mmu.c 57.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */
18 19 20 21

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
22
#include <linux/hugetlb.h>
23
#include <linux/sched/signal.h>
C
Christoffer Dall 已提交
24
#include <trace/events/kvm.h>
25
#include <asm/pgalloc.h>
26
#include <asm/cacheflush.h>
27 28
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
C
Christoffer Dall 已提交
29
#include <asm/kvm_mmio.h>
30
#include <asm/kvm_asm.h>
31
#include <asm/kvm_emulate.h>
32
#include <asm/virt.h>
33
#include <asm/system_misc.h>
34 35

#include "trace.h"
36

37
static pgd_t *boot_hyp_pgd;
38
static pgd_t *hyp_pgd;
39
static pgd_t *merged_hyp_pgd;
40 41
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

42 43 44 45
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

46 47
static unsigned long io_map_base;

48
#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
49

50 51 52 53 54 55
#define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
#define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)

static bool memslot_is_logging(struct kvm_memory_slot *memslot)
{
	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
56 57 58 59 60 61 62 63 64 65 66
}

/**
 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
 * @kvm:	pointer to kvm structure.
 *
 * Interface to HYP function to flush all VM TLB entries
 */
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
67
}
68

69
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
70
{
71
	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
72 73
}

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
/*
 * D-Cache management functions. They take the page table entries by
 * value, as they are flushing the cache using the kernel mapping (or
 * kmap on 32bit).
 */
static void kvm_flush_dcache_pte(pte_t pte)
{
	__kvm_flush_dcache_pte(pte);
}

static void kvm_flush_dcache_pmd(pmd_t pmd)
{
	__kvm_flush_dcache_pmd(pmd);
}

static void kvm_flush_dcache_pud(pud_t pud)
{
	__kvm_flush_dcache_pud(pud);
}

94 95 96 97 98
static bool kvm_is_device_pfn(unsigned long pfn)
{
	return !pfn_valid(pfn);
}

99 100 101 102 103 104 105 106 107 108 109
/**
 * stage2_dissolve_pmd() - clear and flush huge PMD entry
 * @kvm:	pointer to kvm structure.
 * @addr:	IPA
 * @pmd:	pmd pointer for IPA
 *
 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
 * pages in the range dirty.
 */
static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
{
110
	if (!pmd_thp_or_huge(*pmd))
111 112 113 114 115 116 117
		return;

	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	put_page(virt_to_page(pmd));
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
		page = (void *)__get_free_page(PGALLOC_GFP);
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

150
static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
151
{
152 153
	pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, pgd, 0UL);
	stage2_pgd_clear(kvm, pgd);
154
	kvm_tlb_flush_vmid_ipa(kvm, addr);
155
	stage2_pud_free(kvm, pud_table);
156
	put_page(virt_to_page(pgd));
157 158
}

159
static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
160
{
161 162 163
	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
	VM_BUG_ON(stage2_pud_huge(kvm, *pud));
	stage2_pud_clear(kvm, pud);
164
	kvm_tlb_flush_vmid_ipa(kvm, addr);
165
	stage2_pmd_free(kvm, pmd_table);
166 167
	put_page(virt_to_page(pud));
}
168

169
static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
170
{
171
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
172
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
173 174 175
	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	pte_free_kernel(NULL, pte_table);
176 177 178
	put_page(virt_to_page(pmd));
}

179 180 181 182 183 184 185 186 187 188 189 190
static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
{
	WRITE_ONCE(*ptep, new_pte);
	dsb(ishst);
}

static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
{
	WRITE_ONCE(*pmdp, new_pmd);
	dsb(ishst);
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
{
	kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
}

static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
{
	WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
	dsb(ishst);
}

static inline void kvm_pgd_populate(pgd_t *pgdp, pud_t *pudp)
{
	WRITE_ONCE(*pgdp, kvm_mk_pgd(pudp));
	dsb(ishst);
}

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
/*
 * Unmapping vs dcache management:
 *
 * If a guest maps certain memory pages as uncached, all writes will
 * bypass the data cache and go directly to RAM.  However, the CPUs
 * can still speculate reads (not writes) and fill cache lines with
 * data.
 *
 * Those cache lines will be *clean* cache lines though, so a
 * clean+invalidate operation is equivalent to an invalidate
 * operation, because no cache lines are marked dirty.
 *
 * Those clean cache lines could be filled prior to an uncached write
 * by the guest, and the cache coherent IO subsystem would therefore
 * end up writing old data to disk.
 *
 * This is why right after unmapping a page/section and invalidating
 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
 * the IO subsystem will never hit in the cache.
227 228 229 230
 *
 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
 * we then fully enforce cacheability of RAM, no matter what the guest
 * does.
231
 */
232
static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
233
		       phys_addr_t addr, phys_addr_t end)
234
{
235 236 237 238 239 240
	phys_addr_t start_addr = addr;
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
241 242
			pte_t old_pte = *pte;

243 244
			kvm_set_pte(pte, __pte(0));
			kvm_tlb_flush_vmid_ipa(kvm, addr);
245 246

			/* No need to invalidate the cache for device mappings */
247
			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
248 249 250
				kvm_flush_dcache_pte(old_pte);

			put_page(virt_to_page(pte));
251 252 253
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

254
	if (stage2_pte_table_empty(kvm, start_pte))
255
		clear_stage2_pmd_entry(kvm, pmd, start_addr);
256 257
}

258
static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
259
		       phys_addr_t addr, phys_addr_t end)
260
{
261 262
	phys_addr_t next, start_addr = addr;
	pmd_t *pmd, *start_pmd;
263

264
	start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
265
	do {
266
		next = stage2_pmd_addr_end(kvm, addr, end);
267
		if (!pmd_none(*pmd)) {
268
			if (pmd_thp_or_huge(*pmd)) {
269 270
				pmd_t old_pmd = *pmd;

271 272
				pmd_clear(pmd);
				kvm_tlb_flush_vmid_ipa(kvm, addr);
273 274 275

				kvm_flush_dcache_pmd(old_pmd);

276 277
				put_page(virt_to_page(pmd));
			} else {
278
				unmap_stage2_ptes(kvm, pmd, addr, next);
279
			}
280
		}
281
	} while (pmd++, addr = next, addr != end);
282

283
	if (stage2_pmd_table_empty(kvm, start_pmd))
284
		clear_stage2_pud_entry(kvm, pud, start_addr);
285
}
286

287
static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
288 289 290 291
		       phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next, start_addr = addr;
	pud_t *pud, *start_pud;
292

293
	start_pud = pud = stage2_pud_offset(kvm, pgd, addr);
294
	do {
295 296 297
		next = stage2_pud_addr_end(kvm, addr, end);
		if (!stage2_pud_none(kvm, *pud)) {
			if (stage2_pud_huge(kvm, *pud)) {
298 299
				pud_t old_pud = *pud;

300
				stage2_pud_clear(kvm, pud);
301
				kvm_tlb_flush_vmid_ipa(kvm, addr);
302
				kvm_flush_dcache_pud(old_pud);
303 304
				put_page(virt_to_page(pud));
			} else {
305
				unmap_stage2_pmds(kvm, pud, addr, next);
306 307
			}
		}
308
	} while (pud++, addr = next, addr != end);
309

310
	if (stage2_pud_table_empty(kvm, start_pud))
311
		clear_stage2_pgd_entry(kvm, pgd, start_addr);
312 313
}

314 315 316 317 318 319 320 321 322 323 324 325
/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 * @kvm:   The VM pointer
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
326 327 328 329 330
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

331
	assert_spin_locked(&kvm->mmu_lock);
332 333
	WARN_ON(size & ~PAGE_MASK);

334
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
335
	do {
336 337 338 339 340 341 342
		/*
		 * Make sure the page table is still active, as another thread
		 * could have possibly freed the page table, while we released
		 * the lock.
		 */
		if (!READ_ONCE(kvm->arch.pgd))
			break;
343 344
		next = stage2_pgd_addr_end(kvm, addr, end);
		if (!stage2_pgd_none(kvm, *pgd))
345
			unmap_stage2_puds(kvm, pgd, addr, next);
346 347 348 349 350 351
		/*
		 * If the range is too large, release the kvm->mmu_lock
		 * to prevent starvation and lockup detector warnings.
		 */
		if (next != end)
			cond_resched_lock(&kvm->mmu_lock);
352
	} while (pgd++, addr = next, addr != end);
353 354
}

355 356 357 358 359 360 361
static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
			      phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
362
		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
363
			kvm_flush_dcache_pte(*pte);
364 365 366 367 368 369 370 371 372
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
			      phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

373
	pmd = stage2_pmd_offset(kvm, pud, addr);
374
	do {
375
		next = stage2_pmd_addr_end(kvm, addr, end);
376
		if (!pmd_none(*pmd)) {
377
			if (pmd_thp_or_huge(*pmd))
378 379
				kvm_flush_dcache_pmd(*pmd);
			else
380 381 382 383 384 385 386 387 388 389 390
				stage2_flush_ptes(kvm, pmd, addr, next);
		}
	} while (pmd++, addr = next, addr != end);
}

static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
			      phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

391
	pud = stage2_pud_offset(kvm, pgd, addr);
392
	do {
393 394 395
		next = stage2_pud_addr_end(kvm, addr, end);
		if (!stage2_pud_none(kvm, *pud)) {
			if (stage2_pud_huge(kvm, *pud))
396 397
				kvm_flush_dcache_pud(*pud);
			else
398 399 400 401 402 403 404 405 406 407 408 409 410
				stage2_flush_pmds(kvm, pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

static void stage2_flush_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
	phys_addr_t next;
	pgd_t *pgd;

411
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
412
	do {
413 414
		next = stage2_pgd_addr_end(kvm, addr, end);
		if (!stage2_pgd_none(kvm, *pgd))
415
			stage2_flush_puds(kvm, pgd, addr, next);
416 417 418 419 420 421 422 423 424 425
	} while (pgd++, addr = next, addr != end);
}

/**
 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 * @kvm: The struct kvm pointer
 *
 * Go through the stage 2 page tables and invalidate any cache lines
 * backing memory already mapped to the VM.
 */
426
static void stage2_flush_vm(struct kvm *kvm)
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_flush_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
static void clear_hyp_pgd_entry(pgd_t *pgd)
{
	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
	pgd_clear(pgd);
	pud_free(NULL, pud_table);
	put_page(virt_to_page(pgd));
}

static void clear_hyp_pud_entry(pud_t *pud)
{
	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
	VM_BUG_ON(pud_huge(*pud));
	pud_clear(pud);
	pmd_free(NULL, pmd_table);
	put_page(virt_to_page(pud));
}

static void clear_hyp_pmd_entry(pmd_t *pmd)
{
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
	pmd_clear(pmd);
	pte_free_kernel(NULL, pte_table);
	put_page(virt_to_page(pmd));
}

static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			kvm_set_pte(pte, __pte(0));
			put_page(virt_to_page(pte));
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

	if (hyp_pte_table_empty(start_pte))
		clear_hyp_pmd_entry(pmd);
}

static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pmd_t *pmd, *start_pmd;

	start_pmd = pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		/* Hyp doesn't use huge pmds */
		if (!pmd_none(*pmd))
			unmap_hyp_ptes(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);

	if (hyp_pmd_table_empty(start_pmd))
		clear_hyp_pud_entry(pud);
}

static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pud_t *pud, *start_pud;

	start_pud = pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		/* Hyp doesn't use huge puds */
		if (!pud_none(*pud))
			unmap_hyp_pmds(pud, addr, next);
	} while (pud++, addr = next, addr != end);

	if (hyp_pud_table_empty(start_pud))
		clear_hyp_pgd_entry(pgd);
}

519 520 521 522 523 524 525
static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
{
	return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
}

static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
			      phys_addr_t start, u64 size)
526 527 528 529 530 531 532 533 534
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

	/*
	 * We don't unmap anything from HYP, except at the hyp tear down.
	 * Hence, we don't have to invalidate the TLBs here.
	 */
535
	pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
536 537 538 539 540 541 542
	do {
		next = pgd_addr_end(addr, end);
		if (!pgd_none(*pgd))
			unmap_hyp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

543 544 545 546 547 548 549 550 551 552
static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	__unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
}

static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	__unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
}

553
/**
554
 * free_hyp_pgds - free Hyp-mode page tables
555
 *
556 557
 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 * therefore contains either mappings in the kernel memory area (above
558
 * PAGE_OFFSET), or device mappings in the idmap range.
559
 *
560 561
 * boot_hyp_pgd should only map the idmap range, and is only used in
 * the extended idmap case.
562
 */
563
void free_hyp_pgds(void)
564
{
565 566
	pgd_t *id_pgd;

567
	mutex_lock(&kvm_hyp_pgd_mutex);
568

569 570 571 572 573 574 575 576 577 578
	id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;

	if (id_pgd) {
		/* In case we never called hyp_mmu_init() */
		if (!io_map_base)
			io_map_base = hyp_idmap_start;
		unmap_hyp_idmap_range(id_pgd, io_map_base,
				      hyp_idmap_start + PAGE_SIZE - io_map_base);
	}

579 580 581 582 583
	if (boot_hyp_pgd) {
		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
		boot_hyp_pgd = NULL;
	}

584
	if (hyp_pgd) {
585 586
		unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
				(uintptr_t)high_memory - PAGE_OFFSET);
587

588
		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
589
		hyp_pgd = NULL;
590
	}
591 592 593 594 595
	if (merged_hyp_pgd) {
		clear_page(merged_hyp_pgd);
		free_page((unsigned long)merged_hyp_pgd);
		merged_hyp_pgd = NULL;
	}
596

597 598 599 600
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
601 602
				    unsigned long end, unsigned long pfn,
				    pgprot_t prot)
603 604 605 606
{
	pte_t *pte;
	unsigned long addr;

607 608
	addr = start;
	do {
609 610
		pte = pte_offset_kernel(pmd, addr);
		kvm_set_pte(pte, pfn_pte(pfn, prot));
611
		get_page(virt_to_page(pte));
612
		pfn++;
613
	} while (addr += PAGE_SIZE, addr != end);
614 615 616
}

static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
617 618
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
619 620 621 622 623
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

624 625
	addr = start;
	do {
626
		pmd = pmd_offset(pud, addr);
627 628 629 630

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
631
			pte = pte_alloc_one_kernel(NULL, addr);
632 633 634 635
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
636
			kvm_pmd_populate(pmd, pte);
637
			get_page(virt_to_page(pmd));
638 639 640 641
		}

		next = pmd_addr_end(addr, end);

642 643
		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
644
	} while (addr = next, addr != end);
645 646 647 648

	return 0;
}

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
{
	pud_t *pud;
	pmd_t *pmd;
	unsigned long addr, next;
	int ret;

	addr = start;
	do {
		pud = pud_offset(pgd, addr);

		if (pud_none_or_clear_bad(pud)) {
			pmd = pmd_alloc_one(NULL, addr);
			if (!pmd) {
				kvm_err("Cannot allocate Hyp pmd\n");
				return -ENOMEM;
			}
668
			kvm_pud_populate(pud, pmd);
669 670 671 672 673 674 675 676 677 678 679 680 681
			get_page(virt_to_page(pud));
		}

		next = pud_addr_end(addr, end);
		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
		if (ret)
			return ret;
		pfn += (next - addr) >> PAGE_SHIFT;
	} while (addr = next, addr != end);

	return 0;
}

682
static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
683 684
				 unsigned long start, unsigned long end,
				 unsigned long pfn, pgprot_t prot)
685 686 687 688 689 690 691
{
	pgd_t *pgd;
	pud_t *pud;
	unsigned long addr, next;
	int err = 0;

	mutex_lock(&kvm_hyp_pgd_mutex);
692 693 694
	addr = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
	do {
695
		pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
696

697 698 699 700
		if (pgd_none(*pgd)) {
			pud = pud_alloc_one(NULL, addr);
			if (!pud) {
				kvm_err("Cannot allocate Hyp pud\n");
701 702 703
				err = -ENOMEM;
				goto out;
			}
704
			kvm_pgd_populate(pgd, pud);
705
			get_page(virt_to_page(pgd));
706 707 708
		}

		next = pgd_addr_end(addr, end);
709
		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
710 711
		if (err)
			goto out;
712
		pfn += (next - addr) >> PAGE_SHIFT;
713
	} while (addr = next, addr != end);
714 715 716 717 718
out:
	mutex_unlock(&kvm_hyp_pgd_mutex);
	return err;
}

719 720 721 722 723 724 725 726 727 728 729
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
	if (!is_vmalloc_addr(kaddr)) {
		BUG_ON(!virt_addr_valid(kaddr));
		return __pa(kaddr);
	} else {
		return page_to_phys(vmalloc_to_page(kaddr)) +
		       offset_in_page(kaddr);
	}
}

730
/**
731
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
732 733
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
734
 * @prot:	The protection to be applied to this range
735
 *
736 737 738
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
739
 */
740
int create_hyp_mappings(void *from, void *to, pgprot_t prot)
741
{
742 743
	phys_addr_t phys_addr;
	unsigned long virt_addr;
M
Marc Zyngier 已提交
744 745
	unsigned long start = kern_hyp_va((unsigned long)from);
	unsigned long end = kern_hyp_va((unsigned long)to);
746

747 748 749
	if (is_kernel_in_hyp_mode())
		return 0;

750 751
	start = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
752

753 754
	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
		int err;
755

756
		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
757 758
		err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
					    virt_addr, virt_addr + PAGE_SIZE,
759
					    __phys_to_pfn(phys_addr),
760
					    prot);
761 762 763 764 765
		if (err)
			return err;
	}

	return 0;
766 767
}

768 769
static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
					unsigned long *haddr, pgprot_t prot)
770
{
771 772 773
	pgd_t *pgd = hyp_pgd;
	unsigned long base;
	int ret = 0;
774

775
	mutex_lock(&kvm_hyp_pgd_mutex);
776

777 778 779 780 781 782 783 784 785 786
	/*
	 * This assumes that we we have enough space below the idmap
	 * page to allocate our VAs. If not, the check below will
	 * kick. A potential alternative would be to detect that
	 * overflow and switch to an allocation above the idmap.
	 *
	 * The allocated size is always a multiple of PAGE_SIZE.
	 */
	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
	base = io_map_base - size;
787

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
	/*
	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
	 * allocating the new area, as it would indicate we've
	 * overflowed the idmap/IO address range.
	 */
	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
		ret = -ENOMEM;
	else
		io_map_base = base;

	mutex_unlock(&kvm_hyp_pgd_mutex);

	if (ret)
		goto out;

	if (__kvm_cpu_uses_extended_idmap())
		pgd = boot_hyp_pgd;

	ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
				    base, base + size,
808
				    __phys_to_pfn(phys_addr), prot);
809 810 811
	if (ret)
		goto out;

812
	*haddr = base + offset_in_page(phys_addr);
813 814

out:
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
	return ret;
}

/**
 * create_hyp_io_mappings - Map IO into both kernel and HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @kaddr:	Kernel VA for this mapping
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
			   void __iomem **kaddr,
			   void __iomem **haddr)
{
	unsigned long addr;
	int ret;

	*kaddr = ioremap(phys_addr, size);
	if (!*kaddr)
		return -ENOMEM;

	if (is_kernel_in_hyp_mode()) {
		*haddr = *kaddr;
		return 0;
	}

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_DEVICE);
843 844 845
	if (ret) {
		iounmap(*kaddr);
		*kaddr = NULL;
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
		*haddr = NULL;
		return ret;
	}

	*haddr = (void __iomem *)addr;
	return 0;
}

/**
 * create_hyp_exec_mappings - Map an executable range into HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
			     void **haddr)
{
	unsigned long addr;
	int ret;

	BUG_ON(is_kernel_in_hyp_mode());

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_EXEC);
	if (ret) {
		*haddr = NULL;
872 873 874
		return ret;
	}

875
	*haddr = (void *)addr;
876
	return 0;
877 878
}

879 880 881 882
/**
 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 * @kvm:	The KVM struct pointer for the VM.
 *
883 884 885
 * Allocates only the stage-2 HW PGD level table(s) (can support either full
 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
 * allocated pages.
886 887 888 889 890 891 892 893 894 895 896 897 898
 *
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
	pgd_t *pgd;

	if (kvm->arch.pgd != NULL) {
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

899
	/* Allocate the HW PGD, making sure that each page gets its own refcount */
900
	pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
901
	if (!pgd)
902 903
		return -ENOMEM;

904 905 906 907
	kvm->arch.pgd = pgd;
	return 0;
}

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
static void stage2_unmap_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	hva_t hva = memslot->userspace_addr;
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = PAGE_SIZE * memslot->npages;
	hva_t reg_end = hva + size;

	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we should
	 * unmap any of them.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (!(vma->vm_flags & VM_PFNMAP)) {
			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
		}
		hva = vm_end;
	} while (hva < reg_end);
}

/**
 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 * @kvm: The struct kvm pointer
 *
 * Go through the memregions and unmap any reguler RAM
 * backing memory already mapped to the VM.
 */
void stage2_unmap_vm(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
963
	down_read(&current->mm->mmap_sem);
964 965 966 967 968 969 970
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_unmap_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
971
	up_read(&current->mm->mmap_sem);
972 973 974
	srcu_read_unlock(&kvm->srcu, idx);
}

975 976 977 978 979 980 981 982 983 984
/**
 * kvm_free_stage2_pgd - free all stage-2 tables
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 * and setting the struct pointer to NULL.
 */
void kvm_free_stage2_pgd(struct kvm *kvm)
{
985
	void *pgd = NULL;
986

987
	spin_lock(&kvm->mmu_lock);
988
	if (kvm->arch.pgd) {
989
		unmap_stage2_range(kvm, 0, kvm_phys_size(kvm));
990
		pgd = READ_ONCE(kvm->arch.pgd);
991 992
		kvm->arch.pgd = NULL;
	}
993 994
	spin_unlock(&kvm->mmu_lock);

995
	/* Free the HW pgd, one page at a time */
996
	if (pgd)
997
		free_pages_exact(pgd, stage2_pgd_size(kvm));
998 999
}

1000
static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1001
			     phys_addr_t addr)
1002 1003 1004 1005
{
	pgd_t *pgd;
	pud_t *pud;

1006 1007
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
	if (stage2_pgd_none(kvm, *pgd)) {
1008 1009 1010
		if (!cache)
			return NULL;
		pud = mmu_memory_cache_alloc(cache);
1011
		stage2_pgd_populate(kvm, pgd, pud);
1012 1013 1014
		get_page(virt_to_page(pgd));
	}

1015
	return stage2_pud_offset(kvm, pgd, addr);
1016 1017 1018 1019 1020 1021 1022 1023 1024
}

static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			     phys_addr_t addr)
{
	pud_t *pud;
	pmd_t *pmd;

	pud = stage2_get_pud(kvm, cache, addr);
1025 1026 1027
	if (!pud)
		return NULL;

1028
	if (stage2_pud_none(kvm, *pud)) {
1029
		if (!cache)
1030
			return NULL;
1031
		pmd = mmu_memory_cache_alloc(cache);
1032
		stage2_pud_populate(kvm, pud, pmd);
1033
		get_page(virt_to_page(pud));
1034 1035
	}

1036
	return stage2_pmd_offset(kvm, pud, addr);
1037 1038 1039 1040 1041 1042 1043 1044 1045
}

static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
{
	pmd_t *pmd, old_pmd;

	pmd = stage2_get_pmd(kvm, cache, addr);
	VM_BUG_ON(!pmd);
1046

1047
	old_pmd = *pmd;
1048
	if (pmd_present(old_pmd)) {
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
		/*
		 * Multiple vcpus faulting on the same PMD entry, can
		 * lead to them sequentially updating the PMD with the
		 * same value. Following the break-before-make
		 * (pmd_clear() followed by tlb_flush()) process can
		 * hinder forward progress due to refaults generated
		 * on missing translations.
		 *
		 * Skip updating the page table if the entry is
		 * unchanged.
		 */
		if (pmd_val(old_pmd) == pmd_val(*new_pmd))
			return 0;

		/*
		 * Mapping in huge pages should only happen through a
		 * fault.  If a page is merged into a transparent huge
		 * page, the individual subpages of that huge page
		 * should be unmapped through MMU notifiers before we
		 * get here.
		 *
		 * Merging of CompoundPages is not supported; they
		 * should become splitting first, unmapped, merged,
		 * and mapped back in on-demand.
		 */
		VM_BUG_ON(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));

1076
		pmd_clear(pmd);
1077
		kvm_tlb_flush_vmid_ipa(kvm, addr);
1078
	} else {
1079
		get_page(virt_to_page(pmd));
1080 1081 1082
	}

	kvm_set_pmd(pmd, *new_pmd);
1083 1084 1085
	return 0;
}

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
{
	pmd_t *pmdp;
	pte_t *ptep;

	pmdp = stage2_get_pmd(kvm, NULL, addr);
	if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
		return false;

	if (pmd_thp_or_huge(*pmdp))
		return kvm_s2pmd_exec(pmdp);

	ptep = pte_offset_kernel(pmdp, addr);
	if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
		return false;

	return kvm_s2pte_exec(ptep);
}

1105
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1106 1107
			  phys_addr_t addr, const pte_t *new_pte,
			  unsigned long flags)
1108 1109 1110
{
	pmd_t *pmd;
	pte_t *pte, old_pte;
1111 1112 1113 1114
	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;

	VM_BUG_ON(logging_active && !cache);
1115

1116
	/* Create stage-2 page table mapping - Levels 0 and 1 */
1117 1118 1119 1120 1121 1122 1123 1124 1125
	pmd = stage2_get_pmd(kvm, cache, addr);
	if (!pmd) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

1126 1127 1128 1129 1130 1131 1132
	/*
	 * While dirty page logging - dissolve huge PMD, then continue on to
	 * allocate page.
	 */
	if (logging_active)
		stage2_dissolve_pmd(kvm, addr, pmd);

1133
	/* Create stage-2 page mappings - Level 2 */
1134 1135 1136 1137
	if (pmd_none(*pmd)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pte = mmu_memory_cache_alloc(cache);
1138
		kvm_pmd_populate(pmd, pte);
1139
		get_page(virt_to_page(pmd));
1140 1141 1142
	}

	pte = pte_offset_kernel(pmd, addr);
1143 1144 1145 1146 1147 1148

	if (iomap && pte_present(*pte))
		return -EFAULT;

	/* Create 2nd stage page table mapping - Level 3 */
	old_pte = *pte;
1149
	if (pte_present(old_pte)) {
1150 1151 1152 1153
		/* Skip page table update if there is no change */
		if (pte_val(old_pte) == pte_val(*new_pte))
			return 0;

1154
		kvm_set_pte(pte, __pte(0));
1155
		kvm_tlb_flush_vmid_ipa(kvm, addr);
1156
	} else {
1157
		get_page(virt_to_page(pte));
1158
	}
1159

1160
	kvm_set_pte(pte, *new_pte);
1161 1162 1163
	return 0;
}

1164 1165 1166 1167 1168 1169 1170
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	if (pte_young(*pte)) {
		*pte = pte_mkold(*pte);
		return 1;
	}
1171 1172
	return 0;
}
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
#else
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	return __ptep_test_and_clear_young(pte);
}
#endif

static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
{
	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
}
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1194
			  phys_addr_t pa, unsigned long size, bool writable)
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
{
	phys_addr_t addr, end;
	int ret = 0;
	unsigned long pfn;
	struct kvm_mmu_memory_cache cache = { 0, };

	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
	pfn = __phys_to_pfn(pa);

	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1205
		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1206

1207
		if (writable)
1208
			pte = kvm_s2pte_mkwrite(pte);
1209

1210 1211 1212
		ret = mmu_topup_memory_cache(&cache,
					     kvm_mmu_cache_min_pages(kvm),
					     KVM_NR_MEM_OBJS);
1213 1214 1215
		if (ret)
			goto out;
		spin_lock(&kvm->mmu_lock);
1216 1217
		ret = stage2_set_pte(kvm, &cache, addr, &pte,
						KVM_S2PTE_FLAG_IS_IOMAP);
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
		spin_unlock(&kvm->mmu_lock);
		if (ret)
			goto out;

		pfn++;
	}

out:
	mmu_free_memory_cache(&cache);
	return ret;
}

D
Dan Williams 已提交
1230
static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1231
{
D
Dan Williams 已提交
1232
	kvm_pfn_t pfn = *pfnp;
1233 1234
	gfn_t gfn = *ipap >> PAGE_SHIFT;

1235
	if (PageTransCompoundMap(pfn_to_page(pfn))) {
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
		unsigned long mask;
		/*
		 * The address we faulted on is backed by a transparent huge
		 * page.  However, because we map the compound huge page and
		 * not the individual tail page, we need to transfer the
		 * refcount to the head page.  We have to be careful that the
		 * THP doesn't start to split while we are adjusting the
		 * refcounts.
		 *
		 * We are sure this doesn't happen, because mmu_notifier_retry
		 * was successful and we are holding the mmu_lock, so if this
		 * THP is trying to split, it will be blocked in the mmu
		 * notifier before touching any of the pages, specifically
		 * before being able to call __split_huge_page_refcount().
		 *
		 * We can therefore safely transfer the refcount from PG_tail
		 * to PG_head and switch the pfn from a tail page to the head
		 * page accordingly.
		 */
		mask = PTRS_PER_PMD - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			*ipap &= PMD_MASK;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
			kvm_get_pfn(pfn);
			*pfnp = pfn;
		}

		return true;
	}

	return false;
}

1271 1272 1273 1274 1275 1276 1277 1278
static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
{
	if (kvm_vcpu_trap_is_iabt(vcpu))
		return false;

	return kvm_vcpu_dabt_iswrite(vcpu);
}

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
/**
 * stage2_wp_ptes - write protect PMD range
 * @pmd:	pointer to pmd entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			if (!kvm_s2pte_readonly(pte))
				kvm_set_s2pte_readonly(pte);
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

/**
 * stage2_wp_pmds - write protect PUD range
1300
 * kvm:		kvm instance for the VM
1301 1302 1303 1304
 * @pud:	pointer to pud entry
 * @addr:	range start address
 * @end:	range end address
 */
1305 1306
static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud,
			   phys_addr_t addr, phys_addr_t end)
1307 1308 1309 1310
{
	pmd_t *pmd;
	phys_addr_t next;

1311
	pmd = stage2_pmd_offset(kvm, pud, addr);
1312 1313

	do {
1314
		next = stage2_pmd_addr_end(kvm, addr, end);
1315
		if (!pmd_none(*pmd)) {
1316
			if (pmd_thp_or_huge(*pmd)) {
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
				if (!kvm_s2pmd_readonly(pmd))
					kvm_set_s2pmd_readonly(pmd);
			} else {
				stage2_wp_ptes(pmd, addr, next);
			}
		}
	} while (pmd++, addr = next, addr != end);
}

/**
  * stage2_wp_puds - write protect PGD range
  * @pgd:	pointer to pgd entry
  * @addr:	range start address
  * @end:	range end address
  *
  * Process PUD entries, for a huge PUD we cause a panic.
  */
1334 1335
static void  stage2_wp_puds(struct kvm *kvm, pgd_t *pgd,
			    phys_addr_t addr, phys_addr_t end)
1336 1337 1338 1339
{
	pud_t *pud;
	phys_addr_t next;

1340
	pud = stage2_pud_offset(kvm, pgd, addr);
1341
	do {
1342 1343
		next = stage2_pud_addr_end(kvm, addr, end);
		if (!stage2_pud_none(kvm, *pud)) {
1344
			/* TODO:PUD not supported, revisit later if supported */
1345 1346
			BUG_ON(stage2_pud_huge(kvm, *pud));
			stage2_wp_pmds(kvm, pud, addr, next);
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
		}
	} while (pud++, addr = next, addr != end);
}

/**
 * stage2_wp_range() - write protect stage2 memory region range
 * @kvm:	The KVM pointer
 * @addr:	Start address of range
 * @end:	End address of range
 */
static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
	pgd_t *pgd;
	phys_addr_t next;

1362
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1363 1364 1365 1366
	do {
		/*
		 * Release kvm_mmu_lock periodically if the memory region is
		 * large. Otherwise, we may see kernel panics with
1367 1368
		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1369 1370 1371
		 * will also starve other vCPUs. We have to also make sure
		 * that the page tables are not freed while we released
		 * the lock.
1372
		 */
1373 1374 1375
		cond_resched_lock(&kvm->mmu_lock);
		if (!READ_ONCE(kvm->arch.pgd))
			break;
1376 1377 1378
		next = stage2_pgd_addr_end(kvm, addr, end);
		if (stage2_pgd_present(kvm, *pgd))
			stage2_wp_puds(kvm, pgd, addr, next);
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	} while (pgd++, addr = next, addr != end);
}

/**
 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 * @kvm:	The KVM pointer
 * @slot:	The memory slot to write protect
 *
 * Called to start logging dirty pages after memory region
 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
 * all present PMD and PTEs are write protected in the memory region.
 * Afterwards read of dirty page log can be called.
 *
 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 * serializing operations for VM memory regions.
 */
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
{
1397 1398
	struct kvm_memslots *slots = kvm_memslots(kvm);
	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1399 1400 1401 1402 1403 1404 1405 1406
	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	stage2_wp_range(kvm, start, end);
	spin_unlock(&kvm->mmu_lock);
	kvm_flush_remote_tlbs(kvm);
}
1407 1408

/**
1409
 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1410 1411 1412 1413 1414 1415 1416 1417 1418
 * @kvm:	The KVM pointer
 * @slot:	The memory slot associated with mask
 * @gfn_offset:	The gfn offset in memory slot
 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 *		slot to be write protected
 *
 * Walks bits set in mask write protects the associated pte's. Caller must
 * acquire kvm_mmu_lock.
 */
1419
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1420 1421 1422 1423 1424 1425 1426 1427 1428
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;

	stage2_wp_range(kvm, start, end);
}
1429

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
/*
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * dirty pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

1444
static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1445
{
1446
	__clean_dcache_guest_page(pfn, size);
1447 1448
}

1449
static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1450
{
1451
	__invalidate_icache_guest_page(pfn, size);
1452 1453
}

1454 1455 1456 1457 1458
static void kvm_send_hwpoison_signal(unsigned long address,
				     struct vm_area_struct *vma)
{
	siginfo_t info;

1459
	clear_siginfo(&info);
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	info.si_signo   = SIGBUS;
	info.si_errno   = 0;
	info.si_code    = BUS_MCEERR_AR;
	info.si_addr    = (void __user *)address;

	if (is_vm_hugetlb_page(vma))
		info.si_addr_lsb = huge_page_shift(hstate_vma(vma));
	else
		info.si_addr_lsb = PAGE_SHIFT;

	send_sig_info(SIGBUS, &info, current);
}

1473
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1474
			  struct kvm_memory_slot *memslot, unsigned long hva,
1475 1476 1477
			  unsigned long fault_status)
{
	int ret;
1478
	bool write_fault, exec_fault, writable, hugetlb = false, force_pte = false;
1479
	unsigned long mmu_seq;
1480 1481
	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
	struct kvm *kvm = vcpu->kvm;
1482
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1483
	struct vm_area_struct *vma;
D
Dan Williams 已提交
1484
	kvm_pfn_t pfn;
1485
	pgprot_t mem_type = PAGE_S2;
1486 1487
	bool logging_active = memslot_is_logging(memslot);
	unsigned long flags = 0;
1488

1489
	write_fault = kvm_is_write_fault(vcpu);
1490 1491 1492 1493
	exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
	VM_BUG_ON(write_fault && exec_fault);

	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1494 1495 1496 1497
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

1498 1499 1500
	/* Let's check if we will get back a huge page backed by hugetlbfs */
	down_read(&current->mm->mmap_sem);
	vma = find_vma_intersection(current->mm, hva, hva + 1);
1501 1502 1503 1504 1505 1506
	if (unlikely(!vma)) {
		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
		up_read(&current->mm->mmap_sem);
		return -EFAULT;
	}

1507
	if (vma_kernel_pagesize(vma) == PMD_SIZE && !logging_active) {
1508 1509
		hugetlb = true;
		gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1510 1511
	} else {
		/*
1512 1513 1514 1515 1516 1517 1518
		 * Pages belonging to memslots that don't have the same
		 * alignment for userspace and IPA cannot be mapped using
		 * block descriptors even if the pages belong to a THP for
		 * the process, because the stage-2 block descriptor will
		 * cover more than a single THP and we loose atomicity for
		 * unmapping, updates, and splits of the THP or other pages
		 * in the stage-2 block range.
1519
		 */
1520 1521
		if ((memslot->userspace_addr & ~PMD_MASK) !=
		    ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1522
			force_pte = true;
1523 1524 1525
	}
	up_read(&current->mm->mmap_sem);

1526
	/* We need minimum second+third level pages */
1527
	ret = mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm),
1528
				     KVM_NR_MEM_OBJS);
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	if (ret)
		return ret;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

1544
	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1545 1546 1547 1548
	if (pfn == KVM_PFN_ERR_HWPOISON) {
		kvm_send_hwpoison_signal(hva, vma);
		return 0;
	}
1549
	if (is_error_noslot_pfn(pfn))
1550 1551
		return -EFAULT;

1552
	if (kvm_is_device_pfn(pfn)) {
1553
		mem_type = PAGE_S2_DEVICE;
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
	} else if (logging_active) {
		/*
		 * Faults on pages in a memslot with logging enabled
		 * should not be mapped with huge pages (it introduces churn
		 * and performance degradation), so force a pte mapping.
		 */
		force_pte = true;
		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;

		/*
		 * Only actually map the page as writable if this was a write
		 * fault.
		 */
		if (!write_fault)
			writable = false;
	}
1571

1572 1573
	spin_lock(&kvm->mmu_lock);
	if (mmu_notifier_retry(kvm, mmu_seq))
1574
		goto out_unlock;
1575

1576 1577
	if (!hugetlb && !force_pte)
		hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1578 1579

	if (hugetlb) {
1580
		pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1581 1582
		new_pmd = pmd_mkhuge(new_pmd);
		if (writable) {
1583
			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1584 1585
			kvm_set_pfn_dirty(pfn);
		}
1586 1587

		if (fault_status != FSC_PERM)
1588
			clean_dcache_guest_page(pfn, PMD_SIZE);
1589 1590 1591

		if (exec_fault) {
			new_pmd = kvm_s2pmd_mkexec(new_pmd);
1592
			invalidate_icache_guest_page(pfn, PMD_SIZE);
1593 1594 1595 1596
		} else if (fault_status == FSC_PERM) {
			/* Preserve execute if XN was already cleared */
			if (stage2_is_exec(kvm, fault_ipa))
				new_pmd = kvm_s2pmd_mkexec(new_pmd);
1597
		}
1598

1599 1600
		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
	} else {
1601
		pte_t new_pte = pfn_pte(pfn, mem_type);
1602

1603
		if (writable) {
1604
			new_pte = kvm_s2pte_mkwrite(new_pte);
1605
			kvm_set_pfn_dirty(pfn);
1606
			mark_page_dirty(kvm, gfn);
1607
		}
1608 1609

		if (fault_status != FSC_PERM)
1610
			clean_dcache_guest_page(pfn, PAGE_SIZE);
1611 1612 1613

		if (exec_fault) {
			new_pte = kvm_s2pte_mkexec(new_pte);
1614
			invalidate_icache_guest_page(pfn, PAGE_SIZE);
1615 1616 1617 1618
		} else if (fault_status == FSC_PERM) {
			/* Preserve execute if XN was already cleared */
			if (stage2_is_exec(kvm, fault_ipa))
				new_pte = kvm_s2pte_mkexec(new_pte);
1619
		}
1620

1621
		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1622
	}
1623

1624
out_unlock:
1625
	spin_unlock(&kvm->mmu_lock);
1626
	kvm_set_pfn_accessed(pfn);
1627
	kvm_release_pfn_clean(pfn);
1628
	return ret;
1629 1630
}

1631 1632 1633 1634
/*
 * Resolve the access fault by making the page young again.
 * Note that because the faulting entry is guaranteed not to be
 * cached in the TLB, we don't need to invalidate anything.
1635 1636
 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1637 1638 1639 1640 1641
 */
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
{
	pmd_t *pmd;
	pte_t *pte;
D
Dan Williams 已提交
1642
	kvm_pfn_t pfn;
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	bool pfn_valid = false;

	trace_kvm_access_fault(fault_ipa);

	spin_lock(&vcpu->kvm->mmu_lock);

	pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		goto out;

1653
	if (pmd_thp_or_huge(*pmd)) {	/* THP, HugeTLB */
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
		*pmd = pmd_mkyoung(*pmd);
		pfn = pmd_pfn(*pmd);
		pfn_valid = true;
		goto out;
	}

	pte = pte_offset_kernel(pmd, fault_ipa);
	if (pte_none(*pte))		/* Nothing there either */
		goto out;

	*pte = pte_mkyoung(*pte);	/* Just a page... */
	pfn = pte_pfn(*pte);
	pfn_valid = true;
out:
	spin_unlock(&vcpu->kvm->mmu_lock);
	if (pfn_valid)
		kvm_set_pfn_accessed(pfn);
}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 * @run:	the kvm_run structure
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
1685 1686
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
1687 1688 1689
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
1690 1691
	unsigned long hva;
	bool is_iabt, write_fault, writable;
1692 1693 1694
	gfn_t gfn;
	int ret, idx;

1695 1696 1697
	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);

	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1698
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1699

1700 1701 1702 1703 1704 1705
	/* Synchronous External Abort? */
	if (kvm_vcpu_dabt_isextabt(vcpu)) {
		/*
		 * For RAS the host kernel may handle this abort.
		 * There is no need to pass the error into the guest.
		 */
1706 1707 1708
		if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
			return 1;

1709 1710 1711 1712
		if (unlikely(!is_iabt)) {
			kvm_inject_vabt(vcpu);
			return 1;
		}
1713 1714
	}

1715 1716
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1717 1718

	/* Check the stage-2 fault is trans. fault or write fault */
1719 1720
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
	    fault_status != FSC_ACCESS) {
1721 1722 1723 1724
		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu),
			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1725 1726 1727 1728 1729 1730
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
1731 1732
	memslot = gfn_to_memslot(vcpu->kvm, gfn);
	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1733
	write_fault = kvm_is_write_fault(vcpu);
1734
	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1735 1736
		if (is_iabt) {
			/* Prefetch Abort on I/O address */
1737
			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1738 1739 1740 1741
			ret = 1;
			goto out_unlock;
		}

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
		/*
		 * Check for a cache maintenance operation. Since we
		 * ended-up here, we know it is outside of any memory
		 * slot. But we can't find out if that is for a device,
		 * or if the guest is just being stupid. The only thing
		 * we know for sure is that this range cannot be cached.
		 *
		 * So let's assume that the guest is just being
		 * cautious, and skip the instruction.
		 */
		if (kvm_vcpu_dabt_is_cm(vcpu)) {
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
			ret = 1;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
1758 1759 1760 1761 1762 1763 1764
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
C
Christoffer Dall 已提交
1765
		ret = io_mem_abort(vcpu, run, fault_ipa);
1766 1767 1768
		goto out_unlock;
	}

1769
	/* Userspace should not be able to register out-of-bounds IPAs */
1770
	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1771

1772 1773 1774 1775 1776 1777
	if (fault_status == FSC_ACCESS) {
		handle_access_fault(vcpu, fault_ipa);
		ret = 1;
		goto out_unlock;
	}

1778
	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1779 1780 1781 1782 1783
	if (ret == 0)
		ret = 1;
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
1784 1785
}

1786 1787 1788 1789
static int handle_hva_to_gpa(struct kvm *kvm,
			     unsigned long start,
			     unsigned long end,
			     int (*handler)(struct kvm *kvm,
1790 1791
					    gpa_t gpa, u64 size,
					    void *data),
1792
			     void *data)
1793 1794 1795
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
1796
	int ret = 0;
1797 1798 1799 1800 1801 1802

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
1803
		gfn_t gpa;
1804 1805 1806 1807 1808 1809 1810

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

1811 1812
		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1813
	}
1814 1815

	return ret;
1816 1817
}

1818
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1819
{
1820
	unmap_stage2_range(kvm, gpa, size);
1821
	return 0;
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
}

int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end)
{
	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva_range(start, end);
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

1835
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1836 1837 1838
{
	pte_t *pte = (pte_t *)data;

1839
	WARN_ON(size != PAGE_SIZE);
1840 1841 1842 1843 1844 1845 1846 1847
	/*
	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
	 * flag clear because MMU notifiers will have unmapped a huge PMD before
	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
	 * therefore stage2_set_pte() never needs to clear out a huge PMD
	 * through this calling path.
	 */
	stage2_set_pte(kvm, NULL, gpa, pte, 0);
1848
	return 0;
1849 1850 1851 1852 1853 1854
}


void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
	unsigned long end = hva + PAGE_SIZE;
1855
	kvm_pfn_t pfn = pte_pfn(pte);
1856 1857 1858 1859 1860 1861
	pte_t stage2_pte;

	if (!kvm->arch.pgd)
		return;

	trace_kvm_set_spte_hva(hva);
1862 1863 1864 1865 1866 1867 1868

	/*
	 * We've moved a page around, probably through CoW, so let's treat it
	 * just like a translation fault and clean the cache to the PoC.
	 */
	clean_dcache_guest_page(pfn, PAGE_SIZE);
	stage2_pte = pfn_pte(pfn, PAGE_S2);
1869 1870 1871
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
}

1872
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1873 1874 1875 1876
{
	pmd_t *pmd;
	pte_t *pte;

1877
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1878 1879 1880 1881
	pmd = stage2_get_pmd(kvm, NULL, gpa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		return 0;

1882 1883
	if (pmd_thp_or_huge(*pmd))	/* THP, HugeTLB */
		return stage2_pmdp_test_and_clear_young(pmd);
1884 1885 1886 1887 1888

	pte = pte_offset_kernel(pmd, gpa);
	if (pte_none(*pte))
		return 0;

1889
	return stage2_ptep_test_and_clear_young(pte);
1890 1891
}

1892
static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1893 1894 1895 1896
{
	pmd_t *pmd;
	pte_t *pte;

1897
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1898 1899 1900 1901
	pmd = stage2_get_pmd(kvm, NULL, gpa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		return 0;

1902
	if (pmd_thp_or_huge(*pmd))		/* THP, HugeTLB */
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
		return pmd_young(*pmd);

	pte = pte_offset_kernel(pmd, gpa);
	if (!pte_none(*pte))		/* Just a page... */
		return pte_young(*pte);

	return 0;
}

int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
1914 1915
	if (!kvm->arch.pgd)
		return 0;
1916 1917 1918 1919 1920 1921
	trace_kvm_age_hva(start, end);
	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
}

int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
1922 1923
	if (!kvm->arch.pgd)
		return 0;
1924 1925 1926 1927
	trace_kvm_test_age_hva(hva);
	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
}

1928 1929 1930 1931 1932
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

1933 1934
phys_addr_t kvm_mmu_get_httbr(void)
{
1935 1936 1937 1938
	if (__kvm_cpu_uses_extended_idmap())
		return virt_to_phys(merged_hyp_pgd);
	else
		return virt_to_phys(hyp_pgd);
1939 1940
}

1941 1942 1943 1944 1945
phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

1946 1947 1948 1949 1950
static int kvm_map_idmap_text(pgd_t *pgd)
{
	int err;

	/* Create the idmap in the boot page tables */
1951
	err = 	__create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
				      hyp_idmap_start, hyp_idmap_end,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP_EXEC);
	if (err)
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);

	return err;
}

1962 1963
int kvm_mmu_init(void)
{
1964 1965
	int err;

1966
	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1967
	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1968
	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1969
	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1970
	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1971

1972 1973 1974 1975 1976
	/*
	 * We rely on the linker script to ensure at build time that the HYP
	 * init code does not cross a page boundary.
	 */
	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1977

1978 1979 1980 1981
	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
	kvm_debug("HYP VA range: %lx:%lx\n",
		  kern_hyp_va(PAGE_OFFSET),
		  kern_hyp_va((unsigned long)high_memory - 1));
1982

M
Marc Zyngier 已提交
1983
	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1984
	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1985
	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1986 1987 1988 1989 1990 1991 1992 1993 1994
		/*
		 * The idmap page is intersecting with the VA space,
		 * it is not safe to continue further.
		 */
		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
		err = -EINVAL;
		goto out;
	}

1995
	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1996
	if (!hyp_pgd) {
1997
		kvm_err("Hyp mode PGD not allocated\n");
1998 1999 2000 2001
		err = -ENOMEM;
		goto out;
	}

2002 2003 2004 2005 2006 2007 2008 2009
	if (__kvm_cpu_uses_extended_idmap()) {
		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
							 hyp_pgd_order);
		if (!boot_hyp_pgd) {
			kvm_err("Hyp boot PGD not allocated\n");
			err = -ENOMEM;
			goto out;
		}
2010

2011 2012 2013
		err = kvm_map_idmap_text(boot_hyp_pgd);
		if (err)
			goto out;
2014

2015 2016 2017 2018 2019 2020 2021
		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		if (!merged_hyp_pgd) {
			kvm_err("Failed to allocate extra HYP pgd\n");
			goto out;
		}
		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
				    hyp_idmap_start);
2022 2023 2024 2025
	} else {
		err = kvm_map_idmap_text(hyp_pgd);
		if (err)
			goto out;
2026 2027
	}

2028
	io_map_base = hyp_idmap_start;
2029
	return 0;
2030
out:
2031
	free_hyp_pgds();
2032
	return err;
2033
}
2034 2035

void kvm_arch_commit_memory_region(struct kvm *kvm,
2036
				   const struct kvm_userspace_memory_region *mem,
2037
				   const struct kvm_memory_slot *old,
2038
				   const struct kvm_memory_slot *new,
2039 2040
				   enum kvm_mr_change change)
{
2041 2042 2043 2044 2045 2046 2047
	/*
	 * At this point memslot has been committed and there is an
	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
	 * memory slot is write protected.
	 */
	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
		kvm_mmu_wp_memory_region(kvm, mem->slot);
2048 2049 2050 2051
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2052
				   const struct kvm_userspace_memory_region *mem,
2053 2054
				   enum kvm_mr_change change)
{
2055 2056 2057 2058 2059
	hva_t hva = mem->userspace_addr;
	hva_t reg_end = hva + mem->memory_size;
	bool writable = !(mem->flags & KVM_MEM_READONLY);
	int ret = 0;

2060 2061
	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
			change != KVM_MR_FLAGS_ONLY)
2062 2063
		return 0;

2064 2065 2066 2067 2068
	/*
	 * Prevent userspace from creating a memory region outside of the IPA
	 * space addressable by the KVM guest IPA space.
	 */
	if (memslot->base_gfn + memslot->npages >=
2069
	    (kvm_phys_size(kvm) >> PAGE_SHIFT))
2070 2071
		return -EFAULT;

2072
	down_read(&current->mm->mmap_sem);
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we can map
	 * any of them right now.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Mapping a read-only VMA is only allowed if the
		 * memory region is configured as read-only.
		 */
		if (writable && !(vma->vm_flags & VM_WRITE)) {
			ret = -EPERM;
			break;
		}

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (vma->vm_flags & VM_PFNMAP) {
			gpa_t gpa = mem->guest_phys_addr +
				    (vm_start - mem->userspace_addr);
2110 2111 2112 2113
			phys_addr_t pa;

			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
			pa += vm_start - vma->vm_start;
2114

2115
			/* IO region dirty page logging not allowed */
2116 2117 2118 2119
			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
				ret = -EINVAL;
				goto out;
			}
2120

2121 2122 2123 2124 2125 2126 2127 2128 2129
			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
						    vm_end - vm_start,
						    writable);
			if (ret)
				break;
		}
		hva = vm_end;
	} while (hva < reg_end);

2130
	if (change == KVM_MR_FLAGS_ONLY)
2131
		goto out;
2132

2133 2134
	spin_lock(&kvm->mmu_lock);
	if (ret)
2135
		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2136 2137 2138
	else
		stage2_flush_memslot(kvm, memslot);
	spin_unlock(&kvm->mmu_lock);
2139 2140
out:
	up_read(&current->mm->mmap_sem);
2141
	return ret;
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
}

void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
			   struct kvm_memory_slot *dont)
{
}

int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
{
	return 0;
}

2155
void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
2156 2157 2158 2159 2160
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
2161
	kvm_free_stage2_pgd(kvm);
2162 2163 2164 2165 2166
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
2167 2168 2169 2170 2171 2172
	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = slot->npages << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	unmap_stage2_range(kvm, gpa, size);
	spin_unlock(&kvm->mmu_lock);
2173
}
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204

/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 *
 * Main problems:
 * - S/W ops are local to a CPU (not broadcast)
 * - We have line migration behind our back (speculation)
 * - System caches don't support S/W at all (damn!)
 *
 * In the face of the above, the best we can do is to try and convert
 * S/W ops to VA ops. Because the guest is not allowed to infer the
 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
 * which is a rather good thing for us.
 *
 * Also, it is only used when turning caches on/off ("The expected
 * usage of the cache maintenance instructions that operate by set/way
 * is associated with the cache maintenance instructions associated
 * with the powerdown and powerup of caches, if this is required by
 * the implementation.").
 *
 * We use the following policy:
 *
 * - If we trap a S/W operation, we enable VM trapping to detect
 *   caches being turned on/off, and do a full clean.
 *
 * - We flush the caches on both caches being turned on and off.
 *
 * - Once the caches are enabled, we stop trapping VM ops.
 */
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
{
2205
	unsigned long hcr = *vcpu_hcr(vcpu);
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219

	/*
	 * If this is the first time we do a S/W operation
	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
	 * VM trapping.
	 *
	 * Otherwise, rely on the VM trapping to wait for the MMU +
	 * Caches to be turned off. At that point, we'll be able to
	 * clean the caches again.
	 */
	if (!(hcr & HCR_TVM)) {
		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
					vcpu_has_cache_enabled(vcpu));
		stage2_flush_vm(vcpu->kvm);
2220
		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
	}
}

void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
{
	bool now_enabled = vcpu_has_cache_enabled(vcpu);

	/*
	 * If switching the MMU+caches on, need to invalidate the caches.
	 * If switching it off, need to clean the caches.
	 * Clean + invalidate does the trick always.
	 */
	if (now_enabled != was_enabled)
		stage2_flush_vm(vcpu->kvm);

	/* Caches are now on, stop trapping VM ops (until a S/W op) */
	if (now_enabled)
2238
		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2239 2240 2241

	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
}