hns3_enet.c 117.5 KB
Newer Older
1 2
// SPDX-License-Identifier: GPL-2.0+
// Copyright (c) 2016-2017 Hisilicon Limited.
3 4 5 6

#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
7 8 9
#ifdef CONFIG_RFS_ACCEL
#include <linux/cpu_rmap.h>
#endif
10 11 12 13 14
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/module.h>
#include <linux/pci.h>
15
#include <linux/aer.h>
16 17 18
#include <linux/skbuff.h>
#include <linux/sctp.h>
#include <net/gre.h>
19
#include <net/ip6_checksum.h>
20
#include <net/pkt_cls.h>
21
#include <net/tcp.h>
22 23 24 25
#include <net/vxlan.h>

#include "hnae3.h"
#include "hns3_enet.h"
26 27 28 29 30 31
/* All hns3 tracepoints are defined by the include below, which
 * must be included exactly once across the whole kernel with
 * CREATE_TRACE_POINTS defined
 */
#define CREATE_TRACE_POINTS
#include "hns3_trace.h"
32

33
#define hns3_set_field(origin, shift, val)	((origin) |= ((val) << (shift)))
34
#define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
35

36 37 38 39 40 41
#define hns3_rl_err(fmt, ...)						\
	do {								\
		if (net_ratelimit())					\
			netdev_err(fmt, ##__VA_ARGS__);			\
	} while (0)

42
static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
43

44
static const char hns3_driver_name[] = "hns3";
45 46 47 48 49
static const char hns3_driver_string[] =
			"Hisilicon Ethernet Network Driver for Hip08 Family";
static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
static struct hnae3_client client;

50 51 52 53 54 55 56
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, " Network interface message level setting");

#define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)

57 58 59
#define HNS3_INNER_VLAN_TAG	1
#define HNS3_OUTER_VLAN_TAG	2

60 61
#define HNS3_MIN_TX_LEN		33U

62 63 64 65 66 67 68 69 70 71
/* hns3_pci_tbl - PCI Device ID Table
 *
 * Last entry must be all 0s
 *
 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
 *   Class, Class Mask, private data (not used) }
 */
static const struct pci_device_id hns3_pci_tbl[] = {
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
72
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
73
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
74
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
75
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
76
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
77
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
78
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
79
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
80
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
81
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
82
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
83 84
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
85 86 87 88 89
	/* required last entry */
	{0, }
};
MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);

90
static irqreturn_t hns3_irq_handle(int irq, void *vector)
91
{
92
	struct hns3_enet_tqp_vector *tqp_vector = vector;
93

94
	napi_schedule_irqoff(&tqp_vector->napi);
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

	return IRQ_HANDLED;
}

static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
{
	struct hns3_enet_tqp_vector *tqp_vectors;
	unsigned int i;

	for (i = 0; i < priv->vector_num; i++) {
		tqp_vectors = &priv->tqp_vector[i];

		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
			continue;

110
		/* clear the affinity mask */
P
Peng Li 已提交
111 112
		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
		/* release the irq resource */
		free_irq(tqp_vectors->vector_irq, tqp_vectors);
		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
	}
}

static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
{
	struct hns3_enet_tqp_vector *tqp_vectors;
	int txrx_int_idx = 0;
	int rx_int_idx = 0;
	int tx_int_idx = 0;
	unsigned int i;
	int ret;

	for (i = 0; i < priv->vector_num; i++) {
		tqp_vectors = &priv->tqp_vector[i];

		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
			continue;

		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
135 136 137 138
			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
				 "%s-%s-%s-%d", hns3_driver_name,
				 pci_name(priv->ae_handle->pdev),
				 "TxRx", txrx_int_idx++);
139 140
			txrx_int_idx++;
		} else if (tqp_vectors->rx_group.ring) {
141 142 143 144
			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
				 "%s-%s-%s-%d", hns3_driver_name,
				 pci_name(priv->ae_handle->pdev),
				 "Rx", rx_int_idx++);
145
		} else if (tqp_vectors->tx_group.ring) {
146 147 148 149
			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
				 "%s-%s-%s-%d", hns3_driver_name,
				 pci_name(priv->ae_handle->pdev),
				 "Tx", tx_int_idx++);
150 151 152 153 154 155 156 157
		} else {
			/* Skip this unused q_vector */
			continue;
		}

		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';

		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
158
				  tqp_vectors->name, tqp_vectors);
159 160 161
		if (ret) {
			netdev_err(priv->netdev, "request irq(%d) fail\n",
				   tqp_vectors->vector_irq);
162
			hns3_nic_uninit_irq(priv);
163 164 165
			return ret;
		}

166 167
		disable_irq(tqp_vectors->vector_irq);

P
Peng Li 已提交
168 169 170
		irq_set_affinity_hint(tqp_vectors->vector_irq,
				      &tqp_vectors->affinity_mask);

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
	}

	return 0;
}

static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
				 u32 mask_en)
{
	writel(mask_en, tqp_vector->mask_addr);
}

static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
{
	napi_enable(&tqp_vector->napi);
186
	enable_irq(tqp_vector->vector_irq);
187 188 189 190 191 192 193 194 195 196 197 198 199 200

	/* enable vector */
	hns3_mask_vector_irq(tqp_vector, 1);
}

static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
{
	/* disable vector */
	hns3_mask_vector_irq(tqp_vector, 0);

	disable_irq(tqp_vector->vector_irq);
	napi_disable(&tqp_vector->napi);
}

201 202
void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
				 u32 rl_value)
203
{
204 205
	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);

206 207 208 209
	/* this defines the configuration for RL (Interrupt Rate Limiter).
	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
	 */
210

211 212
	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
	    !tqp_vector->rx_group.coal.gl_adapt_enable)
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
		/* According to the hardware, the range of rl_reg is
		 * 0-59 and the unit is 4.
		 */
		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;

	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
}

void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
				    u32 gl_value)
{
	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);

	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
}

void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
				    u32 gl_value)
{
	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);

	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
235 236
}

237 238
static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
				   struct hns3_nic_priv *priv)
239 240 241 242
{
	/* initialize the configuration for interrupt coalescing.
	 * 1. GL (Interrupt Gap Limiter)
	 * 2. RL (Interrupt Rate Limiter)
G
Guojia Liao 已提交
243 244
	 *
	 * Default: enable interrupt coalescing self-adaptive and GL
245
	 */
246 247
	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
248

249 250
	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
251

252 253
	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
254 255
}

256 257 258 259 260 261
static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
				      struct hns3_nic_priv *priv)
{
	struct hnae3_handle *h = priv->ae_handle;

	hns3_set_vector_coalesce_tx_gl(tqp_vector,
262
				       tqp_vector->tx_group.coal.int_gl);
263
	hns3_set_vector_coalesce_rx_gl(tqp_vector,
264
				       tqp_vector->rx_group.coal.int_gl);
265 266 267
	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
}

268 269
static int hns3_nic_set_real_num_queue(struct net_device *netdev)
{
270
	struct hnae3_handle *h = hns3_get_handle(netdev);
271 272
	struct hnae3_knic_private_info *kinfo = &h->kinfo;
	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	int i, ret;

	if (kinfo->num_tc <= 1) {
		netdev_reset_tc(netdev);
	} else {
		ret = netdev_set_num_tc(netdev, kinfo->num_tc);
		if (ret) {
			netdev_err(netdev,
				   "netdev_set_num_tc fail, ret=%d!\n", ret);
			return ret;
		}

		for (i = 0; i < HNAE3_MAX_TC; i++) {
			if (!kinfo->tc_info[i].enable)
				continue;

			netdev_set_tc_queue(netdev,
					    kinfo->tc_info[i].tc,
					    kinfo->tc_info[i].tqp_count,
					    kinfo->tc_info[i].tqp_offset);
		}
	}
295 296 297 298

	ret = netif_set_real_num_tx_queues(netdev, queue_size);
	if (ret) {
		netdev_err(netdev,
299
			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
300 301 302 303 304 305 306 307 308 309 310 311 312
		return ret;
	}

	ret = netif_set_real_num_rx_queues(netdev, queue_size);
	if (ret) {
		netdev_err(netdev,
			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
		return ret;
	}

	return 0;
}

313 314
static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
{
315
	u16 alloc_tqps, max_rss_size, rss_size;
316

317 318
	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
	rss_size = alloc_tqps / h->kinfo.num_tc;
319

320
	return min_t(u16, rss_size, max_rss_size);
321 322
}

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
static void hns3_tqp_enable(struct hnae3_queue *tqp)
{
	u32 rcb_reg;

	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
	rcb_reg |= BIT(HNS3_RING_EN_B);
	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
}

static void hns3_tqp_disable(struct hnae3_queue *tqp)
{
	u32 rcb_reg;

	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
	rcb_reg &= ~BIT(HNS3_RING_EN_B);
	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
}

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
{
#ifdef CONFIG_RFS_ACCEL
	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
	netdev->rx_cpu_rmap = NULL;
#endif
}

static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
{
#ifdef CONFIG_RFS_ACCEL
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hns3_enet_tqp_vector *tqp_vector;
	int i, ret;

	if (!netdev->rx_cpu_rmap) {
		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
		if (!netdev->rx_cpu_rmap)
			return -ENOMEM;
	}

	for (i = 0; i < priv->vector_num; i++) {
		tqp_vector = &priv->tqp_vector[i];
		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
				       tqp_vector->vector_irq);
		if (ret) {
			hns3_free_rx_cpu_rmap(netdev);
			return ret;
		}
	}
#endif
	return 0;
}

375 376 377 378 379 380 381
static int hns3_nic_net_up(struct net_device *netdev)
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hnae3_handle *h = priv->ae_handle;
	int i, j;
	int ret;

382 383 384 385
	ret = hns3_nic_reset_all_ring(h);
	if (ret)
		return ret;

386 387
	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);

388 389 390 391
	/* enable the vectors */
	for (i = 0; i < priv->vector_num; i++)
		hns3_vector_enable(&priv->tqp_vector[i]);

392 393 394 395
	/* enable rcb */
	for (j = 0; j < h->kinfo.num_tqps; j++)
		hns3_tqp_enable(h->kinfo.tqp[j]);

396 397
	/* start the ae_dev */
	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
398 399 400 401
	if (ret) {
		set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
		while (j--)
			hns3_tqp_disable(h->kinfo.tqp[j]);
402

403 404 405
		for (j = i - 1; j >= 0; j--)
			hns3_vector_disable(&priv->tqp_vector[j]);
	}
406 407 408 409

	return ret;
}

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
static void hns3_config_xps(struct hns3_nic_priv *priv)
{
	int i;

	for (i = 0; i < priv->vector_num; i++) {
		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;

		while (ring) {
			int ret;

			ret = netif_set_xps_queue(priv->netdev,
						  &tqp_vector->affinity_mask,
						  ring->tqp->tqp_index);
			if (ret)
				netdev_warn(priv->netdev,
					    "set xps queue failed: %d", ret);

			ring = ring->next;
		}
	}
}

433 434
static int hns3_nic_net_open(struct net_device *netdev)
{
435
	struct hns3_nic_priv *priv = netdev_priv(netdev);
436 437 438
	struct hnae3_handle *h = hns3_get_handle(netdev);
	struct hnae3_knic_private_info *kinfo;
	int i, ret;
439

440 441 442
	if (hns3_nic_resetting(netdev))
		return -EBUSY;

443 444
	netif_carrier_off(netdev);

445 446
	ret = hns3_nic_set_real_num_queue(netdev);
	if (ret)
447 448 449 450
		return ret;

	ret = hns3_nic_net_up(netdev);
	if (ret) {
451
		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
452 453 454
		return ret;
	}

455
	kinfo = &h->kinfo;
456 457
	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
		netdev_set_prio_tc_map(netdev, i, kinfo->prio_tc[i]);
458

459 460 461
	if (h->ae_algo->ops->set_timer_task)
		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);

462
	hns3_config_xps(priv);
463 464 465

	netif_dbg(h, drv, netdev, "net open\n");

466 467 468
	return 0;
}

469 470 471 472 473 474 475 476 477
static void hns3_reset_tx_queue(struct hnae3_handle *h)
{
	struct net_device *ndev = h->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(ndev);
	struct netdev_queue *dev_queue;
	u32 i;

	for (i = 0; i < h->kinfo.num_tqps; i++) {
		dev_queue = netdev_get_tx_queue(ndev,
478
						priv->ring[i].queue_index);
479 480 481 482
		netdev_tx_reset_queue(dev_queue);
	}
}

483 484 485
static void hns3_nic_net_down(struct net_device *netdev)
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
486
	struct hnae3_handle *h = hns3_get_handle(netdev);
487 488 489
	const struct hnae3_ae_ops *ops;
	int i;

490 491 492
	/* disable vectors */
	for (i = 0; i < priv->vector_num; i++)
		hns3_vector_disable(&priv->tqp_vector[i]);
493 494 495 496

	/* disable rcb */
	for (i = 0; i < h->kinfo.num_tqps; i++)
		hns3_tqp_disable(h->kinfo.tqp[i]);
497

498 499 500 501 502
	/* stop ae_dev */
	ops = priv->ae_handle->ae_algo->ops;
	if (ops->stop)
		ops->stop(priv->ae_handle);

503 504 505 506 507
	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
	 * during reset process, because driver may not be able
	 * to disable the ring through firmware when downing the netdev.
	 */
	if (!hns3_nic_resetting(netdev))
508 509 510
		hns3_clear_all_ring(priv->ae_handle, false);

	hns3_reset_tx_queue(priv->ae_handle);
511 512 513 514
}

static int hns3_nic_net_stop(struct net_device *netdev)
{
515
	struct hns3_nic_priv *priv = netdev_priv(netdev);
516
	struct hnae3_handle *h = hns3_get_handle(netdev);
517 518 519 520

	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
		return 0;

521 522
	netif_dbg(h, drv, netdev, "net stop\n");

523 524 525
	if (h->ae_algo->ops->set_timer_task)
		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);

526 527 528 529 530 531 532 533 534 535 536
	netif_tx_stop_all_queues(netdev);
	netif_carrier_off(netdev);

	hns3_nic_net_down(netdev);

	return 0;
}

static int hns3_nic_uc_sync(struct net_device *netdev,
			    const unsigned char *addr)
{
537
	struct hnae3_handle *h = hns3_get_handle(netdev);
538 539 540 541 542 543 544 545 546 547

	if (h->ae_algo->ops->add_uc_addr)
		return h->ae_algo->ops->add_uc_addr(h, addr);

	return 0;
}

static int hns3_nic_uc_unsync(struct net_device *netdev,
			      const unsigned char *addr)
{
548
	struct hnae3_handle *h = hns3_get_handle(netdev);
549

550 551 552 553 554 555 556
	/* need ignore the request of removing device address, because
	 * we store the device address and other addresses of uc list
	 * in the function's mac filter list.
	 */
	if (ether_addr_equal(addr, netdev->dev_addr))
		return 0;

557 558 559 560 561 562 563 564 565
	if (h->ae_algo->ops->rm_uc_addr)
		return h->ae_algo->ops->rm_uc_addr(h, addr);

	return 0;
}

static int hns3_nic_mc_sync(struct net_device *netdev,
			    const unsigned char *addr)
{
566
	struct hnae3_handle *h = hns3_get_handle(netdev);
567

568
	if (h->ae_algo->ops->add_mc_addr)
569 570 571 572 573 574 575 576
		return h->ae_algo->ops->add_mc_addr(h, addr);

	return 0;
}

static int hns3_nic_mc_unsync(struct net_device *netdev,
			      const unsigned char *addr)
{
577
	struct hnae3_handle *h = hns3_get_handle(netdev);
578

579
	if (h->ae_algo->ops->rm_mc_addr)
580 581 582 583 584
		return h->ae_algo->ops->rm_mc_addr(h, addr);

	return 0;
}

585 586 587 588 589
static u8 hns3_get_netdev_flags(struct net_device *netdev)
{
	u8 flags = 0;

	if (netdev->flags & IFF_PROMISC) {
590
		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
591 592 593 594 595 596 597 598 599
	} else {
		flags |= HNAE3_VLAN_FLTR;
		if (netdev->flags & IFF_ALLMULTI)
			flags |= HNAE3_USER_MPE;
	}

	return flags;
}

600
static void hns3_nic_set_rx_mode(struct net_device *netdev)
601
{
602
	struct hnae3_handle *h = hns3_get_handle(netdev);
603
	u8 new_flags;
604

605 606
	new_flags = hns3_get_netdev_flags(netdev);

607 608
	__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
	__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
609 610

	/* User mode Promisc mode enable and vlan filtering is disabled to
611
	 * let all packets in.
612 613
	 */
	h->netdev_flags = new_flags;
614 615 616 617 618 619 620 621 622
	hns3_request_update_promisc_mode(h);
}

void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
{
	const struct hnae3_ae_ops *ops = handle->ae_algo->ops;

	if (ops->request_update_promisc_mode)
		ops->request_update_promisc_mode(handle);
623 624
}

625
int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
626 627 628 629 630
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hnae3_handle *h = priv->ae_handle;

	if (h->ae_algo->ops->set_promisc_mode) {
631 632 633
		return h->ae_algo->ops->set_promisc_mode(h,
						promisc_flags & HNAE3_UPE,
						promisc_flags & HNAE3_MPE);
634
	}
635 636

	return 0;
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
}

void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hnae3_handle *h = priv->ae_handle;
	bool last_state;

	if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
		if (enable != last_state) {
			netdev_info(netdev,
				    "%s vlan filter\n",
				    enable ? "enable" : "disable");
			h->ae_algo->ops->enable_vlan_filter(h, enable);
		}
653
	}
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
}

static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
			u16 *mss, u32 *type_cs_vlan_tso)
{
	u32 l4_offset, hdr_len;
	union l3_hdr_info l3;
	union l4_hdr_info l4;
	u32 l4_paylen;
	int ret;

	if (!skb_is_gso(skb))
		return 0;

	ret = skb_cow_head(skb, 0);
669
	if (unlikely(ret < 0))
670 671 672 673 674 675 676 677 678 679 680
		return ret;

	l3.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);

	/* Software should clear the IPv4's checksum field when tso is
	 * needed.
	 */
	if (l3.v4->version == 4)
		l3.v4->check = 0;

681
	/* tunnel packet */
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
					 SKB_GSO_GRE_CSUM |
					 SKB_GSO_UDP_TUNNEL |
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
		if ((!(skb_shinfo(skb)->gso_type &
		    SKB_GSO_PARTIAL)) &&
		    (skb_shinfo(skb)->gso_type &
		    SKB_GSO_UDP_TUNNEL_CSUM)) {
			/* Software should clear the udp's checksum
			 * field when tso is needed.
			 */
			l4.udp->check = 0;
		}
		/* reset l3&l4 pointers from outer to inner headers */
		l3.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* Software should clear the IPv4's checksum field when
		 * tso is needed.
		 */
		if (l3.v4->version == 4)
			l3.v4->check = 0;
	}

706
	/* normal or tunnel packet */
707
	l4_offset = l4.hdr - skb->data;
708
	hdr_len = (l4.tcp->doff << 2) + l4_offset;
709

710
	/* remove payload length from inner pseudo checksum when tso */
711 712 713 714 715 716
	l4_paylen = skb->len - l4_offset;
	csum_replace_by_diff(&l4.tcp->check,
			     (__force __wsum)htonl(l4_paylen));

	/* find the txbd field values */
	*paylen = skb->len - hdr_len;
717
	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
718 719 720 721

	/* get MSS for TSO */
	*mss = skb_shinfo(skb)->gso_size;

722 723
	trace_hns3_tso(skb);

724 725 726
	return 0;
}

727 728
static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
				u8 *il4_proto)
729
{
730
	union l3_hdr_info l3;
731 732 733 734 735 736 737
	unsigned char *l4_hdr;
	unsigned char *exthdr;
	u8 l4_proto_tmp;
	__be16 frag_off;

	/* find outer header point */
	l3.hdr = skb_network_header(skb);
738
	l4_hdr = skb_transport_header(skb);
739 740 741 742 743 744 745 746 747

	if (skb->protocol == htons(ETH_P_IPV6)) {
		exthdr = l3.hdr + sizeof(*l3.v6);
		l4_proto_tmp = l3.v6->nexthdr;
		if (l4_hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto_tmp, &frag_off);
	} else if (skb->protocol == htons(ETH_P_IP)) {
		l4_proto_tmp = l3.v4->protocol;
748 749
	} else {
		return -EINVAL;
750 751 752 753 754 755 756
	}

	*ol4_proto = l4_proto_tmp;

	/* tunnel packet */
	if (!skb->encapsulation) {
		*il4_proto = 0;
757
		return 0;
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
	}

	/* find inner header point */
	l3.hdr = skb_inner_network_header(skb);
	l4_hdr = skb_inner_transport_header(skb);

	if (l3.v6->version == 6) {
		exthdr = l3.hdr + sizeof(*l3.v6);
		l4_proto_tmp = l3.v6->nexthdr;
		if (l4_hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto_tmp, &frag_off);
	} else if (l3.v4->version == 4) {
		l4_proto_tmp = l3.v4->protocol;
	}

	*il4_proto = l4_proto_tmp;
775 776

	return 0;
777 778
}

779 780 781 782 783 784 785 786
/* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
 * and it is udp packet, which has a dest port as the IANA assigned.
 * the hardware is expected to do the checksum offload, but the
 * hardware will not do the checksum offload when udp dest port is
 * 4789.
 */
static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
{
787
	union l4_hdr_info l4;
788 789 790

	l4.hdr = skb_transport_header(skb);

791 792
	if (!(!skb->encapsulation &&
	      l4.udp->dest == htons(IANA_VXLAN_UDP_PORT)))
793 794 795 796 797 798 799
		return false;

	skb_checksum_help(skb);

	return true;
}

800 801
static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
				  u32 *ol_type_vlan_len_msec)
802
{
803 804
	u32 l2_len, l3_len, l4_len;
	unsigned char *il2_hdr;
805
	union l3_hdr_info l3;
806
	union l4_hdr_info l4;
807 808

	l3.hdr = skb_network_header(skb);
809
	l4.hdr = skb_transport_header(skb);
810

811 812 813 814 815 816 817
	/* compute OL2 header size, defined in 2 Bytes */
	l2_len = l3.hdr - skb->data;
	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);

	/* compute OL3 header size, defined in 4 Bytes */
	l3_len = l4.hdr - l3.hdr;
	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
818

819
	il2_hdr = skb_inner_mac_header(skb);
820
	/* compute OL4 header size, defined in 4 Bytes */
821 822 823 824 825 826
	l4_len = il2_hdr - l4.hdr;
	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);

	/* define outer network header type */
	if (skb->protocol == htons(ETH_P_IP)) {
		if (skb_is_gso(skb))
827
			hns3_set_field(*ol_type_vlan_len_msec,
828 829 830
				       HNS3_TXD_OL3T_S,
				       HNS3_OL3T_IPV4_CSUM);
		else
831
			hns3_set_field(*ol_type_vlan_len_msec,
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
				       HNS3_TXD_OL3T_S,
				       HNS3_OL3T_IPV4_NO_CSUM);

	} else if (skb->protocol == htons(ETH_P_IPV6)) {
		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
			       HNS3_OL3T_IPV6);
	}

	if (ol4_proto == IPPROTO_UDP)
		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
			       HNS3_TUN_MAC_IN_UDP);
	else if (ol4_proto == IPPROTO_GRE)
		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
			       HNS3_TUN_NVGRE);
}

static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
			   u8 il4_proto, u32 *type_cs_vlan_tso,
			   u32 *ol_type_vlan_len_msec)
{
852
	unsigned char *l2_hdr = skb->data;
853 854 855 856 857 858 859 860 861 862 863 864
	u32 l4_proto = ol4_proto;
	union l4_hdr_info l4;
	union l3_hdr_info l3;
	u32 l2_len, l3_len;

	l4.hdr = skb_transport_header(skb);
	l3.hdr = skb_network_header(skb);

	/* handle encapsulation skb */
	if (skb->encapsulation) {
		/* If this is a not UDP/GRE encapsulation skb */
		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
865 866 867 868 869 870 871 872 873 874 875 876 877
			/* drop the skb tunnel packet if hardware don't support,
			 * because hardware can't calculate csum when TSO.
			 */
			if (skb_is_gso(skb))
				return -EDOM;

			/* the stack computes the IP header already,
			 * driver calculate l4 checksum when not TSO.
			 */
			skb_checksum_help(skb);
			return 0;
		}

878 879 880 881
		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);

		/* switch to inner header */
		l2_hdr = skb_inner_mac_header(skb);
882
		l3.hdr = skb_inner_network_header(skb);
883
		l4.hdr = skb_inner_transport_header(skb);
884 885 886 887
		l4_proto = il4_proto;
	}

	if (l3.v4->version == 4) {
888 889
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
			       HNS3_L3T_IPV4);
890 891 892 893 894

		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
		if (skb_is_gso(skb))
895
			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
896
	} else if (l3.v6->version == 6) {
897 898
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
			       HNS3_L3T_IPV6);
899 900
	}

901 902 903 904 905 906 907 908 909
	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
	l2_len = l3.hdr - l2_hdr;
	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);

	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
	l3_len = l4.hdr - l3.hdr;
	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);

	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
910 911
	switch (l4_proto) {
	case IPPROTO_TCP:
912 913 914
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
			       HNS3_L4T_TCP);
915 916
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
			       l4.tcp->doff);
917 918
		break;
	case IPPROTO_UDP:
919 920 921
		if (hns3_tunnel_csum_bug(skb))
			break;

922 923 924
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
			       HNS3_L4T_UDP);
925 926
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
			       (sizeof(struct udphdr) >> 2));
927 928
		break;
	case IPPROTO_SCTP:
929 930 931
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
			       HNS3_L4T_SCTP);
932 933
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
			       (sizeof(struct sctphdr) >> 2));
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
		break;
	default:
		/* drop the skb tunnel packet if hardware don't support,
		 * because hardware can't calculate csum when TSO.
		 */
		if (skb_is_gso(skb))
			return -EDOM;

		/* the stack computes the IP header already,
		 * driver calculate l4 checksum when not TSO.
		 */
		skb_checksum_help(skb);
		return 0;
	}

	return 0;
}

952 953
static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
			     struct sk_buff *skb)
954
{
955
	struct hnae3_handle *handle = tx_ring->tqp->handle;
956 957 958 959 960 961
	struct vlan_ethhdr *vhdr;
	int rc;

	if (!(skb->protocol == htons(ETH_P_8021Q) ||
	      skb_vlan_tag_present(skb)))
		return 0;
962 963 964 965 966 967 968 969 970

	/* Since HW limitation, if port based insert VLAN enabled, only one VLAN
	 * header is allowed in skb, otherwise it will cause RAS error.
	 */
	if (unlikely(skb_vlan_tagged_multi(skb) &&
		     handle->port_base_vlan_state ==
		     HNAE3_PORT_BASE_VLAN_ENABLE))
		return -EINVAL;

971
	if (skb->protocol == htons(ETH_P_8021Q) &&
972
	    !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
973 974 975 976 977 978 979 980 981 982 983 984
		/* When HW VLAN acceleration is turned off, and the stack
		 * sets the protocol to 802.1q, the driver just need to
		 * set the protocol to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		return 0;
	}

	if (skb_vlan_tag_present(skb)) {
		/* Based on hw strategy, use out_vtag in two layer tag case,
		 * and use inner_vtag in one tag case.
		 */
985 986 987 988 989 990 991 992 993
		if (skb->protocol == htons(ETH_P_8021Q) &&
		    handle->port_base_vlan_state ==
		    HNAE3_PORT_BASE_VLAN_DISABLE)
			rc = HNS3_OUTER_VLAN_TAG;
		else
			rc = HNS3_INNER_VLAN_TAG;

		skb->protocol = vlan_get_protocol(skb);
		return rc;
994 995
	}

996 997 998 999 1000 1001 1002 1003
	rc = skb_cow_head(skb, 0);
	if (unlikely(rc < 0))
		return rc;

	vhdr = (struct vlan_ethhdr *)skb->data;
	vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
					 & VLAN_PRIO_MASK);

1004 1005 1006 1007
	skb->protocol = vlan_get_protocol(skb);
	return 0;
}

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
			      struct sk_buff *skb, struct hns3_desc *desc)
{
	u32 ol_type_vlan_len_msec = 0;
	u32 type_cs_vlan_tso = 0;
	u32 paylen = skb->len;
	u16 inner_vtag = 0;
	u16 out_vtag = 0;
	u16 mss = 0;
	int ret;

	ret = hns3_handle_vtags(ring, skb);
	if (unlikely(ret < 0)) {
1021 1022 1023
		u64_stats_update_begin(&ring->syncp);
		ring->stats.tx_vlan_err++;
		u64_stats_update_end(&ring->syncp);
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
		return ret;
	} else if (ret == HNS3_INNER_VLAN_TAG) {
		inner_vtag = skb_vlan_tag_get(skb);
		inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
				VLAN_PRIO_MASK;
		hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
	} else if (ret == HNS3_OUTER_VLAN_TAG) {
		out_vtag = skb_vlan_tag_get(skb);
		out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
				VLAN_PRIO_MASK;
		hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
			       1);
	}

	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		u8 ol4_proto, il4_proto;

		skb_reset_mac_len(skb);

		ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1044
		if (unlikely(ret < 0)) {
1045 1046 1047
			u64_stats_update_begin(&ring->syncp);
			ring->stats.tx_l4_proto_err++;
			u64_stats_update_end(&ring->syncp);
1048
			return ret;
1049
		}
1050 1051 1052 1053

		ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
				      &type_cs_vlan_tso,
				      &ol_type_vlan_len_msec);
1054
		if (unlikely(ret < 0)) {
1055 1056 1057
			u64_stats_update_begin(&ring->syncp);
			ring->stats.tx_l2l3l4_err++;
			u64_stats_update_end(&ring->syncp);
1058
			return ret;
1059
		}
1060 1061 1062

		ret = hns3_set_tso(skb, &paylen, &mss,
				   &type_cs_vlan_tso);
1063
		if (unlikely(ret < 0)) {
1064 1065 1066
			u64_stats_update_begin(&ring->syncp);
			ring->stats.tx_tso_err++;
			u64_stats_update_end(&ring->syncp);
1067
			return ret;
1068
		}
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	}

	/* Set txbd */
	desc->tx.ol_type_vlan_len_msec =
		cpu_to_le32(ol_type_vlan_len_msec);
	desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
	desc->tx.paylen = cpu_to_le32(paylen);
	desc->tx.mss = cpu_to_le16(mss);
	desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
	desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);

	return 0;
}

1083
static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1084
			  unsigned int size, enum hns_desc_type type)
1085
{
1086 1087
#define HNS3_LIKELY_BD_NUM	1

1088 1089
	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1090
	struct device *dev = ring_to_dev(ring);
1091
	skb_frag_t *frag;
1092
	unsigned int frag_buf_num;
1093
	int k, sizeoflast;
1094
	dma_addr_t dma;
1095 1096

	if (type == DESC_TYPE_SKB) {
1097 1098
		struct sk_buff *skb = (struct sk_buff *)priv;
		int ret;
1099

1100
		ret = hns3_fill_skb_desc(ring, skb, desc);
1101
		if (unlikely(ret < 0))
1102 1103
			return ret;

1104 1105 1106 1107
		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
	} else if (type == DESC_TYPE_FRAGLIST_SKB) {
		struct sk_buff *skb = (struct sk_buff *)priv;

1108 1109
		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
	} else {
1110
		frag = (skb_frag_t *)priv;
1111 1112 1113
		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
	}

1114
	if (unlikely(dma_mapping_error(dev, dma))) {
1115
		u64_stats_update_begin(&ring->syncp);
1116
		ring->stats.sw_err_cnt++;
1117
		u64_stats_update_end(&ring->syncp);
1118
		return -ENOMEM;
1119 1120
	}

1121
	desc_cb->priv = priv;
1122
	desc_cb->length = size;
1123 1124
	desc_cb->dma = dma;
	desc_cb->type = type;
1125

1126 1127 1128 1129
	if (likely(size <= HNS3_MAX_BD_SIZE)) {
		desc->addr = cpu_to_le64(dma);
		desc->tx.send_size = cpu_to_le16(size);
		desc->tx.bdtp_fe_sc_vld_ra_ri =
1130
			cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1131

1132
		trace_hns3_tx_desc(ring, ring->next_to_use);
1133
		ring_ptr_move_fw(ring, next_to_use);
1134
		return HNS3_LIKELY_BD_NUM;
1135 1136
	}

1137
	frag_buf_num = hns3_tx_bd_count(size);
1138
	sizeoflast = size % HNS3_MAX_BD_SIZE;
1139 1140 1141 1142 1143 1144
	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;

	/* When frag size is bigger than hardware limit, split this frag */
	for (k = 0; k < frag_buf_num; k++) {
		/* now, fill the descriptor */
		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1145
		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1146
				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1147
		desc->tx.bdtp_fe_sc_vld_ra_ri =
1148
				cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1149

1150
		trace_hns3_tx_desc(ring, ring->next_to_use);
1151
		/* move ring pointer to next */
1152 1153 1154 1155
		ring_ptr_move_fw(ring, next_to_use);

		desc = &ring->desc[ring->next_to_use];
	}
1156

1157
	return frag_buf_num;
1158 1159
}

1160 1161
static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
				    unsigned int bd_num)
1162
{
1163
	unsigned int size;
1164
	int i;
1165

1166 1167 1168 1169 1170 1171 1172 1173
	size = skb_headlen(skb);
	while (size > HNS3_MAX_BD_SIZE) {
		bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
		size -= HNS3_MAX_BD_SIZE;

		if (bd_num > HNS3_MAX_TSO_BD_NUM)
			return bd_num;
	}
1174

1175 1176 1177 1178 1179
	if (size) {
		bd_size[bd_num++] = size;
		if (bd_num > HNS3_MAX_TSO_BD_NUM)
			return bd_num;
	}
1180

1181
	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1182
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
		size = skb_frag_size(frag);
		if (!size)
			continue;

		while (size > HNS3_MAX_BD_SIZE) {
			bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
			size -= HNS3_MAX_BD_SIZE;

			if (bd_num > HNS3_MAX_TSO_BD_NUM)
				return bd_num;
		}

		bd_size[bd_num++] = size;
		if (bd_num > HNS3_MAX_TSO_BD_NUM)
			return bd_num;
	}

	return bd_num;
}

static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size)
{
	struct sk_buff *frag_skb;
	unsigned int bd_num = 0;

	/* If the total len is within the max bd limit */
	if (likely(skb->len <= HNS3_MAX_BD_SIZE && !skb_has_frag_list(skb) &&
		   skb_shinfo(skb)->nr_frags < HNS3_MAX_NON_TSO_BD_NUM))
		return skb_shinfo(skb)->nr_frags + 1U;

	/* The below case will always be linearized, return
	 * HNS3_MAX_BD_NUM_TSO + 1U to make sure it is linearized.
	 */
	if (unlikely(skb->len > HNS3_MAX_TSO_SIZE ||
		     (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)))
		return HNS3_MAX_TSO_BD_NUM + 1U;

	bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);

	if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
		return bd_num;

	skb_walk_frags(skb, frag_skb) {
		bd_num = hns3_skb_bd_num(frag_skb, bd_size, bd_num);
		if (bd_num > HNS3_MAX_TSO_BD_NUM)
			return bd_num;
1229
	}
1230

1231
	return bd_num;
1232 1233
}

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
{
	if (!skb->encapsulation)
		return skb_transport_offset(skb) + tcp_hdrlen(skb);

	return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
}

/* HW need every continuous 8 buffer data to be larger than MSS,
 * we simplify it by ensuring skb_headlen + the first continuous
 * 7 frags to to be larger than gso header len + mss, and the remaining
 * continuous 7 frags to be larger than MSS except the last 7 frags.
 */
1247 1248
static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
				     unsigned int bd_num)
1249 1250 1251 1252
{
	unsigned int tot_len = 0;
	int i;

1253 1254
	for (i = 0; i < HNS3_MAX_NON_TSO_BD_NUM - 1U; i++)
		tot_len += bd_size[i];
1255

1256 1257 1258
	/* ensure the first 8 frags is greater than mss + header */
	if (tot_len + bd_size[HNS3_MAX_NON_TSO_BD_NUM - 1U] <
	    skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1259 1260
		return true;

1261 1262 1263 1264 1265 1266
	/* ensure every continuous 7 buffer is greater than mss
	 * except the last one.
	 */
	for (i = 0; i < bd_num - HNS3_MAX_NON_TSO_BD_NUM; i++) {
		tot_len -= bd_size[i];
		tot_len += bd_size[i + HNS3_MAX_NON_TSO_BD_NUM - 1U];
1267 1268 1269 1270 1271 1272 1273 1274

		if (tot_len < skb_shinfo(skb)->gso_size)
			return true;
	}

	return false;
}

1275 1276 1277 1278 1279 1280 1281 1282
void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
{
	int i = 0;

	for (i = 0; i < MAX_SKB_FRAGS; i++)
		size[i] = skb_frag_size(&shinfo->frags[i]);
}

1283
static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1284
				  struct net_device *netdev,
1285
				  struct sk_buff *skb)
1286
{
1287
	struct hns3_nic_priv *priv = netdev_priv(netdev);
1288
	unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1289
	unsigned int bd_num;
1290

1291 1292 1293
	bd_num = hns3_tx_bd_num(skb, bd_size);
	if (unlikely(bd_num > HNS3_MAX_NON_TSO_BD_NUM)) {
		if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1294 1295
		    !hns3_skb_need_linearized(skb, bd_size, bd_num)) {
			trace_hns3_over_8bd(skb);
1296
			goto out;
1297
		}
1298

1299
		if (__skb_linearize(skb))
P
Peng Li 已提交
1300
			return -ENOMEM;
1301

1302 1303 1304
		bd_num = hns3_tx_bd_count(skb->len);
		if ((skb_is_gso(skb) && bd_num > HNS3_MAX_TSO_BD_NUM) ||
		    (!skb_is_gso(skb) &&
1305 1306
		     bd_num > HNS3_MAX_NON_TSO_BD_NUM)) {
			trace_hns3_over_8bd(skb);
1307
			return -ENOMEM;
1308
		}
1309

1310 1311 1312
		u64_stats_update_begin(&ring->syncp);
		ring->stats.tx_copy++;
		u64_stats_update_end(&ring->syncp);
P
Peng Li 已提交
1313 1314
	}

1315
out:
1316 1317
	if (likely(ring_space(ring) >= bd_num))
		return bd_num;
1318

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	netif_stop_subqueue(netdev, ring->queue_index);
	smp_mb(); /* Memory barrier before checking ring_space */

	/* Start queue in case hns3_clean_tx_ring has just made room
	 * available and has not seen the queue stopped state performed
	 * by netif_stop_subqueue above.
	 */
	if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
	    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
		netif_start_subqueue(netdev, ring->queue_index);
		return bd_num;
	}

	return -EBUSY;
1333 1334
}

F
Fuyun Liang 已提交
1335
static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1336 1337 1338 1339 1340 1341 1342 1343 1344
{
	struct device *dev = ring_to_dev(ring);
	unsigned int i;

	for (i = 0; i < ring->desc_num; i++) {
		/* check if this is where we started */
		if (ring->next_to_use == next_to_use_orig)
			break;

1345 1346 1347
		/* rollback one */
		ring_ptr_move_bw(ring, next_to_use);

1348
		/* unmap the descriptor dma address */
1349 1350 1351
		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB ||
		    ring->desc_cb[ring->next_to_use].type ==
		    DESC_TYPE_FRAGLIST_SKB)
1352 1353 1354 1355
			dma_unmap_single(dev,
					 ring->desc_cb[ring->next_to_use].dma,
					ring->desc_cb[ring->next_to_use].length,
					DMA_TO_DEVICE);
1356
		else if (ring->desc_cb[ring->next_to_use].length)
1357 1358 1359 1360 1361
			dma_unmap_page(dev,
				       ring->desc_cb[ring->next_to_use].dma,
				       ring->desc_cb[ring->next_to_use].length,
				       DMA_TO_DEVICE);

1362
		ring->desc_cb[ring->next_to_use].length = 0;
1363
		ring->desc_cb[ring->next_to_use].dma = 0;
1364 1365 1366
	}
}

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
				 struct sk_buff *skb, enum hns_desc_type type)
{
	unsigned int size = skb_headlen(skb);
	int i, ret, bd_num = 0;

	if (size) {
		ret = hns3_fill_desc(ring, skb, size, type);
		if (unlikely(ret < 0))
			return ret;

		bd_num += ret;
	}

	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

		size = skb_frag_size(frag);
		if (!size)
			continue;

		ret = hns3_fill_desc(ring, frag, size, DESC_TYPE_PAGE);
		if (unlikely(ret < 0))
			return ret;

		bd_num += ret;
	}

	return bd_num;
}

1398
netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1399 1400
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
1401
	struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
1402
	struct netdev_queue *dev_queue;
1403 1404 1405
	int pre_ntu, next_to_use_head;
	struct sk_buff *frag_skb;
	int bd_num = 0;
1406 1407
	int ret;

1408 1409 1410 1411
	/* Hardware can only handle short frames above 32 bytes */
	if (skb_put_padto(skb, HNS3_MIN_TX_LEN))
		return NETDEV_TX_OK;

1412 1413 1414
	/* Prefetch the data used later */
	prefetch(skb->data);

1415
	ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
1416 1417
	if (unlikely(ret <= 0)) {
		if (ret == -EBUSY) {
1418 1419 1420
			u64_stats_update_begin(&ring->syncp);
			ring->stats.tx_busy++;
			u64_stats_update_end(&ring->syncp);
1421
			return NETDEV_TX_BUSY;
1422
		} else if (ret == -ENOMEM) {
1423 1424 1425 1426
			u64_stats_update_begin(&ring->syncp);
			ring->stats.sw_err_cnt++;
			u64_stats_update_end(&ring->syncp);
		}
1427

1428
		hns3_rl_err(netdev, "xmit error: %d!\n", ret);
1429 1430 1431 1432 1433
		goto out_err_tx_ok;
	}

	next_to_use_head = ring->next_to_use;

1434 1435
	ret = hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
	if (unlikely(ret < 0))
1436
		goto fill_err;
1437

1438
	bd_num += ret;
1439

1440
	skb_walk_frags(skb, frag_skb) {
1441 1442
		ret = hns3_fill_skb_to_desc(ring, frag_skb,
					    DESC_TYPE_FRAGLIST_SKB);
1443
		if (unlikely(ret < 0))
1444
			goto fill_err;
1445 1446

		bd_num += ret;
1447
	}
1448

1449 1450 1451 1452
	pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
					(ring->desc_num - 1);
	ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
				cpu_to_le16(BIT(HNS3_TXD_FE_B));
1453
	trace_hns3_tx_desc(ring, pre_ntu);
1454 1455

	/* Complete translate all packets */
1456
	dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
1457 1458 1459 1460
	netdev_tx_sent_queue(dev_queue, skb->len);

	wmb(); /* Commit all data before submit */

1461
	hnae3_queue_xmit(ring->tqp, bd_num);
1462 1463 1464

	return NETDEV_TX_OK;

1465
fill_err:
F
Fuyun Liang 已提交
1466
	hns3_clear_desc(ring, next_to_use_head);
1467 1468 1469 1470 1471 1472 1473 1474

out_err_tx_ok:
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
{
1475
	struct hnae3_handle *h = hns3_get_handle(netdev);
1476 1477 1478 1479 1480 1481
	struct sockaddr *mac_addr = p;
	int ret;

	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
		return -EADDRNOTAVAIL;

1482 1483 1484 1485 1486 1487
	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
		netdev_info(netdev, "already using mac address %pM\n",
			    mac_addr->sa_data);
		return 0;
	}

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
	/* For VF device, if there is a perm_addr, then the user will not
	 * be allowed to change the address.
	 */
	if (!hns3_is_phys_func(h->pdev) &&
	    !is_zero_ether_addr(netdev->perm_addr)) {
		netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
			   netdev->perm_addr, mac_addr->sa_data);
		return -EPERM;
	}

1498
	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	if (ret) {
		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
		return ret;
	}

	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);

	return 0;
}

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
static int hns3_nic_do_ioctl(struct net_device *netdev,
			     struct ifreq *ifr, int cmd)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);

	if (!netif_running(netdev))
		return -EINVAL;

	if (!h->ae_algo->ops->do_ioctl)
		return -EOPNOTSUPP;

	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
}

1523 1524 1525
static int hns3_nic_set_features(struct net_device *netdev,
				 netdev_features_t features)
{
1526
	netdev_features_t changed = netdev->features ^ features;
1527
	struct hns3_nic_priv *priv = netdev_priv(netdev);
1528
	struct hnae3_handle *h = priv->ae_handle;
1529
	bool enable;
1530
	int ret;
1531

1532
	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1533 1534
		enable = !!(features & NETIF_F_GRO_HW);
		ret = h->ae_algo->ops->set_gro_en(h, enable);
1535 1536 1537 1538
		if (ret)
			return ret;
	}

1539 1540
	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1541 1542
		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1543 1544 1545 1546
		if (ret)
			return ret;
	}

1547
	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1548 1549
		enable = !!(features & NETIF_F_NTUPLE);
		h->ae_algo->ops->enable_fd(h, enable);
1550 1551
	}

1552 1553 1554 1555
	netdev->features = features;
	return 0;
}

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
static netdev_features_t hns3_features_check(struct sk_buff *skb,
					     struct net_device *dev,
					     netdev_features_t features)
{
#define HNS3_MAX_HDR_LEN	480U
#define HNS3_MAX_L4_HDR_LEN	60U

	size_t len;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return features;

	if (skb->encapsulation)
		len = skb_inner_transport_header(skb) - skb->data;
	else
		len = skb_transport_header(skb) - skb->data;

	/* Assume L4 is 60 byte as TCP is the only protocol with a
	 * a flexible value, and it's max len is 60 bytes.
	 */
	len += HNS3_MAX_L4_HDR_LEN;

	/* Hardware only supports checksum on the skb with a max header
	 * len of 480 bytes.
	 */
	if (len > HNS3_MAX_HDR_LEN)
		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);

	return features;
}

1587 1588
static void hns3_nic_get_stats64(struct net_device *netdev,
				 struct rtnl_link_stats64 *stats)
1589 1590 1591
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	int queue_num = priv->ae_handle->kinfo.num_tqps;
1592
	struct hnae3_handle *handle = priv->ae_handle;
1593
	struct hns3_enet_ring *ring;
1594 1595 1596
	u64 rx_length_errors = 0;
	u64 rx_crc_errors = 0;
	u64 rx_multicast = 0;
1597
	unsigned int start;
1598 1599
	u64 tx_errors = 0;
	u64 rx_errors = 0;
1600 1601 1602 1603 1604
	unsigned int idx;
	u64 tx_bytes = 0;
	u64 rx_bytes = 0;
	u64 tx_pkts = 0;
	u64 rx_pkts = 0;
1605 1606
	u64 tx_drop = 0;
	u64 rx_drop = 0;
1607

1608 1609 1610
	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
		return;

1611 1612
	handle->ae_algo->ops->update_stats(handle, &netdev->stats);

1613 1614
	for (idx = 0; idx < queue_num; idx++) {
		/* fetch the tx stats */
1615
		ring = &priv->ring[idx];
1616
		do {
1617
			start = u64_stats_fetch_begin_irq(&ring->syncp);
1618 1619
			tx_bytes += ring->stats.tx_bytes;
			tx_pkts += ring->stats.tx_pkts;
1620
			tx_drop += ring->stats.sw_err_cnt;
1621 1622 1623 1624
			tx_drop += ring->stats.tx_vlan_err;
			tx_drop += ring->stats.tx_l4_proto_err;
			tx_drop += ring->stats.tx_l2l3l4_err;
			tx_drop += ring->stats.tx_tso_err;
1625
			tx_errors += ring->stats.sw_err_cnt;
1626 1627 1628 1629
			tx_errors += ring->stats.tx_vlan_err;
			tx_errors += ring->stats.tx_l4_proto_err;
			tx_errors += ring->stats.tx_l2l3l4_err;
			tx_errors += ring->stats.tx_tso_err;
1630 1631 1632
		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));

		/* fetch the rx stats */
1633
		ring = &priv->ring[idx + queue_num];
1634
		do {
1635
			start = u64_stats_fetch_begin_irq(&ring->syncp);
1636 1637
			rx_bytes += ring->stats.rx_bytes;
			rx_pkts += ring->stats.rx_pkts;
1638
			rx_drop += ring->stats.l2_err;
1639
			rx_errors += ring->stats.l2_err;
1640
			rx_errors += ring->stats.l3l4_csum_err;
1641 1642 1643
			rx_crc_errors += ring->stats.l2_err;
			rx_multicast += ring->stats.rx_multicast;
			rx_length_errors += ring->stats.err_pkt_len;
1644 1645 1646 1647 1648 1649 1650 1651
		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
	}

	stats->tx_bytes = tx_bytes;
	stats->tx_packets = tx_pkts;
	stats->rx_bytes = rx_bytes;
	stats->rx_packets = rx_pkts;

1652 1653 1654 1655
	stats->rx_errors = rx_errors;
	stats->multicast = rx_multicast;
	stats->rx_length_errors = rx_length_errors;
	stats->rx_crc_errors = rx_crc_errors;
1656 1657
	stats->rx_missed_errors = netdev->stats.rx_missed_errors;

1658 1659 1660
	stats->tx_errors = tx_errors;
	stats->rx_dropped = rx_drop;
	stats->tx_dropped = tx_drop;
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
	stats->collisions = netdev->stats.collisions;
	stats->rx_over_errors = netdev->stats.rx_over_errors;
	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
	stats->tx_window_errors = netdev->stats.tx_window_errors;
	stats->rx_compressed = netdev->stats.rx_compressed;
	stats->tx_compressed = netdev->stats.tx_compressed;
}

1674
static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1675
{
1676 1677
	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1678
	struct hnae3_knic_private_info *kinfo;
1679 1680 1681
	u8 tc = mqprio_qopt->qopt.num_tc;
	u16 mode = mqprio_qopt->mode;
	u8 hw = mqprio_qopt->qopt.hw;
1682
	struct hnae3_handle *h;
1683

1684 1685 1686 1687
	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
		return -EOPNOTSUPP;

1688 1689 1690 1691 1692 1693
	if (tc > HNAE3_MAX_TC)
		return -EINVAL;

	if (!netdev)
		return -EINVAL;

1694 1695 1696
	h = hns3_get_handle(netdev);
	kinfo = &h->kinfo;

1697 1698
	netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);

1699
	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1700
		kinfo->dcb_ops->setup_tc(h, tc ? tc : 1, prio_tc) : -EOPNOTSUPP;
1701 1702
}

1703
static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1704
			     void *type_data)
1705
{
1706
	if (type != TC_SETUP_QDISC_MQPRIO)
1707
		return -EOPNOTSUPP;
1708

1709
	return hns3_setup_tc(dev, type_data);
1710 1711 1712 1713 1714
}

static int hns3_vlan_rx_add_vid(struct net_device *netdev,
				__be16 proto, u16 vid)
{
1715
	struct hnae3_handle *h = hns3_get_handle(netdev);
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	int ret = -EIO;

	if (h->ae_algo->ops->set_vlan_filter)
		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);

	return ret;
}

static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
				 __be16 proto, u16 vid)
{
1727
	struct hnae3_handle *h = hns3_get_handle(netdev);
1728 1729 1730 1731 1732
	int ret = -EIO;

	if (h->ae_algo->ops->set_vlan_filter)
		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);

1733
	return ret;
1734 1735
}

1736 1737 1738
static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
				u8 qos, __be16 vlan_proto)
{
1739
	struct hnae3_handle *h = hns3_get_handle(netdev);
1740 1741
	int ret = -EIO;

1742
	netif_dbg(h, drv, netdev,
1743 1744
		  "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
		  vf, vlan, qos, ntohs(vlan_proto));
1745

1746 1747
	if (h->ae_algo->ops->set_vf_vlan_filter)
		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1748
							  qos, vlan_proto);
1749 1750 1751 1752

	return ret;
}

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
{
	struct hnae3_handle *handle = hns3_get_handle(netdev);

	if (hns3_nic_resetting(netdev))
		return -EBUSY;

	if (!handle->ae_algo->ops->set_vf_spoofchk)
		return -EOPNOTSUPP;

	return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
}

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
{
	struct hnae3_handle *handle = hns3_get_handle(netdev);

	if (!handle->ae_algo->ops->set_vf_trust)
		return -EOPNOTSUPP;

	return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
}

1776 1777
static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
{
1778
	struct hnae3_handle *h = hns3_get_handle(netdev);
1779 1780
	int ret;

1781 1782 1783
	if (hns3_nic_resetting(netdev))
		return -EBUSY;

1784 1785 1786
	if (!h->ae_algo->ops->set_mtu)
		return -EOPNOTSUPP;

1787 1788 1789
	netif_dbg(h, drv, netdev,
		  "change mtu from %u to %d\n", netdev->mtu, new_mtu);

1790
	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1791
	if (ret)
1792 1793
		netdev_err(netdev, "failed to change MTU in hardware %d\n",
			   ret);
1794 1795
	else
		netdev->mtu = new_mtu;
F
Fuyun Liang 已提交
1796

1797 1798 1799
	return ret;
}

1800 1801 1802
static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
{
	struct hns3_nic_priv *priv = netdev_priv(ndev);
1803
	struct hnae3_handle *h = hns3_get_handle(ndev);
1804
	struct hns3_enet_ring *tx_ring;
1805
	struct napi_struct *napi;
1806 1807
	int timeout_queue = 0;
	int hw_head, hw_tail;
1808 1809 1810 1811
	int fbd_num, fbd_oft;
	int ebd_num, ebd_oft;
	int bd_num, bd_err;
	int ring_en, tc;
1812 1813 1814
	int i;

	/* Find the stopped queue the same way the stack does */
1815
	for (i = 0; i < ndev->num_tx_queues; i++) {
1816 1817 1818 1819 1820 1821 1822 1823 1824
		struct netdev_queue *q;
		unsigned long trans_start;

		q = netdev_get_tx_queue(ndev, i);
		trans_start = q->trans_start;
		if (netif_xmit_stopped(q) &&
		    time_after(jiffies,
			       (trans_start + ndev->watchdog_timeo))) {
			timeout_queue = i;
1825 1826 1827
			netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
				    q->state,
				    jiffies_to_msecs(jiffies - trans_start));
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
			break;
		}
	}

	if (i == ndev->num_tx_queues) {
		netdev_info(ndev,
			    "no netdev TX timeout queue found, timeout count: %llu\n",
			    priv->tx_timeout_count);
		return false;
	}

1839 1840
	priv->tx_timeout_count++;

1841
	tx_ring = &priv->ring[timeout_queue];
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
	napi = &tx_ring->tqp_vector->napi;

	netdev_info(ndev,
		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
		    tx_ring->next_to_clean, napi->state);

	netdev_info(ndev,
		    "tx_pkts: %llu, tx_bytes: %llu, io_err_cnt: %llu, sw_err_cnt: %llu\n",
		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
		    tx_ring->stats.io_err_cnt, tx_ring->stats.sw_err_cnt);

	netdev_info(ndev,
		    "seg_pkt_cnt: %llu, tx_err_cnt: %llu, restart_queue: %llu, tx_busy: %llu\n",
		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_err_cnt,
		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);

	/* When mac received many pause frames continuous, it's unable to send
	 * packets, which may cause tx timeout
	 */
1862 1863
	if (h->ae_algo->ops->get_mac_stats) {
		struct hns3_mac_stats mac_stats;
1864

1865
		h->ae_algo->ops->get_mac_stats(h, &mac_stats);
1866
		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
1867
			    mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
1868
	}
1869 1870 1871 1872 1873

	hw_head = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_HEAD_REG);
	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_TAIL_REG);
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	fbd_num = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_FBDNUM_REG);
	fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_OFFSET_REG);
	ebd_num = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_EBDNUM_REG);
	ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_EBD_OFFSET_REG);
	bd_num = readl_relaxed(tx_ring->tqp->io_base +
			       HNS3_RING_TX_RING_BD_NUM_REG);
	bd_err = readl_relaxed(tx_ring->tqp->io_base +
			       HNS3_RING_TX_RING_BD_ERR_REG);
	ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
	tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);

1889
	netdev_info(ndev,
1890 1891
		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
		    bd_num, hw_head, hw_tail, bd_err,
1892
		    readl(tx_ring->tqp_vector->mask_addr));
1893 1894 1895
	netdev_info(ndev,
		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
		    ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
1896 1897 1898 1899

	return true;
}

1900
static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
1901 1902 1903 1904 1905 1906 1907
{
	struct hns3_nic_priv *priv = netdev_priv(ndev);
	struct hnae3_handle *h = priv->ae_handle;

	if (!hns3_get_tx_timeo_queue_info(ndev))
		return;

1908 1909 1910
	/* request the reset, and let the hclge to determine
	 * which reset level should be done
	 */
1911
	if (h->ae_algo->ops->reset_event)
1912
		h->ae_algo->ops->reset_event(h->pdev, h);
1913 1914
}

J
Jian Shen 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
#ifdef CONFIG_RFS_ACCEL
static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
			      u16 rxq_index, u32 flow_id)
{
	struct hnae3_handle *h = hns3_get_handle(dev);
	struct flow_keys fkeys;

	if (!h->ae_algo->ops->add_arfs_entry)
		return -EOPNOTSUPP;

	if (skb->encapsulation)
		return -EPROTONOSUPPORT;

	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
		return -EPROTONOSUPPORT;

	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
	     fkeys.basic.ip_proto != IPPROTO_UDP))
		return -EPROTONOSUPPORT;

	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
}
#endif

1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
				  struct ifla_vf_info *ivf)
{
	struct hnae3_handle *h = hns3_get_handle(ndev);

	if (!h->ae_algo->ops->get_vf_config)
		return -EOPNOTSUPP;

	return h->ae_algo->ops->get_vf_config(h, vf, ivf);
}

static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
				      int link_state)
{
	struct hnae3_handle *h = hns3_get_handle(ndev);

	if (!h->ae_algo->ops->set_vf_link_state)
		return -EOPNOTSUPP;

	return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
}

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
				int min_tx_rate, int max_tx_rate)
{
	struct hnae3_handle *h = hns3_get_handle(ndev);

	if (!h->ae_algo->ops->set_vf_rate)
		return -EOPNOTSUPP;

	return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
					    false);
}

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);

	if (!h->ae_algo->ops->set_vf_mac)
		return -EOPNOTSUPP;

	if (is_multicast_ether_addr(mac)) {
		netdev_err(netdev,
			   "Invalid MAC:%pM specified. Could not set MAC\n",
			   mac);
		return -EINVAL;
	}

	return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
}

1992 1993 1994 1995
static const struct net_device_ops hns3_nic_netdev_ops = {
	.ndo_open		= hns3_nic_net_open,
	.ndo_stop		= hns3_nic_net_stop,
	.ndo_start_xmit		= hns3_nic_net_xmit,
1996
	.ndo_tx_timeout		= hns3_nic_net_timeout,
1997
	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
1998
	.ndo_do_ioctl		= hns3_nic_do_ioctl,
1999
	.ndo_change_mtu		= hns3_nic_change_mtu,
2000
	.ndo_set_features	= hns3_nic_set_features,
2001
	.ndo_features_check	= hns3_features_check,
2002 2003 2004 2005 2006 2007
	.ndo_get_stats64	= hns3_nic_get_stats64,
	.ndo_setup_tc		= hns3_nic_setup_tc,
	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
2008
	.ndo_set_vf_spoofchk	= hns3_set_vf_spoofchk,
2009
	.ndo_set_vf_trust	= hns3_set_vf_trust,
J
Jian Shen 已提交
2010 2011 2012
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
#endif
2013 2014
	.ndo_get_vf_config	= hns3_nic_get_vf_config,
	.ndo_set_vf_link_state	= hns3_nic_set_vf_link_state,
2015
	.ndo_set_vf_rate	= hns3_nic_set_vf_rate,
2016
	.ndo_set_vf_mac		= hns3_nic_set_vf_mac,
2017 2018
};

2019
bool hns3_is_phys_func(struct pci_dev *pdev)
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
{
	u32 dev_id = pdev->device;

	switch (dev_id) {
	case HNAE3_DEV_ID_GE:
	case HNAE3_DEV_ID_25GE:
	case HNAE3_DEV_ID_25GE_RDMA:
	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
	case HNAE3_DEV_ID_50GE_RDMA:
	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
		return true;
	case HNAE3_DEV_ID_100G_VF:
	case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
		return false;
	default:
2036
		dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
			 dev_id);
	}

	return false;
}

static void hns3_disable_sriov(struct pci_dev *pdev)
{
	/* If our VFs are assigned we cannot shut down SR-IOV
	 * without causing issues, so just leave the hardware
	 * available but disabled
	 */
	if (pci_vfs_assigned(pdev)) {
		dev_warn(&pdev->dev,
			 "disabling driver while VFs are assigned\n");
		return;
	}

	pci_disable_sriov(pdev);
}

2058 2059 2060
static void hns3_get_dev_capability(struct pci_dev *pdev,
				    struct hnae3_ae_dev *ae_dev)
{
2061
	if (pdev->revision >= 0x21) {
2062
		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
2063 2064
		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
	}
2065 2066
}

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
/* hns3_probe - Device initialization routine
 * @pdev: PCI device information struct
 * @ent: entry in hns3_pci_tbl
 *
 * hns3_probe initializes a PF identified by a pci_dev structure.
 * The OS initialization, configuring of the PF private structure,
 * and a hardware reset occur.
 *
 * Returns 0 on success, negative on failure
 */
static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
	struct hnae3_ae_dev *ae_dev;
	int ret;

2082
	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2083 2084
	if (!ae_dev)
		return -ENOMEM;
2085 2086

	ae_dev->pdev = pdev;
2087
	ae_dev->flag = ent->driver_data;
2088
	hns3_get_dev_capability(pdev, ae_dev);
2089 2090
	pci_set_drvdata(pdev, ae_dev);

2091 2092 2093 2094 2095
	ret = hnae3_register_ae_dev(ae_dev);
	if (ret) {
		devm_kfree(&pdev->dev, ae_dev);
		pci_set_drvdata(pdev, NULL);
	}
2096

2097
	return ret;
2098 2099 2100 2101 2102 2103 2104 2105 2106
}

/* hns3_remove - Device removal routine
 * @pdev: PCI device information struct
 */
static void hns3_remove(struct pci_dev *pdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);

2107 2108 2109
	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
		hns3_disable_sriov(pdev);

2110
	hnae3_unregister_ae_dev(ae_dev);
2111
	pci_set_drvdata(pdev, NULL);
2112 2113
}

2114 2115 2116 2117 2118 2119 2120 2121
/**
 * hns3_pci_sriov_configure
 * @pdev: pointer to a pci_dev structure
 * @num_vfs: number of VFs to allocate
 *
 * Enable or change the number of VFs. Called when the user updates the number
 * of VFs in sysfs.
 **/
2122
static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
{
	int ret;

	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
		dev_warn(&pdev->dev, "Can not config SRIOV\n");
		return -EINVAL;
	}

	if (num_vfs) {
		ret = pci_enable_sriov(pdev, num_vfs);
		if (ret)
			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2135 2136
		else
			return num_vfs;
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
	} else if (!pci_vfs_assigned(pdev)) {
		pci_disable_sriov(pdev);
	} else {
		dev_warn(&pdev->dev,
			 "Unable to free VFs because some are assigned to VMs.\n");
	}

	return 0;
}

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
static void hns3_shutdown(struct pci_dev *pdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);

	hnae3_unregister_ae_dev(ae_dev);
	devm_kfree(&pdev->dev, ae_dev);
	pci_set_drvdata(pdev, NULL);

	if (system_state == SYSTEM_POWER_OFF)
		pci_set_power_state(pdev, PCI_D3hot);
}

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
					    pci_channel_state_t state)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
	pci_ers_result_t ret;

	dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

2170
	if (!ae_dev || !ae_dev->ops) {
2171
		dev_err(&pdev->dev,
2172
			"Can't recover - error happened before device initialized\n");
2173 2174 2175
		return PCI_ERS_RESULT_NONE;
	}

2176 2177
	if (ae_dev->ops->handle_hw_ras_error)
		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
2178 2179 2180 2181 2182 2183
	else
		return PCI_ERS_RESULT_NONE;

	return ret;
}

2184 2185 2186
static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2187
	const struct hnae3_ae_ops *ops;
2188
	enum hnae3_reset_type reset_type;
2189 2190
	struct device *dev = &pdev->dev;

2191 2192 2193
	if (!ae_dev || !ae_dev->ops)
		return PCI_ERS_RESULT_NONE;

2194
	ops = ae_dev->ops;
2195
	/* request the reset */
2196 2197
	if (ops->reset_event && ops->get_reset_level &&
	    ops->set_default_reset_request) {
2198
		if (ae_dev->hw_err_reset_req) {
2199 2200 2201 2202 2203 2204
			reset_type = ops->get_reset_level(ae_dev,
						&ae_dev->hw_err_reset_req);
			ops->set_default_reset_request(ae_dev, reset_type);
			dev_info(dev, "requesting reset due to PCI error\n");
			ops->reset_event(pdev, NULL);
		}
2205

2206 2207 2208 2209 2210 2211
		return PCI_ERS_RESULT_RECOVERED;
	}

	return PCI_ERS_RESULT_DISCONNECT;
}

2212 2213 2214 2215
static void hns3_reset_prepare(struct pci_dev *pdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);

2216
	dev_info(&pdev->dev, "FLR prepare\n");
2217 2218 2219 2220 2221 2222 2223 2224
	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
		ae_dev->ops->flr_prepare(ae_dev);
}

static void hns3_reset_done(struct pci_dev *pdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);

2225
	dev_info(&pdev->dev, "FLR done\n");
2226 2227 2228 2229
	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
		ae_dev->ops->flr_done(ae_dev);
}

2230 2231
static const struct pci_error_handlers hns3_err_handler = {
	.error_detected = hns3_error_detected,
2232
	.slot_reset     = hns3_slot_reset,
2233 2234
	.reset_prepare	= hns3_reset_prepare,
	.reset_done	= hns3_reset_done,
2235 2236
};

2237 2238 2239 2240 2241
static struct pci_driver hns3_driver = {
	.name     = hns3_driver_name,
	.id_table = hns3_pci_tbl,
	.probe    = hns3_probe,
	.remove   = hns3_remove,
2242
	.shutdown = hns3_shutdown,
2243
	.sriov_configure = hns3_pci_sriov_configure,
2244
	.err_handler    = &hns3_err_handler,
2245 2246 2247 2248 2249
};

/* set default feature to hns3 */
static void hns3_set_default_feature(struct net_device *netdev)
{
2250 2251 2252
	struct hnae3_handle *h = hns3_get_handle(netdev);
	struct pci_dev *pdev = h->pdev;

2253 2254 2255 2256 2257 2258
	netdev->priv_flags |= IFF_UNICAST_FLT;

	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2259 2260
		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
		NETIF_F_TSO_MANGLEID | NETIF_F_FRAGLIST;
2261 2262 2263 2264 2265

	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;

	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
		NETIF_F_HW_VLAN_CTAG_FILTER |
2266
		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2267 2268 2269
		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2270 2271
		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
		NETIF_F_FRAGLIST;
2272 2273 2274 2275 2276 2277

	netdev->vlan_features |=
		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2278 2279
		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
		NETIF_F_FRAGLIST;
2280 2281

	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2282
		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2283 2284 2285
		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2286 2287
		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
		NETIF_F_FRAGLIST;
2288

2289
	if (pdev->revision >= 0x21) {
2290
		netdev->hw_features |= NETIF_F_GRO_HW;
2291
		netdev->features |= NETIF_F_GRO_HW;
2292 2293 2294 2295 2296 2297

		if (!(h->flags & HNAE3_SUPPORT_VF)) {
			netdev->hw_features |= NETIF_F_NTUPLE;
			netdev->features |= NETIF_F_NTUPLE;
		}
	}
2298 2299 2300 2301 2302
}

static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
			     struct hns3_desc_cb *cb)
{
2303
	unsigned int order = hns3_page_order(ring);
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
	struct page *p;

	p = dev_alloc_pages(order);
	if (!p)
		return -ENOMEM;

	cb->priv = p;
	cb->page_offset = 0;
	cb->reuse_flag = 0;
	cb->buf  = page_address(p);
2314
	cb->length = hns3_page_size(ring);
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
	cb->type = DESC_TYPE_PAGE;

	return 0;
}

static void hns3_free_buffer(struct hns3_enet_ring *ring,
			     struct hns3_desc_cb *cb)
{
	if (cb->type == DESC_TYPE_SKB)
		dev_kfree_skb_any((struct sk_buff *)cb->priv);
	else if (!HNAE3_IS_TX_RING(ring))
		put_page((struct page *)cb->priv);
	memset(cb, 0, sizeof(*cb));
}

static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
{
	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
			       cb->length, ring_to_dma_dir(ring));

2335
	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2336 2337 2338 2339 2340 2341 2342 2343
		return -EIO;

	return 0;
}

static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
			      struct hns3_desc_cb *cb)
{
2344
	if (cb->type == DESC_TYPE_SKB || cb->type == DESC_TYPE_FRAGLIST_SKB)
2345 2346
		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
				 ring_to_dma_dir(ring));
2347
	else if (cb->length)
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
			       ring_to_dma_dir(ring));
}

static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
{
	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
	ring->desc[i].addr = 0;
}

static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
{
	struct hns3_desc_cb *cb = &ring->desc_cb[i];

	if (!ring->desc_cb[i].dma)
		return;

	hns3_buffer_detach(ring, i);
	hns3_free_buffer(ring, cb);
}

static void hns3_free_buffers(struct hns3_enet_ring *ring)
{
	int i;

	for (i = 0; i < ring->desc_num; i++)
		hns3_free_buffer_detach(ring, i);
}

/* free desc along with its attached buffer */
static void hns3_free_desc(struct hns3_enet_ring *ring)
{
2380 2381
	int size = ring->desc_num * sizeof(ring->desc[0]);

2382 2383
	hns3_free_buffers(ring);

2384 2385 2386 2387 2388
	if (ring->desc) {
		dma_free_coherent(ring_to_dev(ring), size,
				  ring->desc, ring->desc_dma_addr);
		ring->desc = NULL;
	}
2389 2390 2391 2392 2393 2394
}

static int hns3_alloc_desc(struct hns3_enet_ring *ring)
{
	int size = ring->desc_num * sizeof(ring->desc[0]);

2395 2396
	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
					&ring->desc_dma_addr, GFP_KERNEL);
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	if (!ring->desc)
		return -ENOMEM;

	return 0;
}

static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
				   struct hns3_desc_cb *cb)
{
	int ret;

	ret = hns3_alloc_buffer(ring, cb);
	if (ret)
		goto out;

	ret = hns3_map_buffer(ring, cb);
	if (ret)
		goto out_with_buf;

	return 0;

out_with_buf:
2419
	hns3_free_buffer(ring, cb);
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
out:
	return ret;
}

static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
{
	int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);

	if (ret)
		return ret;

	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);

	return 0;
}

/* Allocate memory for raw pkg, and map with dma */
static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
{
	int i, j, ret;

	for (i = 0; i < ring->desc_num; i++) {
		ret = hns3_alloc_buffer_attach(ring, i);
		if (ret)
			goto out_buffer_fail;
	}

	return 0;

out_buffer_fail:
	for (j = i - 1; j >= 0; j--)
		hns3_free_buffer_detach(ring, j);
	return ret;
}

2455
/* detach a in-used buffer and replace with a reserved one */
2456 2457 2458
static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
				struct hns3_desc_cb *res_cb)
{
2459
	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2460 2461
	ring->desc_cb[i] = *res_cb;
	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2462
	ring->desc[i].rx.bd_base_info = 0;
2463 2464 2465 2466 2467
}

static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
{
	ring->desc_cb[i].reuse_flag = 0;
2468 2469
	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
					 ring->desc_cb[i].page_offset);
2470
	ring->desc[i].rx.bd_base_info = 0;
2471 2472
}

2473 2474
static void hns3_nic_reclaim_desc(struct hns3_enet_ring *ring, int head,
				  int *bytes, int *pkts)
2475
{
2476 2477
	int ntc = ring->next_to_clean;
	struct hns3_desc_cb *desc_cb;
2478

2479 2480 2481 2482 2483 2484
	while (head != ntc) {
		desc_cb = &ring->desc_cb[ntc];
		(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
		(*bytes) += desc_cb->length;
		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
		hns3_free_buffer_detach(ring, ntc);
2485

2486 2487 2488 2489 2490 2491
		if (++ntc == ring->desc_num)
			ntc = 0;

		/* Issue prefetch for next Tx descriptor */
		prefetch(&ring->desc_cb[ntc]);
	}
2492 2493 2494 2495 2496

	/* This smp_store_release() pairs with smp_load_acquire() in
	 * ring_space called by hns3_nic_net_xmit.
	 */
	smp_store_release(&ring->next_to_clean, ntc);
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
}

static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
{
	int u = ring->next_to_use;
	int c = ring->next_to_clean;

	if (unlikely(h > ring->desc_num))
		return 0;

	return u > c ? (h > c && h <= u) : (h > c || h <= u);
}

2510
void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2511
{
2512
	struct net_device *netdev = ring_to_netdev(ring);
2513
	struct hns3_nic_priv *priv = netdev_priv(netdev);
2514 2515 2516 2517 2518 2519 2520
	struct netdev_queue *dev_queue;
	int bytes, pkts;
	int head;

	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);

	if (is_ring_empty(ring) || head == ring->next_to_clean)
2521
		return; /* no data to poll */
2522

2523 2524
	rmb(); /* Make sure head is ready before touch any data */

2525
	if (unlikely(!is_valid_clean_head(ring, head))) {
2526 2527
		hns3_rl_err(netdev, "wrong head (%d, %d-%d)\n", head,
			    ring->next_to_use, ring->next_to_clean);
2528 2529 2530 2531

		u64_stats_update_begin(&ring->syncp);
		ring->stats.io_err_cnt++;
		u64_stats_update_end(&ring->syncp);
2532
		return;
2533 2534 2535 2536
	}

	bytes = 0;
	pkts = 0;
2537
	hns3_nic_reclaim_desc(ring, head, &bytes, &pkts);
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549

	ring->tqp_vector->tx_group.total_bytes += bytes;
	ring->tqp_vector->tx_group.total_packets += pkts;

	u64_stats_update_begin(&ring->syncp);
	ring->stats.tx_bytes += bytes;
	ring->stats.tx_pkts += pkts;
	u64_stats_update_end(&ring->syncp);

	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
	netdev_tx_completed_queue(dev_queue, pkts, bytes);

2550
	if (unlikely(netif_carrier_ok(netdev) &&
2551
		     ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
2552 2553 2554 2555
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
2556 2557
		if (netif_tx_queue_stopped(dev_queue) &&
		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
			netif_tx_wake_queue(dev_queue);
			ring->stats.restart_queue++;
		}
	}
}

static int hns3_desc_unused(struct hns3_enet_ring *ring)
{
	int ntc = ring->next_to_clean;
	int ntu = ring->next_to_use;

	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
}

2572 2573
static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
				      int cleand_count)
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
{
	struct hns3_desc_cb *desc_cb;
	struct hns3_desc_cb res_cbs;
	int i, ret;

	for (i = 0; i < cleand_count; i++) {
		desc_cb = &ring->desc_cb[ring->next_to_use];
		if (desc_cb->reuse_flag) {
			u64_stats_update_begin(&ring->syncp);
			ring->stats.reuse_pg_cnt++;
			u64_stats_update_end(&ring->syncp);

			hns3_reuse_buffer(ring, ring->next_to_use);
		} else {
			ret = hns3_reserve_buffer_map(ring, &res_cbs);
			if (ret) {
				u64_stats_update_begin(&ring->syncp);
				ring->stats.sw_err_cnt++;
				u64_stats_update_end(&ring->syncp);

2594
				hns3_rl_err(ring_to_netdev(ring),
2595 2596
					    "alloc rx buffer failed: %d\n",
					    ret);
2597 2598 2599
				break;
			}
			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2600 2601 2602 2603

			u64_stats_update_begin(&ring->syncp);
			ring->stats.non_reuse_pg++;
			u64_stats_update_end(&ring->syncp);
2604 2605 2606 2607 2608 2609 2610 2611 2612
		}

		ring_ptr_move_fw(ring, next_to_use);
	}

	wmb(); /* Make all data has been write before submit */
	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
}

2613 2614 2615 2616 2617 2618
static bool hns3_page_is_reusable(struct page *page)
{
	return page_to_nid(page) == numa_mem_id() &&
		!page_is_pfmemalloc(page);
}

2619 2620 2621 2622
static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
				struct hns3_enet_ring *ring, int pull_len,
				struct hns3_desc_cb *desc_cb)
{
2623 2624
	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
	int size = le16_to_cpu(desc->rx.size);
2625
	u32 truesize = hns3_buf_size(ring);
2626 2627

	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2628
			size - pull_len, truesize);
2629

2630 2631 2632
	/* Avoid re-using remote pages, or the stack is still using the page
	 * when page_offset rollback to zero, flag default unreuse
	 */
2633
	if (unlikely(!hns3_page_is_reusable(desc_cb->priv)) ||
2634
	    (!desc_cb->page_offset && page_count(desc_cb->priv) > 1))
2635 2636 2637 2638 2639
		return;

	/* Move offset up to the next cache line */
	desc_cb->page_offset += truesize;

2640
	if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) {
2641
		desc_cb->reuse_flag = 1;
2642
		/* Bump ref count on page before it is given */
2643
		get_page(desc_cb->priv);
2644 2645 2646 2647
	} else if (page_count(desc_cb->priv) == 1) {
		desc_cb->reuse_flag = 1;
		desc_cb->page_offset = 0;
		get_page(desc_cb->priv);
2648 2649 2650
	}
}

2651
static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2652 2653 2654 2655 2656
{
	__be16 type = skb->protocol;
	struct tcphdr *th;
	int depth = 0;

2657
	while (eth_type_vlan(type)) {
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
		struct vlan_hdr *vh;

		if ((depth + VLAN_HLEN) > skb_headlen(skb))
			return -EFAULT;

		vh = (struct vlan_hdr *)(skb->data + depth);
		type = vh->h_vlan_encapsulated_proto;
		depth += VLAN_HLEN;
	}

2668 2669
	skb_set_network_header(skb, depth);

2670
	if (type == htons(ETH_P_IP)) {
2671 2672
		const struct iphdr *iph = ip_hdr(skb);

2673
		depth += sizeof(struct iphdr);
2674 2675 2676 2677
		skb_set_transport_header(skb, depth);
		th = tcp_hdr(skb);
		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
					  iph->daddr, 0);
2678
	} else if (type == htons(ETH_P_IPV6)) {
2679 2680
		const struct ipv6hdr *iph = ipv6_hdr(skb);

2681
		depth += sizeof(struct ipv6hdr);
2682 2683 2684 2685
		skb_set_transport_header(skb, depth);
		th = tcp_hdr(skb);
		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
					  &iph->daddr, 0);
2686
	} else {
2687 2688 2689
		hns3_rl_err(skb->dev,
			    "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
			    be16_to_cpu(type), depth);
2690 2691 2692 2693 2694 2695 2696
		return -EFAULT;
	}

	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
	if (th->cwr)
		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;

2697 2698
	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2699

2700 2701 2702
	skb->csum_start = (unsigned char *)th - skb->head;
	skb->csum_offset = offsetof(struct tcphdr, check);
	skb->ip_summed = CHECKSUM_PARTIAL;
2703 2704 2705

	trace_hns3_gro(skb);

2706 2707 2708
	return 0;
}

2709
static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2710
			     u32 l234info, u32 bd_base_info, u32 ol_info)
2711
{
2712
	struct net_device *netdev = ring_to_netdev(ring);
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
	int l3_type, l4_type;
	int ol4_type;

	skb->ip_summed = CHECKSUM_NONE;

	skb_checksum_none_assert(skb);

	if (!(netdev->features & NETIF_F_RXCSUM))
		return;

	/* check if hardware has done checksum */
2724
	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2725 2726
		return;

2727 2728
	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
				 BIT(HNS3_RXD_OL3E_B) |
2729
				 BIT(HNS3_RXD_OL4E_B)))) {
2730 2731 2732 2733 2734 2735 2736
		u64_stats_update_begin(&ring->syncp);
		ring->stats.l3l4_csum_err++;
		u64_stats_update_end(&ring->syncp);

		return;
	}

2737
	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
P
Peng Li 已提交
2738
				   HNS3_RXD_OL4ID_S);
2739 2740 2741 2742
	switch (ol4_type) {
	case HNS3_OL4_TYPE_MAC_IN_UDP:
	case HNS3_OL4_TYPE_NVGRE:
		skb->csum_level = 1;
2743
		/* fall through */
2744
	case HNS3_OL4_TYPE_NO_TUN:
2745 2746 2747 2748 2749
		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
					  HNS3_RXD_L3ID_S);
		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
					  HNS3_RXD_L4ID_S);

2750
		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2751 2752 2753 2754 2755
		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
		     l3_type == HNS3_L3_TYPE_IPV6) &&
		    (l4_type == HNS3_L4_TYPE_UDP ||
		     l4_type == HNS3_L4_TYPE_TCP ||
		     l4_type == HNS3_L4_TYPE_SCTP))
2756 2757
			skb->ip_summed = CHECKSUM_UNNECESSARY;
		break;
2758 2759
	default:
		break;
2760 2761 2762
	}
}

2763 2764
static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
{
2765 2766 2767
	if (skb_has_frag_list(skb))
		napi_gro_flush(&ring->tqp_vector->napi, false);

2768 2769 2770
	napi_gro_receive(&ring->tqp_vector->napi, skb);
}

2771 2772 2773
static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
				struct hns3_desc *desc, u32 l234info,
				u16 *vlan_tag)
2774
{
2775
	struct hnae3_handle *handle = ring->tqp->handle;
2776 2777 2778
	struct pci_dev *pdev = ring->tqp->handle->pdev;

	if (pdev->revision == 0x20) {
2779 2780 2781
		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
		if (!(*vlan_tag & VLAN_VID_MASK))
			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2782

2783
		return (*vlan_tag != 0);
2784 2785 2786 2787
	}

#define HNS3_STRP_OUTER_VLAN	0x1
#define HNS3_STRP_INNER_VLAN	0x2
2788
#define HNS3_STRP_BOTH		0x3
2789

2790 2791 2792 2793
	/* Hardware always insert VLAN tag into RX descriptor when
	 * remove the tag from packet, driver needs to determine
	 * reporting which tag to stack.
	 */
P
Peng Li 已提交
2794 2795
	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
				HNS3_RXD_STRP_TAGP_S)) {
2796
	case HNS3_STRP_OUTER_VLAN:
2797 2798 2799 2800
		if (handle->port_base_vlan_state !=
				HNAE3_PORT_BASE_VLAN_DISABLE)
			return false;

2801 2802
		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
		return true;
2803
	case HNS3_STRP_INNER_VLAN:
2804 2805 2806 2807
		if (handle->port_base_vlan_state !=
				HNAE3_PORT_BASE_VLAN_DISABLE)
			return false;

2808
		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2809 2810 2811 2812 2813 2814 2815 2816
		return true;
	case HNS3_STRP_BOTH:
		if (handle->port_base_vlan_state ==
				HNAE3_PORT_BASE_VLAN_DISABLE)
			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
		else
			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);

2817
		return true;
2818
	default:
2819
		return false;
2820 2821 2822
	}
}

2823
static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
2824 2825 2826
			  unsigned char *va)
{
	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2827
	struct net_device *netdev = ring_to_netdev(ring);
2828 2829 2830 2831 2832
	struct sk_buff *skb;

	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
	skb = ring->skb;
	if (unlikely(!skb)) {
2833
		hns3_rl_err(netdev, "alloc rx skb fail\n");
2834 2835 2836 2837 2838 2839 2840 2841

		u64_stats_update_begin(&ring->syncp);
		ring->stats.sw_err_cnt++;
		u64_stats_update_end(&ring->syncp);

		return -ENOMEM;
	}

2842
	trace_hns3_rx_desc(ring);
2843 2844 2845
	prefetchw(skb->data);

	ring->pending_buf = 1;
2846 2847
	ring->frag_num = 0;
	ring->tail_skb = NULL;
2848 2849 2850 2851
	if (length <= HNS3_RX_HEAD_SIZE) {
		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));

		/* We can reuse buffer as-is, just make sure it is local */
2852
		if (likely(hns3_page_is_reusable(desc_cb->priv)))
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
			desc_cb->reuse_flag = 1;
		else /* This page cannot be reused so discard it */
			put_page(desc_cb->priv);

		ring_ptr_move_fw(ring, next_to_clean);
		return 0;
	}
	u64_stats_update_begin(&ring->syncp);
	ring->stats.seg_pkt_cnt++;
	u64_stats_update_end(&ring->syncp);

2864
	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
2865
	__skb_put(skb, ring->pull_len);
2866
	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2867 2868 2869
			    desc_cb);
	ring_ptr_move_fw(ring, next_to_clean);

2870
	return 0;
2871 2872
}

2873
static int hns3_add_frag(struct hns3_enet_ring *ring)
2874
{
2875 2876
	struct sk_buff *skb = ring->skb;
	struct sk_buff *head_skb = skb;
2877
	struct sk_buff *new_skb;
2878
	struct hns3_desc_cb *desc_cb;
2879
	struct hns3_desc *desc;
2880 2881
	u32 bd_base_info;

2882
	do {
2883 2884 2885
		desc = &ring->desc[ring->next_to_clean];
		desc_cb = &ring->desc_cb[ring->next_to_clean];
		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2886 2887
		/* make sure HW write desc complete */
		dma_rmb();
2888
		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
2889 2890
			return -ENXIO;

2891
		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2892
			new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
2893
			if (unlikely(!new_skb)) {
2894
				hns3_rl_err(ring_to_netdev(ring),
2895
					    "alloc rx fraglist skb fail\n");
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
				return -ENXIO;
			}
			ring->frag_num = 0;

			if (ring->tail_skb) {
				ring->tail_skb->next = new_skb;
				ring->tail_skb = new_skb;
			} else {
				skb_shinfo(skb)->frag_list = new_skb;
				ring->tail_skb = new_skb;
			}
		}

		if (ring->tail_skb) {
2910
			head_skb->truesize += hns3_buf_size(ring);
2911 2912 2913 2914 2915 2916
			head_skb->data_len += le16_to_cpu(desc->rx.size);
			head_skb->len += le16_to_cpu(desc->rx.size);
			skb = ring->tail_skb;
		}

		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2917
		trace_hns3_rx_desc(ring);
2918 2919
		ring_ptr_move_fw(ring, next_to_clean);
		ring->pending_buf++;
2920
	} while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
2921 2922 2923 2924

	return 0;
}

2925 2926
static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
				     struct sk_buff *skb, u32 l234info,
2927
				     u32 bd_base_info, u32 ol_info)
2928 2929 2930
{
	u32 l3_type;

2931 2932 2933
	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
						    HNS3_RXD_GRO_SIZE_M,
						    HNS3_RXD_GRO_SIZE_S);
2934
	/* if there is no HW GRO, do not set gro params */
2935
	if (!skb_shinfo(skb)->gso_size) {
2936
		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
2937 2938
		return 0;
	}
2939

2940 2941 2942
	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
						  HNS3_RXD_GRO_COUNT_M,
						  HNS3_RXD_GRO_COUNT_S);
2943

2944
	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
2945 2946 2947 2948 2949
	if (l3_type == HNS3_L3_TYPE_IPV4)
		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
	else if (l3_type == HNS3_L3_TYPE_IPV6)
		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
	else
2950
		return -EFAULT;
2951

2952
	return  hns3_gro_complete(skb, l234info);
2953 2954
}

2955
static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2956
				     struct sk_buff *skb, u32 rss_hash)
2957 2958 2959 2960
{
	struct hnae3_handle *handle = ring->tqp->handle;
	enum pkt_hash_types rss_type;

2961
	if (rss_hash)
2962 2963 2964 2965
		rss_type = handle->kinfo.rss_type;
	else
		rss_type = PKT_HASH_TYPE_NONE;

2966
	skb_set_hash(skb, rss_hash, rss_type);
2967 2968
}

2969
static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
2970
{
2971
	struct net_device *netdev = ring_to_netdev(ring);
2972
	enum hns3_pkt_l2t_type l2_frame_type;
2973
	u32 bd_base_info, l234info, ol_info;
2974
	struct hns3_desc *desc;
2975
	unsigned int len;
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
	int pre_ntc, ret;

	/* bdinfo handled below is only valid on the last BD of the
	 * current packet, and ring->next_to_clean indicates the first
	 * descriptor of next packet, so need - 1 below.
	 */
	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
					(ring->desc_num - 1);
	desc = &ring->desc[pre_ntc];
	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
	l234info = le32_to_cpu(desc->rx.l234_info);
2987
	ol_info = le32_to_cpu(desc->rx.ol_info);
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018

	/* Based on hw strategy, the tag offloaded will be stored at
	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
	 * in one layer tag case.
	 */
	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
		u16 vlan_tag;

		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
					       vlan_tag);
	}

	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
				  BIT(HNS3_RXD_L2E_B))))) {
		u64_stats_update_begin(&ring->syncp);
		if (l234info & BIT(HNS3_RXD_L2E_B))
			ring->stats.l2_err++;
		else
			ring->stats.err_pkt_len++;
		u64_stats_update_end(&ring->syncp);

		return -EFAULT;
	}

	len = skb->len;

	/* Do update ip stack process */
	skb->protocol = eth_type_trans(skb, netdev);

	/* This is needed in order to enable forwarding support */
3019 3020
	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
					bd_base_info, ol_info);
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
	if (unlikely(ret)) {
		u64_stats_update_begin(&ring->syncp);
		ring->stats.rx_err_cnt++;
		u64_stats_update_end(&ring->syncp);
		return ret;
	}

	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
					HNS3_RXD_DMAC_S);

	u64_stats_update_begin(&ring->syncp);
	ring->stats.rx_pkts++;
	ring->stats.rx_bytes += len;

	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
		ring->stats.rx_multicast++;

	u64_stats_update_end(&ring->syncp);

	ring->tqp_vector->rx_group.total_bytes += len;
3041 3042

	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
3043 3044 3045
	return 0;
}

3046
static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
3047
{
3048
	struct sk_buff *skb = ring->skb;
3049 3050
	struct hns3_desc_cb *desc_cb;
	struct hns3_desc *desc;
3051
	unsigned int length;
3052
	u32 bd_base_info;
3053
	int ret;
3054 3055 3056 3057 3058 3059

	desc = &ring->desc[ring->next_to_clean];
	desc_cb = &ring->desc_cb[ring->next_to_clean];

	prefetch(desc);

3060
	length = le16_to_cpu(desc->rx.size);
3061 3062 3063
	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);

	/* Check valid BD */
3064
	if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
3065
		return -ENXIO;
3066

3067 3068
	if (!skb)
		ring->va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
3069 3070 3071 3072 3073 3074 3075 3076

	/* Prefetch first cache line of first page
	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
	 * line size is 64B so need to prefetch twice to make it 128B. But in
	 * actual we can have greater size of caches with 128B Level 1 cache
	 * lines. In such a case, single fetch would suffice to cache in the
	 * relevant part of the header.
	 */
3077
	prefetch(ring->va);
3078
#if L1_CACHE_BYTES < 128
3079
	prefetch(ring->va + L1_CACHE_BYTES);
3080 3081
#endif

3082 3083
	if (!skb) {
		ret = hns3_alloc_skb(ring, length, ring->va);
3084
		skb = ring->skb;
3085

3086 3087
		if (ret < 0) /* alloc buffer fail */
			return ret;
3088 3089
		if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
			ret = hns3_add_frag(ring);
3090 3091 3092
			if (ret)
				return ret;
		}
3093
	} else {
3094
		ret = hns3_add_frag(ring);
3095 3096
		if (ret)
			return ret;
3097
	}
3098

3099 3100 3101 3102
	/* As the head data may be changed when GRO enable, copy
	 * the head data in after other data rx completed
	 */
	if (skb->len > HNS3_RX_HEAD_SIZE)
3103 3104
		memcpy(skb->data, ring->va,
		       ALIGN(ring->pull_len, sizeof(long)));
3105

3106
	ret = hns3_handle_bdinfo(ring, skb);
3107
	if (unlikely(ret)) {
3108
		dev_kfree_skb_any(skb);
3109
		return ret;
3110 3111
	}

J
Jian Shen 已提交
3112
	skb_record_rx_queue(skb, ring->tqp->tqp_index);
3113 3114 3115
	return 0;
}

3116 3117
int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
3118 3119
{
#define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
3120
	int unused_count = hns3_desc_unused(ring);
3121 3122 3123
	int recv_pkts = 0;
	int recv_bds = 0;
	int err, num;
3124 3125 3126

	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
	num -= unused_count;
3127
	unused_count -= ring->pending_buf;
3128

3129 3130 3131 3132 3133
	if (num <= 0)
		goto out;

	rmb(); /* Make sure num taken effect before the other data is touched */

3134 3135
	while (recv_pkts < budget && recv_bds < num) {
		/* Reuse or realloc buffers */
3136 3137
		if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
			hns3_nic_alloc_rx_buffers(ring, unused_count);
3138 3139
			unused_count = hns3_desc_unused(ring) -
					ring->pending_buf;
3140 3141 3142
		}

		/* Poll one pkt */
3143 3144 3145
		err = hns3_handle_rx_bd(ring);
		/* Do not get FE for the packet or failed to alloc skb */
		if (unlikely(!ring->skb || err == -ENXIO)) {
3146
			goto out;
3147 3148 3149
		} else if (likely(!err)) {
			rx_fn(ring, ring->skb);
			recv_pkts++;
3150 3151
		}

3152
		recv_bds += ring->pending_buf;
3153
		unused_count += ring->pending_buf;
3154 3155
		ring->skb = NULL;
		ring->pending_buf = 0;
3156 3157 3158 3159
	}

out:
	/* Make all data has been write before submit */
3160 3161
	if (unused_count > 0)
		hns3_nic_alloc_rx_buffers(ring, unused_count);
3162 3163 3164 3165

	return recv_pkts;
}

3166
static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
3167
{
3168 3169 3170 3171
#define HNS3_RX_LOW_BYTE_RATE 10000
#define HNS3_RX_MID_BYTE_RATE 20000
#define HNS3_RX_ULTRA_PACKET_RATE 40

3172
	enum hns3_flow_level_range new_flow_level;
3173 3174
	struct hns3_enet_tqp_vector *tqp_vector;
	int packets_per_msecs, bytes_per_msecs;
3175
	u32 time_passed_ms;
3176

3177
	tqp_vector = ring_group->ring->tqp_vector;
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
	time_passed_ms =
		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
	if (!time_passed_ms)
		return false;

	do_div(ring_group->total_packets, time_passed_ms);
	packets_per_msecs = ring_group->total_packets;

	do_div(ring_group->total_bytes, time_passed_ms);
	bytes_per_msecs = ring_group->total_bytes;

3189
	new_flow_level = ring_group->coal.flow_level;
3190

3191 3192 3193 3194 3195 3196
	/* Simple throttlerate management
	 * 0-10MB/s   lower     (50000 ints/s)
	 * 10-20MB/s   middle    (20000 ints/s)
	 * 20-1249MB/s high      (18000 ints/s)
	 * > 40000pps  ultra     (8000 ints/s)
	 */
3197 3198
	switch (new_flow_level) {
	case HNS3_FLOW_LOW:
3199
		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
3200 3201 3202
			new_flow_level = HNS3_FLOW_MID;
		break;
	case HNS3_FLOW_MID:
3203
		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
3204
			new_flow_level = HNS3_FLOW_HIGH;
3205
		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
3206 3207 3208 3209 3210
			new_flow_level = HNS3_FLOW_LOW;
		break;
	case HNS3_FLOW_HIGH:
	case HNS3_FLOW_ULTRA:
	default:
3211
		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
3212 3213 3214 3215
			new_flow_level = HNS3_FLOW_MID;
		break;
	}

3216 3217
	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
	    &tqp_vector->rx_group == ring_group)
3218 3219
		new_flow_level = HNS3_FLOW_ULTRA;

3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
	ring_group->total_bytes = 0;
	ring_group->total_packets = 0;
	ring_group->coal.flow_level = new_flow_level;

	return true;
}

static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
{
	struct hns3_enet_tqp_vector *tqp_vector;
	u16 new_int_gl;

	if (!ring_group->ring)
		return false;

	tqp_vector = ring_group->ring->tqp_vector;
	if (!tqp_vector->last_jiffies)
		return false;

	if (ring_group->total_packets == 0) {
		ring_group->coal.int_gl = HNS3_INT_GL_50K;
		ring_group->coal.flow_level = HNS3_FLOW_LOW;
		return true;
	}

	if (!hns3_get_new_flow_lvl(ring_group))
		return false;

	new_int_gl = ring_group->coal.int_gl;
	switch (ring_group->coal.flow_level) {
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
	case HNS3_FLOW_LOW:
		new_int_gl = HNS3_INT_GL_50K;
		break;
	case HNS3_FLOW_MID:
		new_int_gl = HNS3_INT_GL_20K;
		break;
	case HNS3_FLOW_HIGH:
		new_int_gl = HNS3_INT_GL_18K;
		break;
	case HNS3_FLOW_ULTRA:
		new_int_gl = HNS3_INT_GL_8K;
		break;
	default:
		break;
	}

3266 3267
	if (new_int_gl != ring_group->coal.int_gl) {
		ring_group->coal.int_gl = new_int_gl;
3268 3269 3270 3271 3272 3273 3274
		return true;
	}
	return false;
}

static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
{
3275 3276 3277 3278
	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
	bool rx_update, tx_update;

3279 3280 3281
	/* update param every 1000ms */
	if (time_before(jiffies,
			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
F
Fuyun Liang 已提交
3282 3283
		return;

3284
	if (rx_group->coal.gl_adapt_enable) {
3285 3286 3287
		rx_update = hns3_get_new_int_gl(rx_group);
		if (rx_update)
			hns3_set_vector_coalesce_rx_gl(tqp_vector,
3288
						       rx_group->coal.int_gl);
3289 3290
	}

3291
	if (tx_group->coal.gl_adapt_enable) {
3292
		tx_update = hns3_get_new_int_gl(tx_group);
3293 3294
		if (tx_update)
			hns3_set_vector_coalesce_tx_gl(tqp_vector,
3295
						       tx_group->coal.int_gl);
3296
	}
F
Fuyun Liang 已提交
3297

3298
	tqp_vector->last_jiffies = jiffies;
3299 3300 3301 3302
}

static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
{
3303
	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3304 3305 3306 3307 3308 3309
	struct hns3_enet_ring *ring;
	int rx_pkt_total = 0;

	struct hns3_enet_tqp_vector *tqp_vector =
		container_of(napi, struct hns3_enet_tqp_vector, napi);
	bool clean_complete = true;
3310
	int rx_budget = budget;
3311

3312 3313 3314 3315 3316
	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
		napi_complete(napi);
		return 0;
	}

3317 3318 3319
	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
3320 3321
	hns3_for_each_ring(ring, tqp_vector->tx_group)
		hns3_clean_tx_ring(ring);
3322 3323

	/* make sure rx ring budget not smaller than 1 */
3324 3325
	if (tqp_vector->num_tqps > 1)
		rx_budget = max(budget / tqp_vector->num_tqps, 1);
3326 3327

	hns3_for_each_ring(ring, tqp_vector->rx_group) {
3328 3329
		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
						    hns3_rx_skb);
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341

		if (rx_cleaned >= rx_budget)
			clean_complete = false;

		rx_pkt_total += rx_cleaned;
	}

	tqp_vector->rx_group.total_packets += rx_pkt_total;

	if (!clean_complete)
		return budget;

3342 3343
	if (napi_complete(napi) &&
	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3344 3345 3346
		hns3_update_new_int_gl(tqp_vector);
		hns3_mask_vector_irq(tqp_vector, 1);
	}
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362

	return rx_pkt_total;
}

static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
				      struct hnae3_ring_chain_node *head)
{
	struct pci_dev *pdev = tqp_vector->handle->pdev;
	struct hnae3_ring_chain_node *cur_chain = head;
	struct hnae3_ring_chain_node *chain;
	struct hns3_enet_ring *tx_ring;
	struct hns3_enet_ring *rx_ring;

	tx_ring = tqp_vector->tx_group.ring;
	if (tx_ring) {
		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
P
Peng Li 已提交
3363 3364 3365 3366
		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
			      HNAE3_RING_TYPE_TX);
		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3367 3368 3369 3370 3371 3372 3373 3374 3375

		cur_chain->next = NULL;

		while (tx_ring->next) {
			tx_ring = tx_ring->next;

			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
					     GFP_KERNEL);
			if (!chain)
3376
				goto err_free_chain;
3377 3378 3379

			cur_chain->next = chain;
			chain->tqp_index = tx_ring->tqp->tqp_index;
P
Peng Li 已提交
3380 3381 3382 3383 3384 3385
			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
				      HNAE3_RING_TYPE_TX);
			hnae3_set_field(chain->int_gl_idx,
					HNAE3_RING_GL_IDX_M,
					HNAE3_RING_GL_IDX_S,
					HNAE3_RING_GL_TX);
3386 3387 3388 3389 3390 3391 3392 3393 3394

			cur_chain = chain;
		}
	}

	rx_ring = tqp_vector->rx_group.ring;
	if (!tx_ring && rx_ring) {
		cur_chain->next = NULL;
		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
P
Peng Li 已提交
3395 3396 3397 3398
		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
			      HNAE3_RING_TYPE_RX);
		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3399 3400 3401 3402 3403 3404 3405

		rx_ring = rx_ring->next;
	}

	while (rx_ring) {
		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
		if (!chain)
3406
			goto err_free_chain;
3407 3408 3409

		cur_chain->next = chain;
		chain->tqp_index = rx_ring->tqp->tqp_index;
P
Peng Li 已提交
3410 3411 3412 3413
		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
			      HNAE3_RING_TYPE_RX);
		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3414

3415 3416 3417 3418 3419 3420
		cur_chain = chain;

		rx_ring = rx_ring->next;
	}

	return 0;
3421 3422 3423 3424 3425

err_free_chain:
	cur_chain = head->next;
	while (cur_chain) {
		chain = cur_chain->next;
3426
		devm_kfree(&pdev->dev, cur_chain);
3427 3428
		cur_chain = chain;
	}
3429
	head->next = NULL;
3430 3431

	return -ENOMEM;
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
}

static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
					struct hnae3_ring_chain_node *head)
{
	struct pci_dev *pdev = tqp_vector->handle->pdev;
	struct hnae3_ring_chain_node *chain_tmp, *chain;

	chain = head->next;

	while (chain) {
		chain_tmp = chain->next;
		devm_kfree(&pdev->dev, chain);
		chain = chain_tmp;
	}
}

static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
				   struct hns3_enet_ring *ring)
{
	ring->next = group->ring;
	group->ring = ring;

	group->count++;
}

P
Peng Li 已提交
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
{
	struct pci_dev *pdev = priv->ae_handle->pdev;
	struct hns3_enet_tqp_vector *tqp_vector;
	int num_vectors = priv->vector_num;
	int numa_node;
	int vector_i;

	numa_node = dev_to_node(&pdev->dev);

	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
		tqp_vector = &priv->tqp_vector[vector_i];
		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
				&tqp_vector->affinity_mask);
	}
}

3475 3476 3477 3478 3479 3480
static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
{
	struct hnae3_ring_chain_node vector_ring_chain;
	struct hnae3_handle *h = priv->ae_handle;
	struct hns3_enet_tqp_vector *tqp_vector;
	int ret = 0;
3481
	int i;
3482

P
Peng Li 已提交
3483 3484
	hns3_nic_set_cpumask(priv);

3485 3486 3487 3488 3489
	for (i = 0; i < priv->vector_num; i++) {
		tqp_vector = &priv->tqp_vector[i];
		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
		tqp_vector->num_tqps = 0;
	}
3490

3491 3492 3493
	for (i = 0; i < h->kinfo.num_tqps; i++) {
		u16 vector_i = i % priv->vector_num;
		u16 tqp_num = h->kinfo.num_tqps;
3494 3495 3496 3497

		tqp_vector = &priv->tqp_vector[vector_i];

		hns3_add_ring_to_group(&tqp_vector->tx_group,
3498
				       &priv->ring[i]);
3499 3500

		hns3_add_ring_to_group(&tqp_vector->rx_group,
3501
				       &priv->ring[i + tqp_num]);
3502

3503 3504
		priv->ring[i].tqp_vector = tqp_vector;
		priv->ring[i + tqp_num].tqp_vector = tqp_vector;
3505
		tqp_vector->num_tqps++;
3506 3507
	}

3508
	for (i = 0; i < priv->vector_num; i++) {
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
		tqp_vector = &priv->tqp_vector[i];

		tqp_vector->rx_group.total_bytes = 0;
		tqp_vector->rx_group.total_packets = 0;
		tqp_vector->tx_group.total_bytes = 0;
		tqp_vector->tx_group.total_packets = 0;
		tqp_vector->handle = h;

		ret = hns3_get_vector_ring_chain(tqp_vector,
						 &vector_ring_chain);
		if (ret)
3520
			goto map_ring_fail;
3521 3522 3523 3524 3525 3526

		ret = h->ae_algo->ops->map_ring_to_vector(h,
			tqp_vector->vector_irq, &vector_ring_chain);

		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);

3527
		if (ret)
3528
			goto map_ring_fail;
3529

3530 3531 3532 3533
		netif_napi_add(priv->netdev, &tqp_vector->napi,
			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
	}

3534
	return 0;
3535 3536 3537 3538 3539 3540

map_ring_fail:
	while (i--)
		netif_napi_del(&priv->tqp_vector[i].napi);

	return ret;
3541 3542 3543 3544
}

static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
{
3545 3546
#define HNS3_VECTOR_PF_MAX_NUM		64

3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
	struct hnae3_handle *h = priv->ae_handle;
	struct hns3_enet_tqp_vector *tqp_vector;
	struct hnae3_vector_info *vector;
	struct pci_dev *pdev = h->pdev;
	u16 tqp_num = h->kinfo.num_tqps;
	u16 vector_num;
	int ret = 0;
	u16 i;

	/* RSS size, cpu online and vector_num should be the same */
	/* Should consider 2p/4p later */
	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3559 3560
	vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);

3561 3562 3563 3564 3565
	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
			      GFP_KERNEL);
	if (!vector)
		return -ENOMEM;

3566
	/* save the actual available vector number */
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);

	priv->vector_num = vector_num;
	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
			     GFP_KERNEL);
	if (!priv->tqp_vector) {
		ret = -ENOMEM;
		goto out;
	}

	for (i = 0; i < priv->vector_num; i++) {
		tqp_vector = &priv->tqp_vector[i];
		tqp_vector->idx = i;
		tqp_vector->mask_addr = vector[i].io_addr;
		tqp_vector->vector_irq = vector[i].vector;
		hns3_vector_gl_rl_init(tqp_vector, priv);
	}

3586 3587 3588 3589 3590
out:
	devm_kfree(&pdev->dev, vector);
	return ret;
}

3591 3592 3593 3594 3595 3596
static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
{
	group->ring = NULL;
	group->count = 0;
}

3597
static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3598 3599 3600 3601
{
	struct hnae3_ring_chain_node vector_ring_chain;
	struct hnae3_handle *h = priv->ae_handle;
	struct hns3_enet_tqp_vector *tqp_vector;
3602
	int i;
3603 3604 3605 3606

	for (i = 0; i < priv->vector_num; i++) {
		tqp_vector = &priv->tqp_vector[i];

3607 3608 3609
		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
			continue;

3610 3611 3612 3613 3614 3615
		/* Since the mapping can be overwritten, when fail to get the
		 * chain between vector and ring, we should go on to deal with
		 * the remaining options.
		 */
		if (hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain))
			dev_warn(priv->dev, "failed to get ring chain\n");
3616

3617
		h->ae_algo->ops->unmap_ring_from_vector(h,
3618 3619 3620 3621
			tqp_vector->vector_irq, &vector_ring_chain);

		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);

3622 3623
		hns3_clear_ring_group(&tqp_vector->rx_group);
		hns3_clear_ring_group(&tqp_vector->tx_group);
3624 3625
		netif_napi_del(&priv->tqp_vector[i].napi);
	}
3626 3627
}

3628
static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
{
	struct hnae3_handle *h = priv->ae_handle;
	struct pci_dev *pdev = h->pdev;
	int i, ret;

	for (i = 0; i < priv->vector_num; i++) {
		struct hns3_enet_tqp_vector *tqp_vector;

		tqp_vector = &priv->tqp_vector[i];
		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
		if (ret)
3640
			return;
3641
	}
3642

3643
	devm_kfree(&pdev->dev, priv->tqp_vector);
3644 3645
}

3646 3647
static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
			      unsigned int ring_type)
3648 3649 3650
{
	int queue_num = priv->ae_handle->kinfo.num_tqps;
	struct hns3_enet_ring *ring;
3651
	int desc_num;
3652 3653

	if (ring_type == HNAE3_RING_TYPE_TX) {
3654
		ring = &priv->ring[q->tqp_index];
3655
		desc_num = priv->ae_handle->kinfo.num_tx_desc;
3656
		ring->queue_index = q->tqp_index;
3657 3658
		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
	} else {
3659
		ring = &priv->ring[q->tqp_index + queue_num];
3660
		desc_num = priv->ae_handle->kinfo.num_rx_desc;
3661
		ring->queue_index = q->tqp_index;
3662 3663 3664
		ring->io_base = q->io_base;
	}

P
Peng Li 已提交
3665
	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3666 3667 3668 3669 3670 3671 3672

	ring->tqp = q;
	ring->desc = NULL;
	ring->desc_cb = NULL;
	ring->dev = priv->dev;
	ring->desc_dma_addr = 0;
	ring->buf_size = q->buf_size;
3673
	ring->desc_num = desc_num;
3674 3675 3676 3677
	ring->next_to_use = 0;
	ring->next_to_clean = 0;
}

3678 3679
static void hns3_queue_to_ring(struct hnae3_queue *tqp,
			       struct hns3_nic_priv *priv)
3680
{
3681 3682
	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3683 3684 3685 3686 3687 3688
}

static int hns3_get_ring_config(struct hns3_nic_priv *priv)
{
	struct hnae3_handle *h = priv->ae_handle;
	struct pci_dev *pdev = h->pdev;
3689
	int i;
3690

3691 3692 3693 3694 3695
	priv->ring = devm_kzalloc(&pdev->dev,
				  array3_size(h->kinfo.num_tqps,
					      sizeof(*priv->ring), 2),
				  GFP_KERNEL);
	if (!priv->ring)
3696 3697
		return -ENOMEM;

3698 3699
	for (i = 0; i < h->kinfo.num_tqps; i++)
		hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3700 3701 3702 3703

	return 0;
}

3704 3705
static void hns3_put_ring_config(struct hns3_nic_priv *priv)
{
3706
	if (!priv->ring)
3707 3708
		return;

3709 3710
	devm_kfree(priv->dev, priv->ring);
	priv->ring = NULL;
3711 3712
}

3713 3714 3715 3716 3717 3718 3719
static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
{
	int ret;

	if (ring->desc_num <= 0 || ring->buf_size <= 0)
		return -EINVAL;

3720 3721
	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
	if (!ring->desc_cb) {
		ret = -ENOMEM;
		goto out;
	}

	ret = hns3_alloc_desc(ring);
	if (ret)
		goto out_with_desc_cb;

	if (!HNAE3_IS_TX_RING(ring)) {
		ret = hns3_alloc_ring_buffers(ring);
		if (ret)
			goto out_with_desc;
	}

	return 0;

out_with_desc:
	hns3_free_desc(ring);
out_with_desc_cb:
3742
	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3743 3744 3745 3746 3747
	ring->desc_cb = NULL;
out:
	return ret;
}

3748
void hns3_fini_ring(struct hns3_enet_ring *ring)
3749 3750
{
	hns3_free_desc(ring);
3751
	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3752 3753 3754
	ring->desc_cb = NULL;
	ring->next_to_clean = 0;
	ring->next_to_use = 0;
3755 3756 3757 3758 3759
	ring->pending_buf = 0;
	if (ring->skb) {
		dev_kfree_skb_any(ring->skb);
		ring->skb = NULL;
	}
3760 3761
}

3762
static int hns3_buf_size2type(u32 buf_size)
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
{
	int bd_size_type;

	switch (buf_size) {
	case 512:
		bd_size_type = HNS3_BD_SIZE_512_TYPE;
		break;
	case 1024:
		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
		break;
	case 2048:
		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
		break;
	case 4096:
		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
		break;
	default:
		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
	}

	return bd_size_type;
}

static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
{
	dma_addr_t dma = ring->desc_dma_addr;
	struct hnae3_queue *q = ring->tqp;

	if (!HNAE3_IS_TX_RING(ring)) {
3792
		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
			       (u32)((dma >> 31) >> 1));

		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
			       hns3_buf_size2type(ring->buf_size));
		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
			       ring->desc_num / 8 - 1);

	} else {
		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
			       (u32)dma);
		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
			       (u32)((dma >> 31) >> 1));

		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
			       ring->desc_num / 8 - 1);
	}
}

3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
{
	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
	int i;

	for (i = 0; i < HNAE3_MAX_TC; i++) {
		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
		int j;

		if (!tc_info->enable)
			continue;

		for (j = 0; j < tc_info->tqp_count; j++) {
			struct hnae3_queue *q;

3827
			q = priv->ring[tc_info->tqp_offset + j].tqp;
3828 3829 3830 3831 3832 3833
			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
				       tc_info->tc);
		}
	}
}

L
Lipeng 已提交
3834
int hns3_init_all_ring(struct hns3_nic_priv *priv)
3835 3836 3837 3838 3839 3840 3841
{
	struct hnae3_handle *h = priv->ae_handle;
	int ring_num = h->kinfo.num_tqps * 2;
	int i, j;
	int ret;

	for (i = 0; i < ring_num; i++) {
3842
		ret = hns3_alloc_ring_memory(&priv->ring[i]);
3843 3844 3845 3846 3847 3848
		if (ret) {
			dev_err(priv->dev,
				"Alloc ring memory fail! ret=%d\n", ret);
			goto out_when_alloc_ring_memory;
		}

3849
		u64_stats_init(&priv->ring[i].syncp);
3850 3851 3852 3853 3854 3855
	}

	return 0;

out_when_alloc_ring_memory:
	for (j = i - 1; j >= 0; j--)
3856
		hns3_fini_ring(&priv->ring[j]);
3857 3858 3859 3860

	return -ENOMEM;
}

L
Lipeng 已提交
3861
int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3862 3863 3864 3865 3866
{
	struct hnae3_handle *h = priv->ae_handle;
	int i;

	for (i = 0; i < h->kinfo.num_tqps; i++) {
3867 3868
		hns3_fini_ring(&priv->ring[i]);
		hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
3869 3870 3871 3872 3873
	}
	return 0;
}

/* Set mac addr if it is configured. or leave it to the AE driver */
3874
static int hns3_init_mac_addr(struct net_device *netdev)
3875 3876 3877 3878
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hnae3_handle *h = priv->ae_handle;
	u8 mac_addr_temp[ETH_ALEN];
3879
	int ret = 0;
3880

3881
	if (h->ae_algo->ops->get_mac_addr)
3882 3883 3884
		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);

	/* Check if the MAC address is valid, if not get a random one */
3885
	if (!is_valid_ether_addr(mac_addr_temp)) {
3886 3887 3888
		eth_hw_addr_random(netdev);
		dev_warn(priv->dev, "using random MAC address %pM\n",
			 netdev->dev_addr);
3889
	} else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
3890 3891
		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
		ether_addr_copy(netdev->perm_addr, mac_addr_temp);
3892 3893
	} else {
		return 0;
3894
	}
3895 3896

	if (h->ae_algo->ops->set_mac_addr)
3897
		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3898

3899
	return ret;
3900 3901
}

3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
static int hns3_init_phy(struct net_device *netdev)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);
	int ret = 0;

	if (h->ae_algo->ops->mac_connect_phy)
		ret = h->ae_algo->ops->mac_connect_phy(h);

	return ret;
}

static void hns3_uninit_phy(struct net_device *netdev)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);

	if (h->ae_algo->ops->mac_disconnect_phy)
		h->ae_algo->ops->mac_disconnect_phy(h);
}

3921 3922 3923 3924 3925 3926 3927 3928
static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);

	if (h->ae_algo->ops->del_all_fd_entries)
		h->ae_algo->ops->del_all_fd_entries(h, clear_list);
}

3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
static int hns3_client_start(struct hnae3_handle *handle)
{
	if (!handle->ae_algo->ops->client_start)
		return 0;

	return handle->ae_algo->ops->client_start(handle);
}

static void hns3_client_stop(struct hnae3_handle *handle)
{
	if (!handle->ae_algo->ops->client_stop)
		return;

	handle->ae_algo->ops->client_stop(handle);
}

3945 3946 3947 3948 3949
static void hns3_info_show(struct hns3_nic_priv *priv)
{
	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;

	dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
3950 3951 3952 3953 3954 3955 3956 3957
	dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
	dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
	dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
	dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
	dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
	dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
	dev_info(priv->dev, "Total number of enabled TCs: %u\n", kinfo->num_tc);
	dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
3958 3959
}

3960 3961 3962
static int hns3_client_init(struct hnae3_handle *handle)
{
	struct pci_dev *pdev = handle->pdev;
3963
	u16 alloc_tqps, max_rss_size;
3964 3965 3966 3967
	struct hns3_nic_priv *priv;
	struct net_device *netdev;
	int ret;

3968 3969 3970
	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
						    &max_rss_size);
	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3971 3972 3973 3974 3975 3976 3977
	if (!netdev)
		return -ENOMEM;

	priv = netdev_priv(netdev);
	priv->dev = &pdev->dev;
	priv->netdev = netdev;
	priv->ae_handle = handle;
3978
	priv->tx_timeout_count = 0;
3979
	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
3980

3981 3982
	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);

3983 3984 3985
	handle->kinfo.netdev = netdev;
	handle->priv = (void *)priv;

3986
	hns3_init_mac_addr(netdev);
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004

	hns3_set_default_feature(netdev);

	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
	netdev->priv_flags |= IFF_UNICAST_FLT;
	netdev->netdev_ops = &hns3_nic_netdev_ops;
	SET_NETDEV_DEV(netdev, &pdev->dev);
	hns3_ethtool_set_ops(netdev);

	/* Carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

	ret = hns3_get_ring_config(priv);
	if (ret) {
		ret = -ENOMEM;
		goto out_get_ring_cfg;
	}

4005 4006 4007 4008 4009 4010
	ret = hns3_nic_alloc_vector_data(priv);
	if (ret) {
		ret = -ENOMEM;
		goto out_alloc_vector_data;
	}

4011 4012 4013 4014 4015 4016 4017 4018 4019
	ret = hns3_nic_init_vector_data(priv);
	if (ret) {
		ret = -ENOMEM;
		goto out_init_vector_data;
	}

	ret = hns3_init_all_ring(priv);
	if (ret) {
		ret = -ENOMEM;
4020
		goto out_init_ring;
4021 4022
	}

4023 4024 4025 4026
	ret = hns3_init_phy(netdev);
	if (ret)
		goto out_init_phy;

4027 4028 4029 4030 4031 4032
	ret = register_netdev(netdev);
	if (ret) {
		dev_err(priv->dev, "probe register netdev fail!\n");
		goto out_reg_netdev_fail;
	}

4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
	/* the device can work without cpu rmap, only aRFS needs it */
	ret = hns3_set_rx_cpu_rmap(netdev);
	if (ret)
		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);

	ret = hns3_nic_init_irq(priv);
	if (ret) {
		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
		hns3_free_rx_cpu_rmap(netdev);
		goto out_init_irq_fail;
	}

4045 4046 4047
	ret = hns3_client_start(handle);
	if (ret) {
		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4048
		goto out_client_start;
4049 4050
	}

4051 4052
	hns3_dcbnl_setup(handle);

4053 4054
	hns3_dbg_init(handle);

4055
	/* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
4056
	netdev->max_mtu = HNS3_MAX_MTU;
4057

4058 4059
	set_bit(HNS3_NIC_STATE_INITED, &priv->state);

4060 4061 4062
	if (netif_msg_drv(handle))
		hns3_info_show(priv);

4063 4064
	return ret;

4065
out_client_start:
4066 4067 4068
	hns3_free_rx_cpu_rmap(netdev);
	hns3_nic_uninit_irq(priv);
out_init_irq_fail:
4069
	unregister_netdev(netdev);
4070
out_reg_netdev_fail:
4071 4072 4073
	hns3_uninit_phy(netdev);
out_init_phy:
	hns3_uninit_all_ring(priv);
4074
out_init_ring:
4075
	hns3_nic_uninit_vector_data(priv);
4076
out_init_vector_data:
4077 4078
	hns3_nic_dealloc_vector_data(priv);
out_alloc_vector_data:
4079
	priv->ring = NULL;
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
out_get_ring_cfg:
	priv->ae_handle = NULL;
	free_netdev(netdev);
	return ret;
}

static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
{
	struct net_device *netdev = handle->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	int ret;

	if (netdev->reg_state != NETREG_UNINITIALIZED)
		unregister_netdev(netdev);

4095 4096
	hns3_client_stop(handle);

4097 4098
	hns3_uninit_phy(netdev);

4099 4100 4101 4102 4103
	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
		netdev_warn(netdev, "already uninitialized\n");
		goto out_netdev_free;
	}

4104 4105 4106 4107
	hns3_free_rx_cpu_rmap(netdev);

	hns3_nic_uninit_irq(priv);

4108 4109
	hns3_del_all_fd_rules(netdev, true);

4110
	hns3_clear_all_ring(handle, true);
4111

4112
	hns3_nic_uninit_vector_data(priv);
4113

4114
	hns3_nic_dealloc_vector_data(priv);
4115

4116 4117 4118 4119
	ret = hns3_uninit_all_ring(priv);
	if (ret)
		netdev_err(netdev, "uninit ring error\n");

4120 4121
	hns3_put_ring_config(priv);

4122
out_netdev_free:
4123
	hns3_dbg_uninit(handle);
4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
	free_netdev(netdev);
}

static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
{
	struct net_device *netdev = handle->kinfo.netdev;

	if (!netdev)
		return;

	if (linkup) {
		netif_carrier_on(netdev);
		netif_tx_wake_all_queues(netdev);
4137 4138
		if (netif_msg_link(handle))
			netdev_info(netdev, "link up\n");
4139 4140 4141
	} else {
		netif_carrier_off(netdev);
		netif_tx_stop_all_queues(netdev);
4142 4143
		if (netif_msg_link(handle))
			netdev_info(netdev, "link down\n");
4144 4145 4146
	}
}

4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct net_device *ndev = kinfo->netdev;

	if (tc > HNAE3_MAX_TC)
		return -EINVAL;

	if (!ndev)
		return -ENODEV;

4158
	return hns3_nic_set_real_num_queue(ndev);
4159 4160
}

4161
static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4162
{
4163
	while (ring->next_to_clean != ring->next_to_use) {
4164
		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4165 4166 4167 4168 4169
		hns3_free_buffer_detach(ring, ring->next_to_clean);
		ring_ptr_move_fw(ring, next_to_clean);
	}
}

4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
{
	struct hns3_desc_cb res_cbs;
	int ret;

	while (ring->next_to_use != ring->next_to_clean) {
		/* When a buffer is not reused, it's memory has been
		 * freed in hns3_handle_rx_bd or will be freed by
		 * stack, so we need to replace the buffer here.
		 */
		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
			ret = hns3_reserve_buffer_map(ring, &res_cbs);
			if (ret) {
				u64_stats_update_begin(&ring->syncp);
				ring->stats.sw_err_cnt++;
				u64_stats_update_end(&ring->syncp);
				/* if alloc new buffer fail, exit directly
				 * and reclear in up flow.
				 */
4189
				netdev_warn(ring_to_netdev(ring),
4190 4191 4192 4193
					    "reserve buffer map failed, ret = %d\n",
					    ret);
				return ret;
			}
4194
			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4195 4196 4197 4198
		}
		ring_ptr_move_fw(ring, next_to_use);
	}

4199 4200 4201 4202 4203 4204 4205
	/* Free the pending skb in rx ring */
	if (ring->skb) {
		dev_kfree_skb_any(ring->skb);
		ring->skb = NULL;
		ring->pending_buf = 0;
	}

4206 4207 4208 4209
	return 0;
}

static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
{
	while (ring->next_to_use != ring->next_to_clean) {
		/* When a buffer is not reused, it's memory has been
		 * freed in hns3_handle_rx_bd or will be freed by
		 * stack, so only need to unmap the buffer here.
		 */
		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
			hns3_unmap_buffer(ring,
					  &ring->desc_cb[ring->next_to_use]);
			ring->desc_cb[ring->next_to_use].dma = 0;
		}

		ring_ptr_move_fw(ring, next_to_use);
	}
4224 4225
}

4226
static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4227 4228 4229 4230 4231 4232 4233 4234
{
	struct net_device *ndev = h->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(ndev);
	u32 i;

	for (i = 0; i < h->kinfo.num_tqps; i++) {
		struct hns3_enet_ring *ring;

4235
		ring = &priv->ring[i];
4236
		hns3_clear_tx_ring(ring);
4237

4238
		ring = &priv->ring[i + h->kinfo.num_tqps];
4239 4240 4241
		/* Continue to clear other rings even if clearing some
		 * rings failed.
		 */
4242 4243 4244 4245
		if (force)
			hns3_force_clear_rx_ring(ring);
		else
			hns3_clear_rx_ring(ring);
4246 4247 4248
	}
}

4249 4250 4251 4252 4253 4254 4255 4256 4257
int hns3_nic_reset_all_ring(struct hnae3_handle *h)
{
	struct net_device *ndev = h->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(ndev);
	struct hns3_enet_ring *rx_ring;
	int i, j;
	int ret;

	for (i = 0; i < h->kinfo.num_tqps; i++) {
4258 4259 4260 4261
		ret = h->ae_algo->ops->reset_queue(h, i);
		if (ret)
			return ret;

4262
		hns3_init_ring_hw(&priv->ring[i]);
4263 4264 4265 4266

		/* We need to clear tx ring here because self test will
		 * use the ring and will not run down before up
		 */
4267 4268 4269
		hns3_clear_tx_ring(&priv->ring[i]);
		priv->ring[i].next_to_clean = 0;
		priv->ring[i].next_to_use = 0;
4270

4271
		rx_ring = &priv->ring[i + h->kinfo.num_tqps];
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
		hns3_init_ring_hw(rx_ring);
		ret = hns3_clear_rx_ring(rx_ring);
		if (ret)
			return ret;

		/* We can not know the hardware head and tail when this
		 * function is called in reset flow, so we reuse all desc.
		 */
		for (j = 0; j < rx_ring->desc_num; j++)
			hns3_reuse_buffer(rx_ring, j);

		rx_ring->next_to_clean = 0;
		rx_ring->next_to_use = 0;
	}

4287 4288
	hns3_init_tx_ring_tc(priv);

4289 4290 4291
	return 0;
}

4292 4293 4294
static void hns3_store_coal(struct hns3_nic_priv *priv)
{
	/* ethtool only support setting and querying one coal
G
Guojia Liao 已提交
4295 4296
	 * configuration for now, so save the vector 0' coal
	 * configuration here in order to restore it.
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
	 */
	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
	       sizeof(struct hns3_enet_coalesce));
	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
	       sizeof(struct hns3_enet_coalesce));
}

static void hns3_restore_coal(struct hns3_nic_priv *priv)
{
	u16 vector_num = priv->vector_num;
	int i;

	for (i = 0; i < vector_num; i++) {
		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
		       sizeof(struct hns3_enet_coalesce));
		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
		       sizeof(struct hns3_enet_coalesce));
	}
}

4317 4318 4319 4320
static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct net_device *ndev = kinfo->netdev;
4321 4322 4323 4324
	struct hns3_nic_priv *priv = netdev_priv(ndev);

	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
		return 0;
4325 4326

	if (!netif_running(ndev))
4327
		return 0;
4328 4329 4330 4331 4332 4333 4334

	return hns3_nic_net_stop(ndev);
}

static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4335
	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4336 4337
	int ret = 0;

4338 4339
	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);

4340
	if (netif_running(kinfo->netdev)) {
4341
		ret = hns3_nic_net_open(kinfo->netdev);
4342
		if (ret) {
4343
			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4344
			netdev_err(kinfo->netdev,
4345
				   "net up fail, ret=%d!\n", ret);
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
			return ret;
		}
	}

	return ret;
}

static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
{
	struct net_device *netdev = handle->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	int ret;

	/* Carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

4362
	ret = hns3_get_ring_config(priv);
4363 4364 4365
	if (ret)
		return ret;

4366 4367 4368 4369
	ret = hns3_nic_alloc_vector_data(priv);
	if (ret)
		goto err_put_ring;

4370 4371
	hns3_restore_coal(priv);

4372 4373
	ret = hns3_nic_init_vector_data(priv);
	if (ret)
4374
		goto err_dealloc_vector;
4375 4376

	ret = hns3_init_all_ring(priv);
4377 4378
	if (ret)
		goto err_uninit_vector;
4379

4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
	/* the device can work without cpu rmap, only aRFS needs it */
	ret = hns3_set_rx_cpu_rmap(netdev);
	if (ret)
		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);

	ret = hns3_nic_init_irq(priv);
	if (ret) {
		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
		hns3_free_rx_cpu_rmap(netdev);
		goto err_init_irq_fail;
	}

4392 4393 4394
	if (!hns3_is_phys_func(handle->pdev))
		hns3_init_mac_addr(netdev);

4395 4396 4397
	ret = hns3_client_start(handle);
	if (ret) {
		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4398
		goto err_client_start_fail;
4399 4400
	}

4401 4402
	set_bit(HNS3_NIC_STATE_INITED, &priv->state);

4403 4404
	return ret;

4405 4406 4407 4408
err_client_start_fail:
	hns3_free_rx_cpu_rmap(netdev);
	hns3_nic_uninit_irq(priv);
err_init_irq_fail:
4409
	hns3_uninit_all_ring(priv);
4410 4411 4412 4413
err_uninit_vector:
	hns3_nic_uninit_vector_data(priv);
err_dealloc_vector:
	hns3_nic_dealloc_vector_data(priv);
4414 4415
err_put_ring:
	hns3_put_ring_config(priv);
4416

4417 4418 4419 4420 4421 4422 4423 4424 4425
	return ret;
}

static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
{
	struct net_device *netdev = handle->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	int ret;

4426
	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4427 4428 4429 4430
		netdev_warn(netdev, "already uninitialized\n");
		return 0;
	}

4431 4432
	hns3_free_rx_cpu_rmap(netdev);
	hns3_nic_uninit_irq(priv);
4433 4434
	hns3_clear_all_ring(handle, true);
	hns3_reset_tx_queue(priv->ae_handle);
4435

4436
	hns3_nic_uninit_vector_data(priv);
4437

4438 4439
	hns3_store_coal(priv);

4440
	hns3_nic_dealloc_vector_data(priv);
4441

4442 4443 4444 4445
	ret = hns3_uninit_all_ring(priv);
	if (ret)
		netdev_err(netdev, "uninit ring error\n");

4446 4447
	hns3_put_ring_config(priv);

4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
	return ret;
}

static int hns3_reset_notify(struct hnae3_handle *handle,
			     enum hnae3_reset_notify_type type)
{
	int ret = 0;

	switch (type) {
	case HNAE3_UP_CLIENT:
4458 4459
		ret = hns3_reset_notify_up_enet(handle);
		break;
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
	case HNAE3_DOWN_CLIENT:
		ret = hns3_reset_notify_down_enet(handle);
		break;
	case HNAE3_INIT_CLIENT:
		ret = hns3_reset_notify_init_enet(handle);
		break;
	case HNAE3_UNINIT_CLIENT:
		ret = hns3_reset_notify_uninit_enet(handle);
		break;
	default:
		break;
	}

	return ret;
}

4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
				bool rxfh_configured)
{
	int ret;

	ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
						 rxfh_configured);
	if (ret) {
		dev_err(&handle->pdev->dev,
			"Change tqp num(%u) fail.\n", new_tqp_num);
		return ret;
	}

	ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
	if (ret)
		return ret;

	ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
	if (ret)
		hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);

	return ret;
}

4500 4501 4502 4503 4504
int hns3_set_channels(struct net_device *netdev,
		      struct ethtool_channels *ch)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);
	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4505
	bool rxfh_configured = netif_is_rxfh_configured(netdev);
4506 4507 4508 4509
	u32 new_tqp_num = ch->combined_count;
	u16 org_tqp_num;
	int ret;

4510 4511 4512
	if (hns3_nic_resetting(netdev))
		return -EBUSY;

4513 4514 4515
	if (ch->rx_count || ch->tx_count)
		return -EINVAL;

4516
	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4517
	    new_tqp_num < 1) {
4518
		dev_err(&netdev->dev,
4519
			"Change tqps fail, the tqp range is from 1 to %u",
4520
			hns3_get_max_available_channels(h));
4521 4522 4523
		return -EINVAL;
	}

4524
	if (kinfo->rss_size == new_tqp_num)
4525 4526
		return 0;

4527 4528 4529 4530
	netif_dbg(h, drv, netdev,
		  "set channels: tqp_num=%u, rxfh=%d\n",
		  new_tqp_num, rxfh_configured);

4531 4532 4533
	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
	if (ret)
		return ret;
4534

4535 4536 4537
	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
	if (ret)
		return ret;
4538 4539

	org_tqp_num = h->kinfo.num_tqps;
4540
	ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
4541
	if (ret) {
4542 4543 4544 4545 4546 4547 4548 4549 4550
		int ret1;

		netdev_warn(netdev,
			    "Change channels fail, revert to old value\n");
		ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
		if (ret1) {
			netdev_err(netdev,
				   "revert to old channel fail\n");
			return ret1;
4551
		}
4552

4553
		return ret;
4554
	}
4555

4556
	return 0;
4557 4558
}

4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
static const struct hns3_hw_error_info hns3_hw_err[] = {
	{ .type = HNAE3_PPU_POISON_ERROR,
	  .msg = "PPU poison" },
	{ .type = HNAE3_CMDQ_ECC_ERROR,
	  .msg = "IMP CMDQ error" },
	{ .type = HNAE3_IMP_RD_POISON_ERROR,
	  .msg = "IMP RD poison" },
};

static void hns3_process_hw_error(struct hnae3_handle *handle,
				  enum hnae3_hw_error_type type)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
		if (hns3_hw_err[i].type == type) {
			dev_err(&handle->pdev->dev, "Detected %s!\n",
				hns3_hw_err[i].msg);
			break;
		}
	}
}

4582
static const struct hnae3_client_ops client_ops = {
4583 4584 4585
	.init_instance = hns3_client_init,
	.uninit_instance = hns3_client_uninit,
	.link_status_change = hns3_link_status_change,
4586
	.setup_tc = hns3_client_setup_tc,
4587
	.reset_notify = hns3_reset_notify,
4588
	.process_hw_error = hns3_process_hw_error,
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
};

/* hns3_init_module - Driver registration routine
 * hns3_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 */
static int __init hns3_init_module(void)
{
	int ret;

	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);

	client.type = HNAE3_CLIENT_KNIC;
4603
	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
4604 4605 4606 4607
		 hns3_driver_name);

	client.ops = &client_ops;

4608 4609
	INIT_LIST_HEAD(&client.node);

4610 4611
	hns3_dbg_register_debugfs(hns3_driver_name);

4612 4613
	ret = hnae3_register_client(&client);
	if (ret)
4614
		goto err_reg_client;
4615 4616 4617

	ret = pci_register_driver(&hns3_driver);
	if (ret)
4618
		goto err_reg_driver;
4619 4620

	return ret;
4621 4622 4623 4624 4625 4626

err_reg_driver:
	hnae3_unregister_client(&client);
err_reg_client:
	hns3_dbg_unregister_debugfs();
	return ret;
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
}
module_init(hns3_init_module);

/* hns3_exit_module - Driver exit cleanup routine
 * hns3_exit_module is called just before the driver is removed
 * from memory.
 */
static void __exit hns3_exit_module(void)
{
	pci_unregister_driver(&hns3_driver);
	hnae3_unregister_client(&client);
4638
	hns3_dbg_unregister_debugfs();
4639 4640 4641 4642 4643 4644 4645
}
module_exit(hns3_exit_module);

MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
MODULE_LICENSE("GPL");
MODULE_ALIAS("pci:hns-nic");