mmu.c 56.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */
18 19 20 21

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
22
#include <linux/hugetlb.h>
23
#include <linux/sched/signal.h>
C
Christoffer Dall 已提交
24
#include <trace/events/kvm.h>
25
#include <asm/pgalloc.h>
26
#include <asm/cacheflush.h>
27 28
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
C
Christoffer Dall 已提交
29
#include <asm/kvm_mmio.h>
30
#include <asm/kvm_asm.h>
31
#include <asm/kvm_emulate.h>
32
#include <asm/virt.h>
33
#include <asm/system_misc.h>
34 35

#include "trace.h"
36

37
static pgd_t *boot_hyp_pgd;
38
static pgd_t *hyp_pgd;
39
static pgd_t *merged_hyp_pgd;
40 41
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

42 43 44 45
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

46 47
static unsigned long io_map_base;

48
#define S2_PGD_SIZE	(PTRS_PER_S2_PGD * sizeof(pgd_t))
49
#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
50

51 52 53 54 55 56
#define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
#define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)

static bool memslot_is_logging(struct kvm_memory_slot *memslot)
{
	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
57 58 59 60 61 62 63 64 65 66 67
}

/**
 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
 * @kvm:	pointer to kvm structure.
 *
 * Interface to HYP function to flush all VM TLB entries
 */
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
68
}
69

70
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
71
{
72
	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
73 74
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * D-Cache management functions. They take the page table entries by
 * value, as they are flushing the cache using the kernel mapping (or
 * kmap on 32bit).
 */
static void kvm_flush_dcache_pte(pte_t pte)
{
	__kvm_flush_dcache_pte(pte);
}

static void kvm_flush_dcache_pmd(pmd_t pmd)
{
	__kvm_flush_dcache_pmd(pmd);
}

static void kvm_flush_dcache_pud(pud_t pud)
{
	__kvm_flush_dcache_pud(pud);
}

95 96 97 98 99
static bool kvm_is_device_pfn(unsigned long pfn)
{
	return !pfn_valid(pfn);
}

100 101 102 103 104 105 106 107 108 109 110
/**
 * stage2_dissolve_pmd() - clear and flush huge PMD entry
 * @kvm:	pointer to kvm structure.
 * @addr:	IPA
 * @pmd:	pmd pointer for IPA
 *
 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
 * pages in the range dirty.
 */
static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
{
111
	if (!pmd_thp_or_huge(*pmd))
112 113 114 115 116 117 118
		return;

	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	put_page(virt_to_page(pmd));
}

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
		page = (void *)__get_free_page(PGALLOC_GFP);
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

151
static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
152
{
153 154
	pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
	stage2_pgd_clear(pgd);
155
	kvm_tlb_flush_vmid_ipa(kvm, addr);
156
	stage2_pud_free(pud_table);
157
	put_page(virt_to_page(pgd));
158 159
}

160
static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
161
{
162 163 164
	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
	VM_BUG_ON(stage2_pud_huge(*pud));
	stage2_pud_clear(pud);
165
	kvm_tlb_flush_vmid_ipa(kvm, addr);
166
	stage2_pmd_free(pmd_table);
167 168
	put_page(virt_to_page(pud));
}
169

170
static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
171
{
172
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
173
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
174 175 176
	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	pte_free_kernel(NULL, pte_table);
177 178 179
	put_page(virt_to_page(pmd));
}

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
/*
 * Unmapping vs dcache management:
 *
 * If a guest maps certain memory pages as uncached, all writes will
 * bypass the data cache and go directly to RAM.  However, the CPUs
 * can still speculate reads (not writes) and fill cache lines with
 * data.
 *
 * Those cache lines will be *clean* cache lines though, so a
 * clean+invalidate operation is equivalent to an invalidate
 * operation, because no cache lines are marked dirty.
 *
 * Those clean cache lines could be filled prior to an uncached write
 * by the guest, and the cache coherent IO subsystem would therefore
 * end up writing old data to disk.
 *
 * This is why right after unmapping a page/section and invalidating
 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
 * the IO subsystem will never hit in the cache.
 */
200
static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
201
		       phys_addr_t addr, phys_addr_t end)
202
{
203 204 205 206 207 208
	phys_addr_t start_addr = addr;
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
209 210
			pte_t old_pte = *pte;

211 212
			kvm_set_pte(pte, __pte(0));
			kvm_tlb_flush_vmid_ipa(kvm, addr);
213 214

			/* No need to invalidate the cache for device mappings */
215
			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
216 217 218
				kvm_flush_dcache_pte(old_pte);

			put_page(virt_to_page(pte));
219 220 221
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

222 223
	if (stage2_pte_table_empty(start_pte))
		clear_stage2_pmd_entry(kvm, pmd, start_addr);
224 225
}

226
static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
227
		       phys_addr_t addr, phys_addr_t end)
228
{
229 230
	phys_addr_t next, start_addr = addr;
	pmd_t *pmd, *start_pmd;
231

232
	start_pmd = pmd = stage2_pmd_offset(pud, addr);
233
	do {
234
		next = stage2_pmd_addr_end(addr, end);
235
		if (!pmd_none(*pmd)) {
236
			if (pmd_thp_or_huge(*pmd)) {
237 238
				pmd_t old_pmd = *pmd;

239 240
				pmd_clear(pmd);
				kvm_tlb_flush_vmid_ipa(kvm, addr);
241 242 243

				kvm_flush_dcache_pmd(old_pmd);

244 245
				put_page(virt_to_page(pmd));
			} else {
246
				unmap_stage2_ptes(kvm, pmd, addr, next);
247
			}
248
		}
249
	} while (pmd++, addr = next, addr != end);
250

251 252
	if (stage2_pmd_table_empty(start_pmd))
		clear_stage2_pud_entry(kvm, pud, start_addr);
253
}
254

255
static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
256 257 258 259
		       phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next, start_addr = addr;
	pud_t *pud, *start_pud;
260

261
	start_pud = pud = stage2_pud_offset(pgd, addr);
262
	do {
263 264 265
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
			if (stage2_pud_huge(*pud)) {
266 267
				pud_t old_pud = *pud;

268
				stage2_pud_clear(pud);
269
				kvm_tlb_flush_vmid_ipa(kvm, addr);
270
				kvm_flush_dcache_pud(old_pud);
271 272
				put_page(virt_to_page(pud));
			} else {
273
				unmap_stage2_pmds(kvm, pud, addr, next);
274 275
			}
		}
276
	} while (pud++, addr = next, addr != end);
277

278 279
	if (stage2_pud_table_empty(start_pud))
		clear_stage2_pgd_entry(kvm, pgd, start_addr);
280 281
}

282 283 284 285 286 287 288 289 290 291 292 293
/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 * @kvm:   The VM pointer
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
294 295 296 297 298
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

299
	assert_spin_locked(&kvm->mmu_lock);
300
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
301
	do {
302 303 304 305 306 307 308
		/*
		 * Make sure the page table is still active, as another thread
		 * could have possibly freed the page table, while we released
		 * the lock.
		 */
		if (!READ_ONCE(kvm->arch.pgd))
			break;
309 310 311
		next = stage2_pgd_addr_end(addr, end);
		if (!stage2_pgd_none(*pgd))
			unmap_stage2_puds(kvm, pgd, addr, next);
312 313 314 315 316 317
		/*
		 * If the range is too large, release the kvm->mmu_lock
		 * to prevent starvation and lockup detector warnings.
		 */
		if (next != end)
			cond_resched_lock(&kvm->mmu_lock);
318
	} while (pgd++, addr = next, addr != end);
319 320
}

321 322 323 324 325 326 327
static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
			      phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
328
		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
329
			kvm_flush_dcache_pte(*pte);
330 331 332 333 334 335 336 337 338
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
			      phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

339
	pmd = stage2_pmd_offset(pud, addr);
340
	do {
341
		next = stage2_pmd_addr_end(addr, end);
342
		if (!pmd_none(*pmd)) {
343
			if (pmd_thp_or_huge(*pmd))
344 345
				kvm_flush_dcache_pmd(*pmd);
			else
346 347 348 349 350 351 352 353 354 355 356
				stage2_flush_ptes(kvm, pmd, addr, next);
		}
	} while (pmd++, addr = next, addr != end);
}

static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
			      phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

357
	pud = stage2_pud_offset(pgd, addr);
358
	do {
359 360 361
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
			if (stage2_pud_huge(*pud))
362 363
				kvm_flush_dcache_pud(*pud);
			else
364 365 366 367 368 369 370 371 372 373 374 375 376
				stage2_flush_pmds(kvm, pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

static void stage2_flush_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
	phys_addr_t next;
	pgd_t *pgd;

377
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
378
	do {
379
		next = stage2_pgd_addr_end(addr, end);
380 381 382 383 384 385 386 387 388 389 390
		stage2_flush_puds(kvm, pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

/**
 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 * @kvm: The struct kvm pointer
 *
 * Go through the stage 2 page tables and invalidate any cache lines
 * backing memory already mapped to the VM.
 */
391
static void stage2_flush_vm(struct kvm *kvm)
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_flush_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
static void clear_hyp_pgd_entry(pgd_t *pgd)
{
	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
	pgd_clear(pgd);
	pud_free(NULL, pud_table);
	put_page(virt_to_page(pgd));
}

static void clear_hyp_pud_entry(pud_t *pud)
{
	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
	VM_BUG_ON(pud_huge(*pud));
	pud_clear(pud);
	pmd_free(NULL, pmd_table);
	put_page(virt_to_page(pud));
}

static void clear_hyp_pmd_entry(pmd_t *pmd)
{
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
	pmd_clear(pmd);
	pte_free_kernel(NULL, pte_table);
	put_page(virt_to_page(pmd));
}

static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			kvm_set_pte(pte, __pte(0));
			put_page(virt_to_page(pte));
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

	if (hyp_pte_table_empty(start_pte))
		clear_hyp_pmd_entry(pmd);
}

static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pmd_t *pmd, *start_pmd;

	start_pmd = pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		/* Hyp doesn't use huge pmds */
		if (!pmd_none(*pmd))
			unmap_hyp_ptes(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);

	if (hyp_pmd_table_empty(start_pmd))
		clear_hyp_pud_entry(pud);
}

static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pud_t *pud, *start_pud;

	start_pud = pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		/* Hyp doesn't use huge puds */
		if (!pud_none(*pud))
			unmap_hyp_pmds(pud, addr, next);
	} while (pud++, addr = next, addr != end);

	if (hyp_pud_table_empty(start_pud))
		clear_hyp_pgd_entry(pgd);
}

484 485 486 487 488 489 490
static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
{
	return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
}

static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
			      phys_addr_t start, u64 size)
491 492 493 494 495 496 497 498 499
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

	/*
	 * We don't unmap anything from HYP, except at the hyp tear down.
	 * Hence, we don't have to invalidate the TLBs here.
	 */
500
	pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
501 502 503 504 505 506 507
	do {
		next = pgd_addr_end(addr, end);
		if (!pgd_none(*pgd))
			unmap_hyp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

508 509 510 511 512 513 514 515 516 517
static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	__unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
}

static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	__unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
}

518
/**
519
 * free_hyp_pgds - free Hyp-mode page tables
520
 *
521 522
 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 * therefore contains either mappings in the kernel memory area (above
523
 * PAGE_OFFSET), or device mappings in the idmap range.
524
 *
525 526
 * boot_hyp_pgd should only map the idmap range, and is only used in
 * the extended idmap case.
527
 */
528
void free_hyp_pgds(void)
529
{
530 531
	pgd_t *id_pgd;

532
	mutex_lock(&kvm_hyp_pgd_mutex);
533

534 535 536 537 538 539 540 541 542 543
	id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;

	if (id_pgd) {
		/* In case we never called hyp_mmu_init() */
		if (!io_map_base)
			io_map_base = hyp_idmap_start;
		unmap_hyp_idmap_range(id_pgd, io_map_base,
				      hyp_idmap_start + PAGE_SIZE - io_map_base);
	}

544 545 546 547 548
	if (boot_hyp_pgd) {
		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
		boot_hyp_pgd = NULL;
	}

549
	if (hyp_pgd) {
550 551
		unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
				(uintptr_t)high_memory - PAGE_OFFSET);
552

553
		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
554
		hyp_pgd = NULL;
555
	}
556 557 558 559 560
	if (merged_hyp_pgd) {
		clear_page(merged_hyp_pgd);
		free_page((unsigned long)merged_hyp_pgd);
		merged_hyp_pgd = NULL;
	}
561

562 563 564 565
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
566 567
				    unsigned long end, unsigned long pfn,
				    pgprot_t prot)
568 569 570 571
{
	pte_t *pte;
	unsigned long addr;

572 573
	addr = start;
	do {
574 575
		pte = pte_offset_kernel(pmd, addr);
		kvm_set_pte(pte, pfn_pte(pfn, prot));
576
		get_page(virt_to_page(pte));
577
		kvm_flush_dcache_to_poc(pte, sizeof(*pte));
578
		pfn++;
579
	} while (addr += PAGE_SIZE, addr != end);
580 581 582
}

static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
583 584
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
585 586 587 588 589
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

590 591
	addr = start;
	do {
592
		pmd = pmd_offset(pud, addr);
593 594 595 596

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
597
			pte = pte_alloc_one_kernel(NULL, addr);
598 599 600 601 602
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
			pmd_populate_kernel(NULL, pmd, pte);
603
			get_page(virt_to_page(pmd));
604
			kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
605 606 607 608
		}

		next = pmd_addr_end(addr, end);

609 610
		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
611
	} while (addr = next, addr != end);
612 613 614 615

	return 0;
}

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
{
	pud_t *pud;
	pmd_t *pmd;
	unsigned long addr, next;
	int ret;

	addr = start;
	do {
		pud = pud_offset(pgd, addr);

		if (pud_none_or_clear_bad(pud)) {
			pmd = pmd_alloc_one(NULL, addr);
			if (!pmd) {
				kvm_err("Cannot allocate Hyp pmd\n");
				return -ENOMEM;
			}
			pud_populate(NULL, pud, pmd);
			get_page(virt_to_page(pud));
			kvm_flush_dcache_to_poc(pud, sizeof(*pud));
		}

		next = pud_addr_end(addr, end);
		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
		if (ret)
			return ret;
		pfn += (next - addr) >> PAGE_SHIFT;
	} while (addr = next, addr != end);

	return 0;
}

650
static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
651 652
				 unsigned long start, unsigned long end,
				 unsigned long pfn, pgprot_t prot)
653 654 655 656 657 658 659
{
	pgd_t *pgd;
	pud_t *pud;
	unsigned long addr, next;
	int err = 0;

	mutex_lock(&kvm_hyp_pgd_mutex);
660 661 662
	addr = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
	do {
663
		pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
664

665 666 667 668
		if (pgd_none(*pgd)) {
			pud = pud_alloc_one(NULL, addr);
			if (!pud) {
				kvm_err("Cannot allocate Hyp pud\n");
669 670 671
				err = -ENOMEM;
				goto out;
			}
672 673 674
			pgd_populate(NULL, pgd, pud);
			get_page(virt_to_page(pgd));
			kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
675 676 677
		}

		next = pgd_addr_end(addr, end);
678
		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
679 680
		if (err)
			goto out;
681
		pfn += (next - addr) >> PAGE_SHIFT;
682
	} while (addr = next, addr != end);
683 684 685 686 687
out:
	mutex_unlock(&kvm_hyp_pgd_mutex);
	return err;
}

688 689 690 691 692 693 694 695 696 697 698
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
	if (!is_vmalloc_addr(kaddr)) {
		BUG_ON(!virt_addr_valid(kaddr));
		return __pa(kaddr);
	} else {
		return page_to_phys(vmalloc_to_page(kaddr)) +
		       offset_in_page(kaddr);
	}
}

699
/**
700
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
701 702
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
703
 * @prot:	The protection to be applied to this range
704
 *
705 706 707
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
708
 */
709
int create_hyp_mappings(void *from, void *to, pgprot_t prot)
710
{
711 712
	phys_addr_t phys_addr;
	unsigned long virt_addr;
M
Marc Zyngier 已提交
713 714
	unsigned long start = kern_hyp_va((unsigned long)from);
	unsigned long end = kern_hyp_va((unsigned long)to);
715

716 717 718
	if (is_kernel_in_hyp_mode())
		return 0;

719 720
	start = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
721

722 723
	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
		int err;
724

725
		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
726 727
		err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
					    virt_addr, virt_addr + PAGE_SIZE,
728
					    __phys_to_pfn(phys_addr),
729
					    prot);
730 731 732 733 734
		if (err)
			return err;
	}

	return 0;
735 736
}

737 738
static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
					unsigned long *haddr, pgprot_t prot)
739
{
740 741 742
	pgd_t *pgd = hyp_pgd;
	unsigned long base;
	int ret = 0;
743

744
	mutex_lock(&kvm_hyp_pgd_mutex);
745

746 747 748 749 750 751 752 753 754 755
	/*
	 * This assumes that we we have enough space below the idmap
	 * page to allocate our VAs. If not, the check below will
	 * kick. A potential alternative would be to detect that
	 * overflow and switch to an allocation above the idmap.
	 *
	 * The allocated size is always a multiple of PAGE_SIZE.
	 */
	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
	base = io_map_base - size;
756

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
	/*
	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
	 * allocating the new area, as it would indicate we've
	 * overflowed the idmap/IO address range.
	 */
	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
		ret = -ENOMEM;
	else
		io_map_base = base;

	mutex_unlock(&kvm_hyp_pgd_mutex);

	if (ret)
		goto out;

	if (__kvm_cpu_uses_extended_idmap())
		pgd = boot_hyp_pgd;

	ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
				    base, base + size,
777
				    __phys_to_pfn(phys_addr), prot);
778 779 780
	if (ret)
		goto out;

781
	*haddr = base + offset_in_page(phys_addr);
782 783

out:
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
	return ret;
}

/**
 * create_hyp_io_mappings - Map IO into both kernel and HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @kaddr:	Kernel VA for this mapping
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
			   void __iomem **kaddr,
			   void __iomem **haddr)
{
	unsigned long addr;
	int ret;

	*kaddr = ioremap(phys_addr, size);
	if (!*kaddr)
		return -ENOMEM;

	if (is_kernel_in_hyp_mode()) {
		*haddr = *kaddr;
		return 0;
	}

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_DEVICE);
812 813 814
	if (ret) {
		iounmap(*kaddr);
		*kaddr = NULL;
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
		*haddr = NULL;
		return ret;
	}

	*haddr = (void __iomem *)addr;
	return 0;
}

/**
 * create_hyp_exec_mappings - Map an executable range into HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
			     void **haddr)
{
	unsigned long addr;
	int ret;

	BUG_ON(is_kernel_in_hyp_mode());

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_EXEC);
	if (ret) {
		*haddr = NULL;
841 842 843
		return ret;
	}

844
	*haddr = (void *)addr;
845
	return 0;
846 847
}

848 849 850 851
/**
 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 * @kvm:	The KVM struct pointer for the VM.
 *
852 853 854
 * Allocates only the stage-2 HW PGD level table(s) (can support either full
 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
 * allocated pages.
855 856 857 858 859 860 861 862 863 864 865 866 867
 *
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
	pgd_t *pgd;

	if (kvm->arch.pgd != NULL) {
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

868 869 870
	/* Allocate the HW PGD, making sure that each page gets its own refcount */
	pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
	if (!pgd)
871 872
		return -ENOMEM;

873 874 875 876
	kvm->arch.pgd = pgd;
	return 0;
}

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
static void stage2_unmap_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	hva_t hva = memslot->userspace_addr;
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = PAGE_SIZE * memslot->npages;
	hva_t reg_end = hva + size;

	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we should
	 * unmap any of them.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (!(vma->vm_flags & VM_PFNMAP)) {
			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
		}
		hva = vm_end;
	} while (hva < reg_end);
}

/**
 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 * @kvm: The struct kvm pointer
 *
 * Go through the memregions and unmap any reguler RAM
 * backing memory already mapped to the VM.
 */
void stage2_unmap_vm(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
932
	down_read(&current->mm->mmap_sem);
933 934 935 936 937 938 939
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_unmap_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
940
	up_read(&current->mm->mmap_sem);
941 942 943
	srcu_read_unlock(&kvm->srcu, idx);
}

944 945 946 947 948 949 950 951 952 953
/**
 * kvm_free_stage2_pgd - free all stage-2 tables
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 * and setting the struct pointer to NULL.
 */
void kvm_free_stage2_pgd(struct kvm *kvm)
{
954
	void *pgd = NULL;
955

956
	spin_lock(&kvm->mmu_lock);
957 958
	if (kvm->arch.pgd) {
		unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
959
		pgd = READ_ONCE(kvm->arch.pgd);
960 961
		kvm->arch.pgd = NULL;
	}
962 963
	spin_unlock(&kvm->mmu_lock);

964
	/* Free the HW pgd, one page at a time */
965 966
	if (pgd)
		free_pages_exact(pgd, S2_PGD_SIZE);
967 968
}

969
static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
970
			     phys_addr_t addr)
971 972 973 974
{
	pgd_t *pgd;
	pud_t *pud;

975 976
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
	if (WARN_ON(stage2_pgd_none(*pgd))) {
977 978 979
		if (!cache)
			return NULL;
		pud = mmu_memory_cache_alloc(cache);
980
		stage2_pgd_populate(pgd, pud);
981 982 983
		get_page(virt_to_page(pgd));
	}

984
	return stage2_pud_offset(pgd, addr);
985 986 987 988 989 990 991 992 993
}

static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			     phys_addr_t addr)
{
	pud_t *pud;
	pmd_t *pmd;

	pud = stage2_get_pud(kvm, cache, addr);
994 995 996
	if (!pud)
		return NULL;

997
	if (stage2_pud_none(*pud)) {
998
		if (!cache)
999
			return NULL;
1000
		pmd = mmu_memory_cache_alloc(cache);
1001
		stage2_pud_populate(pud, pmd);
1002
		get_page(virt_to_page(pud));
1003 1004
	}

1005
	return stage2_pmd_offset(pud, addr);
1006 1007 1008 1009 1010 1011 1012 1013 1014
}

static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
{
	pmd_t *pmd, old_pmd;

	pmd = stage2_get_pmd(kvm, cache, addr);
	VM_BUG_ON(!pmd);
1015

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	/*
	 * Mapping in huge pages should only happen through a fault.  If a
	 * page is merged into a transparent huge page, the individual
	 * subpages of that huge page should be unmapped through MMU
	 * notifiers before we get here.
	 *
	 * Merging of CompoundPages is not supported; they should become
	 * splitting first, unmapped, merged, and mapped back in on-demand.
	 */
	VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));

	old_pmd = *pmd;
1028 1029
	if (pmd_present(old_pmd)) {
		pmd_clear(pmd);
1030
		kvm_tlb_flush_vmid_ipa(kvm, addr);
1031
	} else {
1032
		get_page(virt_to_page(pmd));
1033 1034 1035
	}

	kvm_set_pmd(pmd, *new_pmd);
1036 1037 1038
	return 0;
}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
{
	pmd_t *pmdp;
	pte_t *ptep;

	pmdp = stage2_get_pmd(kvm, NULL, addr);
	if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
		return false;

	if (pmd_thp_or_huge(*pmdp))
		return kvm_s2pmd_exec(pmdp);

	ptep = pte_offset_kernel(pmdp, addr);
	if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
		return false;

	return kvm_s2pte_exec(ptep);
}

1058
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1059 1060
			  phys_addr_t addr, const pte_t *new_pte,
			  unsigned long flags)
1061 1062 1063
{
	pmd_t *pmd;
	pte_t *pte, old_pte;
1064 1065 1066 1067
	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;

	VM_BUG_ON(logging_active && !cache);
1068

1069
	/* Create stage-2 page table mapping - Levels 0 and 1 */
1070 1071 1072 1073 1074 1075 1076 1077 1078
	pmd = stage2_get_pmd(kvm, cache, addr);
	if (!pmd) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

1079 1080 1081 1082 1083 1084 1085
	/*
	 * While dirty page logging - dissolve huge PMD, then continue on to
	 * allocate page.
	 */
	if (logging_active)
		stage2_dissolve_pmd(kvm, addr, pmd);

1086
	/* Create stage-2 page mappings - Level 2 */
1087 1088 1089 1090 1091 1092
	if (pmd_none(*pmd)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pte = mmu_memory_cache_alloc(cache);
		pmd_populate_kernel(NULL, pmd, pte);
		get_page(virt_to_page(pmd));
1093 1094 1095
	}

	pte = pte_offset_kernel(pmd, addr);
1096 1097 1098 1099 1100 1101

	if (iomap && pte_present(*pte))
		return -EFAULT;

	/* Create 2nd stage page table mapping - Level 3 */
	old_pte = *pte;
1102 1103
	if (pte_present(old_pte)) {
		kvm_set_pte(pte, __pte(0));
1104
		kvm_tlb_flush_vmid_ipa(kvm, addr);
1105
	} else {
1106
		get_page(virt_to_page(pte));
1107
	}
1108

1109
	kvm_set_pte(pte, *new_pte);
1110 1111 1112
	return 0;
}

1113 1114 1115 1116 1117 1118 1119
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	if (pte_young(*pte)) {
		*pte = pte_mkold(*pte);
		return 1;
	}
1120 1121
	return 0;
}
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
#else
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	return __ptep_test_and_clear_young(pte);
}
#endif

static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
{
	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
}
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1143
			  phys_addr_t pa, unsigned long size, bool writable)
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
{
	phys_addr_t addr, end;
	int ret = 0;
	unsigned long pfn;
	struct kvm_mmu_memory_cache cache = { 0, };

	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
	pfn = __phys_to_pfn(pa);

	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1154
		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1155

1156
		if (writable)
1157
			pte = kvm_s2pte_mkwrite(pte);
1158

1159 1160
		ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
						KVM_NR_MEM_OBJS);
1161 1162 1163
		if (ret)
			goto out;
		spin_lock(&kvm->mmu_lock);
1164 1165
		ret = stage2_set_pte(kvm, &cache, addr, &pte,
						KVM_S2PTE_FLAG_IS_IOMAP);
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
		spin_unlock(&kvm->mmu_lock);
		if (ret)
			goto out;

		pfn++;
	}

out:
	mmu_free_memory_cache(&cache);
	return ret;
}

D
Dan Williams 已提交
1178
static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1179
{
D
Dan Williams 已提交
1180
	kvm_pfn_t pfn = *pfnp;
1181 1182
	gfn_t gfn = *ipap >> PAGE_SHIFT;

1183
	if (PageTransCompoundMap(pfn_to_page(pfn))) {
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
		unsigned long mask;
		/*
		 * The address we faulted on is backed by a transparent huge
		 * page.  However, because we map the compound huge page and
		 * not the individual tail page, we need to transfer the
		 * refcount to the head page.  We have to be careful that the
		 * THP doesn't start to split while we are adjusting the
		 * refcounts.
		 *
		 * We are sure this doesn't happen, because mmu_notifier_retry
		 * was successful and we are holding the mmu_lock, so if this
		 * THP is trying to split, it will be blocked in the mmu
		 * notifier before touching any of the pages, specifically
		 * before being able to call __split_huge_page_refcount().
		 *
		 * We can therefore safely transfer the refcount from PG_tail
		 * to PG_head and switch the pfn from a tail page to the head
		 * page accordingly.
		 */
		mask = PTRS_PER_PMD - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			*ipap &= PMD_MASK;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
			kvm_get_pfn(pfn);
			*pfnp = pfn;
		}

		return true;
	}

	return false;
}

1219 1220 1221 1222 1223 1224 1225 1226
static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
{
	if (kvm_vcpu_trap_is_iabt(vcpu))
		return false;

	return kvm_vcpu_dabt_iswrite(vcpu);
}

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
/**
 * stage2_wp_ptes - write protect PMD range
 * @pmd:	pointer to pmd entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			if (!kvm_s2pte_readonly(pte))
				kvm_set_s2pte_readonly(pte);
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

/**
 * stage2_wp_pmds - write protect PUD range
 * @pud:	pointer to pud entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

1257
	pmd = stage2_pmd_offset(pud, addr);
1258 1259

	do {
1260
		next = stage2_pmd_addr_end(addr, end);
1261
		if (!pmd_none(*pmd)) {
1262
			if (pmd_thp_or_huge(*pmd)) {
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
				if (!kvm_s2pmd_readonly(pmd))
					kvm_set_s2pmd_readonly(pmd);
			} else {
				stage2_wp_ptes(pmd, addr, next);
			}
		}
	} while (pmd++, addr = next, addr != end);
}

/**
  * stage2_wp_puds - write protect PGD range
  * @pgd:	pointer to pgd entry
  * @addr:	range start address
  * @end:	range end address
  *
  * Process PUD entries, for a huge PUD we cause a panic.
  */
static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

1285
	pud = stage2_pud_offset(pgd, addr);
1286
	do {
1287 1288
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
1289
			/* TODO:PUD not supported, revisit later if supported */
1290
			BUG_ON(stage2_pud_huge(*pud));
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
			stage2_wp_pmds(pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

/**
 * stage2_wp_range() - write protect stage2 memory region range
 * @kvm:	The KVM pointer
 * @addr:	Start address of range
 * @end:	End address of range
 */
static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
	pgd_t *pgd;
	phys_addr_t next;

1307
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1308 1309 1310 1311
	do {
		/*
		 * Release kvm_mmu_lock periodically if the memory region is
		 * large. Otherwise, we may see kernel panics with
1312 1313
		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1314 1315 1316
		 * will also starve other vCPUs. We have to also make sure
		 * that the page tables are not freed while we released
		 * the lock.
1317
		 */
1318 1319 1320
		cond_resched_lock(&kvm->mmu_lock);
		if (!READ_ONCE(kvm->arch.pgd))
			break;
1321 1322
		next = stage2_pgd_addr_end(addr, end);
		if (stage2_pgd_present(*pgd))
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
			stage2_wp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

/**
 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 * @kvm:	The KVM pointer
 * @slot:	The memory slot to write protect
 *
 * Called to start logging dirty pages after memory region
 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
 * all present PMD and PTEs are write protected in the memory region.
 * Afterwards read of dirty page log can be called.
 *
 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 * serializing operations for VM memory regions.
 */
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
{
1342 1343
	struct kvm_memslots *slots = kvm_memslots(kvm);
	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1344 1345 1346 1347 1348 1349 1350 1351
	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	stage2_wp_range(kvm, start, end);
	spin_unlock(&kvm->mmu_lock);
	kvm_flush_remote_tlbs(kvm);
}
1352 1353

/**
1354
 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1355 1356 1357 1358 1359 1360 1361 1362 1363
 * @kvm:	The KVM pointer
 * @slot:	The memory slot associated with mask
 * @gfn_offset:	The gfn offset in memory slot
 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 *		slot to be write protected
 *
 * Walks bits set in mask write protects the associated pte's. Caller must
 * acquire kvm_mmu_lock.
 */
1364
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1365 1366 1367 1368 1369 1370 1371 1372 1373
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;

	stage2_wp_range(kvm, start, end);
}
1374

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
/*
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * dirty pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

1389
static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1390
{
1391
	__clean_dcache_guest_page(pfn, size);
1392 1393
}

1394
static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1395
{
1396
	__invalidate_icache_guest_page(pfn, size);
1397 1398
}

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
static void kvm_send_hwpoison_signal(unsigned long address,
				     struct vm_area_struct *vma)
{
	siginfo_t info;

	info.si_signo   = SIGBUS;
	info.si_errno   = 0;
	info.si_code    = BUS_MCEERR_AR;
	info.si_addr    = (void __user *)address;

	if (is_vm_hugetlb_page(vma))
		info.si_addr_lsb = huge_page_shift(hstate_vma(vma));
	else
		info.si_addr_lsb = PAGE_SHIFT;

	send_sig_info(SIGBUS, &info, current);
}

1417
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1418
			  struct kvm_memory_slot *memslot, unsigned long hva,
1419 1420 1421
			  unsigned long fault_status)
{
	int ret;
1422
	bool write_fault, exec_fault, writable, hugetlb = false, force_pte = false;
1423
	unsigned long mmu_seq;
1424 1425
	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
	struct kvm *kvm = vcpu->kvm;
1426
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1427
	struct vm_area_struct *vma;
D
Dan Williams 已提交
1428
	kvm_pfn_t pfn;
1429
	pgprot_t mem_type = PAGE_S2;
1430 1431
	bool logging_active = memslot_is_logging(memslot);
	unsigned long flags = 0;
1432

1433
	write_fault = kvm_is_write_fault(vcpu);
1434 1435 1436 1437
	exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
	VM_BUG_ON(write_fault && exec_fault);

	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1438 1439 1440 1441
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

1442 1443 1444
	/* Let's check if we will get back a huge page backed by hugetlbfs */
	down_read(&current->mm->mmap_sem);
	vma = find_vma_intersection(current->mm, hva, hva + 1);
1445 1446 1447 1448 1449 1450
	if (unlikely(!vma)) {
		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
		up_read(&current->mm->mmap_sem);
		return -EFAULT;
	}

1451
	if (vma_kernel_pagesize(vma) == PMD_SIZE && !logging_active) {
1452 1453
		hugetlb = true;
		gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1454 1455
	} else {
		/*
1456 1457 1458 1459 1460 1461 1462
		 * Pages belonging to memslots that don't have the same
		 * alignment for userspace and IPA cannot be mapped using
		 * block descriptors even if the pages belong to a THP for
		 * the process, because the stage-2 block descriptor will
		 * cover more than a single THP and we loose atomicity for
		 * unmapping, updates, and splits of the THP or other pages
		 * in the stage-2 block range.
1463
		 */
1464 1465
		if ((memslot->userspace_addr & ~PMD_MASK) !=
		    ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1466
			force_pte = true;
1467 1468 1469
	}
	up_read(&current->mm->mmap_sem);

1470
	/* We need minimum second+third level pages */
1471 1472
	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
				     KVM_NR_MEM_OBJS);
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	if (ret)
		return ret;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

1488
	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1489 1490 1491 1492
	if (pfn == KVM_PFN_ERR_HWPOISON) {
		kvm_send_hwpoison_signal(hva, vma);
		return 0;
	}
1493
	if (is_error_noslot_pfn(pfn))
1494 1495
		return -EFAULT;

1496
	if (kvm_is_device_pfn(pfn)) {
1497
		mem_type = PAGE_S2_DEVICE;
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
	} else if (logging_active) {
		/*
		 * Faults on pages in a memslot with logging enabled
		 * should not be mapped with huge pages (it introduces churn
		 * and performance degradation), so force a pte mapping.
		 */
		force_pte = true;
		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;

		/*
		 * Only actually map the page as writable if this was a write
		 * fault.
		 */
		if (!write_fault)
			writable = false;
	}
1515

1516 1517
	spin_lock(&kvm->mmu_lock);
	if (mmu_notifier_retry(kvm, mmu_seq))
1518
		goto out_unlock;
1519

1520 1521
	if (!hugetlb && !force_pte)
		hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1522 1523

	if (hugetlb) {
1524
		pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1525 1526
		new_pmd = pmd_mkhuge(new_pmd);
		if (writable) {
1527
			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1528 1529
			kvm_set_pfn_dirty(pfn);
		}
1530 1531

		if (fault_status != FSC_PERM)
1532
			clean_dcache_guest_page(pfn, PMD_SIZE);
1533 1534 1535

		if (exec_fault) {
			new_pmd = kvm_s2pmd_mkexec(new_pmd);
1536
			invalidate_icache_guest_page(pfn, PMD_SIZE);
1537 1538 1539 1540
		} else if (fault_status == FSC_PERM) {
			/* Preserve execute if XN was already cleared */
			if (stage2_is_exec(kvm, fault_ipa))
				new_pmd = kvm_s2pmd_mkexec(new_pmd);
1541
		}
1542

1543 1544
		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
	} else {
1545
		pte_t new_pte = pfn_pte(pfn, mem_type);
1546

1547
		if (writable) {
1548
			new_pte = kvm_s2pte_mkwrite(new_pte);
1549
			kvm_set_pfn_dirty(pfn);
1550
			mark_page_dirty(kvm, gfn);
1551
		}
1552 1553

		if (fault_status != FSC_PERM)
1554
			clean_dcache_guest_page(pfn, PAGE_SIZE);
1555 1556 1557

		if (exec_fault) {
			new_pte = kvm_s2pte_mkexec(new_pte);
1558
			invalidate_icache_guest_page(pfn, PAGE_SIZE);
1559 1560 1561 1562
		} else if (fault_status == FSC_PERM) {
			/* Preserve execute if XN was already cleared */
			if (stage2_is_exec(kvm, fault_ipa))
				new_pte = kvm_s2pte_mkexec(new_pte);
1563
		}
1564

1565
		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1566
	}
1567

1568
out_unlock:
1569
	spin_unlock(&kvm->mmu_lock);
1570
	kvm_set_pfn_accessed(pfn);
1571
	kvm_release_pfn_clean(pfn);
1572
	return ret;
1573 1574
}

1575 1576 1577 1578
/*
 * Resolve the access fault by making the page young again.
 * Note that because the faulting entry is guaranteed not to be
 * cached in the TLB, we don't need to invalidate anything.
1579 1580
 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1581 1582 1583 1584 1585
 */
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
{
	pmd_t *pmd;
	pte_t *pte;
D
Dan Williams 已提交
1586
	kvm_pfn_t pfn;
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	bool pfn_valid = false;

	trace_kvm_access_fault(fault_ipa);

	spin_lock(&vcpu->kvm->mmu_lock);

	pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		goto out;

1597
	if (pmd_thp_or_huge(*pmd)) {	/* THP, HugeTLB */
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
		*pmd = pmd_mkyoung(*pmd);
		pfn = pmd_pfn(*pmd);
		pfn_valid = true;
		goto out;
	}

	pte = pte_offset_kernel(pmd, fault_ipa);
	if (pte_none(*pte))		/* Nothing there either */
		goto out;

	*pte = pte_mkyoung(*pte);	/* Just a page... */
	pfn = pte_pfn(*pte);
	pfn_valid = true;
out:
	spin_unlock(&vcpu->kvm->mmu_lock);
	if (pfn_valid)
		kvm_set_pfn_accessed(pfn);
}

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 * @run:	the kvm_run structure
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
1629 1630
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
1631 1632 1633
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
1634 1635
	unsigned long hva;
	bool is_iabt, write_fault, writable;
1636 1637 1638
	gfn_t gfn;
	int ret, idx;

1639 1640 1641
	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);

	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1642
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1643

1644 1645 1646 1647 1648 1649
	/* Synchronous External Abort? */
	if (kvm_vcpu_dabt_isextabt(vcpu)) {
		/*
		 * For RAS the host kernel may handle this abort.
		 * There is no need to pass the error into the guest.
		 */
1650 1651 1652
		if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
			return 1;

1653 1654 1655 1656
		if (unlikely(!is_iabt)) {
			kvm_inject_vabt(vcpu);
			return 1;
		}
1657 1658
	}

1659 1660
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1661 1662

	/* Check the stage-2 fault is trans. fault or write fault */
1663 1664
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
	    fault_status != FSC_ACCESS) {
1665 1666 1667 1668
		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu),
			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1669 1670 1671 1672 1673 1674
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
1675 1676
	memslot = gfn_to_memslot(vcpu->kvm, gfn);
	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1677
	write_fault = kvm_is_write_fault(vcpu);
1678
	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1679 1680
		if (is_iabt) {
			/* Prefetch Abort on I/O address */
1681
			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1682 1683 1684 1685
			ret = 1;
			goto out_unlock;
		}

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
		/*
		 * Check for a cache maintenance operation. Since we
		 * ended-up here, we know it is outside of any memory
		 * slot. But we can't find out if that is for a device,
		 * or if the guest is just being stupid. The only thing
		 * we know for sure is that this range cannot be cached.
		 *
		 * So let's assume that the guest is just being
		 * cautious, and skip the instruction.
		 */
		if (kvm_vcpu_dabt_is_cm(vcpu)) {
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
			ret = 1;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
1702 1703 1704 1705 1706 1707 1708
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
C
Christoffer Dall 已提交
1709
		ret = io_mem_abort(vcpu, run, fault_ipa);
1710 1711 1712
		goto out_unlock;
	}

1713 1714 1715
	/* Userspace should not be able to register out-of-bounds IPAs */
	VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);

1716 1717 1718 1719 1720 1721
	if (fault_status == FSC_ACCESS) {
		handle_access_fault(vcpu, fault_ipa);
		ret = 1;
		goto out_unlock;
	}

1722
	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1723 1724 1725 1726 1727
	if (ret == 0)
		ret = 1;
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
1728 1729
}

1730 1731 1732 1733
static int handle_hva_to_gpa(struct kvm *kvm,
			     unsigned long start,
			     unsigned long end,
			     int (*handler)(struct kvm *kvm,
1734 1735
					    gpa_t gpa, u64 size,
					    void *data),
1736
			     void *data)
1737 1738 1739
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
1740
	int ret = 0;
1741 1742 1743 1744 1745 1746

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
1747
		gfn_t gpa;
1748 1749 1750 1751 1752 1753 1754

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

1755 1756
		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1757
	}
1758 1759

	return ret;
1760 1761
}

1762
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1763
{
1764
	unmap_stage2_range(kvm, gpa, size);
1765
	return 0;
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
	unsigned long end = hva + PAGE_SIZE;

	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva(hva);
	handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end)
{
	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva_range(start, end);
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

1791
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1792 1793 1794
{
	pte_t *pte = (pte_t *)data;

1795
	WARN_ON(size != PAGE_SIZE);
1796 1797 1798 1799 1800 1801 1802 1803
	/*
	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
	 * flag clear because MMU notifiers will have unmapped a huge PMD before
	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
	 * therefore stage2_set_pte() never needs to clear out a huge PMD
	 * through this calling path.
	 */
	stage2_set_pte(kvm, NULL, gpa, pte, 0);
1804
	return 0;
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
}


void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
	unsigned long end = hva + PAGE_SIZE;
	pte_t stage2_pte;

	if (!kvm->arch.pgd)
		return;

	trace_kvm_set_spte_hva(hva);
	stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
}

1821
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1822 1823 1824 1825
{
	pmd_t *pmd;
	pte_t *pte;

1826
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1827 1828 1829 1830
	pmd = stage2_get_pmd(kvm, NULL, gpa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		return 0;

1831 1832
	if (pmd_thp_or_huge(*pmd))	/* THP, HugeTLB */
		return stage2_pmdp_test_and_clear_young(pmd);
1833 1834 1835 1836 1837

	pte = pte_offset_kernel(pmd, gpa);
	if (pte_none(*pte))
		return 0;

1838
	return stage2_ptep_test_and_clear_young(pte);
1839 1840
}

1841
static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1842 1843 1844 1845
{
	pmd_t *pmd;
	pte_t *pte;

1846
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1847 1848 1849 1850
	pmd = stage2_get_pmd(kvm, NULL, gpa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		return 0;

1851
	if (pmd_thp_or_huge(*pmd))		/* THP, HugeTLB */
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
		return pmd_young(*pmd);

	pte = pte_offset_kernel(pmd, gpa);
	if (!pte_none(*pte))		/* Just a page... */
		return pte_young(*pte);

	return 0;
}

int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
1863 1864
	if (!kvm->arch.pgd)
		return 0;
1865 1866 1867 1868 1869 1870
	trace_kvm_age_hva(start, end);
	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
}

int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
1871 1872
	if (!kvm->arch.pgd)
		return 0;
1873 1874 1875 1876
	trace_kvm_test_age_hva(hva);
	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
}

1877 1878 1879 1880 1881
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

1882 1883
phys_addr_t kvm_mmu_get_httbr(void)
{
1884 1885 1886 1887
	if (__kvm_cpu_uses_extended_idmap())
		return virt_to_phys(merged_hyp_pgd);
	else
		return virt_to_phys(hyp_pgd);
1888 1889
}

1890 1891 1892 1893 1894
phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

1895 1896 1897 1898 1899
static int kvm_map_idmap_text(pgd_t *pgd)
{
	int err;

	/* Create the idmap in the boot page tables */
1900
	err = 	__create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
				      hyp_idmap_start, hyp_idmap_end,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP_EXEC);
	if (err)
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);

	return err;
}

1911 1912
int kvm_mmu_init(void)
{
1913 1914
	int err;

1915
	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1916
	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1917
	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1918
	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1919
	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1920

1921 1922 1923 1924 1925
	/*
	 * We rely on the linker script to ensure at build time that the HYP
	 * init code does not cross a page boundary.
	 */
	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1926

1927 1928 1929 1930
	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
	kvm_debug("HYP VA range: %lx:%lx\n",
		  kern_hyp_va(PAGE_OFFSET),
		  kern_hyp_va((unsigned long)high_memory - 1));
1931

M
Marc Zyngier 已提交
1932
	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1933
	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1934
	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1935 1936 1937 1938 1939 1940 1941 1942 1943
		/*
		 * The idmap page is intersecting with the VA space,
		 * it is not safe to continue further.
		 */
		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
		err = -EINVAL;
		goto out;
	}

1944
	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1945
	if (!hyp_pgd) {
1946
		kvm_err("Hyp mode PGD not allocated\n");
1947 1948 1949 1950
		err = -ENOMEM;
		goto out;
	}

1951 1952 1953 1954 1955 1956 1957 1958
	if (__kvm_cpu_uses_extended_idmap()) {
		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
							 hyp_pgd_order);
		if (!boot_hyp_pgd) {
			kvm_err("Hyp boot PGD not allocated\n");
			err = -ENOMEM;
			goto out;
		}
1959

1960 1961 1962
		err = kvm_map_idmap_text(boot_hyp_pgd);
		if (err)
			goto out;
1963

1964 1965 1966 1967 1968 1969 1970
		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		if (!merged_hyp_pgd) {
			kvm_err("Failed to allocate extra HYP pgd\n");
			goto out;
		}
		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
				    hyp_idmap_start);
1971 1972 1973 1974
	} else {
		err = kvm_map_idmap_text(hyp_pgd);
		if (err)
			goto out;
1975 1976
	}

1977
	io_map_base = hyp_idmap_start;
1978
	return 0;
1979
out:
1980
	free_hyp_pgds();
1981
	return err;
1982
}
1983 1984

void kvm_arch_commit_memory_region(struct kvm *kvm,
1985
				   const struct kvm_userspace_memory_region *mem,
1986
				   const struct kvm_memory_slot *old,
1987
				   const struct kvm_memory_slot *new,
1988 1989
				   enum kvm_mr_change change)
{
1990 1991 1992 1993 1994 1995 1996
	/*
	 * At this point memslot has been committed and there is an
	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
	 * memory slot is write protected.
	 */
	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
		kvm_mmu_wp_memory_region(kvm, mem->slot);
1997 1998 1999 2000
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2001
				   const struct kvm_userspace_memory_region *mem,
2002 2003
				   enum kvm_mr_change change)
{
2004 2005 2006 2007 2008
	hva_t hva = mem->userspace_addr;
	hva_t reg_end = hva + mem->memory_size;
	bool writable = !(mem->flags & KVM_MEM_READONLY);
	int ret = 0;

2009 2010
	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
			change != KVM_MR_FLAGS_ONLY)
2011 2012
		return 0;

2013 2014 2015 2016 2017 2018 2019 2020
	/*
	 * Prevent userspace from creating a memory region outside of the IPA
	 * space addressable by the KVM guest IPA space.
	 */
	if (memslot->base_gfn + memslot->npages >=
	    (KVM_PHYS_SIZE >> PAGE_SHIFT))
		return -EFAULT;

2021
	down_read(&current->mm->mmap_sem);
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we can map
	 * any of them right now.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Mapping a read-only VMA is only allowed if the
		 * memory region is configured as read-only.
		 */
		if (writable && !(vma->vm_flags & VM_WRITE)) {
			ret = -EPERM;
			break;
		}

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (vma->vm_flags & VM_PFNMAP) {
			gpa_t gpa = mem->guest_phys_addr +
				    (vm_start - mem->userspace_addr);
2059 2060 2061 2062
			phys_addr_t pa;

			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
			pa += vm_start - vma->vm_start;
2063

2064
			/* IO region dirty page logging not allowed */
2065 2066 2067 2068
			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
				ret = -EINVAL;
				goto out;
			}
2069

2070 2071 2072 2073 2074 2075 2076 2077 2078
			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
						    vm_end - vm_start,
						    writable);
			if (ret)
				break;
		}
		hva = vm_end;
	} while (hva < reg_end);

2079
	if (change == KVM_MR_FLAGS_ONLY)
2080
		goto out;
2081

2082 2083
	spin_lock(&kvm->mmu_lock);
	if (ret)
2084
		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2085 2086 2087
	else
		stage2_flush_memslot(kvm, memslot);
	spin_unlock(&kvm->mmu_lock);
2088 2089
out:
	up_read(&current->mm->mmap_sem);
2090
	return ret;
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
}

void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
			   struct kvm_memory_slot *dont)
{
}

int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
{
	return 0;
}

2104
void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
2105 2106 2107 2108 2109
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
2110
	kvm_free_stage2_pgd(kvm);
2111 2112 2113 2114 2115
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
2116 2117 2118 2119 2120 2121
	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = slot->npages << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	unmap_stage2_range(kvm, gpa, size);
	spin_unlock(&kvm->mmu_lock);
2122
}
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153

/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 *
 * Main problems:
 * - S/W ops are local to a CPU (not broadcast)
 * - We have line migration behind our back (speculation)
 * - System caches don't support S/W at all (damn!)
 *
 * In the face of the above, the best we can do is to try and convert
 * S/W ops to VA ops. Because the guest is not allowed to infer the
 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
 * which is a rather good thing for us.
 *
 * Also, it is only used when turning caches on/off ("The expected
 * usage of the cache maintenance instructions that operate by set/way
 * is associated with the cache maintenance instructions associated
 * with the powerdown and powerup of caches, if this is required by
 * the implementation.").
 *
 * We use the following policy:
 *
 * - If we trap a S/W operation, we enable VM trapping to detect
 *   caches being turned on/off, and do a full clean.
 *
 * - We flush the caches on both caches being turned on and off.
 *
 * - Once the caches are enabled, we stop trapping VM ops.
 */
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
{
2154
	unsigned long hcr = *vcpu_hcr(vcpu);
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168

	/*
	 * If this is the first time we do a S/W operation
	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
	 * VM trapping.
	 *
	 * Otherwise, rely on the VM trapping to wait for the MMU +
	 * Caches to be turned off. At that point, we'll be able to
	 * clean the caches again.
	 */
	if (!(hcr & HCR_TVM)) {
		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
					vcpu_has_cache_enabled(vcpu));
		stage2_flush_vm(vcpu->kvm);
2169
		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
	}
}

void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
{
	bool now_enabled = vcpu_has_cache_enabled(vcpu);

	/*
	 * If switching the MMU+caches on, need to invalidate the caches.
	 * If switching it off, need to clean the caches.
	 * Clean + invalidate does the trick always.
	 */
	if (now_enabled != was_enabled)
		stage2_flush_vm(vcpu->kvm);

	/* Caches are now on, stop trapping VM ops (until a S/W op) */
	if (now_enabled)
2187
		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2188 2189 2190

	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
}