davinci_nand.c 23.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
 *
 * Copyright © 2006 Texas Instruments.
 *
 * Port to 2.6.23 Copyright © 2008 by:
 *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
 *   Troy Kisky <troy.kisky@boundarydevices.com>
 *   Dirk Behme <Dirk.Behme@gmail.com>
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/err.h>
#include <linux/io.h>
18
#include <linux/mtd/rawnand.h>
19
#include <linux/mtd/partitions.h>
20
#include <linux/slab.h>
21
#include <linux/of_device.h>
22
#include <linux/of.h>
23

24 25
#include <linux/platform_data/mtd-davinci.h>
#include <linux/platform_data/mtd-davinci-aemif.h>
26 27 28 29 30 31 32

/*
 * This is a device driver for the NAND flash controller found on the
 * various DaVinci family chips.  It handles up to four SoC chipselects,
 * and some flavors of secondary chipselect (e.g. based on A12) as used
 * with multichip packages.
 *
33
 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
34 35 36 37 38 39 40 41 42
 * available on chips like the DM355 and OMAP-L137 and needed with the
 * more error-prone MLC NAND chips.
 *
 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
 * outputs in a "wire-AND" configuration, with no per-chip signals.
 */
struct davinci_nand_info {
	struct nand_chip	chip;

43
	struct platform_device	*pdev;
44

45 46
	bool			is_readmode;

47 48 49
	void __iomem		*base;
	void __iomem		*vaddr;

50
	void __iomem		*current_cs;
51 52 53 54 55 56

	uint32_t		mask_chipsel;
	uint32_t		mask_ale;
	uint32_t		mask_cle;

	uint32_t		core_chipsel;
57 58

	struct davinci_aemif_timing	*timing;
59 60 61
};

static DEFINE_SPINLOCK(davinci_nand_lock);
62
static bool ecc4_busy;
63

64 65 66 67
static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
{
	return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
}
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
		int offset)
{
	return __raw_readl(info->base + offset);
}

static inline void davinci_nand_writel(struct davinci_nand_info *info,
		int offset, unsigned long value)
{
	__raw_writel(value, info->base + offset);
}

/*----------------------------------------------------------------------*/

/*
 * Access to hardware control lines:  ALE, CLE, secondary chipselect.
 */

87
static void nand_davinci_hwcontrol(struct nand_chip *nand, int cmd,
88 89
				   unsigned int ctrl)
{
90
	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(nand));
91
	void __iomem			*addr = info->current_cs;
92 93 94 95

	/* Did the control lines change? */
	if (ctrl & NAND_CTRL_CHANGE) {
		if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
96
			addr += info->mask_cle;
97
		else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
98
			addr += info->mask_ale;
99

100
		nand->legacy.IO_ADDR_W = addr;
101 102 103
	}

	if (cmd != NAND_CMD_NONE)
104
		iowrite8(cmd, nand->legacy.IO_ADDR_W);
105 106
}

107
static void nand_davinci_select_chip(struct nand_chip *nand, int chip)
108
{
109
	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(nand));
110 111

	info->current_cs = info->vaddr;
112 113 114

	/* maybe kick in a second chipselect */
	if (chip > 0)
115
		info->current_cs += info->mask_chipsel;
116

117 118
	info->chip.legacy.IO_ADDR_W = info->current_cs;
	info->chip.legacy.IO_ADDR_R = info->chip.legacy.IO_ADDR_W;
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
}

/*----------------------------------------------------------------------*/

/*
 * 1-bit hardware ECC ... context maintained for each core chipselect
 */

static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
{
	struct davinci_nand_info *info = to_davinci_nand(mtd);

	return davinci_nand_readl(info, NANDF1ECC_OFFSET
			+ 4 * info->core_chipsel);
}

135
static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode)
136 137 138 139 140
{
	struct davinci_nand_info *info;
	uint32_t nandcfr;
	unsigned long flags;

141
	info = to_davinci_nand(nand_to_mtd(chip));
142 143

	/* Reset ECC hardware */
144
	nand_davinci_readecc_1bit(nand_to_mtd(chip));
145 146 147 148 149 150 151 152 153 154 155 156 157 158

	spin_lock_irqsave(&davinci_nand_lock, flags);

	/* Restart ECC hardware */
	nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
	nandcfr |= BIT(8 + info->core_chipsel);
	davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);

	spin_unlock_irqrestore(&davinci_nand_lock, flags);
}

/*
 * Read hardware ECC value and pack into three bytes
 */
159 160
static int nand_davinci_calculate_1bit(struct nand_chip *chip,
				       const u_char *dat, u_char *ecc_code)
161
{
162
	unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip));
163 164 165 166 167 168 169 170 171 172 173
	unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);

	/* invert so that erased block ecc is correct */
	ecc24 = ~ecc24;
	ecc_code[0] = (u_char)(ecc24);
	ecc_code[1] = (u_char)(ecc24 >> 8);
	ecc_code[2] = (u_char)(ecc24 >> 16);

	return 0;
}

174
static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat,
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
				     u_char *read_ecc, u_char *calc_ecc)
{
	uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
					  (read_ecc[2] << 16);
	uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
					  (calc_ecc[2] << 16);
	uint32_t diff = eccCalc ^ eccNand;

	if (diff) {
		if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
			/* Correctable error */
			if ((diff >> (12 + 3)) < chip->ecc.size) {
				dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
				return 1;
			} else {
190
				return -EBADMSG;
191 192 193 194 195 196 197
			}
		} else if (!(diff & (diff - 1))) {
			/* Single bit ECC error in the ECC itself,
			 * nothing to fix */
			return 1;
		} else {
			/* Uncorrectable error */
198
			return -EBADMSG;
199 200 201 202 203 204 205 206
		}

	}
	return 0;
}

/*----------------------------------------------------------------------*/

207 208 209 210 211 212 213 214 215 216 217 218
/*
 * 4-bit hardware ECC ... context maintained over entire AEMIF
 *
 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
 * since that forces use of a problematic "infix OOB" layout.
 * Among other things, it trashes manufacturer bad block markers.
 * Also, and specific to this hardware, it ECC-protects the "prepad"
 * in the OOB ... while having ECC protection for parts of OOB would
 * seem useful, the current MTD stack sometimes wants to update the
 * OOB without recomputing ECC.
 */

219
static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode)
220
{
221
	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
222 223 224
	unsigned long flags;
	u32 val;

225 226 227
	/* Reset ECC hardware */
	davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
	spin_lock_irqsave(&davinci_nand_lock, flags);

	/* Start 4-bit ECC calculation for read/write */
	val = davinci_nand_readl(info, NANDFCR_OFFSET);
	val &= ~(0x03 << 4);
	val |= (info->core_chipsel << 4) | BIT(12);
	davinci_nand_writel(info, NANDFCR_OFFSET, val);

	info->is_readmode = (mode == NAND_ECC_READ);

	spin_unlock_irqrestore(&davinci_nand_lock, flags);
}

/* Read raw ECC code after writing to NAND. */
static void
nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
{
	const u32 mask = 0x03ff03ff;

	code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
	code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
	code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
	code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
}

/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
254 255
static int nand_davinci_calculate_4bit(struct nand_chip *chip,
				       const u_char *dat, u_char *ecc_code)
256
{
257
	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	u32 raw_ecc[4], *p;
	unsigned i;

	/* After a read, terminate ECC calculation by a dummy read
	 * of some 4-bit ECC register.  ECC covers everything that
	 * was read; correct() just uses the hardware state, so
	 * ecc_code is not needed.
	 */
	if (info->is_readmode) {
		davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
		return 0;
	}

	/* Pack eight raw 10-bit ecc values into ten bytes, making
	 * two passes which each convert four values (in upper and
	 * lower halves of two 32-bit words) into five bytes.  The
	 * ROM boot loader uses this same packing scheme.
	 */
	nand_davinci_readecc_4bit(info, raw_ecc);
	for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
		*ecc_code++ =   p[0]        & 0xff;
		*ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
		*ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
		*ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
		*ecc_code++ =  (p[1] >> 18) & 0xff;
	}

	return 0;
}

/* Correct up to 4 bits in data we just read, using state left in the
 * hardware plus the ecc_code computed when it was first written.
 */
291 292
static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data,
				     u_char *ecc_code, u_char *null)
293 294
{
	int i;
295
	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
296 297 298
	unsigned short ecc10[8];
	unsigned short *ecc16;
	u32 syndrome[4];
299
	u32 ecc_state;
300
	unsigned num_errors, corrected;
301
	unsigned long timeo;
302 303 304 305

	/* Unpack ten bytes into eight 10 bit values.  We know we're
	 * little-endian, and use type punning for less shifting/masking.
	 */
306
	if (WARN_ON(0x01 & (uintptr_t)ecc_code))
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
		return -EINVAL;
	ecc16 = (unsigned short *)ecc_code;

	ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
	ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
	ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
	ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
	ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
	ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
	ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
	ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;

	/* Tell ECC controller about the expected ECC codes. */
	for (i = 7; i >= 0; i--)
		davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);

	/* Allow time for syndrome calculation ... then read it.
	 * A syndrome of all zeroes 0 means no detected errors.
	 */
	davinci_nand_readl(info, NANDFSR_OFFSET);
	nand_davinci_readecc_4bit(info, syndrome);
	if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
		return 0;

331 332 333 334 335 336
	/*
	 * Clear any previous address calculation by doing a dummy read of an
	 * error address register.
	 */
	davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);

337 338 339 340 341 342
	/* Start address calculation, and wait for it to complete.
	 * We _could_ start reading more data while this is working,
	 * to speed up the overall page read.
	 */
	davinci_nand_writel(info, NANDFCR_OFFSET,
			davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
343 344 345 346 347 348

	/*
	 * ECC_STATE field reads 0x3 (Error correction complete) immediately
	 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
	 * begin trying to poll for the state, you may fall right out of your
	 * loop without any of the correction calculations having taken place.
349 350 351
	 * The recommendation from the hardware team is to initially delay as
	 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
	 * correction state.
352
	 */
353
	timeo = jiffies + usecs_to_jiffies(100);
354 355 356 357 358 359
	do {
		ecc_state = (davinci_nand_readl(info,
				NANDFSR_OFFSET) >> 8) & 0x0f;
		cpu_relax();
	} while ((ecc_state < 4) && time_before(jiffies, timeo));

360 361 362 363 364
	for (;;) {
		u32	fsr = davinci_nand_readl(info, NANDFSR_OFFSET);

		switch ((fsr >> 8) & 0x0f) {
		case 0:		/* no error, should not happen */
365
			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
366 367
			return 0;
		case 1:		/* five or more errors detected */
368
			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
369
			return -EBADMSG;
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
		case 2:		/* error addresses computed */
		case 3:
			num_errors = 1 + ((fsr >> 16) & 0x03);
			goto correct;
		default:	/* still working on it */
			cpu_relax();
			continue;
		}
	}

correct:
	/* correct each error */
	for (i = 0, corrected = 0; i < num_errors; i++) {
		int error_address, error_value;

		if (i > 1) {
			error_address = davinci_nand_readl(info,
						NAND_ERR_ADD2_OFFSET);
			error_value = davinci_nand_readl(info,
						NAND_ERR_ERRVAL2_OFFSET);
		} else {
			error_address = davinci_nand_readl(info,
						NAND_ERR_ADD1_OFFSET);
			error_value = davinci_nand_readl(info,
						NAND_ERR_ERRVAL1_OFFSET);
		}

		if (i & 1) {
			error_address >>= 16;
			error_value >>= 16;
		}
		error_address &= 0x3ff;
		error_address = (512 + 7) - error_address;

		if (error_address < 512) {
			data[error_address] ^= error_value;
			corrected++;
		}
	}

	return corrected;
}

/*----------------------------------------------------------------------*/

415 416 417 418 419 420 421 422 423
/*
 * NOTE:  NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
 * how these chips are normally wired.  This translates to both 8 and 16
 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
 *
 * For now we assume that configuration, or any other one which ignores
 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
 * and have that transparently morphed into multiple NAND operations.
 */
424 425
static void nand_davinci_read_buf(struct nand_chip *chip, uint8_t *buf,
				  int len)
426
{
427
	if ((0x03 & ((uintptr_t)buf)) == 0 && (0x03 & len) == 0)
428
		ioread32_rep(chip->legacy.IO_ADDR_R, buf, len >> 2);
429
	else if ((0x01 & ((uintptr_t)buf)) == 0 && (0x01 & len) == 0)
430
		ioread16_rep(chip->legacy.IO_ADDR_R, buf, len >> 1);
431
	else
432
		ioread8_rep(chip->legacy.IO_ADDR_R, buf, len);
433 434
}

435 436
static void nand_davinci_write_buf(struct nand_chip *chip, const uint8_t *buf,
				   int len)
437
{
438
	if ((0x03 & ((uintptr_t)buf)) == 0 && (0x03 & len) == 0)
439
		iowrite32_rep(chip->legacy.IO_ADDR_R, buf, len >> 2);
440
	else if ((0x01 & ((uintptr_t)buf)) == 0 && (0x01 & len) == 0)
441
		iowrite16_rep(chip->legacy.IO_ADDR_R, buf, len >> 1);
442
	else
443
		iowrite8_rep(chip->legacy.IO_ADDR_R, buf, len);
444 445 446 447 448 449
}

/*
 * Check hardware register for wait status. Returns 1 if device is ready,
 * 0 if it is still busy.
 */
450
static int nand_davinci_dev_ready(struct nand_chip *chip)
451
{
452
	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
453 454 455 456 457 458

	return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
}

/*----------------------------------------------------------------------*/

459 460 461 462
/* An ECC layout for using 4-bit ECC with small-page flash, storing
 * ten ECC bytes plus the manufacturer's bad block marker byte, and
 * and not overlapping the default BBT markers.
 */
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
				      struct mtd_oob_region *oobregion)
{
	if (section > 2)
		return -ERANGE;

	if (!section) {
		oobregion->offset = 0;
		oobregion->length = 5;
	} else if (section == 1) {
		oobregion->offset = 6;
		oobregion->length = 2;
	} else {
		oobregion->offset = 13;
		oobregion->length = 3;
	}
479

480 481
	return 0;
}
482

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
				       struct mtd_oob_region *oobregion)
{
	if (section > 1)
		return -ERANGE;

	if (!section) {
		oobregion->offset = 8;
		oobregion->length = 5;
	} else {
		oobregion->offset = 16;
		oobregion->length = mtd->oobsize - 16;
	}

	return 0;
}

static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
	.ecc = hwecc4_ooblayout_small_ecc,
	.free = hwecc4_ooblayout_small_free,
503 504
};

505 506 507
#if defined(CONFIG_OF)
static const struct of_device_id davinci_nand_of_match[] = {
	{.compatible = "ti,davinci-nand", },
508
	{.compatible = "ti,keystone-nand", },
509
	{},
510
};
511 512 513 514 515
MODULE_DEVICE_TABLE(of, davinci_nand_of_match);

static struct davinci_nand_pdata
	*nand_davinci_get_pdata(struct platform_device *pdev)
{
J
Jingoo Han 已提交
516
	if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
517 518 519 520 521 522 523 524 525
		struct davinci_nand_pdata *pdata;
		const char *mode;
		u32 prop;

		pdata =  devm_kzalloc(&pdev->dev,
				sizeof(struct davinci_nand_pdata),
				GFP_KERNEL);
		pdev->dev.platform_data = pdata;
		if (!pdata)
526
			return ERR_PTR(-ENOMEM);
527 528
		if (!of_property_read_u32(pdev->dev.of_node,
			"ti,davinci-chipselect", &prop))
529
			pdata->core_chipsel = prop;
530 531 532
		else
			return ERR_PTR(-EINVAL);

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
		if (!of_property_read_u32(pdev->dev.of_node,
			"ti,davinci-mask-ale", &prop))
			pdata->mask_ale = prop;
		if (!of_property_read_u32(pdev->dev.of_node,
			"ti,davinci-mask-cle", &prop))
			pdata->mask_cle = prop;
		if (!of_property_read_u32(pdev->dev.of_node,
			"ti,davinci-mask-chipsel", &prop))
			pdata->mask_chipsel = prop;
		if (!of_property_read_string(pdev->dev.of_node,
			"ti,davinci-ecc-mode", &mode)) {
			if (!strncmp("none", mode, 4))
				pdata->ecc_mode = NAND_ECC_NONE;
			if (!strncmp("soft", mode, 4))
				pdata->ecc_mode = NAND_ECC_SOFT;
			if (!strncmp("hw", mode, 2))
				pdata->ecc_mode = NAND_ECC_HW;
		}
		if (!of_property_read_u32(pdev->dev.of_node,
			"ti,davinci-ecc-bits", &prop))
			pdata->ecc_bits = prop;
554

555 556 557 558
		if (!of_property_read_u32(pdev->dev.of_node,
			"ti,davinci-nand-buswidth", &prop) && prop == 16)
			pdata->options |= NAND_BUSWIDTH_16;

559 560
		if (of_property_read_bool(pdev->dev.of_node,
			"ti,davinci-nand-use-bbt"))
561
			pdata->bbt_options = NAND_BBT_USE_FLASH;
562

563 564 565 566 567 568 569 570 571 572 573
		/*
		 * Since kernel v4.8, this driver has been fixed to enable
		 * use of 4-bit hardware ECC with subpages and verified on
		 * TI's keystone EVMs (K2L, K2HK and K2E).
		 * However, in the interest of not breaking systems using
		 * existing UBI partitions, sub-page writes are not being
		 * (re)enabled. If you want to use subpage writes on Keystone
		 * platforms (i.e. do not have any existing UBI partitions),
		 * then use "ti,davinci-nand" as the compatible in your
		 * device-tree file.
		 */
574 575 576 577
		if (of_device_is_compatible(pdev->dev.of_node,
					    "ti,keystone-nand")) {
			pdata->options |= NAND_NO_SUBPAGE_WRITE;
		}
578 579
	}

J
Jingoo Han 已提交
580
	return dev_get_platdata(&pdev->dev);
581 582 583 584 585
}
#else
static struct davinci_nand_pdata
	*nand_davinci_get_pdata(struct platform_device *pdev)
{
J
Jingoo Han 已提交
586
	return dev_get_platdata(&pdev->dev);
587 588 589
}
#endif

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
static int davinci_nand_attach_chip(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct davinci_nand_info *info = to_davinci_nand(mtd);
	struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev);
	int ret = 0;

	if (IS_ERR(pdata))
		return PTR_ERR(pdata);

	switch (info->chip.ecc.mode) {
	case NAND_ECC_NONE:
		pdata->ecc_bits = 0;
		break;
	case NAND_ECC_SOFT:
		pdata->ecc_bits = 0;
		/*
		 * This driver expects Hamming based ECC when ecc_mode is set
		 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
		 * avoid adding an extra ->ecc_algo field to
		 * davinci_nand_pdata.
		 */
		info->chip.ecc.algo = NAND_ECC_HAMMING;
		break;
	case NAND_ECC_HW:
		if (pdata->ecc_bits == 4) {
			/*
			 * No sanity checks:  CPUs must support this,
			 * and the chips may not use NAND_BUSWIDTH_16.
			 */

			/* No sharing 4-bit hardware between chipselects yet */
			spin_lock_irq(&davinci_nand_lock);
			if (ecc4_busy)
				ret = -EBUSY;
			else
				ecc4_busy = true;
			spin_unlock_irq(&davinci_nand_lock);

			if (ret == -EBUSY)
				return ret;

			info->chip.ecc.calculate = nand_davinci_calculate_4bit;
			info->chip.ecc.correct = nand_davinci_correct_4bit;
			info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
			info->chip.ecc.bytes = 10;
			info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
			info->chip.ecc.algo = NAND_ECC_BCH;
		} else {
			/* 1bit ecc hamming */
			info->chip.ecc.calculate = nand_davinci_calculate_1bit;
			info->chip.ecc.correct = nand_davinci_correct_1bit;
			info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
			info->chip.ecc.bytes = 3;
			info->chip.ecc.algo = NAND_ECC_HAMMING;
		}
		info->chip.ecc.size = 512;
		info->chip.ecc.strength = pdata->ecc_bits;
		break;
	default:
		return -EINVAL;
	}

	/*
	 * Update ECC layout if needed ... for 1-bit HW ECC, the default
	 * is OK, but it allocates 6 bytes when only 3 are needed (for
	 * each 512 bytes).  For the 4-bit HW ECC, that default is not
	 * usable:  10 bytes are needed, not 6.
	 */
	if (pdata->ecc_bits == 4) {
		int chunks = mtd->writesize / 512;

		if (!chunks || mtd->oobsize < 16) {
			dev_dbg(&info->pdev->dev, "too small\n");
			return -EINVAL;
		}

		/* For small page chips, preserve the manufacturer's
		 * badblock marking data ... and make sure a flash BBT
		 * table marker fits in the free bytes.
		 */
		if (chunks == 1) {
			mtd_set_ooblayout(mtd, &hwecc4_small_ooblayout_ops);
		} else if (chunks == 4 || chunks == 8) {
			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
			info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
		} else {
			return -EIO;
		}
	}

	return ret;
}

static const struct nand_controller_ops davinci_nand_controller_ops = {
	.attach_chip = davinci_nand_attach_chip,
};

688
static int nand_davinci_probe(struct platform_device *pdev)
689
{
690
	struct davinci_nand_pdata	*pdata;
691 692 693 694 695 696 697
	struct davinci_nand_info	*info;
	struct resource			*res1;
	struct resource			*res2;
	void __iomem			*vaddr;
	void __iomem			*base;
	int				ret;
	uint32_t			val;
698
	struct mtd_info			*mtd;
699

700
	pdata = nand_davinci_get_pdata(pdev);
701 702 703
	if (IS_ERR(pdata))
		return PTR_ERR(pdata);

704 705 706 707
	/* insist on board-specific configuration */
	if (!pdata)
		return -ENODEV;

708
	/* which external chipselect will we be managing? */
709
	if (pdata->core_chipsel < 0 || pdata->core_chipsel > 3)
710 711
		return -ENODEV;

712
	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
713
	if (!info)
714
		return -ENOMEM;
715 716 717 718 719 720 721

	platform_set_drvdata(pdev, info);

	res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	if (!res1 || !res2) {
		dev_err(&pdev->dev, "resource missing\n");
722
		return -EINVAL;
723 724
	}

725
	vaddr = devm_ioremap_resource(&pdev->dev, res1);
726 727 728
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

729 730 731 732 733 734 735 736 737 738 739
	/*
	 * This registers range is used to setup NAND settings. In case with
	 * TI AEMIF driver, the same memory address range is requested already
	 * by AEMIF, so we cannot request it twice, just ioremap.
	 * The AEMIF and NAND drivers not use the same registers in this range.
	 */
	base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
	if (!base) {
		dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
		return -EADDRNOTAVAIL;
	}
740

741
	info->pdev		= pdev;
742 743 744
	info->base		= base;
	info->vaddr		= vaddr;

745 746
	mtd			= nand_to_mtd(&info->chip);
	mtd->dev.parent		= &pdev->dev;
747
	nand_set_flash_node(&info->chip, pdev->dev.of_node);
748

749 750
	info->chip.legacy.IO_ADDR_R	= vaddr;
	info->chip.legacy.IO_ADDR_W	= vaddr;
751
	info->chip.legacy.chip_delay	= 0;
752
	info->chip.legacy.select_chip	= nand_davinci_select_chip;
753

754
	/* options such as NAND_BBT_USE_FLASH */
755 756
	info->chip.bbt_options	= pdata->bbt_options;
	/* options such as 16-bit widths */
757
	info->chip.options	= pdata->options;
758 759
	info->chip.bbt_td	= pdata->bbt_td;
	info->chip.bbt_md	= pdata->bbt_md;
760
	info->timing		= pdata->timing;
761

762
	info->current_cs	= info->vaddr;
763
	info->core_chipsel	= pdata->core_chipsel;
764 765 766
	info->mask_chipsel	= pdata->mask_chipsel;

	/* use nandboot-capable ALE/CLE masks by default */
767
	info->mask_ale		= pdata->mask_ale ? : MASK_ALE;
768
	info->mask_cle		= pdata->mask_cle ? : MASK_CLE;
769 770

	/* Set address of hardware control function */
771
	info->chip.legacy.cmd_ctrl	= nand_davinci_hwcontrol;
772
	info->chip.legacy.dev_ready	= nand_davinci_dev_ready;
773 774

	/* Speed up buffer I/O */
775 776
	info->chip.legacy.read_buf     = nand_davinci_read_buf;
	info->chip.legacy.write_buf    = nand_davinci_write_buf;
777

778
	/* Use board-specific ECC config */
779
	info->chip.ecc.mode	= pdata->ecc_mode;
780

781 782 783 784 785 786 787 788 789 790
	spin_lock_irq(&davinci_nand_lock);

	/* put CSxNAND into NAND mode */
	val = davinci_nand_readl(info, NANDFCR_OFFSET);
	val |= BIT(info->core_chipsel);
	davinci_nand_writel(info, NANDFCR_OFFSET, val);

	spin_unlock_irq(&davinci_nand_lock);

	/* Scan to find existence of the device(s) */
791
	info->chip.legacy.dummy_controller.ops = &davinci_nand_controller_ops;
792
	ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1);
793 794
	if (ret < 0) {
		dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
795
		return ret;
796 797
	}

798
	if (pdata->parts)
799
		ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
800
	else
801
		ret = mtd_device_register(mtd, NULL, 0);
802
	if (ret < 0)
803
		goto err_cleanup_nand;
804 805 806 807 808 809 810

	val = davinci_nand_readl(info, NRCSR_OFFSET);
	dev_info(&pdev->dev, "controller rev. %d.%d\n",
	       (val >> 8) & 0xff, val & 0xff);

	return 0;

811 812 813
err_cleanup_nand:
	nand_cleanup(&info->chip);

814 815 816
	return ret;
}

817
static int nand_davinci_remove(struct platform_device *pdev)
818 819 820
{
	struct davinci_nand_info *info = platform_get_drvdata(pdev);

821 822 823 824 825
	spin_lock_irq(&davinci_nand_lock);
	if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
		ecc4_busy = false;
	spin_unlock_irq(&davinci_nand_lock);

826
	nand_release(&info->chip);
827 828 829 830 831

	return 0;
}

static struct platform_driver nand_davinci_driver = {
832 833
	.probe		= nand_davinci_probe,
	.remove		= nand_davinci_remove,
834 835
	.driver		= {
		.name	= "davinci_nand",
836
		.of_match_table = of_match_ptr(davinci_nand_of_match),
837 838 839 840
	},
};
MODULE_ALIAS("platform:davinci_nand");

841
module_platform_driver(nand_davinci_driver);
842 843 844 845 846

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Texas Instruments");
MODULE_DESCRIPTION("Davinci NAND flash driver");