davinci_nand.c 24.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
 *
 * Copyright © 2006 Texas Instruments.
 *
 * Port to 2.6.23 Copyright © 2008 by:
 *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
 *   Troy Kisky <troy.kisky@boundarydevices.com>
 *   Dirk Behme <Dirk.Behme@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/err.h>
#include <linux/io.h>
31
#include <linux/mtd/rawnand.h>
32
#include <linux/mtd/partitions.h>
33
#include <linux/slab.h>
34
#include <linux/of_device.h>
35
#include <linux/of.h>
36

37 38
#include <linux/platform_data/mtd-davinci.h>
#include <linux/platform_data/mtd-davinci-aemif.h>
39 40 41 42 43 44 45

/*
 * This is a device driver for the NAND flash controller found on the
 * various DaVinci family chips.  It handles up to four SoC chipselects,
 * and some flavors of secondary chipselect (e.g. based on A12) as used
 * with multichip packages.
 *
46
 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
47 48 49 50 51 52 53 54 55
 * available on chips like the DM355 and OMAP-L137 and needed with the
 * more error-prone MLC NAND chips.
 *
 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
 * outputs in a "wire-AND" configuration, with no per-chip signals.
 */
struct davinci_nand_info {
	struct nand_chip	chip;

56
	struct platform_device	*pdev;
57

58 59
	bool			is_readmode;

60 61 62
	void __iomem		*base;
	void __iomem		*vaddr;

63
	void __iomem		*current_cs;
64 65 66 67 68 69

	uint32_t		mask_chipsel;
	uint32_t		mask_ale;
	uint32_t		mask_cle;

	uint32_t		core_chipsel;
70 71

	struct davinci_aemif_timing	*timing;
72 73 74
};

static DEFINE_SPINLOCK(davinci_nand_lock);
75
static bool ecc4_busy;
76

77 78 79 80
static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
{
	return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
}
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
		int offset)
{
	return __raw_readl(info->base + offset);
}

static inline void davinci_nand_writel(struct davinci_nand_info *info,
		int offset, unsigned long value)
{
	__raw_writel(value, info->base + offset);
}

/*----------------------------------------------------------------------*/

/*
 * Access to hardware control lines:  ALE, CLE, secondary chipselect.
 */

static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
				   unsigned int ctrl)
{
	struct davinci_nand_info	*info = to_davinci_nand(mtd);
104
	void __iomem			*addr = info->current_cs;
105
	struct nand_chip		*nand = mtd_to_nand(mtd);
106 107 108 109

	/* Did the control lines change? */
	if (ctrl & NAND_CTRL_CHANGE) {
		if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
110
			addr += info->mask_cle;
111
		else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
112
			addr += info->mask_ale;
113

114
		nand->IO_ADDR_W = addr;
115 116 117 118 119 120 121 122 123
	}

	if (cmd != NAND_CMD_NONE)
		iowrite8(cmd, nand->IO_ADDR_W);
}

static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
{
	struct davinci_nand_info	*info = to_davinci_nand(mtd);
124 125

	info->current_cs = info->vaddr;
126 127 128

	/* maybe kick in a second chipselect */
	if (chip > 0)
129
		info->current_cs += info->mask_chipsel;
130

131
	info->chip.IO_ADDR_W = info->current_cs;
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
	info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
}

/*----------------------------------------------------------------------*/

/*
 * 1-bit hardware ECC ... context maintained for each core chipselect
 */

static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
{
	struct davinci_nand_info *info = to_davinci_nand(mtd);

	return davinci_nand_readl(info, NANDF1ECC_OFFSET
			+ 4 * info->core_chipsel);
}

149
static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode)
150 151 152 153 154
{
	struct davinci_nand_info *info;
	uint32_t nandcfr;
	unsigned long flags;

155
	info = to_davinci_nand(nand_to_mtd(chip));
156 157

	/* Reset ECC hardware */
158
	nand_davinci_readecc_1bit(nand_to_mtd(chip));
159 160 161 162 163 164 165 166 167 168 169 170 171 172

	spin_lock_irqsave(&davinci_nand_lock, flags);

	/* Restart ECC hardware */
	nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
	nandcfr |= BIT(8 + info->core_chipsel);
	davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);

	spin_unlock_irqrestore(&davinci_nand_lock, flags);
}

/*
 * Read hardware ECC value and pack into three bytes
 */
173 174
static int nand_davinci_calculate_1bit(struct nand_chip *chip,
				       const u_char *dat, u_char *ecc_code)
175
{
176
	unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip));
177 178 179 180 181 182 183 184 185 186 187 188 189 190
	unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);

	/* invert so that erased block ecc is correct */
	ecc24 = ~ecc24;
	ecc_code[0] = (u_char)(ecc24);
	ecc_code[1] = (u_char)(ecc24 >> 8);
	ecc_code[2] = (u_char)(ecc24 >> 16);

	return 0;
}

static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
				     u_char *read_ecc, u_char *calc_ecc)
{
191
	struct nand_chip *chip = mtd_to_nand(mtd);
192 193 194 195 196 197 198 199 200 201 202 203 204
	uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
					  (read_ecc[2] << 16);
	uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
					  (calc_ecc[2] << 16);
	uint32_t diff = eccCalc ^ eccNand;

	if (diff) {
		if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
			/* Correctable error */
			if ((diff >> (12 + 3)) < chip->ecc.size) {
				dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
				return 1;
			} else {
205
				return -EBADMSG;
206 207 208 209 210 211 212
			}
		} else if (!(diff & (diff - 1))) {
			/* Single bit ECC error in the ECC itself,
			 * nothing to fix */
			return 1;
		} else {
			/* Uncorrectable error */
213
			return -EBADMSG;
214 215 216 217 218 219 220 221
		}

	}
	return 0;
}

/*----------------------------------------------------------------------*/

222 223 224 225 226 227 228 229 230 231 232 233
/*
 * 4-bit hardware ECC ... context maintained over entire AEMIF
 *
 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
 * since that forces use of a problematic "infix OOB" layout.
 * Among other things, it trashes manufacturer bad block markers.
 * Also, and specific to this hardware, it ECC-protects the "prepad"
 * in the OOB ... while having ECC protection for parts of OOB would
 * seem useful, the current MTD stack sometimes wants to update the
 * OOB without recomputing ECC.
 */

234
static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode)
235
{
236
	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
237 238 239
	unsigned long flags;
	u32 val;

240 241 242
	/* Reset ECC hardware */
	davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	spin_lock_irqsave(&davinci_nand_lock, flags);

	/* Start 4-bit ECC calculation for read/write */
	val = davinci_nand_readl(info, NANDFCR_OFFSET);
	val &= ~(0x03 << 4);
	val |= (info->core_chipsel << 4) | BIT(12);
	davinci_nand_writel(info, NANDFCR_OFFSET, val);

	info->is_readmode = (mode == NAND_ECC_READ);

	spin_unlock_irqrestore(&davinci_nand_lock, flags);
}

/* Read raw ECC code after writing to NAND. */
static void
nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
{
	const u32 mask = 0x03ff03ff;

	code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
	code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
	code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
	code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
}

/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
269 270
static int nand_davinci_calculate_4bit(struct nand_chip *chip,
				       const u_char *dat, u_char *ecc_code)
271
{
272
	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
	u32 raw_ecc[4], *p;
	unsigned i;

	/* After a read, terminate ECC calculation by a dummy read
	 * of some 4-bit ECC register.  ECC covers everything that
	 * was read; correct() just uses the hardware state, so
	 * ecc_code is not needed.
	 */
	if (info->is_readmode) {
		davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
		return 0;
	}

	/* Pack eight raw 10-bit ecc values into ten bytes, making
	 * two passes which each convert four values (in upper and
	 * lower halves of two 32-bit words) into five bytes.  The
	 * ROM boot loader uses this same packing scheme.
	 */
	nand_davinci_readecc_4bit(info, raw_ecc);
	for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
		*ecc_code++ =   p[0]        & 0xff;
		*ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
		*ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
		*ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
		*ecc_code++ =  (p[1] >> 18) & 0xff;
	}

	return 0;
}

/* Correct up to 4 bits in data we just read, using state left in the
 * hardware plus the ecc_code computed when it was first written.
 */
static int nand_davinci_correct_4bit(struct mtd_info *mtd,
		u_char *data, u_char *ecc_code, u_char *null)
{
	int i;
	struct davinci_nand_info *info = to_davinci_nand(mtd);
	unsigned short ecc10[8];
	unsigned short *ecc16;
	u32 syndrome[4];
314
	u32 ecc_state;
315
	unsigned num_errors, corrected;
316
	unsigned long timeo;
317 318 319 320

	/* Unpack ten bytes into eight 10 bit values.  We know we're
	 * little-endian, and use type punning for less shifting/masking.
	 */
321
	if (WARN_ON(0x01 & (uintptr_t)ecc_code))
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
		return -EINVAL;
	ecc16 = (unsigned short *)ecc_code;

	ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
	ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
	ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
	ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
	ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
	ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
	ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
	ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;

	/* Tell ECC controller about the expected ECC codes. */
	for (i = 7; i >= 0; i--)
		davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);

	/* Allow time for syndrome calculation ... then read it.
	 * A syndrome of all zeroes 0 means no detected errors.
	 */
	davinci_nand_readl(info, NANDFSR_OFFSET);
	nand_davinci_readecc_4bit(info, syndrome);
	if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
		return 0;

346 347 348 349 350 351
	/*
	 * Clear any previous address calculation by doing a dummy read of an
	 * error address register.
	 */
	davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);

352 353 354 355 356 357
	/* Start address calculation, and wait for it to complete.
	 * We _could_ start reading more data while this is working,
	 * to speed up the overall page read.
	 */
	davinci_nand_writel(info, NANDFCR_OFFSET,
			davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
358 359 360 361 362 363

	/*
	 * ECC_STATE field reads 0x3 (Error correction complete) immediately
	 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
	 * begin trying to poll for the state, you may fall right out of your
	 * loop without any of the correction calculations having taken place.
364 365 366
	 * The recommendation from the hardware team is to initially delay as
	 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
	 * correction state.
367
	 */
368
	timeo = jiffies + usecs_to_jiffies(100);
369 370 371 372 373 374
	do {
		ecc_state = (davinci_nand_readl(info,
				NANDFSR_OFFSET) >> 8) & 0x0f;
		cpu_relax();
	} while ((ecc_state < 4) && time_before(jiffies, timeo));

375 376 377 378 379
	for (;;) {
		u32	fsr = davinci_nand_readl(info, NANDFSR_OFFSET);

		switch ((fsr >> 8) & 0x0f) {
		case 0:		/* no error, should not happen */
380
			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
381 382
			return 0;
		case 1:		/* five or more errors detected */
383
			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
384
			return -EBADMSG;
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
		case 2:		/* error addresses computed */
		case 3:
			num_errors = 1 + ((fsr >> 16) & 0x03);
			goto correct;
		default:	/* still working on it */
			cpu_relax();
			continue;
		}
	}

correct:
	/* correct each error */
	for (i = 0, corrected = 0; i < num_errors; i++) {
		int error_address, error_value;

		if (i > 1) {
			error_address = davinci_nand_readl(info,
						NAND_ERR_ADD2_OFFSET);
			error_value = davinci_nand_readl(info,
						NAND_ERR_ERRVAL2_OFFSET);
		} else {
			error_address = davinci_nand_readl(info,
						NAND_ERR_ADD1_OFFSET);
			error_value = davinci_nand_readl(info,
						NAND_ERR_ERRVAL1_OFFSET);
		}

		if (i & 1) {
			error_address >>= 16;
			error_value >>= 16;
		}
		error_address &= 0x3ff;
		error_address = (512 + 7) - error_address;

		if (error_address < 512) {
			data[error_address] ^= error_value;
			corrected++;
		}
	}

	return corrected;
}

/*----------------------------------------------------------------------*/

430 431 432 433 434 435 436 437 438 439 440
/*
 * NOTE:  NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
 * how these chips are normally wired.  This translates to both 8 and 16
 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
 *
 * For now we assume that configuration, or any other one which ignores
 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
 * and have that transparently morphed into multiple NAND operations.
 */
static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
441
	struct nand_chip *chip = mtd_to_nand(mtd);
442

443
	if ((0x03 & ((uintptr_t)buf)) == 0 && (0x03 & len) == 0)
444
		ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
445
	else if ((0x01 & ((uintptr_t)buf)) == 0 && (0x01 & len) == 0)
446 447 448 449 450 451 452 453
		ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
	else
		ioread8_rep(chip->IO_ADDR_R, buf, len);
}

static void nand_davinci_write_buf(struct mtd_info *mtd,
		const uint8_t *buf, int len)
{
454
	struct nand_chip *chip = mtd_to_nand(mtd);
455

456
	if ((0x03 & ((uintptr_t)buf)) == 0 && (0x03 & len) == 0)
457
		iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
458
	else if ((0x01 & ((uintptr_t)buf)) == 0 && (0x01 & len) == 0)
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
		iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
	else
		iowrite8_rep(chip->IO_ADDR_R, buf, len);
}

/*
 * Check hardware register for wait status. Returns 1 if device is ready,
 * 0 if it is still busy.
 */
static int nand_davinci_dev_ready(struct mtd_info *mtd)
{
	struct davinci_nand_info *info = to_davinci_nand(mtd);

	return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
}

/*----------------------------------------------------------------------*/

477 478 479 480
/* An ECC layout for using 4-bit ECC with small-page flash, storing
 * ten ECC bytes plus the manufacturer's bad block marker byte, and
 * and not overlapping the default BBT markers.
 */
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
				      struct mtd_oob_region *oobregion)
{
	if (section > 2)
		return -ERANGE;

	if (!section) {
		oobregion->offset = 0;
		oobregion->length = 5;
	} else if (section == 1) {
		oobregion->offset = 6;
		oobregion->length = 2;
	} else {
		oobregion->offset = 13;
		oobregion->length = 3;
	}
497

498 499
	return 0;
}
500

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
				       struct mtd_oob_region *oobregion)
{
	if (section > 1)
		return -ERANGE;

	if (!section) {
		oobregion->offset = 8;
		oobregion->length = 5;
	} else {
		oobregion->offset = 16;
		oobregion->length = mtd->oobsize - 16;
	}

	return 0;
}

static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
	.ecc = hwecc4_ooblayout_small_ecc,
	.free = hwecc4_ooblayout_small_free,
521 522
};

523 524 525
#if defined(CONFIG_OF)
static const struct of_device_id davinci_nand_of_match[] = {
	{.compatible = "ti,davinci-nand", },
526
	{.compatible = "ti,keystone-nand", },
527
	{},
528
};
529 530 531 532 533
MODULE_DEVICE_TABLE(of, davinci_nand_of_match);

static struct davinci_nand_pdata
	*nand_davinci_get_pdata(struct platform_device *pdev)
{
J
Jingoo Han 已提交
534
	if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
535 536 537 538 539 540 541 542 543
		struct davinci_nand_pdata *pdata;
		const char *mode;
		u32 prop;

		pdata =  devm_kzalloc(&pdev->dev,
				sizeof(struct davinci_nand_pdata),
				GFP_KERNEL);
		pdev->dev.platform_data = pdata;
		if (!pdata)
544
			return ERR_PTR(-ENOMEM);
545 546
		if (!of_property_read_u32(pdev->dev.of_node,
			"ti,davinci-chipselect", &prop))
547
			pdata->core_chipsel = prop;
548 549 550
		else
			return ERR_PTR(-EINVAL);

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
		if (!of_property_read_u32(pdev->dev.of_node,
			"ti,davinci-mask-ale", &prop))
			pdata->mask_ale = prop;
		if (!of_property_read_u32(pdev->dev.of_node,
			"ti,davinci-mask-cle", &prop))
			pdata->mask_cle = prop;
		if (!of_property_read_u32(pdev->dev.of_node,
			"ti,davinci-mask-chipsel", &prop))
			pdata->mask_chipsel = prop;
		if (!of_property_read_string(pdev->dev.of_node,
			"ti,davinci-ecc-mode", &mode)) {
			if (!strncmp("none", mode, 4))
				pdata->ecc_mode = NAND_ECC_NONE;
			if (!strncmp("soft", mode, 4))
				pdata->ecc_mode = NAND_ECC_SOFT;
			if (!strncmp("hw", mode, 2))
				pdata->ecc_mode = NAND_ECC_HW;
		}
		if (!of_property_read_u32(pdev->dev.of_node,
			"ti,davinci-ecc-bits", &prop))
			pdata->ecc_bits = prop;
572

573 574 575 576
		if (!of_property_read_u32(pdev->dev.of_node,
			"ti,davinci-nand-buswidth", &prop) && prop == 16)
			pdata->options |= NAND_BUSWIDTH_16;

577 578
		if (of_property_read_bool(pdev->dev.of_node,
			"ti,davinci-nand-use-bbt"))
579
			pdata->bbt_options = NAND_BBT_USE_FLASH;
580

581 582 583 584 585 586 587 588 589 590 591
		/*
		 * Since kernel v4.8, this driver has been fixed to enable
		 * use of 4-bit hardware ECC with subpages and verified on
		 * TI's keystone EVMs (K2L, K2HK and K2E).
		 * However, in the interest of not breaking systems using
		 * existing UBI partitions, sub-page writes are not being
		 * (re)enabled. If you want to use subpage writes on Keystone
		 * platforms (i.e. do not have any existing UBI partitions),
		 * then use "ti,davinci-nand" as the compatible in your
		 * device-tree file.
		 */
592 593 594 595
		if (of_device_is_compatible(pdev->dev.of_node,
					    "ti,keystone-nand")) {
			pdata->options |= NAND_NO_SUBPAGE_WRITE;
		}
596 597
	}

J
Jingoo Han 已提交
598
	return dev_get_platdata(&pdev->dev);
599 600 601 602 603
}
#else
static struct davinci_nand_pdata
	*nand_davinci_get_pdata(struct platform_device *pdev)
{
J
Jingoo Han 已提交
604
	return dev_get_platdata(&pdev->dev);
605 606 607
}
#endif

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
static int davinci_nand_attach_chip(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct davinci_nand_info *info = to_davinci_nand(mtd);
	struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev);
	int ret = 0;

	if (IS_ERR(pdata))
		return PTR_ERR(pdata);

	switch (info->chip.ecc.mode) {
	case NAND_ECC_NONE:
		pdata->ecc_bits = 0;
		break;
	case NAND_ECC_SOFT:
		pdata->ecc_bits = 0;
		/*
		 * This driver expects Hamming based ECC when ecc_mode is set
		 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
		 * avoid adding an extra ->ecc_algo field to
		 * davinci_nand_pdata.
		 */
		info->chip.ecc.algo = NAND_ECC_HAMMING;
		break;
	case NAND_ECC_HW:
		if (pdata->ecc_bits == 4) {
			/*
			 * No sanity checks:  CPUs must support this,
			 * and the chips may not use NAND_BUSWIDTH_16.
			 */

			/* No sharing 4-bit hardware between chipselects yet */
			spin_lock_irq(&davinci_nand_lock);
			if (ecc4_busy)
				ret = -EBUSY;
			else
				ecc4_busy = true;
			spin_unlock_irq(&davinci_nand_lock);

			if (ret == -EBUSY)
				return ret;

			info->chip.ecc.calculate = nand_davinci_calculate_4bit;
			info->chip.ecc.correct = nand_davinci_correct_4bit;
			info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
			info->chip.ecc.bytes = 10;
			info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
			info->chip.ecc.algo = NAND_ECC_BCH;
		} else {
			/* 1bit ecc hamming */
			info->chip.ecc.calculate = nand_davinci_calculate_1bit;
			info->chip.ecc.correct = nand_davinci_correct_1bit;
			info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
			info->chip.ecc.bytes = 3;
			info->chip.ecc.algo = NAND_ECC_HAMMING;
		}
		info->chip.ecc.size = 512;
		info->chip.ecc.strength = pdata->ecc_bits;
		break;
	default:
		return -EINVAL;
	}

	/*
	 * Update ECC layout if needed ... for 1-bit HW ECC, the default
	 * is OK, but it allocates 6 bytes when only 3 are needed (for
	 * each 512 bytes).  For the 4-bit HW ECC, that default is not
	 * usable:  10 bytes are needed, not 6.
	 */
	if (pdata->ecc_bits == 4) {
		int chunks = mtd->writesize / 512;

		if (!chunks || mtd->oobsize < 16) {
			dev_dbg(&info->pdev->dev, "too small\n");
			return -EINVAL;
		}

		/* For small page chips, preserve the manufacturer's
		 * badblock marking data ... and make sure a flash BBT
		 * table marker fits in the free bytes.
		 */
		if (chunks == 1) {
			mtd_set_ooblayout(mtd, &hwecc4_small_ooblayout_ops);
		} else if (chunks == 4 || chunks == 8) {
			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
			info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
		} else {
			return -EIO;
		}
	}

	return ret;
}

static const struct nand_controller_ops davinci_nand_controller_ops = {
	.attach_chip = davinci_nand_attach_chip,
};

706
static int nand_davinci_probe(struct platform_device *pdev)
707
{
708
	struct davinci_nand_pdata	*pdata;
709 710 711 712 713 714 715
	struct davinci_nand_info	*info;
	struct resource			*res1;
	struct resource			*res2;
	void __iomem			*vaddr;
	void __iomem			*base;
	int				ret;
	uint32_t			val;
716
	struct mtd_info			*mtd;
717

718
	pdata = nand_davinci_get_pdata(pdev);
719 720 721
	if (IS_ERR(pdata))
		return PTR_ERR(pdata);

722 723 724 725
	/* insist on board-specific configuration */
	if (!pdata)
		return -ENODEV;

726
	/* which external chipselect will we be managing? */
727
	if (pdata->core_chipsel < 0 || pdata->core_chipsel > 3)
728 729
		return -ENODEV;

730
	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
731
	if (!info)
732
		return -ENOMEM;
733 734 735 736 737 738 739

	platform_set_drvdata(pdev, info);

	res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	if (!res1 || !res2) {
		dev_err(&pdev->dev, "resource missing\n");
740
		return -EINVAL;
741 742
	}

743
	vaddr = devm_ioremap_resource(&pdev->dev, res1);
744 745 746
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

747 748 749 750 751 752 753 754 755 756 757
	/*
	 * This registers range is used to setup NAND settings. In case with
	 * TI AEMIF driver, the same memory address range is requested already
	 * by AEMIF, so we cannot request it twice, just ioremap.
	 * The AEMIF and NAND drivers not use the same registers in this range.
	 */
	base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
	if (!base) {
		dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
		return -EADDRNOTAVAIL;
	}
758

759
	info->pdev		= pdev;
760 761 762
	info->base		= base;
	info->vaddr		= vaddr;

763 764
	mtd			= nand_to_mtd(&info->chip);
	mtd->dev.parent		= &pdev->dev;
765
	nand_set_flash_node(&info->chip, pdev->dev.of_node);
766

767 768 769 770 771
	info->chip.IO_ADDR_R	= vaddr;
	info->chip.IO_ADDR_W	= vaddr;
	info->chip.chip_delay	= 0;
	info->chip.select_chip	= nand_davinci_select_chip;

772
	/* options such as NAND_BBT_USE_FLASH */
773 774
	info->chip.bbt_options	= pdata->bbt_options;
	/* options such as 16-bit widths */
775
	info->chip.options	= pdata->options;
776 777
	info->chip.bbt_td	= pdata->bbt_td;
	info->chip.bbt_md	= pdata->bbt_md;
778
	info->timing		= pdata->timing;
779

780
	info->current_cs	= info->vaddr;
781
	info->core_chipsel	= pdata->core_chipsel;
782 783 784
	info->mask_chipsel	= pdata->mask_chipsel;

	/* use nandboot-capable ALE/CLE masks by default */
785
	info->mask_ale		= pdata->mask_ale ? : MASK_ALE;
786
	info->mask_cle		= pdata->mask_cle ? : MASK_CLE;
787 788 789 790 791 792 793 794 795

	/* Set address of hardware control function */
	info->chip.cmd_ctrl	= nand_davinci_hwcontrol;
	info->chip.dev_ready	= nand_davinci_dev_ready;

	/* Speed up buffer I/O */
	info->chip.read_buf     = nand_davinci_read_buf;
	info->chip.write_buf    = nand_davinci_write_buf;

796
	/* Use board-specific ECC config */
797
	info->chip.ecc.mode	= pdata->ecc_mode;
798

799 800 801 802 803 804 805 806 807 808
	spin_lock_irq(&davinci_nand_lock);

	/* put CSxNAND into NAND mode */
	val = davinci_nand_readl(info, NANDFCR_OFFSET);
	val |= BIT(info->core_chipsel);
	davinci_nand_writel(info, NANDFCR_OFFSET, val);

	spin_unlock_irq(&davinci_nand_lock);

	/* Scan to find existence of the device(s) */
809
	info->chip.dummy_controller.ops = &davinci_nand_controller_ops;
810
	ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1);
811 812
	if (ret < 0) {
		dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
813
		return ret;
814 815
	}

816
	if (pdata->parts)
817
		ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
818
	else
819
		ret = mtd_device_register(mtd, NULL, 0);
820
	if (ret < 0)
821
		goto err_cleanup_nand;
822 823 824 825 826 827 828

	val = davinci_nand_readl(info, NRCSR_OFFSET);
	dev_info(&pdev->dev, "controller rev. %d.%d\n",
	       (val >> 8) & 0xff, val & 0xff);

	return 0;

829 830 831
err_cleanup_nand:
	nand_cleanup(&info->chip);

832 833 834
	return ret;
}

835
static int nand_davinci_remove(struct platform_device *pdev)
836 837 838
{
	struct davinci_nand_info *info = platform_get_drvdata(pdev);

839 840 841 842 843
	spin_lock_irq(&davinci_nand_lock);
	if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
		ecc4_busy = false;
	spin_unlock_irq(&davinci_nand_lock);

844
	nand_release(&info->chip);
845 846 847 848 849

	return 0;
}

static struct platform_driver nand_davinci_driver = {
850 851
	.probe		= nand_davinci_probe,
	.remove		= nand_davinci_remove,
852 853
	.driver		= {
		.name	= "davinci_nand",
854
		.of_match_table = of_match_ptr(davinci_nand_of_match),
855 856 857 858
	},
};
MODULE_ALIAS("platform:davinci_nand");

859
module_platform_driver(nand_davinci_driver);
860 861 862 863 864

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Texas Instruments");
MODULE_DESCRIPTION("Davinci NAND flash driver");