num_tqps;
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313

		tqp_vector = &priv->tqp_vector[vector_i];

		hns3_add_ring_to_group(&tqp_vector->tx_group,
				       priv->ring_data[i].ring);

		hns3_add_ring_to_group(&tqp_vector->rx_group,
				       priv->ring_data[i + tqp_num].ring);

		priv->ring_data[i].ring->tqp_vector = tqp_vector;
		priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
3314
		tqp_vector->num_tqps++;
3315 3316
	}

3317
	for (i = 0; i < priv->vector_num; i++) {
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
		tqp_vector = &priv->tqp_vector[i];

		tqp_vector->rx_group.total_bytes = 0;
		tqp_vector->rx_group.total_packets = 0;
		tqp_vector->tx_group.total_bytes = 0;
		tqp_vector->tx_group.total_packets = 0;
		tqp_vector->handle = h;

		ret = hns3_get_vector_ring_chain(tqp_vector,
						 &vector_ring_chain);
		if (ret)
3329
			goto map_ring_fail;
3330 3331 3332 3333 3334 3335

		ret = h->ae_algo->ops->map_ring_to_vector(h,
			tqp_vector->vector_irq, &vector_ring_chain);

		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);

3336
		if (ret)
3337
			goto map_ring_fail;
3338

3339 3340 3341 3342
		netif_napi_add(priv->netdev, &tqp_vector->napi,
			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
	}

3343
	return 0;
3344 3345 3346 3347 3348 3349

map_ring_fail:
	while (i--)
		netif_napi_del(&priv->tqp_vector[i].napi);

	return ret;
3350 3351 3352 3353
}

static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
{
3354 3355
#define HNS3_VECTOR_PF_MAX_NUM		64

3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
	struct hnae3_handle *h = priv->ae_handle;
	struct hns3_enet_tqp_vector *tqp_vector;
	struct hnae3_vector_info *vector;
	struct pci_dev *pdev = h->pdev;
	u16 tqp_num = h->kinfo.num_tqps;
	u16 vector_num;
	int ret = 0;
	u16 i;

	/* RSS size, cpu online and vector_num should be the same */
	/* Should consider 2p/4p later */
	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3368 3369
	vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);

3370 3371 3372 3373 3374
	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
			      GFP_KERNEL);
	if (!vector)
		return -ENOMEM;

3375
	/* save the actual available vector number */
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);

	priv->vector_num = vector_num;
	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
			     GFP_KERNEL);
	if (!priv->tqp_vector) {
		ret = -ENOMEM;
		goto out;
	}

	for (i = 0; i < priv->vector_num; i++) {
		tqp_vector = &priv->tqp_vector[i];
		tqp_vector->idx = i;
		tqp_vector->mask_addr = vector[i].io_addr;
		tqp_vector->vector_irq = vector[i].vector;
		hns3_vector_gl_rl_init(tqp_vector, priv);
	}

3395 3396 3397 3398 3399
out:
	devm_kfree(&pdev->dev, vector);
	return ret;
}

3400 3401 3402 3403 3404 3405
static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
{
	group->ring = NULL;
	group->count = 0;
}

3406
static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3407 3408 3409 3410
{
	struct hnae3_ring_chain_node vector_ring_chain;
	struct hnae3_handle *h = priv->ae_handle;
	struct hns3_enet_tqp_vector *tqp_vector;
3411
	int i;
3412 3413 3414 3415

	for (i = 0; i < priv->vector_num; i++) {
		tqp_vector = &priv->tqp_vector[i];

3416 3417 3418
		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
			continue;

3419
		hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain);
3420

3421
		h->ae_algo->ops->unmap_ring_from_vector(h,
3422 3423 3424 3425
			tqp_vector->vector_irq, &vector_ring_chain);

		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);

3426 3427 3428 3429
		if (tqp_vector->irq_init_flag == HNS3_VECTOR_INITED) {
			irq_set_affinity_hint(tqp_vector->vector_irq, NULL);
			free_irq(tqp_vector->vector_irq, tqp_vector);
			tqp_vector->irq_init_flag = HNS3_VECTOR_NOT_INITED;
3430 3431
		}

3432 3433
		hns3_clear_ring_group(&tqp_vector->rx_group);
		hns3_clear_ring_group(&tqp_vector->tx_group);
3434 3435
		netif_napi_del(&priv->tqp_vector[i].napi);
	}
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
}

static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
{
	struct hnae3_handle *h = priv->ae_handle;
	struct pci_dev *pdev = h->pdev;
	int i, ret;

	for (i = 0; i < priv->vector_num; i++) {
		struct hns3_enet_tqp_vector *tqp_vector;

		tqp_vector = &priv->tqp_vector[i];
		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
		if (ret)
			return ret;
	}
3452

3453
	devm_kfree(&pdev->dev, priv->tqp_vector);
3454 3455 3456 3457
	return 0;
}

static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3458
			     unsigned int ring_type)
3459 3460 3461 3462 3463
{
	struct hns3_nic_ring_data *ring_data = priv->ring_data;
	int queue_num = priv->ae_handle->kinfo.num_tqps;
	struct pci_dev *pdev = priv->ae_handle->pdev;
	struct hns3_enet_ring *ring;
3464
	int desc_num;
3465 3466 3467 3468 3469 3470

	ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
	if (!ring)
		return -ENOMEM;

	if (ring_type == HNAE3_RING_TYPE_TX) {
3471
		desc_num = priv->ae_handle->kinfo.num_tx_desc;
3472
		ring_data[q->tqp_index].ring = ring;
3473
		ring_data[q->tqp_index].queue_index = q->tqp_index;
3474 3475
		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
	} else {
3476
		desc_num = priv->ae_handle->kinfo.num_rx_desc;
3477
		ring_data[q->tqp_index + queue_num].ring = ring;
3478
		ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
3479 3480 3481
		ring->io_base = q->io_base;
	}

P
Peng Li 已提交
3482
	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3483 3484 3485 3486 3487 3488 3489

	ring->tqp = q;
	ring->desc = NULL;
	ring->desc_cb = NULL;
	ring->dev = priv->dev;
	ring->desc_dma_addr = 0;
	ring->buf_size = q->buf_size;
3490
	ring->desc_num = desc_num;
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
	ring->next_to_use = 0;
	ring->next_to_clean = 0;

	return 0;
}

static int hns3_queue_to_ring(struct hnae3_queue *tqp,
			      struct hns3_nic_priv *priv)
{
	int ret;

	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
	if (ret)
		return ret;

	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3507 3508
	if (ret) {
		devm_kfree(priv->dev, priv->ring_data[tqp->tqp_index].ring);
3509
		return ret;
3510
	}
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520

	return 0;
}

static int hns3_get_ring_config(struct hns3_nic_priv *priv)
{
	struct hnae3_handle *h = priv->ae_handle;
	struct pci_dev *pdev = h->pdev;
	int i, ret;

3521 3522 3523 3524
	priv->ring_data =  devm_kzalloc(&pdev->dev,
					array3_size(h->kinfo.num_tqps,
						    sizeof(*priv->ring_data),
						    2),
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
					GFP_KERNEL);
	if (!priv->ring_data)
		return -ENOMEM;

	for (i = 0; i < h->kinfo.num_tqps; i++) {
		ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
		if (ret)
			goto err;
	}

	return 0;
err:
3537 3538 3539 3540 3541 3542
	while (i--) {
		devm_kfree(priv->dev, priv->ring_data[i].ring);
		devm_kfree(priv->dev,
			   priv->ring_data[i + h->kinfo.num_tqps].ring);
	}

3543
	devm_kfree(&pdev->dev, priv->ring_data);
3544
	priv->ring_data = NULL;
3545 3546 3547
	return ret;
}

3548 3549 3550 3551 3552
static void hns3_put_ring_config(struct hns3_nic_priv *priv)
{
	struct hnae3_handle *h = priv->ae_handle;
	int i;

3553 3554 3555
	if (!priv->ring_data)
		return;

3556 3557 3558 3559 3560 3561
	for (i = 0; i < h->kinfo.num_tqps; i++) {
		devm_kfree(priv->dev, priv->ring_data[i].ring);
		devm_kfree(priv->dev,
			   priv->ring_data[i + h->kinfo.num_tqps].ring);
	}
	devm_kfree(priv->dev, priv->ring_data);
3562
	priv->ring_data = NULL;
3563 3564
}

3565 3566 3567 3568 3569 3570 3571
static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
{
	int ret;

	if (ring->desc_num <= 0 || ring->buf_size <= 0)
		return -EINVAL;

3572 3573
	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
	if (!ring->desc_cb) {
		ret = -ENOMEM;
		goto out;
	}

	ret = hns3_alloc_desc(ring);
	if (ret)
		goto out_with_desc_cb;

	if (!HNAE3_IS_TX_RING(ring)) {
		ret = hns3_alloc_ring_buffers(ring);
		if (ret)
			goto out_with_desc;
	}

	return 0;

out_with_desc:
	hns3_free_desc(ring);
out_with_desc_cb:
3594
	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3595 3596 3597 3598 3599
	ring->desc_cb = NULL;
out:
	return ret;
}

3600
void hns3_fini_ring(struct hns3_enet_ring *ring)
3601 3602
{
	hns3_free_desc(ring);
3603
	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3604 3605 3606
	ring->desc_cb = NULL;
	ring->next_to_clean = 0;
	ring->next_to_use = 0;
3607 3608 3609 3610 3611
	ring->pending_buf = 0;
	if (ring->skb) {
		dev_kfree_skb_any(ring->skb);
		ring->skb = NULL;
	}
3612 3613
}

3614
static int hns3_buf_size2type(u32 buf_size)
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
{
	int bd_size_type;

	switch (buf_size) {
	case 512:
		bd_size_type = HNS3_BD_SIZE_512_TYPE;
		break;
	case 1024:
		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
		break;
	case 2048:
		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
		break;
	case 4096:
		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
		break;
	default:
		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
	}

	return bd_size_type;
}

static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
{
	dma_addr_t dma = ring->desc_dma_addr;
	struct hnae3_queue *q = ring->tqp;

	if (!HNAE3_IS_TX_RING(ring)) {
3644
		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
			       (u32)((dma >> 31) >> 1));

		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
			       hns3_buf_size2type(ring->buf_size));
		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
			       ring->desc_num / 8 - 1);

	} else {
		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
			       (u32)dma);
		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
			       (u32)((dma >> 31) >> 1));

		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
			       ring->desc_num / 8 - 1);
	}
}

3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
{
	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
	int i;

	for (i = 0; i < HNAE3_MAX_TC; i++) {
		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
		int j;

		if (!tc_info->enable)
			continue;

		for (j = 0; j < tc_info->tqp_count; j++) {
			struct hnae3_queue *q;

			q = priv->ring_data[tc_info->tqp_offset + j].ring->tqp;
			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
				       tc_info->tc);
		}
	}
}

L
Lipeng 已提交
3686
int hns3_init_all_ring(struct hns3_nic_priv *priv)
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
{
	struct hnae3_handle *h = priv->ae_handle;
	int ring_num = h->kinfo.num_tqps * 2;
	int i, j;
	int ret;

	for (i = 0; i < ring_num; i++) {
		ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
		if (ret) {
			dev_err(priv->dev,
				"Alloc ring memory fail! ret=%d\n", ret);
			goto out_when_alloc_ring_memory;
		}

		u64_stats_init(&priv->ring_data[i].ring->syncp);
	}

	return 0;

out_when_alloc_ring_memory:
	for (j = i - 1; j >= 0; j--)
3708
		hns3_fini_ring(priv->ring_data[j].ring);
3709 3710 3711 3712

	return -ENOMEM;
}

L
Lipeng 已提交
3713
int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
{
	struct hnae3_handle *h = priv->ae_handle;
	int i;

	for (i = 0; i < h->kinfo.num_tqps; i++) {
		hns3_fini_ring(priv->ring_data[i].ring);
		hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
	}
	return 0;
}

/* Set mac addr if it is configured. or leave it to the AE driver */
3726
static int hns3_init_mac_addr(struct net_device *netdev, bool init)
3727 3728 3729 3730
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hnae3_handle *h = priv->ae_handle;
	u8 mac_addr_temp[ETH_ALEN];
3731
	int ret = 0;
3732

3733
	if (h->ae_algo->ops->get_mac_addr && init) {
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
	}

	/* Check if the MAC address is valid, if not get a random one */
	if (!is_valid_ether_addr(netdev->dev_addr)) {
		eth_hw_addr_random(netdev);
		dev_warn(priv->dev, "using random MAC address %pM\n",
			 netdev->dev_addr);
	}
3744 3745

	if (h->ae_algo->ops->set_mac_addr)
3746
		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3747

3748
	return ret;
3749 3750
}

3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
static int hns3_init_phy(struct net_device *netdev)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);
	int ret = 0;

	if (h->ae_algo->ops->mac_connect_phy)
		ret = h->ae_algo->ops->mac_connect_phy(h);

	return ret;
}

static void hns3_uninit_phy(struct net_device *netdev)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);

	if (h->ae_algo->ops->mac_disconnect_phy)
		h->ae_algo->ops->mac_disconnect_phy(h);
}

3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
static int hns3_restore_fd_rules(struct net_device *netdev)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);
	int ret = 0;

	if (h->ae_algo->ops->restore_fd_rules)
		ret = h->ae_algo->ops->restore_fd_rules(h);

	return ret;
}

static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);

	if (h->ae_algo->ops->del_all_fd_entries)
		h->ae_algo->ops->del_all_fd_entries(h, clear_list);
}

3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
static int hns3_client_start(struct hnae3_handle *handle)
{
	if (!handle->ae_algo->ops->client_start)
		return 0;

	return handle->ae_algo->ops->client_start(handle);
}

static void hns3_client_stop(struct hnae3_handle *handle)
{
	if (!handle->ae_algo->ops->client_stop)
		return;

	handle->ae_algo->ops->client_stop(handle);
}

3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
static void hns3_info_show(struct hns3_nic_priv *priv)
{
	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;

	dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
	dev_info(priv->dev, "Task queue pairs numbers: %d\n", kinfo->num_tqps);
	dev_info(priv->dev, "RSS size: %d\n", kinfo->rss_size);
	dev_info(priv->dev, "Allocated RSS size: %d\n", kinfo->req_rss_size);
	dev_info(priv->dev, "RX buffer length: %d\n", kinfo->rx_buf_len);
	dev_info(priv->dev, "Desc num per TX queue: %d\n", kinfo->num_tx_desc);
	dev_info(priv->dev, "Desc num per RX queue: %d\n", kinfo->num_rx_desc);
	dev_info(priv->dev, "Total number of enabled TCs: %d\n", kinfo->num_tc);
	dev_info(priv->dev, "Max mtu size: %d\n", priv->netdev->max_mtu);
}

3820 3821 3822
static int hns3_client_init(struct hnae3_handle *handle)
{
	struct pci_dev *pdev = handle->pdev;
3823
	u16 alloc_tqps, max_rss_size;
3824 3825 3826 3827
	struct hns3_nic_priv *priv;
	struct net_device *netdev;
	int ret;

3828 3829 3830
	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
						    &max_rss_size);
	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3831 3832 3833 3834 3835 3836 3837
	if (!netdev)
		return -ENOMEM;

	priv = netdev_priv(netdev);
	priv->dev = &pdev->dev;
	priv->netdev = netdev;
	priv->ae_handle = handle;
3838
	priv->tx_timeout_count = 0;
3839
	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
3840

3841 3842
	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);

3843 3844 3845
	handle->kinfo.netdev = netdev;
	handle->priv = (void *)priv;

3846
	hns3_init_mac_addr(netdev, true);
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864

	hns3_set_default_feature(netdev);

	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
	netdev->priv_flags |= IFF_UNICAST_FLT;
	netdev->netdev_ops = &hns3_nic_netdev_ops;
	SET_NETDEV_DEV(netdev, &pdev->dev);
	hns3_ethtool_set_ops(netdev);

	/* Carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

	ret = hns3_get_ring_config(priv);
	if (ret) {
		ret = -ENOMEM;
		goto out_get_ring_cfg;
	}

3865 3866 3867 3868 3869 3870
	ret = hns3_nic_alloc_vector_data(priv);
	if (ret) {
		ret = -ENOMEM;
		goto out_alloc_vector_data;
	}

3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
	ret = hns3_nic_init_vector_data(priv);
	if (ret) {
		ret = -ENOMEM;
		goto out_init_vector_data;
	}

	ret = hns3_init_all_ring(priv);
	if (ret) {
		ret = -ENOMEM;
		goto out_init_ring_data;
	}

3883 3884 3885 3886
	ret = hns3_init_phy(netdev);
	if (ret)
		goto out_init_phy;

3887 3888 3889 3890 3891 3892
	ret = register_netdev(netdev);
	if (ret) {
		dev_err(priv->dev, "probe register netdev fail!\n");
		goto out_reg_netdev_fail;
	}

3893 3894 3895
	ret = hns3_client_start(handle);
	if (ret) {
		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
3896
		goto out_client_start;
3897 3898
	}

3899 3900
	hns3_dcbnl_setup(handle);

3901 3902
	hns3_dbg_init(handle);

3903
	/* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
3904
	netdev->max_mtu = HNS3_MAX_MTU;
3905

3906 3907
	set_bit(HNS3_NIC_STATE_INITED, &priv->state);

3908 3909 3910
	if (netif_msg_drv(handle))
		hns3_info_show(priv);

3911 3912
	return ret;

3913 3914
out_client_start:
	unregister_netdev(netdev);
3915
out_reg_netdev_fail:
3916 3917 3918
	hns3_uninit_phy(netdev);
out_init_phy:
	hns3_uninit_all_ring(priv);
3919
out_init_ring_data:
3920
	hns3_nic_uninit_vector_data(priv);
3921
out_init_vector_data:
3922 3923 3924
	hns3_nic_dealloc_vector_data(priv);
out_alloc_vector_data:
	priv->ring_data = NULL;
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
out_get_ring_cfg:
	priv->ae_handle = NULL;
	free_netdev(netdev);
	return ret;
}

static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
{
	struct net_device *netdev = handle->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	int ret;

3937 3938
	hns3_remove_hw_addr(netdev);

3939 3940 3941
	if (netdev->reg_state != NETREG_UNINITIALIZED)
		unregister_netdev(netdev);

3942 3943
	hns3_client_stop(handle);

3944 3945
	hns3_uninit_phy(netdev);

3946 3947 3948 3949 3950
	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
		netdev_warn(netdev, "already uninitialized\n");
		goto out_netdev_free;
	}

3951 3952
	hns3_del_all_fd_rules(netdev, true);

3953
	hns3_clear_all_ring(handle, true);
3954

3955
	hns3_nic_uninit_vector_data(priv);
3956

3957 3958 3959 3960
	ret = hns3_nic_dealloc_vector_data(priv);
	if (ret)
		netdev_err(netdev, "dealloc vector error\n");

3961 3962 3963 3964
	ret = hns3_uninit_all_ring(priv);
	if (ret)
		netdev_err(netdev, "uninit ring error\n");

3965 3966
	hns3_put_ring_config(priv);

3967 3968
	hns3_dbg_uninit(handle);

3969
out_netdev_free:
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
	free_netdev(netdev);
}

static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
{
	struct net_device *netdev = handle->kinfo.netdev;

	if (!netdev)
		return;

	if (linkup) {
		netif_carrier_on(netdev);
		netif_tx_wake_all_queues(netdev);
3983 3984
		if (netif_msg_link(handle))
			netdev_info(netdev, "link up\n");
3985 3986 3987
	} else {
		netif_carrier_off(netdev);
		netif_tx_stop_all_queues(netdev);
3988 3989
		if (netif_msg_link(handle))
			netdev_info(netdev, "link down\n");
3990 3991 3992
	}
}

3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct net_device *ndev = kinfo->netdev;

	if (tc > HNAE3_MAX_TC)
		return -EINVAL;

	if (!ndev)
		return -ENODEV;

4004
	return hns3_nic_set_real_num_queue(ndev);
4005 4006
}

4007
static int hns3_recover_hw_addr(struct net_device *ndev)
4008 4009 4010
{
	struct netdev_hw_addr_list *list;
	struct netdev_hw_addr *ha, *tmp;
4011
	int ret = 0;
4012

4013
	netif_addr_lock_bh(ndev);
4014 4015
	/* go through and sync uc_addr entries to the device */
	list = &ndev->uc;
4016 4017 4018
	list_for_each_entry_safe(ha, tmp, &list->list, list) {
		ret = hns3_nic_uc_sync(ndev, ha->addr);
		if (ret)
4019
			goto out;
4020
	}
4021 4022 4023

	/* go through and sync mc_addr entries to the device */
	list = &ndev->mc;
4024 4025 4026
	list_for_each_entry_safe(ha, tmp, &list->list, list) {
		ret = hns3_nic_mc_sync(ndev, ha->addr);
		if (ret)
4027
			goto out;
4028 4029
	}

4030 4031
out:
	netif_addr_unlock_bh(ndev);
4032
	return ret;
4033 4034
}

4035 4036 4037 4038 4039 4040 4041
static void hns3_remove_hw_addr(struct net_device *netdev)
{
	struct netdev_hw_addr_list *list;
	struct netdev_hw_addr *ha, *tmp;

	hns3_nic_uc_unsync(netdev, netdev->dev_addr);

4042
	netif_addr_lock_bh(netdev);
4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
	/* go through and unsync uc_addr entries to the device */
	list = &netdev->uc;
	list_for_each_entry_safe(ha, tmp, &list->list, list)
		hns3_nic_uc_unsync(netdev, ha->addr);

	/* go through and unsync mc_addr entries to the device */
	list = &netdev->mc;
	list_for_each_entry_safe(ha, tmp, &list->list, list)
		if (ha->refcount > 1)
			hns3_nic_mc_unsync(netdev, ha->addr);
4053 4054

	netif_addr_unlock_bh(netdev);
4055 4056
}

4057
static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4058
{
4059
	while (ring->next_to_clean != ring->next_to_use) {
4060
		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4061 4062 4063 4064 4065
		hns3_free_buffer_detach(ring, ring->next_to_clean);
		ring_ptr_move_fw(ring, next_to_clean);
	}
}

4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
{
	struct hns3_desc_cb res_cbs;
	int ret;

	while (ring->next_to_use != ring->next_to_clean) {
		/* When a buffer is not reused, it's memory has been
		 * freed in hns3_handle_rx_bd or will be freed by
		 * stack, so we need to replace the buffer here.
		 */
		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
			ret = hns3_reserve_buffer_map(ring, &res_cbs);
			if (ret) {
				u64_stats_update_begin(&ring->syncp);
				ring->stats.sw_err_cnt++;
				u64_stats_update_end(&ring->syncp);
				/* if alloc new buffer fail, exit directly
				 * and reclear in up flow.
				 */
				netdev_warn(ring->tqp->handle->kinfo.netdev,
					    "reserve buffer map failed, ret = %d\n",
					    ret);
				return ret;
			}
4090
			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4091 4092 4093 4094
		}
		ring_ptr_move_fw(ring, next_to_use);
	}

4095 4096 4097 4098 4099 4100 4101
	/* Free the pending skb in rx ring */
	if (ring->skb) {
		dev_kfree_skb_any(ring->skb);
		ring->skb = NULL;
		ring->pending_buf = 0;
	}

4102 4103 4104 4105
	return 0;
}

static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
{
	while (ring->next_to_use != ring->next_to_clean) {
		/* When a buffer is not reused, it's memory has been
		 * freed in hns3_handle_rx_bd or will be freed by
		 * stack, so only need to unmap the buffer here.
		 */
		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
			hns3_unmap_buffer(ring,
					  &ring->desc_cb[ring->next_to_use]);
			ring->desc_cb[ring->next_to_use].dma = 0;
		}

		ring_ptr_move_fw(ring, next_to_use);
	}
4120 4121
}

4122
static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4123 4124 4125 4126 4127 4128 4129 4130 4131
{
	struct net_device *ndev = h->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(ndev);
	u32 i;

	for (i = 0; i < h->kinfo.num_tqps; i++) {
		struct hns3_enet_ring *ring;

		ring = priv->ring_data[i].ring;
4132
		hns3_clear_tx_ring(ring);
4133 4134

		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
4135 4136 4137
		/* Continue to clear other rings even if clearing some
		 * rings failed.
		 */
4138 4139 4140 4141
		if (force)
			hns3_force_clear_rx_ring(ring);
		else
			hns3_clear_rx_ring(ring);
4142 4143 4144
	}
}

4145 4146 4147 4148 4149 4150 4151 4152 4153
int hns3_nic_reset_all_ring(struct hnae3_handle *h)
{
	struct net_device *ndev = h->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(ndev);
	struct hns3_enet_ring *rx_ring;
	int i, j;
	int ret;

	for (i = 0; i < h->kinfo.num_tqps; i++) {
4154 4155 4156 4157
		ret = h->ae_algo->ops->reset_queue(h, i);
		if (ret)
			return ret;

4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
		hns3_init_ring_hw(priv->ring_data[i].ring);

		/* We need to clear tx ring here because self test will
		 * use the ring and will not run down before up
		 */
		hns3_clear_tx_ring(priv->ring_data[i].ring);
		priv->ring_data[i].ring->next_to_clean = 0;
		priv->ring_data[i].ring->next_to_use = 0;

		rx_ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
		hns3_init_ring_hw(rx_ring);
		ret = hns3_clear_rx_ring(rx_ring);
		if (ret)
			return ret;

		/* We can not know the hardware head and tail when this
		 * function is called in reset flow, so we reuse all desc.
		 */
		for (j = 0; j < rx_ring->desc_num; j++)
			hns3_reuse_buffer(rx_ring, j);

		rx_ring->next_to_clean = 0;
		rx_ring->next_to_use = 0;
	}

4183 4184
	hns3_init_tx_ring_tc(priv);

4185 4186 4187
	return 0;
}

4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
static void hns3_store_coal(struct hns3_nic_priv *priv)
{
	/* ethtool only support setting and querying one coal
	 * configuation for now, so save the vector 0' coal
	 * configuation here in order to restore it.
	 */
	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
	       sizeof(struct hns3_enet_coalesce));
	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
	       sizeof(struct hns3_enet_coalesce));
}

static void hns3_restore_coal(struct hns3_nic_priv *priv)
{
	u16 vector_num = priv->vector_num;
	int i;

	for (i = 0; i < vector_num; i++) {
		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
		       sizeof(struct hns3_enet_coalesce));
		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
		       sizeof(struct hns3_enet_coalesce));
	}
}

4213 4214
static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
{
4215
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
4216 4217
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct net_device *ndev = kinfo->netdev;
4218 4219 4220 4221
	struct hns3_nic_priv *priv = netdev_priv(ndev);

	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
		return 0;
4222

4223 4224 4225 4226 4227 4228 4229 4230 4231
	/* it is cumbersome for hardware to pick-and-choose entries for deletion
	 * from table space. Hence, for function reset software intervention is
	 * required to delete the entries
	 */
	if (hns3_dev_ongoing_func_reset(ae_dev)) {
		hns3_remove_hw_addr(ndev);
		hns3_del_all_fd_rules(ndev, false);
	}

4232
	if (!netif_running(ndev))
4233
		return 0;
4234 4235 4236 4237 4238 4239 4240

	return hns3_nic_net_stop(ndev);
}

static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4241
	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4242 4243
	int ret = 0;

4244 4245
	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);

4246
	if (netif_running(kinfo->netdev)) {
4247
		ret = hns3_nic_net_open(kinfo->netdev);
4248
		if (ret) {
4249
			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4250
			netdev_err(kinfo->netdev,
4251
				   "net up fail, ret=%d!\n", ret);
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
			return ret;
		}
	}

	return ret;
}

static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
{
	struct net_device *netdev = handle->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	int ret;

	/* Carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

4268
	ret = hns3_get_ring_config(priv);
4269 4270 4271
	if (ret)
		return ret;

4272 4273 4274 4275
	ret = hns3_nic_alloc_vector_data(priv);
	if (ret)
		goto err_put_ring;

4276 4277
	hns3_restore_coal(priv);

4278 4279
	ret = hns3_nic_init_vector_data(priv);
	if (ret)
4280
		goto err_dealloc_vector;
4281 4282

	ret = hns3_init_all_ring(priv);
4283 4284
	if (ret)
		goto err_uninit_vector;
4285

4286 4287 4288 4289 4290 4291
	ret = hns3_client_start(handle);
	if (ret) {
		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
		goto err_uninit_ring;
	}

4292 4293
	set_bit(HNS3_NIC_STATE_INITED, &priv->state);

4294 4295
	return ret;

4296 4297
err_uninit_ring:
	hns3_uninit_all_ring(priv);
4298 4299 4300 4301
err_uninit_vector:
	hns3_nic_uninit_vector_data(priv);
err_dealloc_vector:
	hns3_nic_dealloc_vector_data(priv);
4302 4303
err_put_ring:
	hns3_put_ring_config(priv);
4304

4305 4306 4307
	return ret;
}

4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
static int hns3_reset_notify_restore_enet(struct hnae3_handle *handle)
{
	struct net_device *netdev = handle->kinfo.netdev;
	bool vlan_filter_enable;
	int ret;

	ret = hns3_init_mac_addr(netdev, false);
	if (ret)
		return ret;

	ret = hns3_recover_hw_addr(netdev);
	if (ret)
		return ret;

	ret = hns3_update_promisc_mode(netdev, handle->netdev_flags);
	if (ret)
		return ret;

	vlan_filter_enable = netdev->flags & IFF_PROMISC ? false : true;
	hns3_enable_vlan_filter(netdev, vlan_filter_enable);

4329 4330
	if (handle->ae_algo->ops->restore_vlan_table)
		handle->ae_algo->ops->restore_vlan_table(handle);
4331 4332 4333 4334

	return hns3_restore_fd_rules(netdev);
}

4335 4336 4337 4338 4339 4340
static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
{
	struct net_device *netdev = handle->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	int ret;

4341
	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4342 4343 4344 4345
		netdev_warn(netdev, "already uninitialized\n");
		return 0;
	}

4346 4347
	hns3_clear_all_ring(handle, true);
	hns3_reset_tx_queue(priv->ae_handle);
4348

4349
	hns3_nic_uninit_vector_data(priv);
4350

4351 4352
	hns3_store_coal(priv);

4353 4354 4355 4356
	ret = hns3_nic_dealloc_vector_data(priv);
	if (ret)
		netdev_err(netdev, "dealloc vector error\n");

4357 4358 4359 4360
	ret = hns3_uninit_all_ring(priv);
	if (ret)
		netdev_err(netdev, "uninit ring error\n");

4361 4362
	hns3_put_ring_config(priv);

4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
	return ret;
}

static int hns3_reset_notify(struct hnae3_handle *handle,
			     enum hnae3_reset_notify_type type)
{
	int ret = 0;

	switch (type) {
	case HNAE3_UP_CLIENT:
4373 4374
		ret = hns3_reset_notify_up_enet(handle);
		break;
4375 4376 4377 4378 4379 4380 4381 4382 4383
	case HNAE3_DOWN_CLIENT:
		ret = hns3_reset_notify_down_enet(handle);
		break;
	case HNAE3_INIT_CLIENT:
		ret = hns3_reset_notify_init_enet(handle);
		break;
	case HNAE3_UNINIT_CLIENT:
		ret = hns3_reset_notify_uninit_enet(handle);
		break;
4384 4385 4386
	case HNAE3_RESTORE_CLIENT:
		ret = hns3_reset_notify_restore_enet(handle);
		break;
4387 4388 4389 4390 4391 4392 4393
	default:
		break;
	}

	return ret;
}

4394 4395 4396 4397 4398
int hns3_set_channels(struct net_device *netdev,
		      struct ethtool_channels *ch)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);
	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4399
	bool rxfh_configured = netif_is_rxfh_configured(netdev);
4400 4401 4402 4403
	u32 new_tqp_num = ch->combined_count;
	u16 org_tqp_num;
	int ret;

4404 4405 4406
	if (hns3_nic_resetting(netdev))
		return -EBUSY;

4407 4408 4409
	if (ch->rx_count || ch->tx_count)
		return -EINVAL;

4410
	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4411
	    new_tqp_num < 1) {
4412
		dev_err(&netdev->dev,
4413
			"Change tqps fail, the tqp range is from 1 to %d",
4414
			hns3_get_max_available_channels(h));
4415 4416 4417
		return -EINVAL;
	}

4418
	if (kinfo->rss_size == new_tqp_num)
4419 4420
		return 0;

4421 4422 4423 4424
	netif_dbg(h, drv, netdev,
		  "set channels: tqp_num=%u, rxfh=%d\n",
		  new_tqp_num, rxfh_configured);

4425 4426 4427
	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
	if (ret)
		return ret;
4428

4429 4430 4431
	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
	if (ret)
		return ret;
4432 4433

	org_tqp_num = h->kinfo.num_tqps;
4434
	ret = h->ae_algo->ops->set_channels(h, new_tqp_num, rxfh_configured);
4435
	if (ret) {
4436 4437
		ret = h->ae_algo->ops->set_channels(h, org_tqp_num,
						    rxfh_configured);
4438 4439 4440 4441 4442 4443 4444 4445 4446
		if (ret) {
			/* If revert to old tqp failed, fatal error occurred */
			dev_err(&netdev->dev,
				"Revert to old tqp num fail, ret=%d", ret);
			return ret;
		}
		dev_info(&netdev->dev,
			 "Change tqp num fail, Revert to old tqp num");
	}
4447 4448 4449
	ret = hns3_reset_notify(h, HNAE3_INIT_CLIENT);
	if (ret)
		return ret;
4450

4451
	return hns3_reset_notify(h, HNAE3_UP_CLIENT);
4452 4453
}

4454
static const struct hnae3_client_ops client_ops = {
4455 4456 4457
	.init_instance = hns3_client_init,
	.uninit_instance = hns3_client_uninit,
	.link_status_change = hns3_link_status_change,
4458
	.setup_tc = hns3_client_setup_tc,
4459
	.reset_notify = hns3_reset_notify,
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478
};

/* hns3_init_module - Driver registration routine
 * hns3_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 */
static int __init hns3_init_module(void)
{
	int ret;

	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);

	client.type = HNAE3_CLIENT_KNIC;
	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
		 hns3_driver_name);

	client.ops = &client_ops;

4479 4480
	INIT_LIST_HEAD(&client.node);

4481 4482
	hns3_dbg_register_debugfs(hns3_driver_name);

4483 4484
	ret = hnae3_register_client(&client);
	if (ret)
4485
		goto err_reg_client;
4486 4487 4488

	ret = pci_register_driver(&hns3_driver);
	if (ret)
4489
		goto err_reg_driver;
4490 4491

	return ret;
4492 4493 4494 4495 4496 4497

err_reg_driver:
	hnae3_unregister_client(&client);
err_reg_client:
	hns3_dbg_unregister_debugfs();
	return ret;
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
}
module_init(hns3_init_module);

/* hns3_exit_module - Driver exit cleanup routine
 * hns3_exit_module is called just before the driver is removed
 * from memory.
 */
static void __exit hns3_exit_module(void)
{
	pci_unregister_driver(&hns3_driver);
	hnae3_unregister_client(&client);
4509
	hns3_dbg_unregister_debugfs();
4510 4511 4512 4513 4514 4515 4516
}
module_exit(hns3_exit_module);

MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
MODULE_LICENSE("GPL");
MODULE_ALIAS("pci:hns-nic");
4517
MODULE_VERSION(HNS3_MOD_VERSION);