target_core_transport.c 87.6 KB
Newer Older
1 2 3 4 5
/*******************************************************************************
 * Filename:  target_core_transport.c
 *
 * This file contains the Generic Target Engine Core.
 *
6
 * (c) Copyright 2002-2013 Datera, Inc.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
 *
 * Nicholas A. Bellinger <nab@kernel.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 ******************************************************************************/

#include <linux/net.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/in.h>
#include <linux/cdrom.h>
35
#include <linux/module.h>
36
#include <linux/ratelimit.h>
37
#include <linux/vmalloc.h>
38 39 40
#include <asm/unaligned.h>
#include <net/sock.h>
#include <net/tcp.h>
41
#include <scsi/scsi_proto.h>
42
#include <scsi/scsi_common.h>
43 44

#include <target/target_core_base.h>
45 46
#include <target/target_core_backend.h>
#include <target/target_core_fabric.h>
47

C
Christoph Hellwig 已提交
48
#include "target_core_internal.h"
49 50 51 52
#include "target_core_alua.h"
#include "target_core_pr.h"
#include "target_core_ua.h"

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/target.h>

56
static struct workqueue_struct *target_completion_wq;
57 58 59 60 61 62
static struct kmem_cache *se_sess_cache;
struct kmem_cache *se_ua_cache;
struct kmem_cache *t10_pr_reg_cache;
struct kmem_cache *t10_alua_lu_gp_cache;
struct kmem_cache *t10_alua_lu_gp_mem_cache;
struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 64
struct kmem_cache *t10_alua_lba_map_cache;
struct kmem_cache *t10_alua_lba_map_mem_cache;
65 66

static void transport_complete_task_attr(struct se_cmd *cmd);
67
static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
68
static void transport_handle_queue_full(struct se_cmd *cmd,
69
		struct se_device *dev, int err, bool write_pending);
70
static int transport_put_cmd(struct se_cmd *cmd);
71
static void target_complete_ok_work(struct work_struct *work);
72

73
int init_se_kmem_caches(void)
74 75 76 77
{
	se_sess_cache = kmem_cache_create("se_sess_cache",
			sizeof(struct se_session), __alignof__(struct se_session),
			0, NULL);
78 79
	if (!se_sess_cache) {
		pr_err("kmem_cache_create() for struct se_session"
80
				" failed\n");
81
		goto out;
82 83 84 85
	}
	se_ua_cache = kmem_cache_create("se_ua_cache",
			sizeof(struct se_ua), __alignof__(struct se_ua),
			0, NULL);
86 87
	if (!se_ua_cache) {
		pr_err("kmem_cache_create() for struct se_ua failed\n");
88
		goto out_free_sess_cache;
89 90 91 92
	}
	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
			sizeof(struct t10_pr_registration),
			__alignof__(struct t10_pr_registration), 0, NULL);
93 94
	if (!t10_pr_reg_cache) {
		pr_err("kmem_cache_create() for struct t10_pr_registration"
95
				" failed\n");
96
		goto out_free_ua_cache;
97 98 99 100
	}
	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
			0, NULL);
101 102
	if (!t10_alua_lu_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103
				" failed\n");
104
		goto out_free_pr_reg_cache;
105 106 107 108
	}
	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
			sizeof(struct t10_alua_lu_gp_member),
			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
109 110
	if (!t10_alua_lu_gp_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111
				"cache failed\n");
112
		goto out_free_lu_gp_cache;
113 114 115 116
	}
	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
			sizeof(struct t10_alua_tg_pt_gp),
			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
117 118
	if (!t10_alua_tg_pt_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119
				"cache failed\n");
120
		goto out_free_lu_gp_mem_cache;
121
	}
122 123 124 125 126 127 128
	t10_alua_lba_map_cache = kmem_cache_create(
			"t10_alua_lba_map_cache",
			sizeof(struct t10_alua_lba_map),
			__alignof__(struct t10_alua_lba_map), 0, NULL);
	if (!t10_alua_lba_map_cache) {
		pr_err("kmem_cache_create() for t10_alua_lba_map_"
				"cache failed\n");
129
		goto out_free_tg_pt_gp_cache;
130 131 132 133 134 135 136 137 138 139
	}
	t10_alua_lba_map_mem_cache = kmem_cache_create(
			"t10_alua_lba_map_mem_cache",
			sizeof(struct t10_alua_lba_map_member),
			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
	if (!t10_alua_lba_map_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
				"cache failed\n");
		goto out_free_lba_map_cache;
	}
140

141 142 143
	target_completion_wq = alloc_workqueue("target_completion",
					       WQ_MEM_RECLAIM, 0);
	if (!target_completion_wq)
144
		goto out_free_lba_map_mem_cache;
145

146
	return 0;
147

148 149 150 151
out_free_lba_map_mem_cache:
	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
out_free_lba_map_cache:
	kmem_cache_destroy(t10_alua_lba_map_cache);
152 153 154 155 156 157 158 159 160 161 162 163
out_free_tg_pt_gp_cache:
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
out_free_lu_gp_mem_cache:
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
out_free_lu_gp_cache:
	kmem_cache_destroy(t10_alua_lu_gp_cache);
out_free_pr_reg_cache:
	kmem_cache_destroy(t10_pr_reg_cache);
out_free_ua_cache:
	kmem_cache_destroy(se_ua_cache);
out_free_sess_cache:
	kmem_cache_destroy(se_sess_cache);
164
out:
165
	return -ENOMEM;
166 167
}

168
void release_se_kmem_caches(void)
169
{
170
	destroy_workqueue(target_completion_wq);
171 172 173 174 175 176
	kmem_cache_destroy(se_sess_cache);
	kmem_cache_destroy(se_ua_cache);
	kmem_cache_destroy(t10_pr_reg_cache);
	kmem_cache_destroy(t10_alua_lu_gp_cache);
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
177 178
	kmem_cache_destroy(t10_alua_lba_map_cache);
	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
179 180
}

181 182 183
/* This code ensures unique mib indexes are handed out. */
static DEFINE_SPINLOCK(scsi_mib_index_lock);
static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
184 185 186 187 188 189 190 191

/*
 * Allocate a new row index for the entry type specified
 */
u32 scsi_get_new_index(scsi_index_t type)
{
	u32 new_index;

192
	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
193

194 195 196
	spin_lock(&scsi_mib_index_lock);
	new_index = ++scsi_mib_index[type];
	spin_unlock(&scsi_mib_index_lock);
197 198 199 200

	return new_index;
}

201
void transport_subsystem_check_init(void)
202 203
{
	int ret;
204
	static int sub_api_initialized;
205

206 207 208
	if (sub_api_initialized)
		return;

209 210
	ret = request_module("target_core_iblock");
	if (ret != 0)
211
		pr_err("Unable to load target_core_iblock\n");
212 213 214

	ret = request_module("target_core_file");
	if (ret != 0)
215
		pr_err("Unable to load target_core_file\n");
216 217 218

	ret = request_module("target_core_pscsi");
	if (ret != 0)
219
		pr_err("Unable to load target_core_pscsi\n");
220

221 222 223 224
	ret = request_module("target_core_user");
	if (ret != 0)
		pr_err("Unable to load target_core_user\n");

225
	sub_api_initialized = 1;
226 227
}

228
struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
229 230 231 232
{
	struct se_session *se_sess;

	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
233 234
	if (!se_sess) {
		pr_err("Unable to allocate struct se_session from"
235 236 237 238 239
				" se_sess_cache\n");
		return ERR_PTR(-ENOMEM);
	}
	INIT_LIST_HEAD(&se_sess->sess_list);
	INIT_LIST_HEAD(&se_sess->sess_acl_list);
240
	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
241
	INIT_LIST_HEAD(&se_sess->sess_wait_list);
242
	spin_lock_init(&se_sess->sess_cmd_lock);
243
	se_sess->sup_prot_ops = sup_prot_ops;
244 245 246 247 248

	return se_sess;
}
EXPORT_SYMBOL(transport_init_session);

249 250 251 252 253
int transport_alloc_session_tags(struct se_session *se_sess,
			         unsigned int tag_num, unsigned int tag_size)
{
	int rc;

254
	se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
255
					GFP_KERNEL | __GFP_NOWARN | __GFP_RETRY_MAYFAIL);
256
	if (!se_sess->sess_cmd_map) {
257 258 259 260 261
		se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
		if (!se_sess->sess_cmd_map) {
			pr_err("Unable to allocate se_sess->sess_cmd_map\n");
			return -ENOMEM;
		}
262 263 264 265 266 267
	}

	rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
	if (rc < 0) {
		pr_err("Unable to init se_sess->sess_tag_pool,"
			" tag_num: %u\n", tag_num);
268
		kvfree(se_sess->sess_cmd_map);
269 270 271 272 273 274 275 276 277
		se_sess->sess_cmd_map = NULL;
		return -ENOMEM;
	}

	return 0;
}
EXPORT_SYMBOL(transport_alloc_session_tags);

struct se_session *transport_init_session_tags(unsigned int tag_num,
278 279
					       unsigned int tag_size,
					       enum target_prot_op sup_prot_ops)
280 281 282 283
{
	struct se_session *se_sess;
	int rc;

284 285 286 287 288 289 290 291 292 293 294
	if (tag_num != 0 && !tag_size) {
		pr_err("init_session_tags called with percpu-ida tag_num:"
		       " %u, but zero tag_size\n", tag_num);
		return ERR_PTR(-EINVAL);
	}
	if (!tag_num && tag_size) {
		pr_err("init_session_tags called with percpu-ida tag_size:"
		       " %u, but zero tag_num\n", tag_size);
		return ERR_PTR(-EINVAL);
	}

295
	se_sess = transport_init_session(sup_prot_ops);
296 297 298 299 300 301 302 303 304 305 306 307 308
	if (IS_ERR(se_sess))
		return se_sess;

	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
	if (rc < 0) {
		transport_free_session(se_sess);
		return ERR_PTR(-ENOMEM);
	}

	return se_sess;
}
EXPORT_SYMBOL(transport_init_session_tags);

309
/*
310
 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
311 312 313 314 315 316 317
 */
void __transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
318
	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
319 320 321 322 323 324 325 326 327 328 329
	unsigned char buf[PR_REG_ISID_LEN];

	se_sess->se_tpg = se_tpg;
	se_sess->fabric_sess_ptr = fabric_sess_ptr;
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
	 *
	 * Only set for struct se_session's that will actually be moving I/O.
	 * eg: *NOT* discovery sessions.
	 */
	if (se_nacl) {
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
		/*
		 *
		 * Determine if fabric allows for T10-PI feature bits exposed to
		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
		 *
		 * If so, then always save prot_type on a per se_node_acl node
		 * basis and re-instate the previous sess_prot_type to avoid
		 * disabling PI from below any previously initiator side
		 * registered LUNs.
		 */
		if (se_nacl->saved_prot_type)
			se_sess->sess_prot_type = se_nacl->saved_prot_type;
		else if (tfo->tpg_check_prot_fabric_only)
			se_sess->sess_prot_type = se_nacl->saved_prot_type =
					tfo->tpg_check_prot_fabric_only(se_tpg);
345 346 347 348
		/*
		 * If the fabric module supports an ISID based TransportID,
		 * save this value in binary from the fabric I_T Nexus now.
		 */
349
		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
350
			memset(&buf[0], 0, PR_REG_ISID_LEN);
351
			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
352 353 354
					&buf[0], PR_REG_ISID_LEN);
			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
		}
355

356 357 358 359 360 361 362 363 364 365 366 367 368
		spin_lock_irq(&se_nacl->nacl_sess_lock);
		/*
		 * The se_nacl->nacl_sess pointer will be set to the
		 * last active I_T Nexus for each struct se_node_acl.
		 */
		se_nacl->nacl_sess = se_sess;

		list_add_tail(&se_sess->sess_acl_list,
			      &se_nacl->acl_sess_list);
		spin_unlock_irq(&se_nacl->nacl_sess_lock);
	}
	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);

369
	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
370
		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
371 372 373 374 375 376 377 378 379
}
EXPORT_SYMBOL(__transport_register_session);

void transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
380 381 382
	unsigned long flags;

	spin_lock_irqsave(&se_tpg->session_lock, flags);
383
	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
384
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
385 386 387
}
EXPORT_SYMBOL(transport_register_session);

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
struct se_session *
target_alloc_session(struct se_portal_group *tpg,
		     unsigned int tag_num, unsigned int tag_size,
		     enum target_prot_op prot_op,
		     const char *initiatorname, void *private,
		     int (*callback)(struct se_portal_group *,
				     struct se_session *, void *))
{
	struct se_session *sess;

	/*
	 * If the fabric driver is using percpu-ida based pre allocation
	 * of I/O descriptor tags, go ahead and perform that setup now..
	 */
	if (tag_num != 0)
		sess = transport_init_session_tags(tag_num, tag_size, prot_op);
	else
		sess = transport_init_session(prot_op);

	if (IS_ERR(sess))
		return sess;

	sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
					(unsigned char *)initiatorname);
	if (!sess->se_node_acl) {
		transport_free_session(sess);
		return ERR_PTR(-EACCES);
	}
	/*
	 * Go ahead and perform any remaining fabric setup that is
	 * required before transport_register_session().
	 */
	if (callback != NULL) {
		int rc = callback(tpg, sess, private);
		if (rc) {
			transport_free_session(sess);
			return ERR_PTR(rc);
		}
	}

	transport_register_session(tpg, sess->se_node_acl, sess, private);
	return sess;
}
EXPORT_SYMBOL(target_alloc_session);

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
{
	struct se_session *se_sess;
	ssize_t len = 0;

	spin_lock_bh(&se_tpg->session_lock);
	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
		if (!se_sess->se_node_acl)
			continue;
		if (!se_sess->se_node_acl->dynamic_node_acl)
			continue;
		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
			break;

		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
				se_sess->se_node_acl->initiatorname);
		len += 1; /* Include NULL terminator */
	}
	spin_unlock_bh(&se_tpg->session_lock);

	return len;
}
EXPORT_SYMBOL(target_show_dynamic_sessions);

457 458 459 460
static void target_complete_nacl(struct kref *kref)
{
	struct se_node_acl *nacl = container_of(kref,
				struct se_node_acl, acl_kref);
461
	struct se_portal_group *se_tpg = nacl->se_tpg;
462

463 464 465 466 467 468 469 470 471 472 473 474
	if (!nacl->dynamic_stop) {
		complete(&nacl->acl_free_comp);
		return;
	}

	mutex_lock(&se_tpg->acl_node_mutex);
	list_del(&nacl->acl_list);
	mutex_unlock(&se_tpg->acl_node_mutex);

	core_tpg_wait_for_nacl_pr_ref(nacl);
	core_free_device_list_for_node(nacl, se_tpg);
	kfree(nacl);
475 476 477 478 479 480
}

void target_put_nacl(struct se_node_acl *nacl)
{
	kref_put(&nacl->acl_kref, target_complete_nacl);
}
481
EXPORT_SYMBOL(target_put_nacl);
482

483 484 485
void transport_deregister_session_configfs(struct se_session *se_sess)
{
	struct se_node_acl *se_nacl;
486
	unsigned long flags;
487 488 489 490
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
	 */
	se_nacl = se_sess->se_node_acl;
491
	if (se_nacl) {
492
		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
C
Christoph Hellwig 已提交
493 494
		if (!list_empty(&se_sess->sess_acl_list))
			list_del_init(&se_sess->sess_acl_list);
495 496 497 498 499 500 501 502 503 504 505 506
		/*
		 * If the session list is empty, then clear the pointer.
		 * Otherwise, set the struct se_session pointer from the tail
		 * element of the per struct se_node_acl active session list.
		 */
		if (list_empty(&se_nacl->acl_sess_list))
			se_nacl->nacl_sess = NULL;
		else {
			se_nacl->nacl_sess = container_of(
					se_nacl->acl_sess_list.prev,
					struct se_session, sess_acl_list);
		}
507
		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
508 509 510 511 512 513
	}
}
EXPORT_SYMBOL(transport_deregister_session_configfs);

void transport_free_session(struct se_session *se_sess)
{
514
	struct se_node_acl *se_nacl = se_sess->se_node_acl;
515

516 517 518 519 520
	/*
	 * Drop the se_node_acl->nacl_kref obtained from within
	 * core_tpg_get_initiator_node_acl().
	 */
	if (se_nacl) {
521 522 523 524
		struct se_portal_group *se_tpg = se_nacl->se_tpg;
		const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
		unsigned long flags;

525
		se_sess->se_node_acl = NULL;
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547

		/*
		 * Also determine if we need to drop the extra ->cmd_kref if
		 * it had been previously dynamically generated, and
		 * the endpoint is not caching dynamic ACLs.
		 */
		mutex_lock(&se_tpg->acl_node_mutex);
		if (se_nacl->dynamic_node_acl &&
		    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
			spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
			if (list_empty(&se_nacl->acl_sess_list))
				se_nacl->dynamic_stop = true;
			spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);

			if (se_nacl->dynamic_stop)
				list_del(&se_nacl->acl_list);
		}
		mutex_unlock(&se_tpg->acl_node_mutex);

		if (se_nacl->dynamic_stop)
			target_put_nacl(se_nacl);

548 549
		target_put_nacl(se_nacl);
	}
550 551
	if (se_sess->sess_cmd_map) {
		percpu_ida_destroy(&se_sess->sess_tag_pool);
552
		kvfree(se_sess->sess_cmd_map);
553
	}
554 555 556 557 558 559 560
	kmem_cache_free(se_sess_cache, se_sess);
}
EXPORT_SYMBOL(transport_free_session);

void transport_deregister_session(struct se_session *se_sess)
{
	struct se_portal_group *se_tpg = se_sess->se_tpg;
561
	unsigned long flags;
562

563
	if (!se_tpg) {
564 565 566 567
		transport_free_session(se_sess);
		return;
	}

568
	spin_lock_irqsave(&se_tpg->session_lock, flags);
569 570 571
	list_del(&se_sess->sess_list);
	se_sess->se_tpg = NULL;
	se_sess->fabric_sess_ptr = NULL;
572
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
573

574
	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
575
		se_tpg->se_tpg_tfo->get_fabric_name());
576
	/*
577
	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
578
	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
579
	 * removal context from within transport_free_session() code.
580 581 582
	 *
	 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
	 * to release all remaining generate_node_acl=1 created ACL resources.
583 584
	 */

585
	transport_free_session(se_sess);
586 587 588
}
EXPORT_SYMBOL(transport_deregister_session);

589
static void target_remove_from_state_list(struct se_cmd *cmd)
590
{
591
	struct se_device *dev = cmd->se_dev;
592 593
	unsigned long flags;

594 595
	if (!dev)
		return;
596

597 598 599 600
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (cmd->state_active) {
		list_del(&cmd->state_list);
		cmd->state_active = false;
601
	}
602
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
603 604
}

605
static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
606 607 608
{
	unsigned long flags;

609
	target_remove_from_state_list(cmd);
610

611 612 613 614
	/*
	 * Clear struct se_cmd->se_lun before the handoff to FE.
	 */
	cmd->se_lun = NULL;
615

616
	spin_lock_irqsave(&cmd->t_state_lock, flags);
617 618
	/*
	 * Determine if frontend context caller is requesting the stopping of
619
	 * this command for frontend exceptions.
620
	 */
621
	if (cmd->transport_state & CMD_T_STOP) {
622 623
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
			__func__, __LINE__, cmd->tag);
624

625
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
626

627
		complete_all(&cmd->t_transport_stop_comp);
628 629
		return 1;
	}
630
	cmd->transport_state &= ~CMD_T_ACTIVE;
631
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
632

633 634 635 636 637 638 639
	/*
	 * Some fabric modules like tcm_loop can release their internally
	 * allocated I/O reference and struct se_cmd now.
	 *
	 * Fabric modules are expected to return '1' here if the se_cmd being
	 * passed is released at this point, or zero if not being released.
	 */
640
	return cmd->se_tfo->check_stop_free(cmd);
641 642 643 644
}

static void transport_lun_remove_cmd(struct se_cmd *cmd)
{
645
	struct se_lun *lun = cmd->se_lun;
646

647
	if (!lun)
648 649
		return;

650 651
	if (cmpxchg(&cmd->lun_ref_active, true, false))
		percpu_ref_put(&lun->lun_ref);
652 653
}

654
int transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
655
{
656
	bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
657
	int ret = 0;
658

659 660
	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
		transport_lun_remove_cmd(cmd);
661 662 663 664 665 666
	/*
	 * Allow the fabric driver to unmap any resources before
	 * releasing the descriptor via TFO->release_cmd()
	 */
	if (remove)
		cmd->se_tfo->aborted_task(cmd);
667

668
	if (transport_cmd_check_stop_to_fabric(cmd))
669
		return 1;
670
	if (remove && ack_kref)
671 672 673
		ret = transport_put_cmd(cmd);

	return ret;
674 675
}

676 677 678 679
static void target_complete_failure_work(struct work_struct *work)
{
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);

680 681
	transport_generic_request_failure(cmd,
			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
682 683
}

684
/*
685 686
 * Used when asking transport to copy Sense Data from the underlying
 * Linux/SCSI struct scsi_cmnd
687
 */
688
static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
689 690 691 692 693 694
{
	struct se_device *dev = cmd->se_dev;

	WARN_ON(!cmd->se_lun);

	if (!dev)
695
		return NULL;
696

697 698
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
		return NULL;
699

700
	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
701

702
	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
703
		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
704
	return cmd->sense_buffer;
705 706
}

707
void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
708
{
709
	struct se_device *dev = cmd->se_dev;
710
	int success = scsi_status == GOOD;
711 712
	unsigned long flags;

713 714 715
	cmd->scsi_status = scsi_status;


716
	spin_lock_irqsave(&cmd->t_state_lock, flags);
717 718

	if (dev && dev->transport->transport_complete) {
719 720 721 722
		dev->transport->transport_complete(cmd,
				cmd->t_data_sg,
				transport_get_sense_buffer(cmd));
		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
723 724 725
			success = 1;
	}

726
	/*
727
	 * Check for case where an explicit ABORT_TASK has been received
728 729
	 * and transport_wait_for_tasks() will be waiting for completion..
	 */
730
	if (cmd->transport_state & CMD_T_ABORTED ||
731 732
	    cmd->transport_state & CMD_T_STOP) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
733
		complete_all(&cmd->t_transport_stop_comp);
734
		return;
735
	} else if (!success) {
736
		INIT_WORK(&cmd->work, target_complete_failure_work);
737
	} else {
738
		INIT_WORK(&cmd->work, target_complete_ok_work);
739
	}
740 741

	cmd->t_state = TRANSPORT_COMPLETE;
742
	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
743
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
744

745
	if (cmd->se_cmd_flags & SCF_USE_CPUID)
746
		queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
747 748
	else
		queue_work(target_completion_wq, &cmd->work);
749
}
750 751
EXPORT_SYMBOL(target_complete_cmd);

752 753
void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
{
754
	if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
755 756 757 758 759 760 761 762 763 764 765 766 767 768
		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
			cmd->residual_count += cmd->data_length - length;
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = cmd->data_length - length;
		}

		cmd->data_length = length;
	}

	target_complete_cmd(cmd, scsi_status);
}
EXPORT_SYMBOL(target_complete_cmd_with_length);

769
static void target_add_to_state_list(struct se_cmd *cmd)
770
{
771 772
	struct se_device *dev = cmd->se_dev;
	unsigned long flags;
773

774 775 776 777
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (!cmd->state_active) {
		list_add_tail(&cmd->state_list, &dev->state_list);
		cmd->state_active = true;
778
	}
779
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
780 781
}

782
/*
783
 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
784
 */
785 786
static void transport_write_pending_qf(struct se_cmd *cmd);
static void transport_complete_qf(struct se_cmd *cmd);
787

788
void target_qf_do_work(struct work_struct *work)
789 790 791
{
	struct se_device *dev = container_of(work, struct se_device,
					qf_work_queue);
792
	LIST_HEAD(qf_cmd_list);
793 794 795
	struct se_cmd *cmd, *cmd_tmp;

	spin_lock_irq(&dev->qf_cmd_lock);
796 797
	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
	spin_unlock_irq(&dev->qf_cmd_lock);
798

799
	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
800
		list_del(&cmd->se_qf_node);
801
		atomic_dec_mb(&dev->dev_qf_count);
802

803
		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
804
			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
805
			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
806 807
			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
			: "UNKNOWN");
808

809 810
		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
			transport_write_pending_qf(cmd);
811 812
		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
			 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
813
			transport_complete_qf(cmd);
814 815 816
	}
}

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
{
	switch (cmd->data_direction) {
	case DMA_NONE:
		return "NONE";
	case DMA_FROM_DEVICE:
		return "READ";
	case DMA_TO_DEVICE:
		return "WRITE";
	case DMA_BIDIRECTIONAL:
		return "BIDI";
	default:
		break;
	}

	return "UNKNOWN";
}

void transport_dump_dev_state(
	struct se_device *dev,
	char *b,
	int *bl)
{
	*bl += sprintf(b + *bl, "Status: ");
841
	if (dev->export_count)
842
		*bl += sprintf(b + *bl, "ACTIVATED");
843
	else
844 845
		*bl += sprintf(b + *bl, "DEACTIVATED");

846
	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
847
	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
848 849
		dev->dev_attrib.block_size,
		dev->dev_attrib.hw_max_sectors);
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
	*bl += sprintf(b + *bl, "        ");
}

void transport_dump_vpd_proto_id(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int len;

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Protocol Identifier: ");

	switch (vpd->protocol_identifier) {
	case 0x00:
		sprintf(buf+len, "Fibre Channel\n");
		break;
	case 0x10:
		sprintf(buf+len, "Parallel SCSI\n");
		break;
	case 0x20:
		sprintf(buf+len, "SSA\n");
		break;
	case 0x30:
		sprintf(buf+len, "IEEE 1394\n");
		break;
	case 0x40:
		sprintf(buf+len, "SCSI Remote Direct Memory Access"
				" Protocol\n");
		break;
	case 0x50:
		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
		break;
	case 0x60:
		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
		break;
	case 0x70:
		sprintf(buf+len, "Automation/Drive Interface Transport"
				" Protocol\n");
		break;
	case 0x80:
		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n",
				vpd->protocol_identifier);
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
903
		pr_debug("%s", buf);
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
}

void
transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * Check if the Protocol Identifier Valid (PIV) bit is set..
	 *
	 * from spc3r23.pdf section 7.5.1
	 */
	 if (page_83[1] & 0x80) {
		vpd->protocol_identifier = (page_83[0] & 0xf0);
		vpd->protocol_identifier_set = 1;
		transport_dump_vpd_proto_id(vpd, NULL, 0);
	}
}
EXPORT_SYMBOL(transport_set_vpd_proto_id);

int transport_dump_vpd_assoc(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
928 929
	int ret = 0;
	int len;
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Association: ");

	switch (vpd->association) {
	case 0x00:
		sprintf(buf+len, "addressed logical unit\n");
		break;
	case 0x10:
		sprintf(buf+len, "target port\n");
		break;
	case 0x20:
		sprintf(buf+len, "SCSI target device\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
946
		ret = -EINVAL;
947 948 949 950 951 952
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
953
		pr_debug("%s", buf);
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975

	return ret;
}

int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identification association..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 297
	 */
	vpd->association = (page_83[1] & 0x30);
	return transport_dump_vpd_assoc(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_assoc);

int transport_dump_vpd_ident_type(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
976 977
	int ret = 0;
	int len;
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Type: ");

	switch (vpd->device_identifier_type) {
	case 0x00:
		sprintf(buf+len, "Vendor specific\n");
		break;
	case 0x01:
		sprintf(buf+len, "T10 Vendor ID based\n");
		break;
	case 0x02:
		sprintf(buf+len, "EUI-64 based\n");
		break;
	case 0x03:
		sprintf(buf+len, "NAA\n");
		break;
	case 0x04:
		sprintf(buf+len, "Relative target port identifier\n");
		break;
	case 0x08:
		sprintf(buf+len, "SCSI name string\n");
		break;
	default:
		sprintf(buf+len, "Unsupported: 0x%02x\n",
				vpd->device_identifier_type);
1004
		ret = -EINVAL;
1005 1006 1007
		break;
	}

1008 1009 1010
	if (p_buf) {
		if (p_buf_len < strlen(buf)+1)
			return -EINVAL;
1011
		strncpy(p_buf, buf, p_buf_len);
1012
	} else {
1013
		pr_debug("%s", buf);
1014
	}
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

	return ret;
}

int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identifier type..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 298
	 */
	vpd->device_identifier_type = (page_83[1] & 0x0f);
	return transport_dump_vpd_ident_type(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident_type);

int transport_dump_vpd_ident(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int ret = 0;

	memset(buf, 0, VPD_TMP_BUF_SIZE);

	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
1043 1044
		snprintf(buf, sizeof(buf),
			"T10 VPD Binary Device Identifier: %s\n",
1045 1046 1047
			&vpd->device_identifier[0]);
		break;
	case 0x02: /* ASCII */
1048 1049
		snprintf(buf, sizeof(buf),
			"T10 VPD ASCII Device Identifier: %s\n",
1050 1051 1052
			&vpd->device_identifier[0]);
		break;
	case 0x03: /* UTF-8 */
1053 1054
		snprintf(buf, sizeof(buf),
			"T10 VPD UTF-8 Device Identifier: %s\n",
1055 1056 1057 1058 1059
			&vpd->device_identifier[0]);
		break;
	default:
		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
			" 0x%02x", vpd->device_identifier_code_set);
1060
		ret = -EINVAL;
1061 1062 1063 1064 1065 1066
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
1067
		pr_debug("%s", buf);
1068 1069 1070 1071 1072 1073 1074 1075

	return ret;
}

int
transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
{
	static const char hex_str[] = "0123456789abcdef";
1076
	int j = 0, i = 4; /* offset to start of the identifier */
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

	/*
	 * The VPD Code Set (encoding)
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 296
	 */
	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
		vpd->device_identifier[j++] =
				hex_str[vpd->device_identifier_type];
		while (i < (4 + page_83[3])) {
			vpd->device_identifier[j++] =
				hex_str[(page_83[i] & 0xf0) >> 4];
			vpd->device_identifier[j++] =
				hex_str[page_83[i] & 0x0f];
			i++;
		}
		break;
	case 0x02: /* ASCII */
	case 0x03: /* UTF-8 */
		while (i < (4 + page_83[3]))
			vpd->device_identifier[j++] = page_83[i++];
		break;
	default:
		break;
	}

	return transport_dump_vpd_ident(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident);

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
			       unsigned int size)
{
	u32 mtl;

	if (!cmd->se_tfo->max_data_sg_nents)
		return TCM_NO_SENSE;
	/*
	 * Check if fabric enforced maximum SGL entries per I/O descriptor
	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
	 * residual_count and reduce original cmd->data_length to maximum
	 * length based on single PAGE_SIZE entry scatter-lists.
	 */
	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
	if (cmd->data_length > mtl) {
		/*
		 * If an existing CDB overflow is present, calculate new residual
		 * based on CDB size minus fabric maximum transfer length.
		 *
		 * If an existing CDB underflow is present, calculate new residual
		 * based on original cmd->data_length minus fabric maximum transfer
		 * length.
		 *
		 * Otherwise, set the underflow residual based on cmd->data_length
		 * minus fabric maximum transfer length.
		 */
		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
			cmd->residual_count = (size - mtl);
		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
			u32 orig_dl = size + cmd->residual_count;
			cmd->residual_count = (orig_dl - mtl);
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = (cmd->data_length - mtl);
		}
		cmd->data_length = mtl;
		/*
		 * Reset sbc_check_prot() calculated protection payload
		 * length based upon the new smaller MTL.
		 */
		if (cmd->prot_length) {
			u32 sectors = (mtl / dev->dev_attrib.block_size);
			cmd->prot_length = dev->prot_length * sectors;
		}
	}
	return TCM_NO_SENSE;
}

1158 1159
sense_reason_t
target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1160 1161 1162 1163 1164 1165
{
	struct se_device *dev = cmd->se_dev;

	if (cmd->unknown_data_length) {
		cmd->data_length = size;
	} else if (size != cmd->data_length) {
1166
		pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1167 1168 1169 1170
			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
				cmd->data_length, size, cmd->t_task_cdb[0]);

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
		if (cmd->data_direction == DMA_TO_DEVICE) {
			if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
				pr_err_ratelimited("Rejecting underflow/overflow"
						   " for WRITE data CDB\n");
				return TCM_INVALID_CDB_FIELD;
			}
			/*
			 * Some fabric drivers like iscsi-target still expect to
			 * always reject overflow writes.  Reject this case until
			 * full fabric driver level support for overflow writes
			 * is introduced tree-wide.
			 */
			if (size > cmd->data_length) {
				pr_err_ratelimited("Rejecting overflow for"
						   " WRITE control CDB\n");
				return TCM_INVALID_CDB_FIELD;
			}
1188 1189 1190 1191 1192
		}
		/*
		 * Reject READ_* or WRITE_* with overflow/underflow for
		 * type SCF_SCSI_DATA_CDB.
		 */
1193
		if (dev->dev_attrib.block_size != 512)  {
1194 1195 1196 1197
			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
				" CDB on non 512-byte sector setup subsystem"
				" plugin: %s\n", dev->transport->name);
			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1198
			return TCM_INVALID_CDB_FIELD;
1199
		}
1200 1201 1202 1203 1204 1205
		/*
		 * For the overflow case keep the existing fabric provided
		 * ->data_length.  Otherwise for the underflow case, reset
		 * ->data_length to the smaller SCSI expected data transfer
		 * length.
		 */
1206 1207 1208 1209 1210 1211
		if (size > cmd->data_length) {
			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
			cmd->residual_count = (size - cmd->data_length);
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = (cmd->data_length - size);
1212
			cmd->data_length = size;
1213 1214 1215
		}
	}

1216
	return target_check_max_data_sg_nents(cmd, dev, size);
1217 1218 1219

}

1220 1221 1222
/*
 * Used by fabric modules containing a local struct se_cmd within their
 * fabric dependent per I/O descriptor.
1223 1224
 *
 * Preserves the value of @cmd->tag.
1225 1226 1227
 */
void transport_init_se_cmd(
	struct se_cmd *cmd,
1228
	const struct target_core_fabric_ops *tfo,
1229 1230 1231 1232 1233 1234
	struct se_session *se_sess,
	u32 data_length,
	int data_direction,
	int task_attr,
	unsigned char *sense_buffer)
{
1235
	INIT_LIST_HEAD(&cmd->se_delayed_node);
1236
	INIT_LIST_HEAD(&cmd->se_qf_node);
1237
	INIT_LIST_HEAD(&cmd->se_cmd_list);
1238
	INIT_LIST_HEAD(&cmd->state_list);
1239
	init_completion(&cmd->t_transport_stop_comp);
1240
	init_completion(&cmd->cmd_wait_comp);
1241
	spin_lock_init(&cmd->t_state_lock);
1242
	kref_init(&cmd->cmd_kref);
1243 1244 1245 1246 1247 1248 1249

	cmd->se_tfo = tfo;
	cmd->se_sess = se_sess;
	cmd->data_length = data_length;
	cmd->data_direction = data_direction;
	cmd->sam_task_attr = task_attr;
	cmd->sense_buffer = sense_buffer;
1250 1251

	cmd->state_active = false;
1252 1253 1254
}
EXPORT_SYMBOL(transport_init_se_cmd);

1255 1256
static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd *cmd)
1257
{
1258 1259
	struct se_device *dev = cmd->se_dev;

1260 1261 1262 1263
	/*
	 * Check if SAM Task Attribute emulation is enabled for this
	 * struct se_device storage object
	 */
1264
	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1265 1266
		return 0;

C
Christoph Hellwig 已提交
1267
	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1268
		pr_debug("SAM Task Attribute ACA"
1269
			" emulation is not supported\n");
1270
		return TCM_INVALID_CDB_FIELD;
1271
	}
1272

1273 1274 1275
	return 0;
}

1276 1277
sense_reason_t
target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1278
{
1279
	struct se_device *dev = cmd->se_dev;
1280
	sense_reason_t ret;
1281 1282 1283 1284 1285 1286

	/*
	 * Ensure that the received CDB is less than the max (252 + 8) bytes
	 * for VARIABLE_LENGTH_CMD
	 */
	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1287
		pr_err("Received SCSI CDB with command_size: %d that"
1288 1289
			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1290
		return TCM_INVALID_CDB_FIELD;
1291 1292 1293 1294 1295 1296
	}
	/*
	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
	 * allocate the additional extended CDB buffer now..  Otherwise
	 * setup the pointer from __t_task_cdb to t_task_cdb.
	 */
1297 1298
	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1299
						GFP_KERNEL);
1300 1301
		if (!cmd->t_task_cdb) {
			pr_err("Unable to allocate cmd->t_task_cdb"
1302
				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1303
				scsi_command_size(cdb),
1304
				(unsigned long)sizeof(cmd->__t_task_cdb));
1305
			return TCM_OUT_OF_RESOURCES;
1306 1307
		}
	} else
1308
		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1309
	/*
1310
	 * Copy the original CDB into cmd->
1311
	 */
1312
	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1313

1314 1315
	trace_target_sequencer_start(cmd);

1316
	ret = dev->transport->parse_cdb(cmd);
1317 1318 1319 1320 1321
	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
		pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
				    cmd->se_tfo->get_fabric_name(),
				    cmd->se_sess->se_node_acl->initiatorname,
				    cmd->t_task_cdb[0]);
1322 1323 1324 1325 1326
	if (ret)
		return ret;

	ret = transport_check_alloc_task_attr(cmd);
	if (ret)
1327
		return ret;
1328 1329

	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1330
	atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1331 1332
	return 0;
}
1333
EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1334

1335 1336
/*
 * Used by fabric module frontends to queue tasks directly.
1337
 * May only be used from process context.
1338 1339 1340 1341
 */
int transport_handle_cdb_direct(
	struct se_cmd *cmd)
{
1342
	sense_reason_t ret;
1343

1344 1345
	if (!cmd->se_lun) {
		dump_stack();
1346
		pr_err("cmd->se_lun is NULL\n");
1347 1348 1349 1350
		return -EINVAL;
	}
	if (in_interrupt()) {
		dump_stack();
1351
		pr_err("transport_generic_handle_cdb cannot be called"
1352 1353 1354
				" from interrupt context\n");
		return -EINVAL;
	}
1355
	/*
1356 1357 1358
	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
	 * outstanding descriptors are handled correctly during shutdown via
	 * transport_wait_for_tasks()
1359 1360 1361 1362 1363
	 *
	 * Also, we don't take cmd->t_state_lock here as we only expect
	 * this to be called for initial descriptor submission.
	 */
	cmd->t_state = TRANSPORT_NEW_CMD;
1364 1365
	cmd->transport_state |= CMD_T_ACTIVE;

1366 1367 1368 1369 1370 1371
	/*
	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
	 * so follow TRANSPORT_NEW_CMD processing thread context usage
	 * and call transport_generic_request_failure() if necessary..
	 */
	ret = transport_generic_new_cmd(cmd);
1372 1373
	if (ret)
		transport_generic_request_failure(cmd, ret);
1374
	return 0;
1375 1376 1377
}
EXPORT_SYMBOL(transport_handle_cdb_direct);

1378
sense_reason_t
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
{
	if (!sgl || !sgl_count)
		return 0;

	/*
	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
	 * scatterlists already have been set to follow what the fabric
	 * passes for the original expected data transfer length.
	 */
	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
		pr_warn("Rejecting SCSI DATA overflow for fabric using"
			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
		return TCM_INVALID_CDB_FIELD;
	}

	cmd->t_data_sg = sgl;
	cmd->t_data_nents = sgl_count;
1398 1399
	cmd->t_bidi_data_sg = sgl_bidi;
	cmd->t_bidi_data_nents = sgl_bidi_count;
1400 1401 1402 1403 1404

	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
	return 0;
}

1405 1406 1407
/*
 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
 * 			 se_cmd + use pre-allocated SGL memory.
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
 * @task_addr: SAM task attribute
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
1418 1419 1420 1421
 * @sgl: struct scatterlist memory for unidirectional mapping
 * @sgl_count: scatterlist count for unidirectional mapping
 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1422 1423
 * @sgl_prot: struct scatterlist memory protection information
 * @sgl_prot_count: scatterlist count for protection information
1424
 *
1425 1426
 * Task tags are supported if the caller has set @se_cmd->tag.
 *
1427 1428 1429 1430
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
1431 1432
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
1433 1434
 */
int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1435
		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1436 1437
		u32 data_length, int task_attr, int data_dir, int flags,
		struct scatterlist *sgl, u32 sgl_count,
1438 1439
		struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
		struct scatterlist *sgl_prot, u32 sgl_prot_count)
1440 1441
{
	struct se_portal_group *se_tpg;
1442 1443
	sense_reason_t rc;
	int ret;
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);
	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
	BUG_ON(in_interrupt());
	/*
	 * Initialize se_cmd for target operation.  From this point
	 * exceptions are handled by sending exception status via
	 * target_core_fabric_ops->queue_status() callback
	 */
	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
				data_length, data_dir, task_attr, sense);
1456 1457 1458 1459 1460 1461

	if (flags & TARGET_SCF_USE_CPUID)
		se_cmd->se_cmd_flags |= SCF_USE_CPUID;
	else
		se_cmd->cpuid = WORK_CPU_UNBOUND;

1462 1463
	if (flags & TARGET_SCF_UNKNOWN_SIZE)
		se_cmd->unknown_data_length = 1;
1464 1465 1466 1467 1468 1469
	/*
	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
	 * kref_put() to happen during fabric packet acknowledgement.
	 */
1470
	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1471 1472
	if (ret)
		return ret;
1473 1474 1475 1476 1477 1478 1479 1480
	/*
	 * Signal bidirectional data payloads to target-core
	 */
	if (flags & TARGET_SCF_BIDI_OP)
		se_cmd->se_cmd_flags |= SCF_BIDI;
	/*
	 * Locate se_lun pointer and attach it to struct se_cmd
	 */
1481 1482 1483
	rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
	if (rc) {
		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1484
		target_put_sess_cmd(se_cmd);
1485
		return 0;
1486
	}
1487 1488 1489 1490 1491 1492 1493

	rc = target_setup_cmd_from_cdb(se_cmd, cdb);
	if (rc != 0) {
		transport_generic_request_failure(se_cmd, rc);
		return 0;
	}

1494 1495 1496 1497 1498 1499 1500
	/*
	 * Save pointers for SGLs containing protection information,
	 * if present.
	 */
	if (sgl_prot_count) {
		se_cmd->t_prot_sg = sgl_prot;
		se_cmd->t_prot_nents = sgl_prot_count;
1501
		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1502
	}
1503

1504 1505 1506 1507 1508 1509 1510 1511
	/*
	 * When a non zero sgl_count has been passed perform SGL passthrough
	 * mapping for pre-allocated fabric memory instead of having target
	 * core perform an internal SGL allocation..
	 */
	if (sgl_count != 0) {
		BUG_ON(!sgl);

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		/*
		 * A work-around for tcm_loop as some userspace code via
		 * scsi-generic do not memset their associated read buffers,
		 * so go ahead and do that here for type non-data CDBs.  Also
		 * note that this is currently guaranteed to be a single SGL
		 * for this case by target core in target_setup_cmd_from_cdb()
		 * -> transport_generic_cmd_sequencer().
		 */
		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
		     se_cmd->data_direction == DMA_FROM_DEVICE) {
			unsigned char *buf = NULL;

			if (sgl)
				buf = kmap(sg_page(sgl)) + sgl->offset;

			if (buf) {
				memset(buf, 0, sgl->length);
				kunmap(sg_page(sgl));
			}
		}

1533 1534 1535
		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
				sgl_bidi, sgl_bidi_count);
		if (rc != 0) {
1536
			transport_generic_request_failure(se_cmd, rc);
1537 1538 1539
			return 0;
		}
	}
1540

1541 1542 1543 1544 1545 1546
	/*
	 * Check if we need to delay processing because of ALUA
	 * Active/NonOptimized primary access state..
	 */
	core_alua_check_nonop_delay(se_cmd);

1547
	transport_handle_cdb_direct(se_cmd);
1548
	return 0;
1549
}
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
EXPORT_SYMBOL(target_submit_cmd_map_sgls);

/*
 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
 * @task_addr: SAM task attribute
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
 *
1565 1566
 * Task tags are supported if the caller has set @se_cmd->tag.
 *
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
 *
 * It also assumes interal target core SGL memory allocation.
 */
int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1577
		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1578 1579 1580 1581
		u32 data_length, int task_attr, int data_dir, int flags)
{
	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
			unpacked_lun, data_length, task_attr, data_dir,
1582
			flags, NULL, 0, NULL, 0, NULL, 0);
1583
}
1584 1585
EXPORT_SYMBOL(target_submit_cmd);

1586 1587 1588 1589 1590 1591
static void target_complete_tmr_failure(struct work_struct *work)
{
	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);

	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1592 1593

	transport_cmd_check_stop_to_fabric(se_cmd);
1594 1595
}

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
/**
 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
 *                     for TMR CDBs
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @fabric_context: fabric context for TMR req
 * @tm_type: Type of TM request
1606 1607
 * @gfp: gfp type for caller
 * @tag: referenced task tag for TMR_ABORT_TASK
1608
 * @flags: submit cmd flags
1609 1610 1611 1612
 *
 * Callable from all contexts.
 **/

1613
int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1614
		unsigned char *sense, u64 unpacked_lun,
1615
		void *fabric_tmr_ptr, unsigned char tm_type,
1616
		gfp_t gfp, u64 tag, int flags)
1617 1618 1619 1620 1621 1622 1623 1624
{
	struct se_portal_group *se_tpg;
	int ret;

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);

	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
C
Christoph Hellwig 已提交
1625
			      0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1626 1627 1628 1629
	/*
	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
	 * allocation failure.
	 */
1630
	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1631 1632
	if (ret < 0)
		return -ENOMEM;
1633

1634 1635 1636
	if (tm_type == TMR_ABORT_TASK)
		se_cmd->se_tmr_req->ref_task_tag = tag;

1637
	/* See target_submit_cmd for commentary */
1638
	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1639 1640 1641 1642
	if (ret) {
		core_tmr_release_req(se_cmd->se_tmr_req);
		return ret;
	}
1643 1644 1645

	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
	if (ret) {
1646 1647 1648 1649 1650 1651
		/*
		 * For callback during failure handling, push this work off
		 * to process context with TMR_LUN_DOES_NOT_EXIST status.
		 */
		INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
		schedule_work(&se_cmd->work);
1652
		return 0;
1653 1654
	}
	transport_generic_handle_tmr(se_cmd);
1655
	return 0;
1656 1657 1658
}
EXPORT_SYMBOL(target_submit_tmr);

1659 1660 1661
/*
 * Handle SAM-esque emulation for generic transport request failures.
 */
1662 1663
void transport_generic_request_failure(struct se_cmd *cmd,
		sense_reason_t sense_reason)
1664
{
1665
	int ret = 0, post_ret = 0;
1666

1667 1668 1669
	if (transport_check_aborted_status(cmd, 1))
		return;

1670 1671
	pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
		" CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1672
	pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1673
		cmd->se_tfo->get_cmd_state(cmd),
1674
		cmd->t_state, sense_reason);
1675
	pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1676 1677 1678
		(cmd->transport_state & CMD_T_ACTIVE) != 0,
		(cmd->transport_state & CMD_T_STOP) != 0,
		(cmd->transport_state & CMD_T_SENT) != 0);
1679 1680 1681 1682

	/*
	 * For SAM Task Attribute emulation for failed struct se_cmd
	 */
1683
	transport_complete_task_attr(cmd);
1684 1685
	/*
	 * Handle special case for COMPARE_AND_WRITE failure, where the
1686
	 * callback is expected to drop the per device ->caw_sem.
1687 1688 1689
	 */
	if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
	     cmd->transport_complete_callback)
1690
		cmd->transport_complete_callback(cmd, false, &post_ret);
1691

1692
	switch (sense_reason) {
1693 1694 1695 1696
	case TCM_NON_EXISTENT_LUN:
	case TCM_UNSUPPORTED_SCSI_OPCODE:
	case TCM_INVALID_CDB_FIELD:
	case TCM_INVALID_PARAMETER_LIST:
1697
	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1698 1699 1700
	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
	case TCM_UNKNOWN_MODE_PAGE:
	case TCM_WRITE_PROTECTED:
1701
	case TCM_ADDRESS_OUT_OF_RANGE:
1702 1703 1704
	case TCM_CHECK_CONDITION_ABORT_CMD:
	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
	case TCM_CHECK_CONDITION_NOT_READY:
1705 1706 1707
	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1708
	case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1709 1710 1711 1712
	case TCM_TOO_MANY_TARGET_DESCS:
	case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
	case TCM_TOO_MANY_SEGMENT_DESCS:
	case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1713
		break;
1714 1715 1716
	case TCM_OUT_OF_RESOURCES:
		sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		break;
1717
	case TCM_RESERVATION_CONFLICT:
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
		/*
		 * No SENSE Data payload for this case, set SCSI Status
		 * and queue the response to $FABRIC_MOD.
		 *
		 * Uses linux/include/scsi/scsi.h SAM status codes defs
		 */
		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
		/*
		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
		 * CONFLICT STATUS.
		 *
		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
		 */
1732
		if (cmd->se_sess &&
1733 1734 1735 1736 1737
		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
					       cmd->orig_fe_lun, 0x2C,
					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
		}
1738
		trace_target_cmd_complete(cmd);
1739
		ret = cmd->se_tfo->queue_status(cmd);
1740
		if (ret)
1741
			goto queue_full;
1742 1743
		goto check_stop;
	default:
1744
		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1745 1746
			cmd->t_task_cdb[0], sense_reason);
		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1747 1748
		break;
	}
1749

1750
	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1751
	if (ret)
1752
		goto queue_full;
1753

1754 1755
check_stop:
	transport_lun_remove_cmd(cmd);
A
Andy Grover 已提交
1756
	transport_cmd_check_stop_to_fabric(cmd);
1757 1758 1759
	return;

queue_full:
1760
	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1761
}
1762
EXPORT_SYMBOL(transport_generic_request_failure);
1763

1764
void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1765
{
1766
	sense_reason_t ret;
1767

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
	if (!cmd->execute_cmd) {
		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		goto err;
	}
	if (do_checks) {
		/*
		 * Check for an existing UNIT ATTENTION condition after
		 * target_handle_task_attr() has done SAM task attr
		 * checking, and possibly have already defered execution
		 * out to target_restart_delayed_cmds() context.
		 */
		ret = target_scsi3_ua_check(cmd);
		if (ret)
			goto err;

		ret = target_alua_state_check(cmd);
		if (ret)
			goto err;
1786

1787 1788 1789 1790
		ret = target_check_reservation(cmd);
		if (ret) {
			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
			goto err;
1791
		}
1792
	}
1793 1794 1795 1796 1797 1798

	ret = cmd->execute_cmd(cmd);
	if (!ret)
		return;
err:
	spin_lock_irq(&cmd->t_state_lock);
1799
	cmd->transport_state &= ~CMD_T_SENT;
1800 1801 1802
	spin_unlock_irq(&cmd->t_state_lock);

	transport_generic_request_failure(cmd, ret);
1803 1804
}

1805 1806
static int target_write_prot_action(struct se_cmd *cmd)
{
1807
	u32 sectors;
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	/*
	 * Perform WRITE_INSERT of PI using software emulation when backend
	 * device has PI enabled, if the transport has not already generated
	 * PI using hardware WRITE_INSERT offload.
	 */
	switch (cmd->prot_op) {
	case TARGET_PROT_DOUT_INSERT:
		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
			sbc_dif_generate(cmd);
		break;
1818 1819 1820 1821 1822
	case TARGET_PROT_DOUT_STRIP:
		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
			break;

		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1823 1824
		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
					     sectors, 0, cmd->t_prot_sg, 0);
1825 1826
		if (unlikely(cmd->pi_err)) {
			spin_lock_irq(&cmd->t_state_lock);
1827
			cmd->transport_state &= ~CMD_T_SENT;
1828 1829 1830 1831 1832
			spin_unlock_irq(&cmd->t_state_lock);
			transport_generic_request_failure(cmd, cmd->pi_err);
			return -1;
		}
		break;
1833 1834 1835 1836 1837 1838 1839
	default:
		break;
	}

	return 0;
}

1840
static bool target_handle_task_attr(struct se_cmd *cmd)
1841 1842 1843
{
	struct se_device *dev = cmd->se_dev;

1844
	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1845
		return false;
1846

1847 1848
	cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;

1849
	/*
L
Lucas De Marchi 已提交
1850
	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1851 1852
	 * to allow the passed struct se_cmd list of tasks to the front of the list.
	 */
1853
	switch (cmd->sam_task_attr) {
C
Christoph Hellwig 已提交
1854
	case TCM_HEAD_TAG:
1855 1856
		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
			 cmd->t_task_cdb[0]);
1857
		return false;
C
Christoph Hellwig 已提交
1858
	case TCM_ORDERED_TAG:
1859
		atomic_inc_mb(&dev->dev_ordered_sync);
1860

1861 1862
		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
			 cmd->t_task_cdb[0]);
1863

1864
		/*
1865 1866
		 * Execute an ORDERED command if no other older commands
		 * exist that need to be completed first.
1867
		 */
1868
		if (!atomic_read(&dev->simple_cmds))
1869
			return false;
1870 1871
		break;
	default:
1872 1873 1874
		/*
		 * For SIMPLE and UNTAGGED Task Attribute commands
		 */
1875
		atomic_inc_mb(&dev->simple_cmds);
1876
		break;
1877
	}
1878

1879 1880
	if (atomic_read(&dev->dev_ordered_sync) == 0)
		return false;
1881

1882 1883 1884 1885
	spin_lock(&dev->delayed_cmd_lock);
	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
	spin_unlock(&dev->delayed_cmd_lock);

1886 1887
	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
		cmd->t_task_cdb[0], cmd->sam_task_attr);
1888 1889 1890
	return true;
}

1891 1892
static int __transport_check_aborted_status(struct se_cmd *, int);

1893 1894 1895 1896 1897
void target_execute_cmd(struct se_cmd *cmd)
{
	/*
	 * Determine if frontend context caller is requesting the stopping of
	 * this command for frontend exceptions.
1898 1899
	 *
	 * If the received CDB has aleady been aborted stop processing it here.
1900
	 */
1901
	spin_lock_irq(&cmd->t_state_lock);
1902 1903 1904 1905
	if (__transport_check_aborted_status(cmd, 1)) {
		spin_unlock_irq(&cmd->t_state_lock);
		return;
	}
1906
	if (cmd->transport_state & CMD_T_STOP) {
1907 1908
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
			__func__, __LINE__, cmd->tag);
1909 1910

		spin_unlock_irq(&cmd->t_state_lock);
1911
		complete_all(&cmd->t_transport_stop_comp);
1912 1913 1914 1915
		return;
	}

	cmd->t_state = TRANSPORT_PROCESSING;
1916
	cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
1917
	spin_unlock_irq(&cmd->t_state_lock);
1918 1919 1920

	if (target_write_prot_action(cmd))
		return;
1921

1922 1923
	if (target_handle_task_attr(cmd)) {
		spin_lock_irq(&cmd->t_state_lock);
1924
		cmd->transport_state &= ~CMD_T_SENT;
1925 1926 1927 1928
		spin_unlock_irq(&cmd->t_state_lock);
		return;
	}

1929
	__target_execute_cmd(cmd, true);
1930
}
1931
EXPORT_SYMBOL(target_execute_cmd);
1932

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
/*
 * Process all commands up to the last received ORDERED task attribute which
 * requires another blocking boundary
 */
static void target_restart_delayed_cmds(struct se_device *dev)
{
	for (;;) {
		struct se_cmd *cmd;

		spin_lock(&dev->delayed_cmd_lock);
		if (list_empty(&dev->delayed_cmd_list)) {
			spin_unlock(&dev->delayed_cmd_lock);
			break;
		}

		cmd = list_entry(dev->delayed_cmd_list.next,
				 struct se_cmd, se_delayed_node);
		list_del(&cmd->se_delayed_node);
		spin_unlock(&dev->delayed_cmd_lock);

1953
		__target_execute_cmd(cmd, true);
1954

C
Christoph Hellwig 已提交
1955
		if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1956 1957 1958 1959
			break;
	}
}

1960
/*
1961
 * Called from I/O completion to determine which dormant/delayed
1962 1963 1964 1965
 * and ordered cmds need to have their tasks added to the execution queue.
 */
static void transport_complete_task_attr(struct se_cmd *cmd)
{
1966
	struct se_device *dev = cmd->se_dev;
1967

1968
	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1969 1970
		return;

1971 1972 1973
	if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
		goto restart;

C
Christoph Hellwig 已提交
1974
	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1975
		atomic_dec_mb(&dev->simple_cmds);
1976
		dev->dev_cur_ordered_id++;
C
Christoph Hellwig 已提交
1977
	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1978
		dev->dev_cur_ordered_id++;
1979 1980
		pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
			 dev->dev_cur_ordered_id);
C
Christoph Hellwig 已提交
1981
	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1982
		atomic_dec_mb(&dev->dev_ordered_sync);
1983 1984

		dev->dev_cur_ordered_id++;
1985 1986
		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
			 dev->dev_cur_ordered_id);
1987
	}
1988
restart:
1989
	target_restart_delayed_cmds(dev);
1990 1991
}

1992
static void transport_complete_qf(struct se_cmd *cmd)
1993 1994 1995
{
	int ret = 0;

1996
	transport_complete_task_attr(cmd);
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	/*
	 * If a fabric driver ->write_pending() or ->queue_data_in() callback
	 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
	 * the same callbacks should not be retried.  Return CHECK_CONDITION
	 * if a scsi_status is not already set.
	 *
	 * If a fabric driver ->queue_status() has returned non zero, always
	 * keep retrying no matter what..
	 */
	if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
		if (cmd->scsi_status)
			goto queue_status;
2009

2010 2011 2012 2013 2014
		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
		cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
		cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
		translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
		goto queue_status;
2015
	}
2016

2017 2018 2019
	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
		goto queue_status;

2020 2021
	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
2022 2023 2024
		if (cmd->scsi_status)
			goto queue_status;

2025
		trace_target_cmd_complete(cmd);
2026 2027 2028
		ret = cmd->se_tfo->queue_data_in(cmd);
		break;
	case DMA_TO_DEVICE:
2029
		if (cmd->se_cmd_flags & SCF_BIDI) {
2030
			ret = cmd->se_tfo->queue_data_in(cmd);
2031
			break;
2032 2033 2034
		}
		/* Fall through for DMA_TO_DEVICE */
	case DMA_NONE:
2035
queue_status:
2036
		trace_target_cmd_complete(cmd);
2037 2038 2039 2040 2041 2042
		ret = cmd->se_tfo->queue_status(cmd);
		break;
	default:
		break;
	}

2043
	if (ret < 0) {
2044
		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2045 2046 2047 2048
		return;
	}
	transport_lun_remove_cmd(cmd);
	transport_cmd_check_stop_to_fabric(cmd);
2049 2050
}

2051 2052
static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
					int err, bool write_pending)
2053
{
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	/*
	 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
	 * ->queue_data_in() callbacks from new process context.
	 *
	 * Otherwise for other errors, transport_complete_qf() will send
	 * CHECK_CONDITION via ->queue_status() instead of attempting to
	 * retry associated fabric driver data-transfer callbacks.
	 */
	if (err == -EAGAIN || err == -ENOMEM) {
		cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
						 TRANSPORT_COMPLETE_QF_OK;
	} else {
		pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
		cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
	}

2070 2071
	spin_lock_irq(&dev->qf_cmd_lock);
	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2072
	atomic_inc_mb(&dev->dev_qf_count);
2073 2074 2075 2076 2077
	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);

	schedule_work(&cmd->se_dev->qf_work_queue);
}

2078
static bool target_read_prot_action(struct se_cmd *cmd)
2079
{
2080 2081 2082
	switch (cmd->prot_op) {
	case TARGET_PROT_DIN_STRIP:
		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2083 2084 2085 2086 2087 2088 2089
			u32 sectors = cmd->data_length >>
				  ilog2(cmd->se_dev->dev_attrib.block_size);

			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
						     sectors, 0, cmd->t_prot_sg,
						     0);
			if (cmd->pi_err)
2090
				return true;
2091
		}
2092
		break;
2093 2094 2095 2096 2097 2098
	case TARGET_PROT_DIN_INSERT:
		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
			break;

		sbc_dif_generate(cmd);
		break;
2099 2100
	default:
		break;
2101 2102 2103 2104 2105
	}

	return false;
}

2106
static void target_complete_ok_work(struct work_struct *work)
2107
{
2108
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2109
	int ret;
2110

2111 2112 2113 2114 2115
	/*
	 * Check if we need to move delayed/dormant tasks from cmds on the
	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
	 * Attribute.
	 */
2116 2117
	transport_complete_task_attr(cmd);

2118 2119 2120 2121 2122 2123 2124
	/*
	 * Check to schedule QUEUE_FULL work, or execute an existing
	 * cmd->transport_qf_callback()
	 */
	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
		schedule_work(&cmd->se_dev->qf_work_queue);

2125
	/*
2126
	 * Check if we need to send a sense buffer from
2127 2128 2129
	 * the struct se_cmd in question.
	 */
	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2130 2131 2132
		WARN_ON(!cmd->scsi_status);
		ret = transport_send_check_condition_and_sense(
					cmd, 0, 1);
2133
		if (ret)
2134 2135 2136 2137 2138
			goto queue_full;

		transport_lun_remove_cmd(cmd);
		transport_cmd_check_stop_to_fabric(cmd);
		return;
2139 2140
	}
	/*
L
Lucas De Marchi 已提交
2141
	 * Check for a callback, used by amongst other things
2142
	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2143
	 */
2144 2145
	if (cmd->transport_complete_callback) {
		sense_reason_t rc;
2146 2147 2148
		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
		bool zero_dl = !(cmd->data_length);
		int post_ret = 0;
2149

2150 2151 2152
		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
		if (!rc && !post_ret) {
			if (caw && zero_dl)
2153 2154
				goto queue_rsp;

2155
			return;
2156 2157 2158
		} else if (rc) {
			ret = transport_send_check_condition_and_sense(cmd,
						rc, 0);
2159
			if (ret)
2160
				goto queue_full;
2161

2162 2163 2164 2165
			transport_lun_remove_cmd(cmd);
			transport_cmd_check_stop_to_fabric(cmd);
			return;
		}
2166
	}
2167

2168
queue_rsp:
2169 2170
	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
2171 2172 2173
		if (cmd->scsi_status)
			goto queue_status;

2174 2175
		atomic_long_add(cmd->data_length,
				&cmd->se_lun->lun_stats.tx_data_octets);
2176 2177 2178 2179 2180
		/*
		 * Perform READ_STRIP of PI using software emulation when
		 * backend had PI enabled, if the transport will not be
		 * performing hardware READ_STRIP offload.
		 */
2181
		if (target_read_prot_action(cmd)) {
2182 2183
			ret = transport_send_check_condition_and_sense(cmd,
						cmd->pi_err, 0);
2184
			if (ret)
2185 2186 2187 2188 2189 2190
				goto queue_full;

			transport_lun_remove_cmd(cmd);
			transport_cmd_check_stop_to_fabric(cmd);
			return;
		}
2191

2192
		trace_target_cmd_complete(cmd);
2193
		ret = cmd->se_tfo->queue_data_in(cmd);
2194
		if (ret)
2195
			goto queue_full;
2196 2197
		break;
	case DMA_TO_DEVICE:
2198 2199
		atomic_long_add(cmd->data_length,
				&cmd->se_lun->lun_stats.rx_data_octets);
2200 2201 2202
		/*
		 * Check if we need to send READ payload for BIDI-COMMAND
		 */
2203
		if (cmd->se_cmd_flags & SCF_BIDI) {
2204 2205
			atomic_long_add(cmd->data_length,
					&cmd->se_lun->lun_stats.tx_data_octets);
2206
			ret = cmd->se_tfo->queue_data_in(cmd);
2207
			if (ret)
2208
				goto queue_full;
2209 2210 2211 2212
			break;
		}
		/* Fall through for DMA_TO_DEVICE */
	case DMA_NONE:
2213
queue_status:
2214
		trace_target_cmd_complete(cmd);
2215
		ret = cmd->se_tfo->queue_status(cmd);
2216
		if (ret)
2217
			goto queue_full;
2218 2219 2220 2221 2222 2223 2224
		break;
	default:
		break;
	}

	transport_lun_remove_cmd(cmd);
	transport_cmd_check_stop_to_fabric(cmd);
2225 2226 2227
	return;

queue_full:
2228
	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2229
		" data_direction: %d\n", cmd, cmd->data_direction);
2230 2231

	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2232 2233
}

2234
void target_free_sgl(struct scatterlist *sgl, int nents)
2235
{
2236 2237
	struct scatterlist *sg;
	int count;
2238

2239 2240
	for_each_sg(sgl, sg, nents, count)
		__free_page(sg_page(sg));
2241

2242 2243
	kfree(sgl);
}
2244
EXPORT_SYMBOL(target_free_sgl);
2245

2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
{
	/*
	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
	 * emulation, and free + reset pointers if necessary..
	 */
	if (!cmd->t_data_sg_orig)
		return;

	kfree(cmd->t_data_sg);
	cmd->t_data_sg = cmd->t_data_sg_orig;
	cmd->t_data_sg_orig = NULL;
	cmd->t_data_nents = cmd->t_data_nents_orig;
	cmd->t_data_nents_orig = 0;
}

2262 2263
static inline void transport_free_pages(struct se_cmd *cmd)
{
2264
	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2265
		target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2266 2267 2268 2269
		cmd->t_prot_sg = NULL;
		cmd->t_prot_nents = 0;
	}

2270
	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2271 2272 2273 2274 2275
		/*
		 * Release special case READ buffer payload required for
		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
		 */
		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2276
			target_free_sgl(cmd->t_bidi_data_sg,
2277 2278 2279 2280
					   cmd->t_bidi_data_nents);
			cmd->t_bidi_data_sg = NULL;
			cmd->t_bidi_data_nents = 0;
		}
2281
		transport_reset_sgl_orig(cmd);
2282
		return;
2283 2284
	}
	transport_reset_sgl_orig(cmd);
2285

2286
	target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2287 2288
	cmd->t_data_sg = NULL;
	cmd->t_data_nents = 0;
2289

2290
	target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2291 2292
	cmd->t_bidi_data_sg = NULL;
	cmd->t_bidi_data_nents = 0;
2293 2294
}

C
Christoph Hellwig 已提交
2295
/**
2296 2297
 * transport_put_cmd - release a reference to a command
 * @cmd:       command to release
C
Christoph Hellwig 已提交
2298
 *
2299
 * This routine releases our reference to the command and frees it if possible.
C
Christoph Hellwig 已提交
2300
 */
2301
static int transport_put_cmd(struct se_cmd *cmd)
C
Christoph Hellwig 已提交
2302 2303 2304
{
	BUG_ON(!cmd->se_tfo);
	/*
2305 2306
	 * If this cmd has been setup with target_get_sess_cmd(), drop
	 * the kref and call ->release_cmd() in kref callback.
C
Christoph Hellwig 已提交
2307
	 */
2308
	return target_put_sess_cmd(cmd);
C
Christoph Hellwig 已提交
2309 2310
}

2311
void *transport_kmap_data_sg(struct se_cmd *cmd)
2312
{
2313
	struct scatterlist *sg = cmd->t_data_sg;
2314 2315
	struct page **pages;
	int i;
2316 2317

	/*
2318 2319 2320
	 * We need to take into account a possible offset here for fabrics like
	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2321
	 */
2322 2323
	if (!cmd->t_data_nents)
		return NULL;
2324 2325 2326

	BUG_ON(!sg);
	if (cmd->t_data_nents == 1)
2327 2328 2329
		return kmap(sg_page(sg)) + sg->offset;

	/* >1 page. use vmap */
2330
	pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2331
	if (!pages)
2332 2333 2334 2335 2336 2337 2338 2339 2340
		return NULL;

	/* convert sg[] to pages[] */
	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
		pages[i] = sg_page(sg);
	}

	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
	kfree(pages);
2341
	if (!cmd->t_data_vmap)
2342 2343 2344
		return NULL;

	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2345
}
2346
EXPORT_SYMBOL(transport_kmap_data_sg);
2347

2348
void transport_kunmap_data_sg(struct se_cmd *cmd)
2349
{
2350
	if (!cmd->t_data_nents) {
2351
		return;
2352
	} else if (cmd->t_data_nents == 1) {
2353
		kunmap(sg_page(cmd->t_data_sg));
2354 2355
		return;
	}
2356 2357 2358

	vunmap(cmd->t_data_vmap);
	cmd->t_data_vmap = NULL;
2359
}
2360
EXPORT_SYMBOL(transport_kunmap_data_sg);
2361

2362
int
2363
target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2364
		 bool zero_page, bool chainable)
2365
{
2366
	struct scatterlist *sg;
2367
	struct page *page;
2368
	gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2369
	unsigned int nalloc, nent;
2370
	int i = 0;
2371

2372 2373 2374 2375
	nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE);
	if (chainable)
		nalloc++;
	sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL);
2376
	if (!sg)
2377
		return -ENOMEM;
2378

2379
	sg_init_table(sg, nalloc);
2380

2381 2382
	while (length) {
		u32 page_len = min_t(u32, length, PAGE_SIZE);
2383
		page = alloc_page(GFP_KERNEL | zero_flag);
2384 2385
		if (!page)
			goto out;
2386

2387
		sg_set_page(&sg[i], page, page_len, 0);
2388 2389
		length -= page_len;
		i++;
2390
	}
2391 2392
	*sgl = sg;
	*nents = nent;
2393 2394
	return 0;

2395
out:
2396
	while (i > 0) {
2397
		i--;
2398
		__free_page(sg_page(&sg[i]));
2399
	}
2400
	kfree(sg);
2401
	return -ENOMEM;
2402
}
2403
EXPORT_SYMBOL(target_alloc_sgl);
2404

2405
/*
2406 2407 2408
 * Allocate any required resources to execute the command.  For writes we
 * might not have the payload yet, so notify the fabric via a call to
 * ->write_pending instead. Otherwise place it on the execution queue.
2409
 */
2410 2411
sense_reason_t
transport_generic_new_cmd(struct se_cmd *cmd)
2412
{
2413
	unsigned long flags;
2414
	int ret = 0;
2415
	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2416

2417 2418 2419
	if (cmd->prot_op != TARGET_PROT_NORMAL &&
	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2420
				       cmd->prot_length, true, false);
2421 2422 2423 2424
		if (ret < 0)
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
	}

2425 2426 2427
	/*
	 * Determine is the TCM fabric module has already allocated physical
	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2428
	 * beforehand.
2429
	 */
2430 2431
	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
	    cmd->data_length) {
2432

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
		if ((cmd->se_cmd_flags & SCF_BIDI) ||
		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
			u32 bidi_length;

			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
				bidi_length = cmd->t_task_nolb *
					      cmd->se_dev->dev_attrib.block_size;
			else
				bidi_length = cmd->data_length;

			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
					       &cmd->t_bidi_data_nents,
2445
					       bidi_length, zero_flag, false);
2446 2447 2448 2449
			if (ret < 0)
				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		}

2450
		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2451
				       cmd->data_length, zero_flag, false);
2452
		if (ret < 0)
2453
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
		    cmd->data_length) {
		/*
		 * Special case for COMPARE_AND_WRITE with fabrics
		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
		 */
		u32 caw_length = cmd->t_task_nolb *
				 cmd->se_dev->dev_attrib.block_size;

		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
				       &cmd->t_bidi_data_nents,
2465
				       caw_length, zero_flag, false);
2466 2467
		if (ret < 0)
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2468 2469
	}
	/*
2470 2471 2472
	 * If this command is not a write we can execute it right here,
	 * for write buffers we need to notify the fabric driver first
	 * and let it call back once the write buffers are ready.
2473
	 */
2474
	target_add_to_state_list(cmd);
2475
	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2476 2477 2478
		target_execute_cmd(cmd);
		return 0;
	}
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	cmd->t_state = TRANSPORT_WRITE_PENDING;
	/*
	 * Determine if frontend context caller is requesting the stopping of
	 * this command for frontend exceptions.
	 */
	if (cmd->transport_state & CMD_T_STOP) {
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
			 __func__, __LINE__, cmd->tag);

		spin_unlock_irqrestore(&cmd->t_state_lock, flags);

		complete_all(&cmd->t_transport_stop_comp);
2493
		return 0;
2494 2495 2496
	}
	cmd->transport_state &= ~CMD_T_ACTIVE;
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2497 2498

	ret = cmd->se_tfo->write_pending(cmd);
2499
	if (ret)
2500 2501
		goto queue_full;

2502
	return 0;
2503

2504 2505
queue_full:
	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2506
	transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2507
	return 0;
2508
}
2509
EXPORT_SYMBOL(transport_generic_new_cmd);
2510

2511
static void transport_write_pending_qf(struct se_cmd *cmd)
2512
{
2513 2514 2515
	int ret;

	ret = cmd->se_tfo->write_pending(cmd);
2516
	if (ret) {
2517 2518
		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
			 cmd);
2519
		transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2520
	}
2521 2522
}

2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
static bool
__transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
			   unsigned long *flags);

static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
{
	unsigned long flags;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
}

2536
int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2537
{
2538
	int ret = 0;
2539
	bool aborted = false, tas = false;
2540

2541
	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2542
		if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2543
			target_wait_free_cmd(cmd, &aborted, &tas);
2544

2545 2546
		if (!aborted || tas)
			ret = transport_put_cmd(cmd);
2547 2548
	} else {
		if (wait_for_tasks)
2549
			target_wait_free_cmd(cmd, &aborted, &tas);
2550 2551 2552 2553 2554
		/*
		 * Handle WRITE failure case where transport_generic_new_cmd()
		 * has already added se_cmd to state_list, but fabric has
		 * failed command before I/O submission.
		 */
2555
		if (cmd->state_active)
2556
			target_remove_from_state_list(cmd);
2557

2558
		if (cmd->se_lun)
2559 2560
			transport_lun_remove_cmd(cmd);

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
		if (!aborted || tas)
			ret = transport_put_cmd(cmd);
	}
	/*
	 * If the task has been internally aborted due to TMR ABORT_TASK
	 * or LUN_RESET, target_core_tmr.c is responsible for performing
	 * the remaining calls to target_put_sess_cmd(), and not the
	 * callers of this function.
	 */
	if (aborted) {
		pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
		wait_for_completion(&cmd->cmd_wait_comp);
		cmd->se_tfo->release_cmd(cmd);
		ret = 1;
2575
	}
2576
	return ret;
2577 2578 2579
}
EXPORT_SYMBOL(transport_generic_free_cmd);

2580 2581
/* target_get_sess_cmd - Add command to active ->sess_cmd_list
 * @se_cmd:	command descriptor to add
2582
 * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2583
 */
2584
int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2585
{
2586
	struct se_session *se_sess = se_cmd->se_sess;
2587
	unsigned long flags;
2588
	int ret = 0;
2589

2590 2591 2592 2593 2594
	/*
	 * Add a second kref if the fabric caller is expecting to handle
	 * fabric acknowledgement that requires two target_put_sess_cmd()
	 * invocations before se_cmd descriptor release.
	 */
2595
	if (ack_kref) {
2596 2597 2598
		if (!kref_get_unless_zero(&se_cmd->cmd_kref))
			return -EINVAL;

2599 2600
		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
	}
2601

2602
	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2603 2604 2605 2606
	if (se_sess->sess_tearing_down) {
		ret = -ESHUTDOWN;
		goto out;
	}
2607
	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2608
out:
2609
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2610 2611

	if (ret && ack_kref)
2612
		target_put_sess_cmd(se_cmd);
2613

2614
	return ret;
2615
}
2616
EXPORT_SYMBOL(target_get_sess_cmd);
2617

2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
static void target_free_cmd_mem(struct se_cmd *cmd)
{
	transport_free_pages(cmd);

	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
		core_tmr_release_req(cmd->se_tmr_req);
	if (cmd->t_task_cdb != cmd->__t_task_cdb)
		kfree(cmd->t_task_cdb);
}

2628
static void target_release_cmd_kref(struct kref *kref)
2629
{
2630 2631
	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
	struct se_session *se_sess = se_cmd->se_sess;
2632
	unsigned long flags;
2633
	bool fabric_stop;
2634

2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
	if (se_sess) {
		spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);

		spin_lock(&se_cmd->t_state_lock);
		fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
			      (se_cmd->transport_state & CMD_T_ABORTED);
		spin_unlock(&se_cmd->t_state_lock);

		if (se_cmd->cmd_wait_set || fabric_stop) {
			list_del_init(&se_cmd->se_cmd_list);
			spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
			target_free_cmd_mem(se_cmd);
			complete(&se_cmd->cmd_wait_comp);
			return;
		}
2650
		list_del_init(&se_cmd->se_cmd_list);
2651
		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2652 2653
	}

2654
	target_free_cmd_mem(se_cmd);
2655 2656 2657
	se_cmd->se_tfo->release_cmd(se_cmd);
}

2658 2659 2660 2661 2662 2663
/**
 * target_put_sess_cmd - decrease the command reference count
 * @se_cmd:	command to drop a reference from
 *
 * Returns 1 if and only if this target_put_sess_cmd() call caused the
 * refcount to drop to zero. Returns zero otherwise.
2664
 */
2665
int target_put_sess_cmd(struct se_cmd *se_cmd)
2666
{
2667
	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2668 2669 2670
}
EXPORT_SYMBOL(target_put_sess_cmd);

2671 2672 2673 2674
/* target_sess_cmd_list_set_waiting - Flag all commands in
 *         sess_cmd_list to complete cmd_wait_comp.  Set
 *         sess_tearing_down so no more commands are queued.
 * @se_sess:	session to flag
2675
 */
2676
void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2677
{
2678
	struct se_cmd *se_cmd, *tmp_cmd;
2679
	unsigned long flags;
2680
	int rc;
2681 2682

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2683 2684 2685 2686
	if (se_sess->sess_tearing_down) {
		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
		return;
	}
2687
	se_sess->sess_tearing_down = 1;
2688
	list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2689

2690 2691
	list_for_each_entry_safe(se_cmd, tmp_cmd,
				 &se_sess->sess_wait_list, se_cmd_list) {
2692 2693 2694 2695 2696 2697
		rc = kref_get_unless_zero(&se_cmd->cmd_kref);
		if (rc) {
			se_cmd->cmd_wait_set = 1;
			spin_lock(&se_cmd->t_state_lock);
			se_cmd->transport_state |= CMD_T_FABRIC_STOP;
			spin_unlock(&se_cmd->t_state_lock);
2698 2699
		} else
			list_del_init(&se_cmd->se_cmd_list);
2700
	}
2701 2702 2703

	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
}
2704
EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2705 2706 2707 2708

/* target_wait_for_sess_cmds - Wait for outstanding descriptors
 * @se_sess:    session to wait for active I/O
 */
2709
void target_wait_for_sess_cmds(struct se_session *se_sess)
2710 2711
{
	struct se_cmd *se_cmd, *tmp_cmd;
2712
	unsigned long flags;
2713
	bool tas;
2714 2715

	list_for_each_entry_safe(se_cmd, tmp_cmd,
2716
				&se_sess->sess_wait_list, se_cmd_list) {
2717 2718 2719 2720
		pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
			" %d\n", se_cmd, se_cmd->t_state,
			se_cmd->se_tfo->get_cmd_state(se_cmd));

2721 2722 2723 2724 2725 2726 2727 2728 2729
		spin_lock_irqsave(&se_cmd->t_state_lock, flags);
		tas = (se_cmd->transport_state & CMD_T_TAS);
		spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);

		if (!target_put_sess_cmd(se_cmd)) {
			if (tas)
				target_put_sess_cmd(se_cmd);
		}

2730 2731 2732 2733
		wait_for_completion(&se_cmd->cmd_wait_comp);
		pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
			" fabric state: %d\n", se_cmd, se_cmd->t_state,
			se_cmd->se_tfo->get_cmd_state(se_cmd));
2734 2735 2736

		se_cmd->se_tfo->release_cmd(se_cmd);
	}
2737 2738 2739 2740 2741

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
	WARN_ON(!list_empty(&se_sess->sess_cmd_list));
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);

2742 2743 2744
}
EXPORT_SYMBOL(target_wait_for_sess_cmds);

2745 2746 2747 2748 2749 2750 2751
static void target_lun_confirm(struct percpu_ref *ref)
{
	struct se_lun *lun = container_of(ref, struct se_lun, lun_ref);

	complete(&lun->lun_ref_comp);
}

2752
void transport_clear_lun_ref(struct se_lun *lun)
2753
{
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
	/*
	 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
	 * the initial reference and schedule confirm kill to be
	 * executed after one full RCU grace period has completed.
	 */
	percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm);
	/*
	 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
	 * to call target_lun_confirm after lun->lun_ref has been marked
	 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
	 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
	 * fails for all new incoming I/O.
	 */
2767
	wait_for_completion(&lun->lun_ref_comp);
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
	/*
	 * The second completion waits for percpu_ref_put_many() to
	 * invoke ->release() after lun->lun_ref has switched to
	 * atomic_t mode, and lun->lun_ref.count has reached zero.
	 *
	 * At this point all target-core lun->lun_ref references have
	 * been dropped via transport_lun_remove_cmd(), and it's safe
	 * to proceed with the remaining LUN shutdown.
	 */
	wait_for_completion(&lun->lun_shutdown_comp);
2778 2779
}

2780 2781 2782 2783 2784
static bool
__transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
			   bool *aborted, bool *tas, unsigned long *flags)
	__releases(&cmd->t_state_lock)
	__acquires(&cmd->t_state_lock)
2785 2786
{

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
	assert_spin_locked(&cmd->t_state_lock);
	WARN_ON_ONCE(!irqs_disabled());

	if (fabric_stop)
		cmd->transport_state |= CMD_T_FABRIC_STOP;

	if (cmd->transport_state & CMD_T_ABORTED)
		*aborted = true;

	if (cmd->transport_state & CMD_T_TAS)
		*tas = true;

2799
	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2800
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2801
		return false;
2802

2803
	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2804
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2805
		return false;
2806

2807 2808 2809 2810
	if (!(cmd->transport_state & CMD_T_ACTIVE))
		return false;

	if (fabric_stop && *aborted)
2811
		return false;
2812

2813
	cmd->transport_state |= CMD_T_STOP;
2814

2815 2816 2817
	pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
		 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag,
		 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2818

2819
	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2820

2821
	wait_for_completion(&cmd->t_transport_stop_comp);
2822

2823
	spin_lock_irqsave(&cmd->t_state_lock, *flags);
2824
	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2825

2826 2827
	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
		 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2828

2829 2830 2831 2832
	return true;
}

/**
2833 2834
 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
 * @cmd: command to wait on
2835 2836 2837 2838 2839 2840 2841 2842
 */
bool transport_wait_for_tasks(struct se_cmd *cmd)
{
	unsigned long flags;
	bool ret, aborted = false, tas = false;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2843
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2844

2845
	return ret;
2846
}
2847
EXPORT_SYMBOL(transport_wait_for_tasks);
2848

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
struct sense_info {
	u8 key;
	u8 asc;
	u8 ascq;
	bool add_sector_info;
};

static const struct sense_info sense_info_table[] = {
	[TCM_NO_SENSE] = {
		.key = NOT_READY
	},
	[TCM_NON_EXISTENT_LUN] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
	},
	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
	},
	[TCM_SECTOR_COUNT_TOO_MANY] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
	},
	[TCM_UNKNOWN_MODE_PAGE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x24, /* INVALID FIELD IN CDB */
	},
	[TCM_CHECK_CONDITION_ABORT_CMD] = {
		.key = ABORTED_COMMAND,
		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
		.ascq = 0x03,
	},
	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
		.key = ABORTED_COMMAND,
		.asc = 0x0c, /* WRITE ERROR */
		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
	},
	[TCM_INVALID_CDB_FIELD] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x24, /* INVALID FIELD IN CDB */
	},
	[TCM_INVALID_PARAMETER_LIST] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
	},
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
	[TCM_TOO_MANY_TARGET_DESCS] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
	},
	[TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
	},
	[TCM_TOO_MANY_SEGMENT_DESCS] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
	},
	[TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
	},
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
	},
	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x0c, /* WRITE ERROR */
		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
	},
	[TCM_SERVICE_CRC_ERROR] = {
		.key = ABORTED_COMMAND,
		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
		.ascq = 0x05, /* N/A */
	},
	[TCM_SNACK_REJECTED] = {
		.key = ABORTED_COMMAND,
		.asc = 0x11, /* READ ERROR */
		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
	},
	[TCM_WRITE_PROTECTED] = {
		.key = DATA_PROTECT,
		.asc = 0x27, /* WRITE PROTECTED */
	},
	[TCM_ADDRESS_OUT_OF_RANGE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
	},
	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
		.key = UNIT_ATTENTION,
	},
	[TCM_CHECK_CONDITION_NOT_READY] = {
		.key = NOT_READY,
	},
	[TCM_MISCOMPARE_VERIFY] = {
		.key = MISCOMPARE,
		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
		.ascq = 0x00,
	},
	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
2953
		.key = ABORTED_COMMAND,
2954 2955 2956 2957 2958
		.asc = 0x10,
		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
		.add_sector_info = true,
	},
	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
2959
		.key = ABORTED_COMMAND,
2960 2961 2962 2963 2964
		.asc = 0x10,
		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
		.add_sector_info = true,
	},
	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
2965
		.key = ABORTED_COMMAND,
2966 2967 2968 2969
		.asc = 0x10,
		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
		.add_sector_info = true,
	},
2970 2971 2972 2973 2974 2975
	[TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
		.key = COPY_ABORTED,
		.asc = 0x0d,
		.ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */

	},
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
		/*
		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
		 * Solaris initiators.  Returning NOT READY instead means the
		 * operations will be retried a finite number of times and we
		 * can survive intermittent errors.
		 */
		.key = NOT_READY,
		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
	},
};

2988
static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
2989 2990 2991 2992 2993
{
	const struct sense_info *si;
	u8 *buffer = cmd->sense_buffer;
	int r = (__force int)reason;
	u8 asc, ascq;
2994
	bool desc_format = target_sense_desc_format(cmd->se_dev);
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012

	if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
		si = &sense_info_table[r];
	else
		si = &sense_info_table[(__force int)
				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];

	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
		WARN_ON_ONCE(asc == 0);
	} else if (si->asc == 0) {
		WARN_ON_ONCE(cmd->scsi_asc == 0);
		asc = cmd->scsi_asc;
		ascq = cmd->scsi_ascq;
	} else {
		asc = si->asc;
		ascq = si->ascq;
	}
3013

3014
	scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
3015
	if (si->add_sector_info)
3016 3017 3018 3019 3020
		return scsi_set_sense_information(buffer,
						  cmd->scsi_sense_length,
						  cmd->bad_sector);

	return 0;
3021 3022
}

3023 3024 3025
int
transport_send_check_condition_and_sense(struct se_cmd *cmd,
		sense_reason_t reason, int from_transport)
3026 3027 3028
{
	unsigned long flags;

3029
	spin_lock_irqsave(&cmd->t_state_lock, flags);
3030
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3031
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3032 3033 3034
		return 0;
	}
	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3035
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3036

3037
	if (!from_transport) {
3038 3039
		int rc;

3040
		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3041 3042
		cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
		cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3043 3044 3045
		rc = translate_sense_reason(cmd, reason);
		if (rc)
			return rc;
3046 3047
	}

3048
	trace_target_cmd_complete(cmd);
3049
	return cmd->se_tfo->queue_status(cmd);
3050 3051 3052
}
EXPORT_SYMBOL(transport_send_check_condition_and_sense);

3053 3054 3055
static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
	__releases(&cmd->t_state_lock)
	__acquires(&cmd->t_state_lock)
3056
{
3057 3058
	int ret;

3059 3060 3061
	assert_spin_locked(&cmd->t_state_lock);
	WARN_ON_ONCE(!irqs_disabled());

3062 3063
	if (!(cmd->transport_state & CMD_T_ABORTED))
		return 0;
3064 3065 3066 3067
	/*
	 * If cmd has been aborted but either no status is to be sent or it has
	 * already been sent, just return
	 */
3068 3069 3070
	if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
		if (send_status)
			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3071
		return 1;
3072
	}
3073

3074 3075
	pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
		" 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
3076

3077
	cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3078
	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3079
	trace_target_cmd_complete(cmd);
3080 3081

	spin_unlock_irq(&cmd->t_state_lock);
3082 3083 3084
	ret = cmd->se_tfo->queue_status(cmd);
	if (ret)
		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3085
	spin_lock_irq(&cmd->t_state_lock);
3086 3087

	return 1;
3088
}
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099

int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
{
	int ret;

	spin_lock_irq(&cmd->t_state_lock);
	ret = __transport_check_aborted_status(cmd, send_status);
	spin_unlock_irq(&cmd->t_state_lock);

	return ret;
}
3100 3101 3102 3103
EXPORT_SYMBOL(transport_check_aborted_status);

void transport_send_task_abort(struct se_cmd *cmd)
{
3104
	unsigned long flags;
3105
	int ret;
3106 3107

	spin_lock_irqsave(&cmd->t_state_lock, flags);
3108
	if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3109 3110 3111 3112 3113
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		return;
	}
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

3114 3115 3116 3117 3118 3119 3120
	/*
	 * If there are still expected incoming fabric WRITEs, we wait
	 * until until they have completed before sending a TASK_ABORTED
	 * response.  This response with TASK_ABORTED status will be
	 * queued back to fabric module by transport_check_aborted_status().
	 */
	if (cmd->data_direction == DMA_TO_DEVICE) {
3121
		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3122 3123 3124 3125 3126
			spin_lock_irqsave(&cmd->t_state_lock, flags);
			if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
				spin_unlock_irqrestore(&cmd->t_state_lock, flags);
				goto send_abort;
			}
3127
			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3128
			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3129
			return;
3130 3131
		}
	}
3132
send_abort:
3133
	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3134

3135 3136
	transport_lun_remove_cmd(cmd);

3137 3138
	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
		 cmd->t_task_cdb[0], cmd->tag);
3139

3140
	trace_target_cmd_complete(cmd);
3141 3142 3143
	ret = cmd->se_tfo->queue_status(cmd);
	if (ret)
		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3144 3145
}

3146
static void target_tmr_work(struct work_struct *work)
3147
{
3148
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3149
	struct se_device *dev = cmd->se_dev;
3150
	struct se_tmr_req *tmr = cmd->se_tmr_req;
3151
	unsigned long flags;
3152 3153
	int ret;

3154 3155 3156 3157 3158 3159 3160 3161
	spin_lock_irqsave(&cmd->t_state_lock, flags);
	if (cmd->transport_state & CMD_T_ABORTED) {
		tmr->response = TMR_FUNCTION_REJECTED;
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		goto check_stop;
	}
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

3162
	switch (tmr->function) {
3163
	case TMR_ABORT_TASK:
3164
		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3165
		break;
3166 3167 3168
	case TMR_ABORT_TASK_SET:
	case TMR_CLEAR_ACA:
	case TMR_CLEAR_TASK_SET:
3169 3170
		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
		break;
3171
	case TMR_LUN_RESET:
3172 3173 3174
		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
					 TMR_FUNCTION_REJECTED;
3175 3176 3177 3178 3179
		if (tmr->response == TMR_FUNCTION_COMPLETE) {
			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
					       cmd->orig_fe_lun, 0x29,
					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
		}
3180
		break;
3181
	case TMR_TARGET_WARM_RESET:
3182 3183
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
3184
	case TMR_TARGET_COLD_RESET:
3185 3186 3187
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	default:
3188
		pr_err("Uknown TMR function: 0x%02x.\n",
3189 3190 3191 3192 3193
				tmr->function);
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	}

3194 3195 3196 3197 3198 3199 3200
	spin_lock_irqsave(&cmd->t_state_lock, flags);
	if (cmd->transport_state & CMD_T_ABORTED) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		goto check_stop;
	}
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

3201
	cmd->se_tfo->queue_tm_rsp(cmd);
3202

3203
check_stop:
3204
	transport_cmd_check_stop_to_fabric(cmd);
3205 3206
}

3207 3208
int transport_generic_handle_tmr(
	struct se_cmd *cmd)
3209
{
3210
	unsigned long flags;
3211
	bool aborted = false;
3212 3213

	spin_lock_irqsave(&cmd->t_state_lock, flags);
3214 3215 3216 3217 3218 3219
	if (cmd->transport_state & CMD_T_ABORTED) {
		aborted = true;
	} else {
		cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
		cmd->transport_state |= CMD_T_ACTIVE;
	}
3220 3221
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

3222 3223 3224 3225 3226 3227 3228 3229
	if (aborted) {
		pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
			"ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
			cmd->se_tmr_req->ref_task_tag, cmd->tag);
		transport_cmd_check_stop_to_fabric(cmd);
		return 0;
	}

3230 3231
	INIT_WORK(&cmd->work, target_tmr_work);
	queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3232 3233
	return 0;
}
3234
EXPORT_SYMBOL(transport_generic_handle_tmr);
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253

bool
target_check_wce(struct se_device *dev)
{
	bool wce = false;

	if (dev->transport->get_write_cache)
		wce = dev->transport->get_write_cache(dev);
	else if (dev->dev_attrib.emulate_write_cache > 0)
		wce = true;

	return wce;
}

bool
target_check_fua(struct se_device *dev)
{
	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
}