fsl_ssi.c 22.3 KB
Newer Older
1 2 3 4 5
/*
 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
 *
 * Author: Timur Tabi <timur@freescale.com>
 *
6 7 8 9 10
 * Copyright 2007-2010 Freescale Semiconductor, Inc.
 *
 * This file is licensed under the terms of the GNU General Public License
 * version 2.  This program is licensed "as is" without any warranty of any
 * kind, whether express or implied.
11 12 13 14 15 16 17
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/delay.h>
18
#include <linux/slab.h>
19
#include <linux/of_platform.h>
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>

#include "fsl_ssi.h"

/**
 * FSLSSI_I2S_RATES: sample rates supported by the I2S
 *
 * This driver currently only supports the SSI running in I2S slave mode,
 * which means the codec determines the sample rate.  Therefore, we tell
 * ALSA that we support all rates and let the codec driver decide what rates
 * are really supported.
 */
#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
			  SNDRV_PCM_RATE_CONTINUOUS)

/**
 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
 *
 * This driver currently only supports the SSI running in I2S slave mode.
 *
 * The SSI has a limitation in that the samples must be in the same byte
 * order as the host CPU.  This is because when multiple bytes are written
 * to the STX register, the bytes and bits must be written in the same
 * order.  The STX is a shift register, so all the bits need to be aligned
 * (bit-endianness must match byte-endianness).  Processors typically write
 * the bits within a byte in the same order that the bytes of a word are
 * written in.  So if the host CPU is big-endian, then only big-endian
 * samples will be written to STX properly.
 */
#ifdef __BIG_ENDIAN
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
#else
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
#endif

64 65 66 67 68 69 70
/* SIER bitflag of interrupts to enable */
#define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
		    CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
		    CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
		    CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
		    CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)

71 72 73 74 75 76
/**
 * fsl_ssi_private: per-SSI private data
 *
 * @ssi: pointer to the SSI's registers
 * @ssi_phys: physical address of the SSI registers
 * @irq: IRQ of this SSI
77 78
 * @first_stream: pointer to the stream that was opened first
 * @second_stream: pointer to second stream
79 80 81 82 83
 * @playback: the number of playback streams opened
 * @capture: the number of capture streams opened
 * @cpu_dai: the CPU DAI for this device
 * @dev_attr: the sysfs device attribute structure
 * @stats: SSI statistics
84
 * @name: name for this device
85 86 87 88 89
 */
struct fsl_ssi_private {
	struct ccsr_ssi __iomem *ssi;
	dma_addr_t ssi_phys;
	unsigned int irq;
90 91
	struct snd_pcm_substream *first_stream;
	struct snd_pcm_substream *second_stream;
92
	unsigned int fifo_depth;
93
	struct snd_soc_dai_driver cpu_dai_drv;
94
	struct device_attribute dev_attr;
95
	struct platform_device *pdev;
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

	struct {
		unsigned int rfrc;
		unsigned int tfrc;
		unsigned int cmdau;
		unsigned int cmddu;
		unsigned int rxt;
		unsigned int rdr1;
		unsigned int rdr0;
		unsigned int tde1;
		unsigned int tde0;
		unsigned int roe1;
		unsigned int roe0;
		unsigned int tue1;
		unsigned int tue0;
		unsigned int tfs;
		unsigned int rfs;
		unsigned int tls;
		unsigned int rls;
		unsigned int rff1;
		unsigned int rff0;
		unsigned int tfe1;
		unsigned int tfe0;
	} stats;
120 121

	char name[1];
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
};

/**
 * fsl_ssi_isr: SSI interrupt handler
 *
 * Although it's possible to use the interrupt handler to send and receive
 * data to/from the SSI, we use the DMA instead.  Programming is more
 * complicated, but the performance is much better.
 *
 * This interrupt handler is used only to gather statistics.
 *
 * @irq: IRQ of the SSI device
 * @dev_id: pointer to the ssi_private structure for this SSI device
 */
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
{
	struct fsl_ssi_private *ssi_private = dev_id;
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	irqreturn_t ret = IRQ_NONE;
	__be32 sisr;
	__be32 sisr2 = 0;

	/* We got an interrupt, so read the status register to see what we
	   were interrupted for.  We mask it with the Interrupt Enable register
	   so that we only check for events that we're interested in.
	 */
148
	sisr = in_be32(&ssi->sisr) & SIER_FLAGS;
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

	if (sisr & CCSR_SSI_SISR_RFRC) {
		ssi_private->stats.rfrc++;
		sisr2 |= CCSR_SSI_SISR_RFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFRC) {
		ssi_private->stats.tfrc++;
		sisr2 |= CCSR_SSI_SISR_TFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDAU) {
		ssi_private->stats.cmdau++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDDU) {
		ssi_private->stats.cmddu++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RXT) {
		ssi_private->stats.rxt++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR1) {
		ssi_private->stats.rdr1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR0) {
		ssi_private->stats.rdr0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE1) {
		ssi_private->stats.tde1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE0) {
		ssi_private->stats.tde0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE1) {
		ssi_private->stats.roe1++;
		sisr2 |= CCSR_SSI_SISR_ROE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE0) {
		ssi_private->stats.roe0++;
		sisr2 |= CCSR_SSI_SISR_ROE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE1) {
		ssi_private->stats.tue1++;
		sisr2 |= CCSR_SSI_SISR_TUE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE0) {
		ssi_private->stats.tue0++;
		sisr2 |= CCSR_SSI_SISR_TUE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFS) {
		ssi_private->stats.tfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFS) {
		ssi_private->stats.rfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TLS) {
		ssi_private->stats.tls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RLS) {
		ssi_private->stats.rls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF1) {
		ssi_private->stats.rff1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF0) {
		ssi_private->stats.rff0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE1) {
		ssi_private->stats.tfe1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE0) {
		ssi_private->stats.tfe0++;
		ret = IRQ_HANDLED;
	}

	/* Clear the bits that we set */
	if (sisr2)
		out_be32(&ssi->sisr, sisr2);

	return ret;
}

/**
 * fsl_ssi_startup: create a new substream
 *
 * This is the first function called when a stream is opened.
 *
 * If this is the first stream open, then grab the IRQ and program most of
 * the SSI registers.
 */
276 277
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
278 279
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
280 281 282
	struct fsl_ssi_private *ssi_private =
		snd_soc_dai_get_drvdata(rtd->cpu_dai);
	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
283 284 285 286 287

	/*
	 * If this is the first stream opened, then request the IRQ
	 * and initialize the SSI registers.
	 */
288
	if (!ssi_private->first_stream) {
289 290
		struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

291 292
		ssi_private->first_stream = substream;

293 294 295 296 297 298 299 300 301 302 303 304 305
		/*
		 * Section 16.5 of the MPC8610 reference manual says that the
		 * SSI needs to be disabled before updating the registers we set
		 * here.
		 */
		clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);

		/*
		 * Program the SSI into I2S Slave Non-Network Synchronous mode.
		 * Also enable the transmit and receive FIFO.
		 *
		 * FIXME: Little-endian samples require a different shift dir
		 */
306 307 308
		clrsetbits_be32(&ssi->scr,
			CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
			CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
309
			| (synchronous ? CCSR_SSI_SCR_SYN : 0));
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

		out_be32(&ssi->stcr,
			 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
			 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
			 CCSR_SSI_STCR_TSCKP);

		out_be32(&ssi->srcr,
			 CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
			 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
			 CCSR_SSI_SRCR_RSCKP);

		/*
		 * The DC and PM bits are only used if the SSI is the clock
		 * master.
		 */

326
		/* Enable the interrupts and DMA requests */
327
		out_be32(&ssi->sier, SIER_FLAGS);
328 329 330

		/*
		 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
331 332 333 334 335 336 337 338 339 340
		 * don't use FIFO 1.  We program the transmit water to signal a
		 * DMA transfer if there are only two (or fewer) elements left
		 * in the FIFO.  Two elements equals one frame (left channel,
		 * right channel).  This value, however, depends on the depth of
		 * the transmit buffer.
		 *
		 * We program the receive FIFO to notify us if at least two
		 * elements (one frame) have been written to the FIFO.  We could
		 * make this value larger (and maybe we should), but this way
		 * data will be written to memory as soon as it's available.
341 342
		 */
		out_be32(&ssi->sfcsr,
343 344
			CCSR_SSI_SFCSR_TFWM0(ssi_private->fifo_depth - 2) |
			CCSR_SSI_SFCSR_RFWM0(ssi_private->fifo_depth - 2));
345 346 347 348 349 350 351 352 353 354

		/*
		 * We keep the SSI disabled because if we enable it, then the
		 * DMA controller will start.  It's not supposed to start until
		 * the SCR.TE (or SCR.RE) bit is set, but it does anyway.  The
		 * DMA controller will transfer one "BWC" of data (i.e. the
		 * amount of data that the MR.BWC bits are set to).  The reason
		 * this is bad is because at this point, the PCM driver has not
		 * finished initializing the DMA controller.
		 */
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
	} else {
		if (synchronous) {
			struct snd_pcm_runtime *first_runtime =
				ssi_private->first_stream->runtime;
			/*
			 * This is the second stream open, and we're in
			 * synchronous mode, so we need to impose sample
			 * sample size constraints. This is because STCCR is
			 * used for playback and capture in synchronous mode,
			 * so there's no way to specify different word
			 * lengths.
			 *
			 * Note that this can cause a race condition if the
			 * second stream is opened before the first stream is
			 * fully initialized.  We provide some protection by
			 * checking to make sure the first stream is
			 * initialized, but it's not perfect.  ALSA sometimes
			 * re-initializes the driver with a different sample
			 * rate or size.  If the second stream is opened
			 * before the first stream has received its final
			 * parameters, then the second stream may be
			 * constrained to the wrong sample rate or size.
			 */
			if (!first_runtime->sample_bits) {
				dev_err(substream->pcm->card->dev,
					"set sample size in %s stream first\n",
					substream->stream ==
					SNDRV_PCM_STREAM_PLAYBACK
					? "capture" : "playback");
				return -EAGAIN;
			}
386

387 388 389 390
			snd_pcm_hw_constraint_minmax(substream->runtime,
				SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
				first_runtime->sample_bits,
				first_runtime->sample_bits);
391
		}
392 393 394 395

		ssi_private->second_stream = substream;
	}

396 397 398 399
	return 0;
}

/**
400
 * fsl_ssi_hw_params - program the sample size
401 402 403 404 405 406 407 408 409 410 411
 *
 * Most of the SSI registers have been programmed in the startup function,
 * but the word length must be programmed here.  Unfortunately, programming
 * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
 * cause a problem with supporting simultaneous playback and capture.  If
 * the SSI is already playing a stream, then that stream may be temporarily
 * stopped when you start capture.
 *
 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
 * clock master.
 */
412 413
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
414
{
415
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
416 417 418 419 420
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	unsigned int sample_size =
		snd_pcm_format_width(params_format(hw_params));
	u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
	int enabled = in_be32(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
421

422 423 424 425 426 427
	/*
	 * If we're in synchronous mode, and the SSI is already enabled,
	 * then STCCR is already set properly.
	 */
	if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
		return 0;
428

429 430 431 432 433 434 435 436 437
	/*
	 * FIXME: The documentation says that SxCCR[WL] should not be
	 * modified while the SSI is enabled.  The only time this can
	 * happen is if we're trying to do simultaneous playback and
	 * capture in asynchronous mode.  Unfortunately, I have been enable
	 * to get that to work at all on the P1022DS.  Therefore, we don't
	 * bother to disable/enable the SSI when setting SxCCR[WL], because
	 * the SSI will stop anyway.  Maybe one day, this will get fixed.
	 */
438

439 440 441 442 443 444
	/* In synchronous mode, the SSI uses STCCR for capture */
	if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
	    ssi_private->cpu_dai_drv.symmetric_rates)
		clrsetbits_be32(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
	else
		clrsetbits_be32(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
445 446 447 448 449 450 451 452 453 454 455 456 457

	return 0;
}

/**
 * fsl_ssi_trigger: start and stop the DMA transfer.
 *
 * This function is called by ALSA to start, stop, pause, and resume the DMA
 * transfer of data.
 *
 * The DMA channel is in external master start and pause mode, which
 * means the SSI completely controls the flow of data.
 */
458 459
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
460 461
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
462
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
463 464 465 466 467
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
468
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
469 470
			setbits32(&ssi->scr,
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
471
		else
472 473
			setbits32(&ssi->scr,
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
			clrbits32(&ssi->scr, CCSR_SSI_SCR_TE);
		else
			clrbits32(&ssi->scr, CCSR_SSI_SCR_RE);
		break;

	default:
		return -EINVAL;
	}

	return 0;
}

/**
 * fsl_ssi_shutdown: shutdown the SSI
 *
 * Shutdown the SSI if there are no other substreams open.
 */
496 497
static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *dai)
498 499
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
500
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
501

502 503 504 505 506
	if (ssi_private->first_stream == substream)
		ssi_private->first_stream = ssi_private->second_stream;

	ssi_private->second_stream = NULL;

507
	/*
508
	 * If this is the last active substream, disable the SSI.
509
	 */
510
	if (!ssi_private->first_stream) {
511 512 513 514 515 516
		struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

		clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
	}
}

517 518 519 520 521 522 523
static struct snd_soc_dai_ops fsl_ssi_dai_ops = {
	.startup	= fsl_ssi_startup,
	.hw_params	= fsl_ssi_hw_params,
	.shutdown	= fsl_ssi_shutdown,
	.trigger	= fsl_ssi_trigger,
};

524 525
/* Template for the CPU dai driver structure */
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
526 527 528 529 530 531 532 533 534 535 536 537 538
	.playback = {
		/* The SSI does not support monaural audio. */
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
	.capture = {
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
539
	.ops = &fsl_ssi_dai_ops,
540 541
};

542 543 544 545 546 547 548 549 550 551 552 553
/* Show the statistics of a flag only if its interrupt is enabled.  The
 * compiler will optimze this code to a no-op if the interrupt is not
 * enabled.
 */
#define SIER_SHOW(flag, name) \
	do { \
		if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
			length += sprintf(buf + length, #name "=%u\n", \
				ssi_private->stats.name); \
	} while (0)


554 555 556
/**
 * fsl_sysfs_ssi_show: display SSI statistics
 *
557 558
 * Display the statistics for the current SSI device.  To avoid confusion,
 * we only show those counts that are enabled.
559 560 561 562 563
 */
static ssize_t fsl_sysfs_ssi_show(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct fsl_ssi_private *ssi_private =
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
		container_of(attr, struct fsl_ssi_private, dev_attr);
	ssize_t length = 0;

	SIER_SHOW(RFRC_EN, rfrc);
	SIER_SHOW(TFRC_EN, tfrc);
	SIER_SHOW(CMDAU_EN, cmdau);
	SIER_SHOW(CMDDU_EN, cmddu);
	SIER_SHOW(RXT_EN, rxt);
	SIER_SHOW(RDR1_EN, rdr1);
	SIER_SHOW(RDR0_EN, rdr0);
	SIER_SHOW(TDE1_EN, tde1);
	SIER_SHOW(TDE0_EN, tde0);
	SIER_SHOW(ROE1_EN, roe1);
	SIER_SHOW(ROE0_EN, roe0);
	SIER_SHOW(TUE1_EN, tue1);
	SIER_SHOW(TUE0_EN, tue0);
	SIER_SHOW(TFS_EN, tfs);
	SIER_SHOW(RFS_EN, rfs);
	SIER_SHOW(TLS_EN, tls);
	SIER_SHOW(RLS_EN, rls);
	SIER_SHOW(RFF1_EN, rff1);
	SIER_SHOW(RFF0_EN, rff0);
	SIER_SHOW(TFE1_EN, tfe1);
	SIER_SHOW(TFE0_EN, tfe0);
588 589 590 591 592

	return length;
}

/**
593
 * Make every character in a string lower-case
594
 */
595 596 597 598 599 600 601 602 603 604 605 606
static void make_lowercase(char *s)
{
	char *p = s;
	char c;

	while ((c = *p)) {
		if ((c >= 'A') && (c <= 'Z'))
			*p = c + ('a' - 'A');
		p++;
	}
}

607
static int __devinit fsl_ssi_probe(struct platform_device *pdev)
608 609 610
{
	struct fsl_ssi_private *ssi_private;
	int ret = 0;
611
	struct device_attribute *dev_attr = NULL;
612
	struct device_node *np = pdev->dev.of_node;
613
	const char *p, *sprop;
614
	const uint32_t *iprop;
615 616
	struct resource res;
	char name[64];
617

618 619 620
	/* SSIs that are not connected on the board should have a
	 *      status = "disabled"
	 * property in their device tree nodes.
621
	 */
622
	if (!of_device_is_available(np))
623 624
		return -ENODEV;

625 626
	/* Check for a codec-handle property. */
	if (!of_get_property(np, "codec-handle", NULL)) {
627
		dev_err(&pdev->dev, "missing codec-handle property\n");
628 629 630
		return -ENODEV;
	}

631 632 633
	/* We only support the SSI in "I2S Slave" mode */
	sprop = of_get_property(np, "fsl,mode", NULL);
	if (!sprop || strcmp(sprop, "i2s-slave")) {
634
		dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
635 636 637 638 639 640 641
		return -ENODEV;
	}

	/* The DAI name is the last part of the full name of the node. */
	p = strrchr(np->full_name, '/') + 1;
	ssi_private = kzalloc(sizeof(struct fsl_ssi_private) + strlen(p),
			      GFP_KERNEL);
642
	if (!ssi_private) {
643
		dev_err(&pdev->dev, "could not allocate DAI object\n");
644
		return -ENOMEM;
645 646
	}

647
	strcpy(ssi_private->name, p);
648

649 650 651 652 653 654 655 656
	/* Initialize this copy of the CPU DAI driver structure */
	memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
	       sizeof(fsl_ssi_dai_template));
	ssi_private->cpu_dai_drv.name = ssi_private->name;

	/* Get the addresses and IRQ */
	ret = of_address_to_resource(np, 0, &res);
	if (ret) {
657
		dev_err(&pdev->dev, "could not determine device resources\n");
658
		goto error_kmalloc;
659
	}
660 661 662
	ssi_private->ssi = of_iomap(np, 0);
	if (!ssi_private->ssi) {
		dev_err(&pdev->dev, "could not map device resources\n");
663 664
		ret = -ENOMEM;
		goto error_kmalloc;
665
	}
666
	ssi_private->ssi_phys = res.start;
667

668
	ssi_private->irq = irq_of_parse_and_map(np, 0);
669 670 671 672 673 674 675 676 677 678 679 680 681
	if (ssi_private->irq == NO_IRQ) {
		dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
		ret = -ENXIO;
		goto error_iomap;
	}

	/* The 'name' should not have any slashes in it. */
	ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0, ssi_private->name,
			  ssi_private);
	if (ret < 0) {
		dev_err(&pdev->dev, "could not claim irq %u\n", ssi_private->irq);
		goto error_irqmap;
	}
682

683
	/* Are the RX and the TX clocks locked? */
684
	if (!of_find_property(np, "fsl,ssi-asynchronous", NULL))
685
		ssi_private->cpu_dai_drv.symmetric_rates = 1;
686

687 688 689
	/* Determine the FIFO depth. */
	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
	if (iprop)
690
		ssi_private->fifo_depth = be32_to_cpup(iprop);
691 692 693 694
	else
                /* Older 8610 DTs didn't have the fifo-depth property */
		ssi_private->fifo_depth = 8;

695
	/* Initialize the the device_attribute structure */
696 697
	dev_attr = &ssi_private->dev_attr;
	dev_attr->attr.name = "statistics";
698 699 700
	dev_attr->attr.mode = S_IRUGO;
	dev_attr->show = fsl_sysfs_ssi_show;

701
	ret = device_create_file(&pdev->dev, dev_attr);
702
	if (ret) {
703
		dev_err(&pdev->dev, "could not create sysfs %s file\n",
704
			ssi_private->dev_attr.attr.name);
705
		goto error_irq;
706 707
	}

708
	/* Register with ASoC */
709
	dev_set_drvdata(&pdev->dev, ssi_private);
M
Mark Brown 已提交
710

711
	ret = snd_soc_register_dai(&pdev->dev, &ssi_private->cpu_dai_drv);
712
	if (ret) {
713
		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
714
		goto error_dev;
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
	}

	/* Trigger the machine driver's probe function.  The platform driver
	 * name of the machine driver is taken from the /model property of the
	 * device tree.  We also pass the address of the CPU DAI driver
	 * structure.
	 */
	sprop = of_get_property(of_find_node_by_path("/"), "model", NULL);
	/* Sometimes the model name has a "fsl," prefix, so we strip that. */
	p = strrchr(sprop, ',');
	if (p)
		sprop = p + 1;
	snprintf(name, sizeof(name), "snd-soc-%s", sprop);
	make_lowercase(name);

	ssi_private->pdev =
731
		platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
732 733
	if (IS_ERR(ssi_private->pdev)) {
		ret = PTR_ERR(ssi_private->pdev);
734
		dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
735
		goto error_dai;
M
Mark Brown 已提交
736
	}
737

738
	return 0;
739

740
error_dai:
741
	snd_soc_unregister_dai(&pdev->dev);
742 743

error_dev:
744
	dev_set_drvdata(&pdev->dev, NULL);
745 746 747 748 749 750
	device_remove_file(&pdev->dev, dev_attr);

error_irq:
	free_irq(ssi_private->irq, ssi_private);

error_irqmap:
751
	irq_dispose_mapping(ssi_private->irq);
752 753

error_iomap:
754
	iounmap(ssi_private->ssi);
755 756

error_kmalloc:
757 758 759
	kfree(ssi_private);

	return ret;
760 761
}

762
static int fsl_ssi_remove(struct platform_device *pdev)
763
{
764
	struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
765

766
	platform_device_unregister(ssi_private->pdev);
767 768
	snd_soc_unregister_dai(&pdev->dev);
	device_remove_file(&pdev->dev, &ssi_private->dev_attr);
M
Mark Brown 已提交
769

770 771 772
	free_irq(ssi_private->irq, ssi_private);
	irq_dispose_mapping(ssi_private->irq);

773
	kfree(ssi_private);
774
	dev_set_drvdata(&pdev->dev, NULL);
775 776

	return 0;
777
}
778 779 780 781 782 783 784

static const struct of_device_id fsl_ssi_ids[] = {
	{ .compatible = "fsl,mpc8610-ssi", },
	{}
};
MODULE_DEVICE_TABLE(of, fsl_ssi_ids);

785
static struct platform_driver fsl_ssi_driver = {
786 787 788 789 790 791 792 793
	.driver = {
		.name = "fsl-ssi-dai",
		.owner = THIS_MODULE,
		.of_match_table = fsl_ssi_ids,
	},
	.probe = fsl_ssi_probe,
	.remove = fsl_ssi_remove,
};
794

795 796 797 798
static int __init fsl_ssi_init(void)
{
	printk(KERN_INFO "Freescale Synchronous Serial Interface (SSI) ASoC Driver\n");

799
	return platform_driver_register(&fsl_ssi_driver);
800 801 802 803
}

static void __exit fsl_ssi_exit(void)
{
804
	platform_driver_unregister(&fsl_ssi_driver);
805
}
806

807
module_init(fsl_ssi_init);
808
module_exit(fsl_ssi_exit);
809

810 811
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
812
MODULE_LICENSE("GPL v2");