slub.c 142.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Christoph Lameter 已提交
2 3 4 5
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
6 7
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
8
 *
C
Christoph Lameter 已提交
9
 * (C) 2007 SGI, Christoph Lameter
10
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
11 12 13
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
14
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
15 16 17 18 19
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
20
#include "slab.h"
21
#include <linux/proc_fs.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
23
#include <linux/kasan.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
36
#include <linux/random.h>
C
Christoph Lameter 已提交
37

38 39
#include <trace/events/kmem.h>

40 41
#include "internal.h"

C
Christoph Lameter 已提交
42 43
/*
 * Lock order:
44
 *   1. slab_mutex (Global Mutex)
45 46
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
47
 *
48
 *   slab_mutex
49
 *
50
 *   The role of the slab_mutex is to protect the list of all the slabs
51 52 53
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
54
 *   have the ability to do a cmpxchg_double. It only protects:
55
 *	A. page->freelist	-> List of object free in a page
56 57 58
 *	B. page->inuse		-> Number of objects in use
 *	C. page->objects	-> Number of objects in page
 *	D. page->frozen		-> frozen state
59 60
 *
 *   If a slab is frozen then it is exempt from list management. It is not
61 62 63 64 65
 *   on any list except per cpu partial list. The processor that froze the
 *   slab is the one who can perform list operations on the page. Other
 *   processors may put objects onto the freelist but the processor that
 *   froze the slab is the only one that can retrieve the objects from the
 *   page's freelist.
C
Christoph Lameter 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
86 87
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
88
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
89 90
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
Y
Yu Zhao 已提交
96
 * page->frozen		The slab is frozen and exempt from list processing.
97 98 99 100 101 102 103 104 105 106 107
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111
 *
Y
Yu Zhao 已提交
112
 * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
C
Christoph Lameter 已提交
113
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118 119 120 121 122 123 124
#ifdef CONFIG_SLUB_DEBUG
#ifdef CONFIG_SLUB_DEBUG_ON
DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
#else
DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
#endif
#endif

125 126 127
static inline bool kmem_cache_debug(struct kmem_cache *s)
{
	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
128
}
129

130
void *fixup_red_left(struct kmem_cache *s, void *p)
J
Joonsoo Kim 已提交
131
{
132
	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
J
Joonsoo Kim 已提交
133 134 135 136 137
		p += s->red_left_pad;

	return p;
}

138 139 140 141 142 143 144 145 146
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
147 148 149 150 151 152 153 154 155 156 157
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

158 159 160
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

161 162 163 164
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
165
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
166

167 168 169
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
170
 * sort the partial list by the number of objects in use.
171 172 173
 */
#define MAX_PARTIAL 10

174
#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
C
Christoph Lameter 已提交
175
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
176

177 178 179 180 181 182 183 184
/*
 * These debug flags cannot use CMPXCHG because there might be consistency
 * issues when checking or reading debug information
 */
#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
				SLAB_TRACE)


185
/*
186 187 188
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
189
 */
190
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
191

192 193
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
194
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
195

C
Christoph Lameter 已提交
196
/* Internal SLUB flags */
197
/* Poison object */
198
#define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
199
/* Use cmpxchg_double */
200
#define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
C
Christoph Lameter 已提交
201

202 203 204
/*
 * Tracking user of a slab.
 */
205
#define TRACK_ADDRS_COUNT 16
206
struct track {
207
	unsigned long addr;	/* Called from address */
208 209 210
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
211 212 213 214 215 216 217
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

218
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
219 220 221
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
#else
222 223 224
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
C
Christoph Lameter 已提交
225 226
#endif

227
static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 229
{
#ifdef CONFIG_SLUB_STATS
230 231 232 233 234
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
235 236 237
#endif
}

C
Christoph Lameter 已提交
238 239 240 241
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

242 243 244 245 246 247 248 249 250
/*
 * Returns freelist pointer (ptr). With hardening, this is obfuscated
 * with an XOR of the address where the pointer is held and a per-cache
 * random number.
 */
static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
				 unsigned long ptr_addr)
{
#ifdef CONFIG_SLAB_FREELIST_HARDENED
251
	/*
252
	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
253 254 255 256 257 258 259 260 261
	 * Normally, this doesn't cause any issues, as both set_freepointer()
	 * and get_freepointer() are called with a pointer with the same tag.
	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
	 * example, when __free_slub() iterates over objects in a cache, it
	 * passes untagged pointers to check_object(). check_object() in turns
	 * calls get_freepointer() with an untagged pointer, which causes the
	 * freepointer to be restored incorrectly.
	 */
	return (void *)((unsigned long)ptr ^ s->random ^
262
			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
263 264 265 266 267 268 269 270 271 272 273 274 275
#else
	return ptr;
#endif
}

/* Returns the freelist pointer recorded at location ptr_addr. */
static inline void *freelist_dereference(const struct kmem_cache *s,
					 void *ptr_addr)
{
	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
			    (unsigned long)ptr_addr);
}

276 277
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
278
	object = kasan_reset_tag(object);
279
	return freelist_dereference(s, object + s->offset);
280 281
}

282 283
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
284
	prefetch(object + s->offset);
285 286
}

287 288
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
289
	unsigned long freepointer_addr;
290 291
	void *p;

292
	if (!debug_pagealloc_enabled_static())
293 294
		return get_freepointer(s, object);

295
	freepointer_addr = (unsigned long)object + s->offset;
296
	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
297
	return freelist_ptr(s, p, freepointer_addr);
298 299
}

300 301
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
302 303
	unsigned long freeptr_addr = (unsigned long)object + s->offset;

304 305 306 307
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	BUG_ON(object == fp); /* naive detection of double free or corruption */
#endif

308
	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
309
	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
310 311 312
}

/* Loop over all objects in a slab */
313
#define for_each_object(__p, __s, __addr, __objects) \
J
Joonsoo Kim 已提交
314 315 316
	for (__p = fixup_red_left(__s, __addr); \
		__p < (__addr) + (__objects) * (__s)->size; \
		__p += (__s)->size)
317

318
static inline unsigned int order_objects(unsigned int order, unsigned int size)
319
{
320
	return ((unsigned int)PAGE_SIZE << order) / size;
321 322
}

323
static inline struct kmem_cache_order_objects oo_make(unsigned int order,
324
		unsigned int size)
325 326
{
	struct kmem_cache_order_objects x = {
327
		(order << OO_SHIFT) + order_objects(order, size)
328 329 330 331 332
	};

	return x;
}

333
static inline unsigned int oo_order(struct kmem_cache_order_objects x)
334
{
335
	return x.x >> OO_SHIFT;
336 337
}

338
static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
339
{
340
	return x.x & OO_MASK;
341 342
}

343 344 345 346 347
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
348
	VM_BUG_ON_PAGE(PageTail(page), page);
349 350 351 352 353
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
354
	VM_BUG_ON_PAGE(PageTail(page), page);
355 356 357
	__bit_spin_unlock(PG_locked, &page->flags);
}

358 359 360 361 362 363 364
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
365 366
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
367
	if (s->flags & __CMPXCHG_DOUBLE) {
368
		if (cmpxchg_double(&page->freelist, &page->counters,
369 370
				   freelist_old, counters_old,
				   freelist_new, counters_new))
371
			return true;
372 373 374 375
	} else
#endif
	{
		slab_lock(page);
376 377
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
378
			page->freelist = freelist_new;
379
			page->counters = counters_new;
380
			slab_unlock(page);
381
			return true;
382 383 384 385 386 387 388 389
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
390
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
391 392
#endif

393
	return false;
394 395
}

396 397 398 399 400
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
401 402
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
403
	if (s->flags & __CMPXCHG_DOUBLE) {
404
		if (cmpxchg_double(&page->freelist, &page->counters,
405 406
				   freelist_old, counters_old,
				   freelist_new, counters_new))
407
			return true;
408 409 410
	} else
#endif
	{
411 412 413
		unsigned long flags;

		local_irq_save(flags);
414
		slab_lock(page);
415 416
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
417
			page->freelist = freelist_new;
418
			page->counters = counters_new;
419
			slab_unlock(page);
420
			local_irq_restore(flags);
421
			return true;
422
		}
423
		slab_unlock(page);
424
		local_irq_restore(flags);
425 426 427 428 429 430
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
431
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
432 433
#endif

434
	return false;
435 436
}

C
Christoph Lameter 已提交
437
#ifdef CONFIG_SLUB_DEBUG
438 439 440
static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
static DEFINE_SPINLOCK(object_map_lock);

441 442 443
/*
 * Determine a map of object in use on a page.
 *
444
 * Node listlock must be held to guarantee that the page does
445 446
 * not vanish from under us.
 */
447
static unsigned long *get_map(struct kmem_cache *s, struct page *page)
448
	__acquires(&object_map_lock)
449 450 451 452
{
	void *p;
	void *addr = page_address(page);

453 454 455 456 457 458
	VM_BUG_ON(!irqs_disabled());

	spin_lock(&object_map_lock);

	bitmap_zero(object_map, page->objects);

459
	for (p = page->freelist; p; p = get_freepointer(s, p))
460
		set_bit(__obj_to_index(s, addr, p), object_map);
461 462 463 464

	return object_map;
}

465
static void put_map(unsigned long *map) __releases(&object_map_lock)
466 467 468
{
	VM_BUG_ON(map != object_map);
	spin_unlock(&object_map_lock);
469 470
}

471
static inline unsigned int size_from_object(struct kmem_cache *s)
J
Joonsoo Kim 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
{
	if (s->flags & SLAB_RED_ZONE)
		return s->size - s->red_left_pad;

	return s->size;
}

static inline void *restore_red_left(struct kmem_cache *s, void *p)
{
	if (s->flags & SLAB_RED_ZONE)
		p -= s->red_left_pad;

	return p;
}

C
Christoph Lameter 已提交
487 488 489
/*
 * Debug settings:
 */
490
#if defined(CONFIG_SLUB_DEBUG_ON)
491
static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
492
#else
493
static slab_flags_t slub_debug;
494
#endif
C
Christoph Lameter 已提交
495

496
static char *slub_debug_string;
497
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
498

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
/*
 * slub is about to manipulate internal object metadata.  This memory lies
 * outside the range of the allocated object, so accessing it would normally
 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 * to tell kasan that these accesses are OK.
 */
static inline void metadata_access_enable(void)
{
	kasan_disable_current();
}

static inline void metadata_access_disable(void)
{
	kasan_enable_current();
}

C
Christoph Lameter 已提交
515 516 517
/*
 * Object debugging
 */
J
Joonsoo Kim 已提交
518 519 520 521 522 523 524 525 526 527 528

/* Verify that a pointer has an address that is valid within a slab page */
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, void *object)
{
	void *base;

	if (!object)
		return 1;

	base = page_address(page);
529
	object = kasan_reset_tag(object);
J
Joonsoo Kim 已提交
530 531 532 533 534 535 536 537 538
	object = restore_red_left(s, object);
	if (object < base || object >= base + page->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

539 540
static void print_section(char *level, char *text, u8 *addr,
			  unsigned int length)
C
Christoph Lameter 已提交
541
{
542
	metadata_access_enable();
543 544
	print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
			16, 1, addr, length, 1);
545
	metadata_access_disable();
C
Christoph Lameter 已提交
546 547
}

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/*
 * See comment in calculate_sizes().
 */
static inline bool freeptr_outside_object(struct kmem_cache *s)
{
	return s->offset >= s->inuse;
}

/*
 * Return offset of the end of info block which is inuse + free pointer if
 * not overlapping with object.
 */
static inline unsigned int get_info_end(struct kmem_cache *s)
{
	if (freeptr_outside_object(s))
		return s->inuse + sizeof(void *);
	else
		return s->inuse;
}

C
Christoph Lameter 已提交
568 569 570 571 572
static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

573
	p = object + get_info_end(s);
C
Christoph Lameter 已提交
574

575
	return kasan_reset_tag(p + alloc);
C
Christoph Lameter 已提交
576 577 578
}

static void set_track(struct kmem_cache *s, void *object,
579
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
580
{
A
Akinobu Mita 已提交
581
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
582 583

	if (addr) {
584
#ifdef CONFIG_STACKTRACE
585
		unsigned int nr_entries;
586

587
		metadata_access_enable();
588 589
		nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
					      TRACK_ADDRS_COUNT, 3);
590
		metadata_access_disable();
591

592 593
		if (nr_entries < TRACK_ADDRS_COUNT)
			p->addrs[nr_entries] = 0;
594
#endif
C
Christoph Lameter 已提交
595 596
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
597
		p->pid = current->pid;
C
Christoph Lameter 已提交
598
		p->when = jiffies;
599
	} else {
C
Christoph Lameter 已提交
600
		memset(p, 0, sizeof(struct track));
601
	}
C
Christoph Lameter 已提交
602 603 604 605
}

static void init_tracking(struct kmem_cache *s, void *object)
{
606 607 608
	if (!(s->flags & SLAB_STORE_USER))
		return;

609 610
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
611 612
}

613
static void print_track(const char *s, struct track *t, unsigned long pr_time)
C
Christoph Lameter 已提交
614 615 616 617
{
	if (!t->addr)
		return;

618
	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
619
	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
620 621 622 623 624
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
625
				pr_err("\t%pS\n", (void *)t->addrs[i]);
626 627 628 629
			else
				break;
	}
#endif
630 631
}

632
void print_tracking(struct kmem_cache *s, void *object)
633
{
634
	unsigned long pr_time = jiffies;
635 636 637
	if (!(s->flags & SLAB_STORE_USER))
		return;

638 639
	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
640 641 642 643
}

static void print_page_info(struct page *page)
{
644
	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
645 646
	       page, page->objects, page->inuse, page->freelist,
	       page->flags, &page->flags);
647 648 649 650 651

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
652
	struct va_format vaf;
653 654 655
	va_list args;

	va_start(args, fmt);
656 657
	vaf.fmt = fmt;
	vaf.va = &args;
658
	pr_err("=============================================================================\n");
659
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
660
	pr_err("-----------------------------------------------------------------------------\n\n");
661

662
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
663
	va_end(args);
C
Christoph Lameter 已提交
664 665
}

666 667
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
668
	struct va_format vaf;
669 670 671
	va_list args;

	va_start(args, fmt);
672 673 674
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
675 676 677
	va_end(args);
}

678
static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
679
			       void **freelist, void *nextfree)
680 681
{
	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
682 683 684
	    !check_valid_pointer(s, page, nextfree) && freelist) {
		object_err(s, page, *freelist, "Freechain corrupt");
		*freelist = NULL;
685 686 687 688 689 690 691
		slab_fix(s, "Isolate corrupted freechain");
		return true;
	}

	return false;
}

692
static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
693 694
{
	unsigned int off;	/* Offset of last byte */
695
	u8 *addr = page_address(page);
696 697 698 699 700

	print_tracking(s, p);

	print_page_info(page);

701
	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
702
	       p, p - addr, get_freepointer(s, p));
703

J
Joonsoo Kim 已提交
704
	if (s->flags & SLAB_RED_ZONE)
705 706
		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
			      s->red_left_pad);
J
Joonsoo Kim 已提交
707
	else if (p > addr + 16)
708
		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
709

710
	print_section(KERN_ERR, "Object ", p,
711
		      min_t(unsigned int, s->object_size, PAGE_SIZE));
C
Christoph Lameter 已提交
712
	if (s->flags & SLAB_RED_ZONE)
713
		print_section(KERN_ERR, "Redzone ", p + s->object_size,
714
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
715

716
	off = get_info_end(s);
C
Christoph Lameter 已提交
717

718
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
719 720
		off += 2 * sizeof(struct track);

721 722
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
723
	if (off != size_from_object(s))
C
Christoph Lameter 已提交
724
		/* Beginning of the filler is the free pointer */
725 726
		print_section(KERN_ERR, "Padding ", p + off,
			      size_from_object(s) - off);
727 728

	dump_stack();
C
Christoph Lameter 已提交
729 730
}

731
void object_err(struct kmem_cache *s, struct page *page,
C
Christoph Lameter 已提交
732 733
			u8 *object, char *reason)
{
734
	slab_bug(s, "%s", reason);
735
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
736 737
}

738
static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
739
			const char *fmt, ...)
C
Christoph Lameter 已提交
740 741 742 743
{
	va_list args;
	char buf[100];

744 745
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
746
	va_end(args);
747
	slab_bug(s, "%s", buf);
748
	print_page_info(page);
C
Christoph Lameter 已提交
749 750 751
	dump_stack();
}

752
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
753
{
754
	u8 *p = kasan_reset_tag(object);
C
Christoph Lameter 已提交
755

J
Joonsoo Kim 已提交
756 757 758
	if (s->flags & SLAB_RED_ZONE)
		memset(p - s->red_left_pad, val, s->red_left_pad);

C
Christoph Lameter 已提交
759
	if (s->flags & __OBJECT_POISON) {
760 761
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
762 763 764
	}

	if (s->flags & SLAB_RED_ZONE)
765
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
766 767
}

768 769 770 771 772 773 774 775 776
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
777
			u8 *start, unsigned int value, unsigned int bytes)
778 779 780
{
	u8 *fault;
	u8 *end;
781
	u8 *addr = page_address(page);
782

783
	metadata_access_enable();
784
	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
785
	metadata_access_disable();
786 787 788 789 790 791 792 793
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
794
	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
795 796
					fault, end - 1, fault - addr,
					fault[0], value);
797 798 799 800
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
801 802 803 804 805 806 807 808
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
809
 *	pointer is at the middle of the object.
C
Christoph Lameter 已提交
810
 *
C
Christoph Lameter 已提交
811 812 813
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
814
 * object + s->object_size
C
Christoph Lameter 已提交
815
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
816
 * 	Padding is extended by another word if Redzoning is enabled and
817
 * 	object_size == inuse.
C
Christoph Lameter 已提交
818
 *
C
Christoph Lameter 已提交
819 820 821 822
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
823 824
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
825 826
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
827
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
828
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
829 830 831
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
832 833
 *
 * object + s->size
C
Christoph Lameter 已提交
834
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
835
 *
836
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
837
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
838 839 840 841 842
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
843
	unsigned long off = get_info_end(s);	/* The end of info */
C
Christoph Lameter 已提交
844 845 846 847 848

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

849 850
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
851
	if (size_from_object(s) == off)
C
Christoph Lameter 已提交
852 853
		return 1;

854
	return check_bytes_and_report(s, page, p, "Object padding",
J
Joonsoo Kim 已提交
855
			p + off, POISON_INUSE, size_from_object(s) - off);
C
Christoph Lameter 已提交
856 857
}

858
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
859 860
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
861 862 863
	u8 *start;
	u8 *fault;
	u8 *end;
864
	u8 *pad;
865 866
	int length;
	int remainder;
C
Christoph Lameter 已提交
867 868 869 870

	if (!(s->flags & SLAB_POISON))
		return 1;

871
	start = page_address(page);
872
	length = page_size(page);
873 874
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
875 876 877
	if (!remainder)
		return 1;

878
	pad = end - remainder;
879
	metadata_access_enable();
880
	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
881
	metadata_access_disable();
882 883 884 885 886
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

887 888
	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
			fault, end - 1, fault - start);
889
	print_section(KERN_ERR, "Padding ", pad, remainder);
890

891
	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
892
	return 0;
C
Christoph Lameter 已提交
893 894 895
}

static int check_object(struct kmem_cache *s, struct page *page,
896
					void *object, u8 val)
C
Christoph Lameter 已提交
897 898
{
	u8 *p = object;
899
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
900 901

	if (s->flags & SLAB_RED_ZONE) {
J
Joonsoo Kim 已提交
902 903 904 905
		if (!check_bytes_and_report(s, page, object, "Redzone",
			object - s->red_left_pad, val, s->red_left_pad))
			return 0;

906
		if (!check_bytes_and_report(s, page, object, "Redzone",
907
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
908 909
			return 0;
	} else {
910
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
911
			check_bytes_and_report(s, page, p, "Alignment padding",
912 913
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
914
		}
C
Christoph Lameter 已提交
915 916 917
	}

	if (s->flags & SLAB_POISON) {
918
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
919
			(!check_bytes_and_report(s, page, p, "Poison", p,
920
					POISON_FREE, s->object_size - 1) ||
921
			 !check_bytes_and_report(s, page, p, "Poison",
922
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
923 924 925 926 927 928 929
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

930
	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
931 932 933 934 935 936 937 938 939 940
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
941
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
942
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
943
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
944
		 */
945
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
946 947 948 949 950 951 952
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
953 954
	int maxobj;

C
Christoph Lameter 已提交
955 956 957
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
958
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
959 960
		return 0;
	}
961

962
	maxobj = order_objects(compound_order(page), s->size);
963 964
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
965
			page->objects, maxobj);
966 967 968
		return 0;
	}
	if (page->inuse > page->objects) {
969
		slab_err(s, page, "inuse %u > max %u",
970
			page->inuse, page->objects);
C
Christoph Lameter 已提交
971 972 973 974 975 976 977 978
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
979 980
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
981 982 983 984
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
985
	void *fp;
C
Christoph Lameter 已提交
986
	void *object = NULL;
987
	int max_objects;
C
Christoph Lameter 已提交
988

989
	fp = page->freelist;
990
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
991 992 993 994 995 996
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
997
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
998
			} else {
999
				slab_err(s, page, "Freepointer corrupt");
1000
				page->freelist = NULL;
1001
				page->inuse = page->objects;
1002
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

1012
	max_objects = order_objects(compound_order(page), s->size);
1013 1014
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
1015 1016

	if (page->objects != max_objects) {
J
Joe Perches 已提交
1017 1018
		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
			 page->objects, max_objects);
1019 1020 1021
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
1022
	if (page->inuse != page->objects - nr) {
J
Joe Perches 已提交
1023 1024
		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
			 page->inuse, page->objects - nr);
1025
		page->inuse = page->objects - nr;
1026
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
1027 1028 1029 1030
	}
	return search == NULL;
}

1031 1032
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
1033 1034
{
	if (s->flags & SLAB_TRACE) {
1035
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
1036 1037 1038 1039 1040 1041
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
1042
			print_section(KERN_INFO, "Object ", (void *)object,
1043
					s->object_size);
C
Christoph Lameter 已提交
1044 1045 1046 1047 1048

		dump_stack();
	}
}

1049
/*
C
Christoph Lameter 已提交
1050
 * Tracking of fully allocated slabs for debugging purposes.
1051
 */
1052 1053
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
1054
{
1055 1056 1057
	if (!(s->flags & SLAB_STORE_USER))
		return;

1058
	lockdep_assert_held(&n->list_lock);
1059
	list_add(&page->slab_list, &n->full);
1060 1061
}

P
Peter Zijlstra 已提交
1062
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1063 1064 1065 1066
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

1067
	lockdep_assert_held(&n->list_lock);
1068
	list_del(&page->slab_list);
1069 1070
}

1071 1072 1073 1074 1075 1076 1077 1078
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1079 1080 1081 1082 1083
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1084
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1085 1086 1087 1088 1089 1090 1091 1092 1093
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1094
	if (likely(n)) {
1095
		atomic_long_inc(&n->nr_slabs);
1096 1097
		atomic_long_add(objects, &n->total_objects);
	}
1098
}
1099
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1100 1101 1102 1103
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1104
	atomic_long_sub(objects, &n->total_objects);
1105 1106 1107
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1108 1109 1110
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
1111
	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
C
Christoph Lameter 已提交
1112 1113
		return;

1114
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1115 1116 1117
	init_tracking(s, object);
}

1118 1119
static
void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1120
{
1121
	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1122 1123 1124
		return;

	metadata_access_enable();
1125
	memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1126 1127 1128
	metadata_access_disable();
}

1129
static inline int alloc_consistency_checks(struct kmem_cache *s,
1130
					struct page *page, void *object)
C
Christoph Lameter 已提交
1131 1132
{
	if (!check_slab(s, page))
1133
		return 0;
C
Christoph Lameter 已提交
1134 1135 1136

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1137
		return 0;
C
Christoph Lameter 已提交
1138 1139
	}

1140
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
		return 0;

	return 1;
}

static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
					void *object, unsigned long addr)
{
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1151
		if (!alloc_consistency_checks(s, page, object))
1152 1153
			goto bad;
	}
C
Christoph Lameter 已提交
1154

C
Christoph Lameter 已提交
1155 1156 1157 1158
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1159
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1160
	return 1;
C
Christoph Lameter 已提交
1161

C
Christoph Lameter 已提交
1162 1163 1164 1165 1166
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1167
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1168
		 */
1169
		slab_fix(s, "Marking all objects used");
1170
		page->inuse = page->objects;
1171
		page->freelist = NULL;
C
Christoph Lameter 已提交
1172 1173 1174 1175
	}
	return 0;
}

1176 1177
static inline int free_consistency_checks(struct kmem_cache *s,
		struct page *page, void *object, unsigned long addr)
C
Christoph Lameter 已提交
1178 1179
{
	if (!check_valid_pointer(s, page, object)) {
1180
		slab_err(s, page, "Invalid object pointer 0x%p", object);
1181
		return 0;
C
Christoph Lameter 已提交
1182 1183 1184
	}

	if (on_freelist(s, page, object)) {
1185
		object_err(s, page, object, "Object already free");
1186
		return 0;
C
Christoph Lameter 已提交
1187 1188
	}

1189
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1190
		return 0;
C
Christoph Lameter 已提交
1191

1192
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1193
		if (!PageSlab(page)) {
J
Joe Perches 已提交
1194 1195
			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
				 object);
1196
		} else if (!page->slab_cache) {
1197 1198
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1199
			dump_stack();
P
Pekka Enberg 已提交
1200
		} else
1201 1202
			object_err(s, page, object,
					"page slab pointer corrupt.");
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
		return 0;
	}
	return 1;
}

/* Supports checking bulk free of a constructed freelist */
static noinline int free_debug_processing(
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
	unsigned long addr)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	void *object = head;
	int cnt = 0;
1217
	unsigned long flags;
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	int ret = 0;

	spin_lock_irqsave(&n->list_lock, flags);
	slab_lock(page);

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!check_slab(s, page))
			goto out;
	}

next_object:
	cnt++;

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!free_consistency_checks(s, page, object, addr))
			goto out;
C
Christoph Lameter 已提交
1234
	}
C
Christoph Lameter 已提交
1235 1236 1237 1238

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1239
	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1240
	init_object(s, object, SLUB_RED_INACTIVE);
1241 1242 1243 1244 1245 1246

	/* Reached end of constructed freelist yet? */
	if (object != tail) {
		object = get_freepointer(s, object);
		goto next_object;
	}
1247 1248
	ret = 1;

1249
out:
1250 1251 1252 1253
	if (cnt != bulk_cnt)
		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
			 bulk_cnt, cnt);

1254
	slab_unlock(page);
1255
	spin_unlock_irqrestore(&n->list_lock, flags);
1256 1257 1258
	if (!ret)
		slab_fix(s, "Object at 0x%p not freed", object);
	return ret;
C
Christoph Lameter 已提交
1259 1260
}

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
/*
 * Parse a block of slub_debug options. Blocks are delimited by ';'
 *
 * @str:    start of block
 * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
 * @slabs:  return start of list of slabs, or NULL when there's no list
 * @init:   assume this is initial parsing and not per-kmem-create parsing
 *
 * returns the start of next block if there's any, or NULL
 */
static char *
parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
C
Christoph Lameter 已提交
1273
{
1274
	bool higher_order_disable = false;
1275

1276 1277 1278 1279 1280
	/* Skip any completely empty blocks */
	while (*str && *str == ';')
		str++;

	if (*str == ',') {
1281 1282 1283 1284
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
1285
		*flags = DEBUG_DEFAULT_FLAGS;
1286
		goto check_slabs;
1287 1288
	}
	*flags = 0;
1289

1290 1291
	/* Determine which debug features should be switched on */
	for (; *str && *str != ',' && *str != ';'; str++) {
1292
		switch (tolower(*str)) {
1293 1294 1295
		case '-':
			*flags = 0;
			break;
1296
		case 'f':
1297
			*flags |= SLAB_CONSISTENCY_CHECKS;
1298 1299
			break;
		case 'z':
1300
			*flags |= SLAB_RED_ZONE;
1301 1302
			break;
		case 'p':
1303
			*flags |= SLAB_POISON;
1304 1305
			break;
		case 'u':
1306
			*flags |= SLAB_STORE_USER;
1307 1308
			break;
		case 't':
1309
			*flags |= SLAB_TRACE;
1310
			break;
1311
		case 'a':
1312
			*flags |= SLAB_FAILSLAB;
1313
			break;
1314 1315 1316 1317 1318
		case 'o':
			/*
			 * Avoid enabling debugging on caches if its minimum
			 * order would increase as a result.
			 */
1319
			higher_order_disable = true;
1320
			break;
1321
		default:
1322 1323
			if (init)
				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1324
		}
C
Christoph Lameter 已提交
1325
	}
1326
check_slabs:
C
Christoph Lameter 已提交
1327
	if (*str == ',')
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
		*slabs = ++str;
	else
		*slabs = NULL;

	/* Skip over the slab list */
	while (*str && *str != ';')
		str++;

	/* Skip any completely empty blocks */
	while (*str && *str == ';')
		str++;

	if (init && higher_order_disable)
		disable_higher_order_debug = 1;

	if (*str)
		return str;
	else
		return NULL;
}

static int __init setup_slub_debug(char *str)
{
	slab_flags_t flags;
	char *saved_str;
	char *slab_list;
	bool global_slub_debug_changed = false;
	bool slab_list_specified = false;

	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	saved_str = str;
	while (str) {
		str = parse_slub_debug_flags(str, &flags, &slab_list, true);

		if (!slab_list) {
			slub_debug = flags;
			global_slub_debug_changed = true;
		} else {
			slab_list_specified = true;
		}
	}

	/*
	 * For backwards compatibility, a single list of flags with list of
	 * slabs means debugging is only enabled for those slabs, so the global
	 * slub_debug should be 0. We can extended that to multiple lists as
	 * long as there is no option specifying flags without a slab list.
	 */
	if (slab_list_specified) {
		if (!global_slub_debug_changed)
			slub_debug = 0;
		slub_debug_string = saved_str;
	}
1387
out:
1388 1389
	if (slub_debug != 0 || slub_debug_string)
		static_branch_enable(&slub_debug_enabled);
1390 1391 1392 1393
	if ((static_branch_unlikely(&init_on_alloc) ||
	     static_branch_unlikely(&init_on_free)) &&
	    (slub_debug & SLAB_POISON))
		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
C
Christoph Lameter 已提交
1394 1395 1396 1397 1398
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
/*
 * kmem_cache_flags - apply debugging options to the cache
 * @object_size:	the size of an object without meta data
 * @flags:		flags to set
 * @name:		name of the cache
 * @ctor:		constructor function
 *
 * Debug option(s) are applied to @flags. In addition to the debug
 * option(s), if a slab name (or multiple) is specified i.e.
 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
 * then only the select slabs will receive the debug option(s).
 */
1411
slab_flags_t kmem_cache_flags(unsigned int object_size,
1412
	slab_flags_t flags, const char *name,
1413
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1414
{
1415 1416
	char *iter;
	size_t len;
1417 1418
	char *next_block;
	slab_flags_t block_flags;
1419 1420

	len = strlen(name);
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	next_block = slub_debug_string;
	/* Go through all blocks of debug options, see if any matches our slab's name */
	while (next_block) {
		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
		if (!iter)
			continue;
		/* Found a block that has a slab list, search it */
		while (*iter) {
			char *end, *glob;
			size_t cmplen;

			end = strchrnul(iter, ',');
			if (next_block && next_block < end)
				end = next_block - 1;

			glob = strnchr(iter, end - iter, '*');
			if (glob)
				cmplen = glob - iter;
			else
				cmplen = max_t(size_t, len, (end - iter));
1441

1442 1443 1444 1445
			if (!strncmp(name, iter, cmplen)) {
				flags |= block_flags;
				return flags;
			}
1446

1447 1448 1449
			if (!*end || *end == ';')
				break;
			iter = end + 1;
1450 1451
		}
	}
1452

1453
	return flags | slub_debug;
C
Christoph Lameter 已提交
1454
}
1455
#else /* !CONFIG_SLUB_DEBUG */
C
Christoph Lameter 已提交
1456 1457
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
1458 1459
static inline
void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
C
Christoph Lameter 已提交
1460

C
Christoph Lameter 已提交
1461
static inline int alloc_debug_processing(struct kmem_cache *s,
1462
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1463

1464
static inline int free_debug_processing(
1465 1466
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
1467
	unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1468 1469 1470 1471

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1472
			void *object, u8 val) { return 1; }
1473 1474
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1475 1476
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1477
slab_flags_t kmem_cache_flags(unsigned int object_size,
1478
	slab_flags_t flags, const char *name,
1479
	void (*ctor)(void *))
1480 1481 1482
{
	return flags;
}
C
Christoph Lameter 已提交
1483
#define slub_debug 0
1484

1485 1486
#define disable_higher_order_debug 0

1487 1488
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1489 1490
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1491 1492 1493 1494
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1495

1496
static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1497
			       void **freelist, void *nextfree)
1498 1499 1500
{
	return false;
}
1501 1502 1503 1504 1505 1506
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1507
static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1508
{
1509
	ptr = kasan_kmalloc_large(ptr, size, flags);
1510
	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1511
	kmemleak_alloc(ptr, size, 1, flags);
1512
	return ptr;
1513 1514
}

1515
static __always_inline void kfree_hook(void *x)
1516 1517
{
	kmemleak_free(x);
1518
	kasan_kfree_large(x, _RET_IP_);
1519 1520
}

1521
static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1522 1523
{
	kmemleak_free_recursive(x, s->flags);
1524

1525 1526 1527 1528 1529
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
1530
#ifdef CONFIG_LOCKDEP
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
	{
		unsigned long flags;

		local_irq_save(flags);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
1541

1542 1543 1544 1545 1546
	/* Use KCSAN to help debug racy use-after-free. */
	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
		__kcsan_check_access(x, s->object_size,
				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);

1547 1548
	/* KASAN might put x into memory quarantine, delaying its reuse */
	return kasan_slab_free(s, x, _RET_IP_);
1549
}
1550

1551 1552
static inline bool slab_free_freelist_hook(struct kmem_cache *s,
					   void **head, void **tail)
1553
{
1554 1555 1556 1557 1558 1559

	void *object;
	void *next = *head;
	void *old_tail = *tail ? *tail : *head;
	int rsize;

1560 1561 1562
	/* Head and tail of the reconstructed freelist */
	*head = NULL;
	*tail = NULL;
1563

1564 1565 1566 1567 1568
	do {
		object = next;
		next = get_freepointer(s, object);

		if (slab_want_init_on_free(s)) {
1569 1570 1571 1572
			/*
			 * Clear the object and the metadata, but don't touch
			 * the redzone.
			 */
1573
			memset(kasan_reset_tag(object), 0, s->object_size);
1574 1575
			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
							   : 0;
1576
			memset((char *)kasan_reset_tag(object) + s->inuse, 0,
1577
			       s->size - s->inuse - rsize);
1578

1579
		}
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
		/* If object's reuse doesn't have to be delayed */
		if (!slab_free_hook(s, object)) {
			/* Move object to the new freelist */
			set_freepointer(s, object, *head);
			*head = object;
			if (!*tail)
				*tail = object;
		}
	} while (object != old_tail);

	if (*head == *tail)
		*tail = NULL;

	return *head != NULL;
1594 1595
}

1596
static void *setup_object(struct kmem_cache *s, struct page *page,
1597 1598 1599
				void *object)
{
	setup_object_debug(s, page, object);
1600
	object = kasan_init_slab_obj(s, object);
1601 1602 1603 1604 1605
	if (unlikely(s->ctor)) {
		kasan_unpoison_object_data(s, object);
		s->ctor(object);
		kasan_poison_object_data(s, object);
	}
1606
	return object;
1607 1608
}

C
Christoph Lameter 已提交
1609 1610 1611
/*
 * Slab allocation and freeing
 */
1612 1613
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1614
{
1615
	struct page *page;
1616
	unsigned int order = oo_order(oo);
1617

1618
	if (node == NUMA_NO_NODE)
1619
		page = alloc_pages(flags, order);
1620
	else
1621
		page = __alloc_pages_node(node, flags, order);
1622 1623

	return page;
1624 1625
}

T
Thomas Garnier 已提交
1626 1627 1628 1629
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Pre-initialize the random sequence cache */
static int init_cache_random_seq(struct kmem_cache *s)
{
1630
	unsigned int count = oo_objects(s->oo);
T
Thomas Garnier 已提交
1631 1632
	int err;

1633 1634 1635 1636
	/* Bailout if already initialised */
	if (s->random_seq)
		return 0;

T
Thomas Garnier 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645
	err = cache_random_seq_create(s, count, GFP_KERNEL);
	if (err) {
		pr_err("SLUB: Unable to initialize free list for %s\n",
			s->name);
		return err;
	}

	/* Transform to an offset on the set of pages */
	if (s->random_seq) {
1646 1647
		unsigned int i;

T
Thomas Garnier 已提交
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
		for (i = 0; i < count; i++)
			s->random_seq[i] *= s->size;
	}
	return 0;
}

/* Initialize each random sequence freelist per cache */
static void __init init_freelist_randomization(void)
{
	struct kmem_cache *s;

	mutex_lock(&slab_mutex);

	list_for_each_entry(s, &slab_caches, list)
		init_cache_random_seq(s);

	mutex_unlock(&slab_mutex);
}

/* Get the next entry on the pre-computed freelist randomized */
static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
				unsigned long *pos, void *start,
				unsigned long page_limit,
				unsigned long freelist_count)
{
	unsigned int idx;

	/*
	 * If the target page allocation failed, the number of objects on the
	 * page might be smaller than the usual size defined by the cache.
	 */
	do {
		idx = s->random_seq[*pos];
		*pos += 1;
		if (*pos >= freelist_count)
			*pos = 0;
	} while (unlikely(idx >= page_limit));

	return (char *)start + idx;
}

/* Shuffle the single linked freelist based on a random pre-computed sequence */
static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	void *start;
	void *cur;
	void *next;
	unsigned long idx, pos, page_limit, freelist_count;

	if (page->objects < 2 || !s->random_seq)
		return false;

	freelist_count = oo_objects(s->oo);
	pos = get_random_int() % freelist_count;

	page_limit = page->objects * s->size;
	start = fixup_red_left(s, page_address(page));

	/* First entry is used as the base of the freelist */
	cur = next_freelist_entry(s, page, &pos, start, page_limit,
				freelist_count);
1709
	cur = setup_object(s, page, cur);
T
Thomas Garnier 已提交
1710 1711 1712 1713 1714
	page->freelist = cur;

	for (idx = 1; idx < page->objects; idx++) {
		next = next_freelist_entry(s, page, &pos, start, page_limit,
			freelist_count);
1715
		next = setup_object(s, page, next);
T
Thomas Garnier 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
		set_freepointer(s, cur, next);
		cur = next;
	}
	set_freepointer(s, cur, NULL);

	return true;
}
#else
static inline int init_cache_random_seq(struct kmem_cache *s)
{
	return 0;
}
static inline void init_freelist_randomization(void) { }
static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

C
Christoph Lameter 已提交
1735 1736
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1737
	struct page *page;
1738
	struct kmem_cache_order_objects oo = s->oo;
1739
	gfp_t alloc_gfp;
1740
	void *start, *p, *next;
1741
	int idx;
T
Thomas Garnier 已提交
1742
	bool shuffle;
C
Christoph Lameter 已提交
1743

1744 1745
	flags &= gfp_allowed_mask;

1746
	if (gfpflags_allow_blocking(flags))
1747 1748
		local_irq_enable();

1749
	flags |= s->allocflags;
1750

1751 1752 1753 1754 1755
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1756
	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1757
		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1758

1759
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1760 1761
	if (unlikely(!page)) {
		oo = s->min;
1762
		alloc_gfp = flags;
1763 1764 1765 1766
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1767
		page = alloc_slab_page(s, alloc_gfp, node, oo);
1768 1769 1770
		if (unlikely(!page))
			goto out;
		stat(s, ORDER_FALLBACK);
1771
	}
V
Vegard Nossum 已提交
1772

1773
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1774

1775 1776
	account_slab_page(page, oo_order(oo), s);

1777
	page->slab_cache = s;
1778
	__SetPageSlab(page);
1779
	if (page_is_pfmemalloc(page))
1780
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1781

1782
	kasan_poison_slab(page);
C
Christoph Lameter 已提交
1783

1784
	start = page_address(page);
C
Christoph Lameter 已提交
1785

1786
	setup_page_debug(s, page, start);
1787

T
Thomas Garnier 已提交
1788 1789 1790
	shuffle = shuffle_freelist(s, page);

	if (!shuffle) {
1791 1792 1793
		start = fixup_red_left(s, start);
		start = setup_object(s, page, start);
		page->freelist = start;
1794 1795 1796 1797 1798 1799 1800
		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
			next = p + s->size;
			next = setup_object(s, page, next);
			set_freepointer(s, p, next);
			p = next;
		}
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
1801 1802
	}

1803
	page->inuse = page->objects;
1804
	page->frozen = 1;
1805

C
Christoph Lameter 已提交
1806
out:
1807
	if (gfpflags_allow_blocking(flags))
1808 1809 1810 1811 1812 1813
		local_irq_disable();
	if (!page)
		return NULL;

	inc_slabs_node(s, page_to_nid(page), page->objects);

C
Christoph Lameter 已提交
1814 1815 1816
	return page;
}

1817 1818
static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
1819 1820
	if (unlikely(flags & GFP_SLAB_BUG_MASK))
		flags = kmalloc_fix_flags(flags);
1821 1822 1823 1824 1825

	return allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
}

C
Christoph Lameter 已提交
1826 1827
static void __free_slab(struct kmem_cache *s, struct page *page)
{
1828 1829
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1830

1831
	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
C
Christoph Lameter 已提交
1832 1833 1834
		void *p;

		slab_pad_check(s, page);
1835 1836
		for_each_object(p, s, page_address(page),
						page->objects)
1837
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1838 1839
	}

1840
	__ClearPageSlabPfmemalloc(page);
1841
	__ClearPageSlab(page);
1842 1843
	/* In union with page->mapping where page allocator expects NULL */
	page->slab_cache = NULL;
N
Nick Piggin 已提交
1844 1845
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1846
	unaccount_slab_page(page, order, s);
1847
	__free_pages(page, order);
C
Christoph Lameter 已提交
1848 1849 1850 1851
}

static void rcu_free_slab(struct rcu_head *h)
{
1852
	struct page *page = container_of(h, struct page, rcu_head);
1853

1854
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1855 1856 1857 1858
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
1859
	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1860
		call_rcu(&page->rcu_head, rcu_free_slab);
C
Christoph Lameter 已提交
1861 1862 1863 1864 1865 1866
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1867
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1868 1869 1870 1871
	free_slab(s, page);
}

/*
1872
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1873
 */
1874 1875
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1876
{
C
Christoph Lameter 已提交
1877
	n->nr_partial++;
1878
	if (tail == DEACTIVATE_TO_TAIL)
1879
		list_add_tail(&page->slab_list, &n->partial);
1880
	else
1881
		list_add(&page->slab_list, &n->partial);
C
Christoph Lameter 已提交
1882 1883
}

1884 1885
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1886
{
P
Peter Zijlstra 已提交
1887
	lockdep_assert_held(&n->list_lock);
1888 1889
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1890

1891 1892 1893 1894
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
1895
	list_del(&page->slab_list);
1896
	n->nr_partial--;
1897 1898
}

C
Christoph Lameter 已提交
1899
/*
1900 1901
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1902
 *
1903
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1904
 */
1905
static inline void *acquire_slab(struct kmem_cache *s,
1906
		struct kmem_cache_node *n, struct page *page,
1907
		int mode, int *objects)
C
Christoph Lameter 已提交
1908
{
1909 1910 1911 1912
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1913 1914
	lockdep_assert_held(&n->list_lock);

1915 1916 1917 1918 1919
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1920 1921 1922
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1923
	*objects = new.objects - new.inuse;
1924
	if (mode) {
1925
		new.inuse = page->objects;
1926 1927 1928 1929
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1930

1931
	VM_BUG_ON(new.frozen);
1932
	new.frozen = 1;
1933

1934
	if (!__cmpxchg_double_slab(s, page,
1935
			freelist, counters,
1936
			new.freelist, new.counters,
1937 1938
			"acquire_slab"))
		return NULL;
1939 1940

	remove_partial(n, page);
1941
	WARN_ON(!freelist);
1942
	return freelist;
C
Christoph Lameter 已提交
1943 1944
}

1945
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1946
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1947

C
Christoph Lameter 已提交
1948
/*
C
Christoph Lameter 已提交
1949
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1950
 */
1951 1952
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1953
{
1954 1955
	struct page *page, *page2;
	void *object = NULL;
1956
	unsigned int available = 0;
1957
	int objects;
C
Christoph Lameter 已提交
1958 1959 1960 1961

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Chen Tao 已提交
1962
	 * partial slab and there is none available then get_partial()
C
Christoph Lameter 已提交
1963
	 * will return NULL.
C
Christoph Lameter 已提交
1964 1965 1966 1967 1968
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1969
	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1970
		void *t;
1971

1972 1973 1974
		if (!pfmemalloc_match(page, flags))
			continue;

1975
		t = acquire_slab(s, n, page, object == NULL, &objects);
1976
		if (!t)
1977
			continue; /* cmpxchg raced */
1978

1979
		available += objects;
1980
		if (!object) {
1981 1982 1983 1984
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1985
			put_cpu_partial(s, page, 0);
1986
			stat(s, CPU_PARTIAL_NODE);
1987
		}
1988
		if (!kmem_cache_has_cpu_partial(s)
1989
			|| available > slub_cpu_partial(s) / 2)
1990 1991
			break;

1992
	}
C
Christoph Lameter 已提交
1993
	spin_unlock(&n->list_lock);
1994
	return object;
C
Christoph Lameter 已提交
1995 1996 1997
}

/*
C
Christoph Lameter 已提交
1998
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1999
 */
2000
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2001
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2002 2003 2004
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
2005
	struct zoneref *z;
2006
	struct zone *zone;
2007
	enum zone_type highest_zoneidx = gfp_zone(flags);
2008
	void *object;
2009
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
2010 2011

	/*
C
Christoph Lameter 已提交
2012 2013 2014 2015
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
2016
	 *
C
Christoph Lameter 已提交
2017 2018 2019 2020
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
2021
	 *
2022 2023 2024 2025 2026
	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
	 * (which makes defrag_ratio = 1000) then every (well almost)
	 * allocation will first attempt to defrag slab caches on other nodes.
	 * This means scanning over all nodes to look for partial slabs which
	 * may be expensive if we do it every time we are trying to find a slab
C
Christoph Lameter 已提交
2027
	 * with available objects.
C
Christoph Lameter 已提交
2028
	 */
2029 2030
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
2031 2032
		return NULL;

2033
	do {
2034
		cpuset_mems_cookie = read_mems_allowed_begin();
2035
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
2036
		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2037 2038 2039 2040
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

2041
			if (n && cpuset_zone_allowed(zone, flags) &&
2042
					n->nr_partial > s->min_partial) {
2043
				object = get_partial_node(s, n, c, flags);
2044 2045
				if (object) {
					/*
2046 2047 2048 2049 2050
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
2051 2052 2053
					 */
					return object;
				}
2054
			}
C
Christoph Lameter 已提交
2055
		}
2056
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2057
#endif	/* CONFIG_NUMA */
C
Christoph Lameter 已提交
2058 2059 2060 2061 2062 2063
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
2064
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2065
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2066
{
2067
	void *object;
2068 2069 2070 2071
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
C
Christoph Lameter 已提交
2072

2073
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
2074 2075
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
2076

2077
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
2078 2079
}

2080
#ifdef CONFIG_PREEMPTION
2081
/*
2082
 * Calculate the next globally unique transaction for disambiguation
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

2100
#ifdef SLUB_DEBUG_CMPXCHG
2101 2102 2103 2104 2105 2106 2107 2108 2109
static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}
2110
#endif
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

2123
	pr_info("%s %s: cmpxchg redo ", n, s->name);
2124

2125
#ifdef CONFIG_PREEMPTION
2126
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2127
		pr_warn("due to cpu change %d -> %d\n",
2128 2129 2130 2131
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
2132
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2133 2134
			tid_to_event(tid), tid_to_event(actual_tid));
	else
2135
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2136 2137
			actual_tid, tid, next_tid(tid));
#endif
2138
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2139 2140
}

2141
static void init_kmem_cache_cpus(struct kmem_cache *s)
2142 2143 2144 2145 2146 2147
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
2148

C
Christoph Lameter 已提交
2149 2150 2151
/*
 * Remove the cpu slab
 */
2152
static void deactivate_slab(struct kmem_cache *s, struct page *page,
2153
				void *freelist, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2154
{
2155 2156 2157 2158 2159
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
2160
	int tail = DEACTIVATE_TO_HEAD;
2161 2162 2163 2164
	struct page new;
	struct page old;

	if (page->freelist) {
2165
		stat(s, DEACTIVATE_REMOTE_FREES);
2166
		tail = DEACTIVATE_TO_TAIL;
2167 2168
	}

2169
	/*
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

2181 2182 2183 2184 2185
		/*
		 * If 'nextfree' is invalid, it is possible that the object at
		 * 'freelist' is already corrupted.  So isolate all objects
		 * starting at 'freelist'.
		 */
2186
		if (freelist_corrupted(s, page, &freelist, nextfree))
2187 2188
			break;

2189 2190 2191 2192 2193 2194
		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
2195
			VM_BUG_ON(!new.frozen);
2196

2197
		} while (!__cmpxchg_double_slab(s, page,
2198 2199 2200 2201 2202 2203 2204
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

2205
	/*
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
2218
	 */
2219
redo:
2220

2221 2222
	old.freelist = page->freelist;
	old.counters = page->counters;
2223
	VM_BUG_ON(!old.frozen);
2224

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

2236
	if (!new.inuse && n->nr_partial >= s->min_partial)
2237 2238 2239 2240 2241 2242
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
W
Wei Yang 已提交
2243
			 * Taking the spinlock removes the possibility
2244 2245 2246 2247 2248 2249 2250
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
2251
		if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {
		if (l == M_PARTIAL)
			remove_partial(n, page);
		else if (l == M_FULL)
P
Peter Zijlstra 已提交
2266
			remove_full(s, n, page);
2267

2268
		if (m == M_PARTIAL)
2269
			add_partial(n, page, tail);
2270
		else if (m == M_FULL)
2271 2272 2273 2274
			add_full(s, n, page);
	}

	l = m;
2275
	if (!__cmpxchg_double_slab(s, page,
2276 2277 2278 2279 2280 2281 2282 2283
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

2284 2285 2286 2287 2288
	if (m == M_PARTIAL)
		stat(s, tail);
	else if (m == M_FULL)
		stat(s, DEACTIVATE_FULL);
	else if (m == M_FREE) {
2289 2290 2291
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
2292
	}
2293 2294 2295

	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2296 2297
}

2298 2299 2300
/*
 * Unfreeze all the cpu partial slabs.
 *
2301 2302 2303
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
2304
 */
2305 2306
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
2307
{
2308
#ifdef CONFIG_SLUB_CPU_PARTIAL
2309
	struct kmem_cache_node *n = NULL, *n2 = NULL;
2310
	struct page *page, *discard_page = NULL;
2311

2312
	while ((page = slub_percpu_partial(c))) {
2313 2314 2315
		struct page new;
		struct page old;

2316
		slub_set_percpu_partial(c, page);
2317 2318 2319 2320 2321 2322 2323 2324 2325

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
2326 2327 2328 2329 2330

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
2331
			VM_BUG_ON(!old.frozen);
2332 2333 2334 2335 2336 2337

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

2338
		} while (!__cmpxchg_double_slab(s, page,
2339 2340 2341 2342
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

2343
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2344 2345
			page->next = discard_page;
			discard_page = page;
2346 2347 2348
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
2349 2350 2351 2352 2353
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
2354 2355 2356 2357 2358 2359 2360 2361 2362

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2363
#endif	/* CONFIG_SLUB_CPU_PARTIAL */
2364 2365 2366
}

/*
2367 2368
 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
 * partial page slot if available.
2369 2370 2371 2372
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2373
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2374
{
2375
#ifdef CONFIG_SLUB_CPU_PARTIAL
2376 2377 2378 2379
	struct page *oldpage;
	int pages;
	int pobjects;

2380
	preempt_disable();
2381 2382 2383 2384 2385 2386 2387 2388
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
2389
			if (drain && pobjects > slub_cpu_partial(s)) {
2390 2391 2392 2393 2394 2395
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2396
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2397
				local_irq_restore(flags);
2398
				oldpage = NULL;
2399 2400
				pobjects = 0;
				pages = 0;
2401
				stat(s, CPU_PARTIAL_DRAIN);
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2412 2413
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2414
	if (unlikely(!slub_cpu_partial(s))) {
2415 2416 2417 2418 2419 2420 2421
		unsigned long flags;

		local_irq_save(flags);
		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
		local_irq_restore(flags);
	}
	preempt_enable();
2422
#endif	/* CONFIG_SLUB_CPU_PARTIAL */
2423 2424
}

2425
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2426
{
2427
	stat(s, CPUSLAB_FLUSH);
2428
	deactivate_slab(s, c->page, c->freelist, c);
2429 2430

	c->tid = next_tid(c->tid);
C
Christoph Lameter 已提交
2431 2432 2433 2434
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2435
 *
C
Christoph Lameter 已提交
2436 2437
 * Called from IPI handler with interrupts disabled.
 */
2438
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2439
{
2440
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2441

2442 2443
	if (c->page)
		flush_slab(s, c);
2444

2445
	unfreeze_partials(s, c);
C
Christoph Lameter 已提交
2446 2447 2448 2449 2450 2451
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2452
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2453 2454
}

2455 2456 2457 2458 2459
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2460
	return c->page || slub_percpu_partial(c);
2461 2462
}

C
Christoph Lameter 已提交
2463 2464
static void flush_all(struct kmem_cache *s)
{
2465
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
C
Christoph Lameter 已提交
2466 2467
}

2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
/*
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
 */
static int slub_cpu_dead(unsigned int cpu)
{
	struct kmem_cache *s;
	unsigned long flags;

	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		local_irq_save(flags);
		__flush_cpu_slab(s, cpu);
		local_irq_restore(flags);
	}
	mutex_unlock(&slab_mutex);
	return 0;
}

2487 2488 2489 2490
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2491
static inline int node_match(struct page *page, int node)
2492 2493
{
#ifdef CONFIG_NUMA
2494
	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2495 2496 2497 2498 2499
		return 0;
#endif
	return 1;
}

2500
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2501 2502 2503 2504 2505
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2506 2507 2508 2509 2510 2511 2512
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2513 2514 2515 2516 2517 2518 2519 2520
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
2521
	list_for_each_entry(page, &n->partial, slab_list)
P
Pekka Enberg 已提交
2522 2523 2524 2525
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2526
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2527

P
Pekka Enberg 已提交
2528 2529 2530
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2531 2532 2533
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2534
	int node;
C
Christoph Lameter 已提交
2535
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2536

2537 2538 2539
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2540 2541
	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nid, gfpflags, &gfpflags);
2542
	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2543 2544
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2545

2546
	if (oo_order(s->min) > get_order(s->object_size))
2547 2548
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2549

C
Christoph Lameter 已提交
2550
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2551 2552 2553 2554
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2555 2556 2557
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2558

2559
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2560 2561
			node, nr_slabs, nr_objs, nr_free);
	}
2562
#endif
P
Pekka Enberg 已提交
2563 2564
}

2565 2566 2567
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2568
	void *freelist;
2569 2570
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2571

2572 2573
	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));

2574
	freelist = get_partial(s, flags, node, c);
2575

2576 2577 2578 2579
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2580
	if (page) {
2581
		c = raw_cpu_ptr(s->cpu_slab);
2582 2583 2584 2585 2586 2587 2588
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2589
		freelist = page->freelist;
2590 2591 2592 2593 2594
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
2595
	}
2596

2597
	return freelist;
2598 2599
}

2600 2601 2602 2603 2604 2605 2606 2607
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2608
/*
2609 2610
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2611 2612 2613 2614
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2615 2616
 *
 * This function must be called with interrupt disabled.
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2627

2628
		new.counters = counters;
2629
		VM_BUG_ON(!new.frozen);
2630 2631 2632 2633

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2634
	} while (!__cmpxchg_double_slab(s, page,
2635 2636 2637 2638 2639 2640 2641
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2642
/*
2643 2644 2645 2646 2647 2648
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2649
 *
2650 2651 2652
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2653
 *
2654
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2655 2656
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
2657 2658 2659
 *
 * Version of __slab_alloc to use when we know that interrupts are
 * already disabled (which is the case for bulk allocation).
C
Christoph Lameter 已提交
2660
 */
2661
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2662
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2663
{
2664
	void *freelist;
2665
	struct page *page;
C
Christoph Lameter 已提交
2666

2667 2668
	stat(s, ALLOC_SLOWPATH);

2669
	page = c->page;
2670 2671 2672 2673 2674 2675 2676 2677
	if (!page) {
		/*
		 * if the node is not online or has no normal memory, just
		 * ignore the node constraint
		 */
		if (unlikely(node != NUMA_NO_NODE &&
			     !node_state(node, N_NORMAL_MEMORY)))
			node = NUMA_NO_NODE;
C
Christoph Lameter 已提交
2678
		goto new_slab;
2679
	}
2680
redo:
2681

2682
	if (unlikely(!node_match(page, node))) {
2683 2684 2685 2686 2687 2688 2689 2690
		/*
		 * same as above but node_match() being false already
		 * implies node != NUMA_NO_NODE
		 */
		if (!node_state(node, N_NORMAL_MEMORY)) {
			node = NUMA_NO_NODE;
			goto redo;
		} else {
2691
			stat(s, ALLOC_NODE_MISMATCH);
2692
			deactivate_slab(s, page, c->freelist, c);
2693 2694
			goto new_slab;
		}
2695
	}
C
Christoph Lameter 已提交
2696

2697 2698 2699 2700 2701 2702
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2703
		deactivate_slab(s, page, c->freelist, c);
2704 2705 2706
		goto new_slab;
	}

2707
	/* must check again c->freelist in case of cpu migration or IRQ */
2708 2709
	freelist = c->freelist;
	if (freelist)
2710
		goto load_freelist;
2711

2712
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2713

2714
	if (!freelist) {
2715 2716
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2717
		goto new_slab;
2718
	}
C
Christoph Lameter 已提交
2719

2720
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2721

2722
load_freelist:
2723 2724 2725 2726 2727
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2728
	VM_BUG_ON(!c->page->frozen);
2729
	c->freelist = get_freepointer(s, freelist);
2730
	c->tid = next_tid(c->tid);
2731
	return freelist;
C
Christoph Lameter 已提交
2732 2733

new_slab:
2734

2735 2736 2737
	if (slub_percpu_partial(c)) {
		page = c->page = slub_percpu_partial(c);
		slub_set_percpu_partial(c, page);
2738 2739
		stat(s, CPU_PARTIAL_ALLOC);
		goto redo;
C
Christoph Lameter 已提交
2740 2741
	}

2742
	freelist = new_slab_objects(s, gfpflags, node, &c);
2743

2744
	if (unlikely(!freelist)) {
2745
		slab_out_of_memory(s, gfpflags, node);
2746
		return NULL;
C
Christoph Lameter 已提交
2747
	}
2748

2749
	page = c->page;
2750
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2751
		goto load_freelist;
2752

2753
	/* Only entered in the debug case */
2754 2755
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2756
		goto new_slab;	/* Slab failed checks. Next slab needed */
2757

2758
	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2759
	return freelist;
2760 2761
}

2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
/*
 * Another one that disabled interrupt and compensates for possible
 * cpu changes by refetching the per cpu area pointer.
 */
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
{
	void *p;
	unsigned long flags;

	local_irq_save(flags);
2773
#ifdef CONFIG_PREEMPTION
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif

	p = ___slab_alloc(s, gfpflags, node, addr, c);
	local_irq_restore(flags);
	return p;
}

2787 2788 2789 2790 2791 2792 2793 2794
/*
 * If the object has been wiped upon free, make sure it's fully initialized by
 * zeroing out freelist pointer.
 */
static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
						   void *obj)
{
	if (unlikely(slab_want_init_on_free(s)) && obj)
2795 2796
		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
			0, sizeof(void *));
2797 2798
}

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2809
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2810
		gfp_t gfpflags, int node, unsigned long addr)
2811
{
2812
	void *object;
2813
	struct kmem_cache_cpu *c;
2814
	struct page *page;
2815
	unsigned long tid;
2816
	struct obj_cgroup *objcg = NULL;
2817

2818
	s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2819
	if (!s)
A
Akinobu Mita 已提交
2820
		return NULL;
2821 2822 2823 2824 2825 2826
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2827
	 *
2828
	 * We should guarantee that tid and kmem_cache are retrieved on
2829
	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2830
	 * to check if it is matched or not.
2831
	 */
2832 2833 2834
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2835
	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
2836
		 unlikely(tid != READ_ONCE(c->tid)));
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();
2847 2848 2849 2850 2851 2852 2853 2854

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

2855
	object = c->freelist;
2856
	page = c->page;
2857
	if (unlikely(!object || !page || !node_match(page, node))) {
2858
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2859
	} else {
2860 2861
		void *next_object = get_freepointer_safe(s, object);

2862
		/*
L
Lucas De Marchi 已提交
2863
		 * The cmpxchg will only match if there was no additional
2864 2865
		 * operation and if we are on the right processor.
		 *
2866 2867
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2868 2869 2870 2871
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2872 2873 2874
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2875
		 */
2876
		if (unlikely(!this_cpu_cmpxchg_double(
2877 2878
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2879
				next_object, next_tid(tid)))) {
2880 2881 2882 2883

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2884
		prefetch_freepointer(s, next_object);
2885
		stat(s, ALLOC_FASTPATH);
2886
	}
2887

2888
	maybe_wipe_obj_freeptr(s, object);
2889

2890
	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2891
		memset(kasan_reset_tag(object), 0, s->object_size);
2892

2893
	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
V
Vegard Nossum 已提交
2894

2895
	return object;
C
Christoph Lameter 已提交
2896 2897
}

2898 2899 2900 2901 2902 2903
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2904 2905
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2906
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2907

2908 2909
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2910 2911

	return ret;
C
Christoph Lameter 已提交
2912 2913 2914
}
EXPORT_SYMBOL(kmem_cache_alloc);

2915
#ifdef CONFIG_TRACING
2916 2917
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2918
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2919
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2920
	ret = kasan_kmalloc(s, ret, size, gfpflags);
2921 2922 2923
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2924 2925
#endif

C
Christoph Lameter 已提交
2926 2927 2928
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2929
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2930

2931
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2932
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2933 2934

	return ret;
C
Christoph Lameter 已提交
2935 2936 2937
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2938
#ifdef CONFIG_TRACING
2939
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2940
				    gfp_t gfpflags,
2941
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2942
{
2943
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2944 2945 2946

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
2947

2948
	ret = kasan_kmalloc(s, ret, size, gfpflags);
2949
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2950
}
2951
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2952
#endif
2953
#endif	/* CONFIG_NUMA */
E
Eduard - Gabriel Munteanu 已提交
2954

C
Christoph Lameter 已提交
2955
/*
K
Kim Phillips 已提交
2956
 * Slow path handling. This may still be called frequently since objects
2957
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2958
 *
2959 2960 2961
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2962
 */
2963
static void __slab_free(struct kmem_cache *s, struct page *page,
2964 2965 2966
			void *head, void *tail, int cnt,
			unsigned long addr)

C
Christoph Lameter 已提交
2967 2968
{
	void *prior;
2969 2970 2971 2972
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2973
	unsigned long flags;
C
Christoph Lameter 已提交
2974

2975
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2976

2977
	if (kmem_cache_debug(s) &&
2978
	    !free_debug_processing(s, page, head, tail, cnt, addr))
2979
		return;
C
Christoph Lameter 已提交
2980

2981
	do {
2982 2983 2984 2985
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2986 2987
		prior = page->freelist;
		counters = page->counters;
2988
		set_freepointer(s, tail, prior);
2989 2990
		new.counters = counters;
		was_frozen = new.frozen;
2991
		new.inuse -= cnt;
2992
		if ((!new.inuse || !prior) && !was_frozen) {
2993

P
Peter Zijlstra 已提交
2994
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2995 2996

				/*
2997 2998 2999 3000
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
3001 3002 3003
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
3004
			} else { /* Needs to be taken off a list */
3005

3006
				n = get_node(s, page_to_nid(page));
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
3018
		}
C
Christoph Lameter 已提交
3019

3020 3021
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
3022
		head, new.counters,
3023
		"__slab_free"));
C
Christoph Lameter 已提交
3024

3025
	if (likely(!n)) {
3026

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
		if (likely(was_frozen)) {
			/*
			 * The list lock was not taken therefore no list
			 * activity can be necessary.
			 */
			stat(s, FREE_FROZEN);
		} else if (new.frozen) {
			/*
			 * If we just froze the page then put it onto the
			 * per cpu partial list.
			 */
3038
			put_cpu_partial(s, page, 1);
3039 3040
			stat(s, CPU_PARTIAL_FREE);
		}
3041

3042 3043
		return;
	}
C
Christoph Lameter 已提交
3044

3045
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3046 3047
		goto slab_empty;

C
Christoph Lameter 已提交
3048
	/*
3049 3050
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
3051
	 */
3052
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3053
		remove_full(s, n, page);
3054 3055
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
3056
	}
3057
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
3058 3059 3060
	return;

slab_empty:
3061
	if (prior) {
C
Christoph Lameter 已提交
3062
		/*
3063
		 * Slab on the partial list.
C
Christoph Lameter 已提交
3064
		 */
3065
		remove_partial(n, page);
3066
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
3067
	} else {
3068
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
3069 3070
		remove_full(s, n, page);
	}
3071

3072
	spin_unlock_irqrestore(&n->list_lock, flags);
3073
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
3074 3075 3076
	discard_slab(s, page);
}

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
3087 3088 3089 3090
 *
 * Bulk free of a freelist with several objects (all pointing to the
 * same page) possible by specifying head and tail ptr, plus objects
 * count (cnt). Bulk free indicated by tail pointer being set.
3091
 */
3092 3093 3094
static __always_inline void do_slab_free(struct kmem_cache *s,
				struct page *page, void *head, void *tail,
				int cnt, unsigned long addr)
3095
{
3096
	void *tail_obj = tail ? : head;
3097
	struct kmem_cache_cpu *c;
3098
	unsigned long tid;
3099

3100
	memcg_slab_free_hook(s, &head, 1);
3101 3102 3103 3104 3105
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
3106
	 * during the cmpxchg then the free will succeed.
3107
	 */
3108 3109 3110
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
3111
	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
3112
		 unlikely(tid != READ_ONCE(c->tid)));
3113

3114 3115
	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();
3116

3117
	if (likely(page == c->page)) {
3118 3119 3120
		void **freelist = READ_ONCE(c->freelist);

		set_freepointer(s, tail_obj, freelist);
3121

3122
		if (unlikely(!this_cpu_cmpxchg_double(
3123
				s->cpu_slab->freelist, s->cpu_slab->tid,
3124
				freelist, tid,
3125
				head, next_tid(tid)))) {
3126 3127 3128 3129

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
3130
		stat(s, FREE_FASTPATH);
3131
	} else
3132
		__slab_free(s, page, head, tail_obj, cnt, addr);
3133 3134 3135

}

3136 3137 3138 3139 3140
static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
				      void *head, void *tail, int cnt,
				      unsigned long addr)
{
	/*
3141 3142
	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
	 * to remove objects, whose reuse must be delayed.
3143
	 */
3144 3145
	if (slab_free_freelist_hook(s, &head, &tail))
		do_slab_free(s, page, head, tail, cnt, addr);
3146 3147
}

3148
#ifdef CONFIG_KASAN_GENERIC
3149 3150 3151 3152 3153 3154
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
{
	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
}
#endif

C
Christoph Lameter 已提交
3155 3156
void kmem_cache_free(struct kmem_cache *s, void *x)
{
3157 3158
	s = cache_from_obj(s, x);
	if (!s)
3159
		return;
3160
	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3161
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
3162 3163 3164
}
EXPORT_SYMBOL(kmem_cache_free);

3165
struct detached_freelist {
3166
	struct page *page;
3167 3168 3169
	void *tail;
	void *freelist;
	int cnt;
3170
	struct kmem_cache *s;
3171
};
3172

3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
/*
 * This function progressively scans the array with free objects (with
 * a limited look ahead) and extract objects belonging to the same
 * page.  It builds a detached freelist directly within the given
 * page/objects.  This can happen without any need for
 * synchronization, because the objects are owned by running process.
 * The freelist is build up as a single linked list in the objects.
 * The idea is, that this detached freelist can then be bulk
 * transferred to the real freelist(s), but only requiring a single
 * synchronization primitive.  Look ahead in the array is limited due
 * to performance reasons.
 */
3185 3186 3187
static inline
int build_detached_freelist(struct kmem_cache *s, size_t size,
			    void **p, struct detached_freelist *df)
3188 3189 3190 3191
{
	size_t first_skipped_index = 0;
	int lookahead = 3;
	void *object;
3192
	struct page *page;
3193

3194 3195
	/* Always re-init detached_freelist */
	df->page = NULL;
3196

3197 3198
	do {
		object = p[--size];
3199
		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3200
	} while (!object && size);
3201

3202 3203
	if (!object)
		return 0;
3204

3205 3206 3207 3208 3209 3210
	page = virt_to_head_page(object);
	if (!s) {
		/* Handle kalloc'ed objects */
		if (unlikely(!PageSlab(page))) {
			BUG_ON(!PageCompound(page));
			kfree_hook(object);
3211
			__free_pages(page, compound_order(page));
3212 3213 3214 3215 3216 3217 3218 3219
			p[size] = NULL; /* mark object processed */
			return size;
		}
		/* Derive kmem_cache from object */
		df->s = page->slab_cache;
	} else {
		df->s = cache_from_obj(s, object); /* Support for memcg */
	}
3220

3221
	/* Start new detached freelist */
3222
	df->page = page;
3223
	set_freepointer(df->s, object, NULL);
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
	df->tail = object;
	df->freelist = object;
	p[size] = NULL; /* mark object processed */
	df->cnt = 1;

	while (size) {
		object = p[--size];
		if (!object)
			continue; /* Skip processed objects */

		/* df->page is always set at this point */
		if (df->page == virt_to_head_page(object)) {
			/* Opportunity build freelist */
3237
			set_freepointer(df->s, object, df->freelist);
3238 3239 3240 3241 3242
			df->freelist = object;
			df->cnt++;
			p[size] = NULL; /* mark object processed */

			continue;
3243
		}
3244 3245 3246 3247 3248 3249 3250

		/* Limit look ahead search */
		if (!--lookahead)
			break;

		if (!first_skipped_index)
			first_skipped_index = size + 1;
3251
	}
3252 3253 3254 3255 3256

	return first_skipped_index;
}

/* Note that interrupts must be enabled when calling this function. */
3257
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3258 3259 3260 3261
{
	if (WARN_ON(!size))
		return;

3262
	memcg_slab_free_hook(s, p, size);
3263 3264 3265 3266
	do {
		struct detached_freelist df;

		size = build_detached_freelist(s, size, p, &df);
A
Arnd Bergmann 已提交
3267
		if (!df.page)
3268 3269
			continue;

3270
		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3271
	} while (likely(size));
3272 3273 3274
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

3275
/* Note that interrupts must be enabled when calling this function. */
3276 3277
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
			  void **p)
3278
{
3279 3280
	struct kmem_cache_cpu *c;
	int i;
3281
	struct obj_cgroup *objcg = NULL;
3282

3283
	/* memcg and kmem_cache debug support */
3284
	s = slab_pre_alloc_hook(s, &objcg, size, flags);
3285 3286
	if (unlikely(!s))
		return false;
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
	/*
	 * Drain objects in the per cpu slab, while disabling local
	 * IRQs, which protects against PREEMPT and interrupts
	 * handlers invoking normal fastpath.
	 */
	local_irq_disable();
	c = this_cpu_ptr(s->cpu_slab);

	for (i = 0; i < size; i++) {
		void *object = c->freelist;

3298
		if (unlikely(!object)) {
3299 3300 3301 3302 3303 3304 3305 3306 3307
			/*
			 * We may have removed an object from c->freelist using
			 * the fastpath in the previous iteration; in that case,
			 * c->tid has not been bumped yet.
			 * Since ___slab_alloc() may reenable interrupts while
			 * allocating memory, we should bump c->tid now.
			 */
			c->tid = next_tid(c->tid);

3308 3309 3310 3311
			/*
			 * Invoking slow path likely have side-effect
			 * of re-populating per CPU c->freelist
			 */
3312
			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3313
					    _RET_IP_, c);
3314 3315 3316
			if (unlikely(!p[i]))
				goto error;

3317
			c = this_cpu_ptr(s->cpu_slab);
3318 3319
			maybe_wipe_obj_freeptr(s, p[i]);

3320 3321
			continue; /* goto for-loop */
		}
3322 3323
		c->freelist = get_freepointer(s, object);
		p[i] = object;
3324
		maybe_wipe_obj_freeptr(s, p[i]);
3325 3326 3327 3328 3329
	}
	c->tid = next_tid(c->tid);
	local_irq_enable();

	/* Clear memory outside IRQ disabled fastpath loop */
3330
	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3331 3332 3333
		int j;

		for (j = 0; j < i; j++)
3334
			memset(kasan_reset_tag(p[j]), 0, s->object_size);
3335 3336
	}

3337
	/* memcg and kmem_cache debug support */
3338
	slab_post_alloc_hook(s, objcg, flags, size, p);
3339
	return i;
3340 3341
error:
	local_irq_enable();
3342
	slab_post_alloc_hook(s, objcg, flags, i, p);
3343
	__kmem_cache_free_bulk(s, i, p);
3344
	return 0;
3345 3346 3347 3348
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);


C
Christoph Lameter 已提交
3349
/*
C
Christoph Lameter 已提交
3350 3351 3352 3353
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
3354 3355 3356 3357
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
3358
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
3359 3360 3361 3362 3363 3364 3365 3366 3367
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
3368 3369 3370
static unsigned int slub_min_order;
static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
static unsigned int slub_min_objects;
C
Christoph Lameter 已提交
3371 3372 3373 3374

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
3375 3376 3377 3378
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
3379
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
3380 3381 3382 3383 3384 3385
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
3386
 *
C
Christoph Lameter 已提交
3387 3388 3389 3390
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
3391
 *
C
Christoph Lameter 已提交
3392 3393 3394 3395
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
3396
 */
3397 3398
static inline unsigned int slab_order(unsigned int size,
		unsigned int min_objects, unsigned int max_order,
3399
		unsigned int fract_leftover)
C
Christoph Lameter 已提交
3400
{
3401 3402
	unsigned int min_order = slub_min_order;
	unsigned int order;
C
Christoph Lameter 已提交
3403

3404
	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3405
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3406

3407
	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3408
			order <= max_order; order++) {
C
Christoph Lameter 已提交
3409

3410 3411
		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
		unsigned int rem;
C
Christoph Lameter 已提交
3412

3413
		rem = slab_size % size;
C
Christoph Lameter 已提交
3414

3415
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
3416 3417
			break;
	}
C
Christoph Lameter 已提交
3418

C
Christoph Lameter 已提交
3419 3420 3421
	return order;
}

3422
static inline int calculate_order(unsigned int size)
3423
{
3424 3425 3426
	unsigned int order;
	unsigned int min_objects;
	unsigned int max_objects;
3427
	unsigned int nr_cpus;
3428 3429 3430 3431 3432 3433

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
3434
	 * First we increase the acceptable waste in a slab. Then
3435 3436 3437
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
	if (!min_objects) {
		/*
		 * Some architectures will only update present cpus when
		 * onlining them, so don't trust the number if it's just 1. But
		 * we also don't want to use nr_cpu_ids always, as on some other
		 * architectures, there can be many possible cpus, but never
		 * onlined. Here we compromise between trying to avoid too high
		 * order on systems that appear larger than they are, and too
		 * low order on systems that appear smaller than they are.
		 */
		nr_cpus = num_present_cpus();
		if (nr_cpus <= 1)
			nr_cpus = nr_cpu_ids;
		min_objects = 4 * (fls(nr_cpus) + 1);
	}
3453
	max_objects = order_objects(slub_max_order, size);
3454 3455
	min_objects = min(min_objects, max_objects);

3456
	while (min_objects > 1) {
3457 3458
		unsigned int fraction;

C
Christoph Lameter 已提交
3459
		fraction = 16;
3460 3461
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
3462
					slub_max_order, fraction);
3463 3464 3465 3466
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
3467
		min_objects--;
3468 3469 3470 3471 3472 3473
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
3474
	order = slab_order(size, 1, slub_max_order, 1);
3475 3476 3477 3478 3479 3480
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
3481
	order = slab_order(size, 1, MAX_ORDER, 1);
D
David Rientjes 已提交
3482
	if (order < MAX_ORDER)
3483 3484 3485 3486
		return order;
	return -ENOSYS;
}

3487
static void
3488
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3489 3490 3491 3492
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
3493
#ifdef CONFIG_SLUB_DEBUG
3494
	atomic_long_set(&n->nr_slabs, 0);
3495
	atomic_long_set(&n->total_objects, 0);
3496
	INIT_LIST_HEAD(&n->full);
3497
#endif
C
Christoph Lameter 已提交
3498 3499
}

3500
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3501
{
3502
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3503
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3504

3505
	/*
3506 3507
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
3508
	 */
3509 3510
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
3511 3512 3513 3514 3515

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
3516

3517
	return 1;
3518 3519
}

3520 3521
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
3522 3523 3524 3525 3526
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
3527 3528
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
3529
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
3530
 */
3531
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
3532 3533 3534 3535
{
	struct page *page;
	struct kmem_cache_node *n;

3536
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
3537

3538
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
3539 3540

	BUG_ON(!page);
3541
	if (page_to_nid(page) != node) {
3542 3543
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3544 3545
	}

C
Christoph Lameter 已提交
3546 3547
	n = page->freelist;
	BUG_ON(!n);
3548
#ifdef CONFIG_SLUB_DEBUG
3549
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3550
	init_tracking(kmem_cache_node, n);
3551
#endif
3552
	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3553
		      GFP_KERNEL);
3554 3555 3556 3557
	page->freelist = get_freepointer(kmem_cache_node, n);
	page->inuse = 1;
	page->frozen = 0;
	kmem_cache_node->node[node] = n;
3558
	init_kmem_cache_node(n);
3559
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
3560

3561
	/*
3562 3563
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
3564
	 */
3565
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
3566 3567 3568 3569 3570
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
3571
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3572

C
Christoph Lameter 已提交
3573
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3574
		s->node[node] = NULL;
3575
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
3576 3577 3578
	}
}

3579 3580
void __kmem_cache_release(struct kmem_cache *s)
{
T
Thomas Garnier 已提交
3581
	cache_random_seq_destroy(s);
3582 3583 3584 3585
	free_percpu(s->cpu_slab);
	free_kmem_cache_nodes(s);
}

3586
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
3587 3588 3589
{
	int node;

C
Christoph Lameter 已提交
3590
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3591 3592
		struct kmem_cache_node *n;

3593
		if (slab_state == DOWN) {
3594
			early_kmem_cache_node_alloc(node);
3595 3596
			continue;
		}
3597
		n = kmem_cache_alloc_node(kmem_cache_node,
3598
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
3599

3600 3601 3602
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
3603
		}
3604

3605
		init_kmem_cache_node(n);
3606
		s->node[node] = n;
C
Christoph Lameter 已提交
3607 3608 3609 3610
	}
	return 1;
}

3611
static void set_min_partial(struct kmem_cache *s, unsigned long min)
3612 3613 3614 3615 3616 3617 3618 3619
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
static void set_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
	 * B) The number of objects in cpu partial slabs to extract from the
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
	 */
	if (!kmem_cache_has_cpu_partial(s))
3641
		slub_set_cpu_partial(s, 0);
3642
	else if (s->size >= PAGE_SIZE)
3643
		slub_set_cpu_partial(s, 2);
3644
	else if (s->size >= 1024)
3645
		slub_set_cpu_partial(s, 6);
3646
	else if (s->size >= 256)
3647
		slub_set_cpu_partial(s, 13);
3648
	else
3649
		slub_set_cpu_partial(s, 30);
3650 3651 3652
#endif
}

C
Christoph Lameter 已提交
3653 3654 3655 3656
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
3657
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
3658
{
3659
	slab_flags_t flags = s->flags;
3660
	unsigned int size = s->object_size;
3661
	unsigned int freepointer_area;
3662
	unsigned int order;
C
Christoph Lameter 已提交
3663

3664 3665 3666 3667 3668 3669
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));
3670 3671 3672 3673 3674 3675 3676
	/*
	 * This is the area of the object where a freepointer can be
	 * safely written. If redzoning adds more to the inuse size, we
	 * can't use that portion for writing the freepointer, so
	 * s->offset must be limited within this for the general case.
	 */
	freepointer_area = size;
3677 3678

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3679 3680 3681 3682 3683
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
3684
	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3685
			!s->ctor)
C
Christoph Lameter 已提交
3686 3687 3688 3689 3690 3691
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3692
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3693
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3694
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3695
	 */
3696
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3697
		size += sizeof(void *);
C
Christoph Lameter 已提交
3698
#endif
C
Christoph Lameter 已提交
3699 3700

	/*
C
Christoph Lameter 已提交
3701 3702
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3703 3704 3705
	 */
	s->inuse = size;

3706
	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3707
		s->ctor)) {
C
Christoph Lameter 已提交
3708 3709 3710 3711 3712 3713 3714
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
3715 3716 3717 3718 3719
		 *
		 * The assumption that s->offset >= s->inuse means free
		 * pointer is outside of the object is used in the
		 * freeptr_outside_object() function. If that is no
		 * longer true, the function needs to be modified.
C
Christoph Lameter 已提交
3720 3721 3722
		 */
		s->offset = size;
		size += sizeof(void *);
3723
	} else if (freepointer_area > sizeof(void *)) {
3724 3725 3726 3727 3728
		/*
		 * Store freelist pointer near middle of object to keep
		 * it away from the edges of the object to avoid small
		 * sized over/underflows from neighboring allocations.
		 */
3729
		s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
C
Christoph Lameter 已提交
3730 3731
	}

3732
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3733 3734 3735 3736 3737 3738
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);
3739
#endif
C
Christoph Lameter 已提交
3740

3741 3742
	kasan_cache_create(s, &size, &s->flags);
#ifdef CONFIG_SLUB_DEBUG
J
Joonsoo Kim 已提交
3743
	if (flags & SLAB_RED_ZONE) {
C
Christoph Lameter 已提交
3744 3745 3746 3747
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3748
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3749 3750 3751
		 * of the object.
		 */
		size += sizeof(void *);
J
Joonsoo Kim 已提交
3752 3753 3754 3755 3756

		s->red_left_pad = sizeof(void *);
		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
		size += s->red_left_pad;
	}
C
Christoph Lameter 已提交
3757
#endif
C
Christoph Lameter 已提交
3758

C
Christoph Lameter 已提交
3759 3760 3761 3762 3763
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3764
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3765
	s->size = size;
3766
	s->reciprocal_size = reciprocal_value(size);
3767 3768 3769
	if (forced_order >= 0)
		order = forced_order;
	else
3770
		order = calculate_order(size);
C
Christoph Lameter 已提交
3771

3772
	if ((int)order < 0)
C
Christoph Lameter 已提交
3773 3774
		return 0;

3775
	s->allocflags = 0;
3776
	if (order)
3777 3778 3779
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3780
		s->allocflags |= GFP_DMA;
3781

3782 3783 3784
	if (s->flags & SLAB_CACHE_DMA32)
		s->allocflags |= GFP_DMA32;

3785 3786 3787
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3788 3789 3790
	/*
	 * Determine the number of objects per slab
	 */
3791 3792
	s->oo = oo_make(order, size);
	s->min = oo_make(get_order(size), size);
3793 3794
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3795

3796
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3797 3798
}

3799
static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
C
Christoph Lameter 已提交
3800
{
3801
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3802 3803 3804
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	s->random = get_random_long();
#endif
C
Christoph Lameter 已提交
3805

3806
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3807
		goto error;
3808 3809 3810 3811 3812
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3813
		if (get_order(s->size) > get_order(s->object_size)) {
3814 3815 3816 3817 3818 3819
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3820

3821 3822
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3823
	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3824 3825 3826 3827
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3828 3829 3830 3831
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3832 3833
	set_min_partial(s, ilog2(s->size) / 2);

3834
	set_cpu_partial(s);
3835

C
Christoph Lameter 已提交
3836
#ifdef CONFIG_NUMA
3837
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3838
#endif
T
Thomas Garnier 已提交
3839 3840 3841 3842 3843 3844 3845

	/* Initialize the pre-computed randomized freelist if slab is up */
	if (slab_state >= UP) {
		if (init_cache_random_seq(s))
			goto error;
	}

3846
	if (!init_kmem_cache_nodes(s))
3847
		goto error;
C
Christoph Lameter 已提交
3848

3849
	if (alloc_kmem_cache_cpus(s))
3850
		return 0;
3851

3852
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3853
error:
3854
	return -EINVAL;
C
Christoph Lameter 已提交
3855 3856
}

3857
static void list_slab_objects(struct kmem_cache *s, struct page *page,
3858
			      const char *text)
3859 3860 3861
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
3862
	unsigned long *map;
3863
	void *p;
3864

3865
	slab_err(s, page, text, s->name);
3866 3867
	slab_lock(page);

3868
	map = get_map(s, page);
3869 3870
	for_each_object(p, s, addr, page->objects) {

3871
		if (!test_bit(__obj_to_index(s, addr, p), map)) {
3872
			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
3873 3874 3875
			print_tracking(s, p);
		}
	}
3876
	put_map(map);
3877 3878 3879 3880
	slab_unlock(page);
#endif
}

C
Christoph Lameter 已提交
3881
/*
C
Christoph Lameter 已提交
3882
 * Attempt to free all partial slabs on a node.
3883 3884
 * This is called from __kmem_cache_shutdown(). We must take list_lock
 * because sysfs file might still access partial list after the shutdowning.
C
Christoph Lameter 已提交
3885
 */
C
Christoph Lameter 已提交
3886
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3887
{
3888
	LIST_HEAD(discard);
C
Christoph Lameter 已提交
3889 3890
	struct page *page, *h;

3891 3892
	BUG_ON(irqs_disabled());
	spin_lock_irq(&n->list_lock);
3893
	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
C
Christoph Lameter 已提交
3894
		if (!page->inuse) {
3895
			remove_partial(n, page);
3896
			list_add(&page->slab_list, &discard);
3897 3898
		} else {
			list_slab_objects(s, page,
3899
			  "Objects remaining in %s on __kmem_cache_shutdown()");
C
Christoph Lameter 已提交
3900
		}
3901
	}
3902
	spin_unlock_irq(&n->list_lock);
3903

3904
	list_for_each_entry_safe(page, h, &discard, slab_list)
3905
		discard_slab(s, page);
C
Christoph Lameter 已提交
3906 3907
}

3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
bool __kmem_cache_empty(struct kmem_cache *s)
{
	int node;
	struct kmem_cache_node *n;

	for_each_kmem_cache_node(s, node, n)
		if (n->nr_partial || slabs_node(s, node))
			return false;
	return true;
}

C
Christoph Lameter 已提交
3919
/*
C
Christoph Lameter 已提交
3920
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3921
 */
3922
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3923 3924
{
	int node;
C
Christoph Lameter 已提交
3925
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3926 3927 3928

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3929
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3930 3931
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3932 3933 3934 3935 3936
			return 1;
	}
	return 0;
}

3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
{
	void *base;
	int __maybe_unused i;
	unsigned int objnr;
	void *objp;
	void *objp0;
	struct kmem_cache *s = page->slab_cache;
	struct track __maybe_unused *trackp;

	kpp->kp_ptr = object;
	kpp->kp_page = page;
	kpp->kp_slab_cache = s;
	base = page_address(page);
	objp0 = kasan_reset_tag(object);
#ifdef CONFIG_SLUB_DEBUG
	objp = restore_red_left(s, objp0);
#else
	objp = objp0;
#endif
	objnr = obj_to_index(s, page, objp);
	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
	objp = base + s->size * objnr;
	kpp->kp_objp = objp;
	if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
	    !(s->flags & SLAB_STORE_USER))
		return;
#ifdef CONFIG_SLUB_DEBUG
	trackp = get_track(s, objp, TRACK_ALLOC);
	kpp->kp_ret = (void *)trackp->addr;
#ifdef CONFIG_STACKTRACE
	for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
		kpp->kp_stack[i] = (void *)trackp->addrs[i];
		if (!kpp->kp_stack[i])
			break;
	}
#endif
#endif
}

C
Christoph Lameter 已提交
3977 3978 3979 3980 3981 3982
/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
3983
	get_option(&str, (int *)&slub_min_order);
C
Christoph Lameter 已提交
3984 3985 3986 3987 3988 3989 3990 3991

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
3992 3993
	get_option(&str, (int *)&slub_max_order);
	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
C
Christoph Lameter 已提交
3994 3995 3996 3997 3998 3999 4000 4001

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
4002
	get_option(&str, (int *)&slub_min_objects);
C
Christoph Lameter 已提交
4003 4004 4005 4006 4007 4008 4009 4010

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
4011
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
4012
	void *ret;
C
Christoph Lameter 已提交
4013

4014
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4015
		return kmalloc_large(size, flags);
4016

4017
	s = kmalloc_slab(size, flags);
4018 4019

	if (unlikely(ZERO_OR_NULL_PTR(s)))
4020 4021
		return s;

4022
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
4023

4024
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
4025

4026
	ret = kasan_kmalloc(s, ret, size, flags);
4027

E
Eduard - Gabriel Munteanu 已提交
4028
	return ret;
C
Christoph Lameter 已提交
4029 4030 4031
}
EXPORT_SYMBOL(__kmalloc);

4032
#ifdef CONFIG_NUMA
4033 4034
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
4035
	struct page *page;
4036
	void *ptr = NULL;
4037
	unsigned int order = get_order(size);
4038

4039
	flags |= __GFP_COMP;
4040 4041
	page = alloc_pages_node(node, flags, order);
	if (page) {
4042
		ptr = page_address(page);
4043 4044
		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
				    PAGE_SIZE << order);
4045
	}
4046

4047
	return kmalloc_large_node_hook(ptr, size, flags);
4048 4049
}

C
Christoph Lameter 已提交
4050 4051
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
4052
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
4053
	void *ret;
C
Christoph Lameter 已提交
4054

4055
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
4056 4057
		ret = kmalloc_large_node(size, flags, node);

4058 4059 4060
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
4061 4062 4063

		return ret;
	}
4064

4065
	s = kmalloc_slab(size, flags);
4066 4067

	if (unlikely(ZERO_OR_NULL_PTR(s)))
4068 4069
		return s;

4070
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
4071

4072
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
4073

4074
	ret = kasan_kmalloc(s, ret, size, flags);
4075

E
Eduard - Gabriel Munteanu 已提交
4076
	return ret;
C
Christoph Lameter 已提交
4077 4078
}
EXPORT_SYMBOL(__kmalloc_node);
4079
#endif	/* CONFIG_NUMA */
C
Christoph Lameter 已提交
4080

K
Kees Cook 已提交
4081 4082
#ifdef CONFIG_HARDENED_USERCOPY
/*
4083 4084 4085
 * Rejects incorrectly sized objects and objects that are to be copied
 * to/from userspace but do not fall entirely within the containing slab
 * cache's usercopy region.
K
Kees Cook 已提交
4086 4087 4088 4089
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
4090 4091
void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
			 bool to_user)
K
Kees Cook 已提交
4092 4093
{
	struct kmem_cache *s;
A
Alexey Dobriyan 已提交
4094
	unsigned int offset;
K
Kees Cook 已提交
4095 4096
	size_t object_size;

4097 4098
	ptr = kasan_reset_tag(ptr);

K
Kees Cook 已提交
4099 4100 4101 4102 4103
	/* Find object and usable object size. */
	s = page->slab_cache;

	/* Reject impossible pointers. */
	if (ptr < page_address(page))
4104 4105
		usercopy_abort("SLUB object not in SLUB page?!", NULL,
			       to_user, 0, n);
K
Kees Cook 已提交
4106 4107 4108 4109 4110

	/* Find offset within object. */
	offset = (ptr - page_address(page)) % s->size;

	/* Adjust for redzone and reject if within the redzone. */
4111
	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
K
Kees Cook 已提交
4112
		if (offset < s->red_left_pad)
4113 4114
			usercopy_abort("SLUB object in left red zone",
				       s->name, to_user, offset, n);
K
Kees Cook 已提交
4115 4116 4117
		offset -= s->red_left_pad;
	}

4118 4119 4120 4121
	/* Allow address range falling entirely within usercopy region. */
	if (offset >= s->useroffset &&
	    offset - s->useroffset <= s->usersize &&
	    n <= s->useroffset - offset + s->usersize)
4122
		return;
K
Kees Cook 已提交
4123

4124 4125 4126 4127 4128 4129 4130
	/*
	 * If the copy is still within the allocated object, produce
	 * a warning instead of rejecting the copy. This is intended
	 * to be a temporary method to find any missing usercopy
	 * whitelists.
	 */
	object_size = slab_ksize(s);
4131 4132
	if (usercopy_fallback &&
	    offset <= object_size && n <= object_size - offset) {
4133 4134 4135
		usercopy_warn("SLUB object", s->name, to_user, offset, n);
		return;
	}
K
Kees Cook 已提交
4136

4137
	usercopy_abort("SLUB object", s->name, to_user, offset, n);
K
Kees Cook 已提交
4138 4139 4140
}
#endif /* CONFIG_HARDENED_USERCOPY */

4141
size_t __ksize(const void *object)
C
Christoph Lameter 已提交
4142
{
4143
	struct page *page;
C
Christoph Lameter 已提交
4144

4145
	if (unlikely(object == ZERO_SIZE_PTR))
4146 4147
		return 0;

4148 4149
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
4150 4151
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
4152
		return page_size(page);
P
Pekka Enberg 已提交
4153
	}
C
Christoph Lameter 已提交
4154

4155
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
4156
}
4157
EXPORT_SYMBOL(__ksize);
C
Christoph Lameter 已提交
4158 4159 4160 4161

void kfree(const void *x)
{
	struct page *page;
4162
	void *object = (void *)x;
C
Christoph Lameter 已提交
4163

4164 4165
	trace_kfree(_RET_IP_, x);

4166
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
4167 4168
		return;

4169
	page = virt_to_head_page(x);
4170
	if (unlikely(!PageSlab(page))) {
4171 4172
		unsigned int order = compound_order(page);

4173
		BUG_ON(!PageCompound(page));
4174
		kfree_hook(object);
4175 4176
		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
				    -(PAGE_SIZE << order));
4177
		__free_pages(page, order);
4178 4179
		return;
	}
4180
	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
C
Christoph Lameter 已提交
4181 4182 4183
}
EXPORT_SYMBOL(kfree);

4184 4185
#define SHRINK_PROMOTE_MAX 32

4186
/*
4187 4188 4189
 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 * up most to the head of the partial lists. New allocations will then
 * fill those up and thus they can be removed from the partial lists.
C
Christoph Lameter 已提交
4190 4191 4192 4193
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
4194
 */
4195
int __kmem_cache_shrink(struct kmem_cache *s)
4196 4197 4198 4199 4200 4201
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
4202 4203
	struct list_head discard;
	struct list_head promote[SHRINK_PROMOTE_MAX];
4204
	unsigned long flags;
4205
	int ret = 0;
4206 4207

	flush_all(s);
C
Christoph Lameter 已提交
4208
	for_each_kmem_cache_node(s, node, n) {
4209 4210 4211
		INIT_LIST_HEAD(&discard);
		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
			INIT_LIST_HEAD(promote + i);
4212 4213 4214 4215

		spin_lock_irqsave(&n->list_lock, flags);

		/*
4216
		 * Build lists of slabs to discard or promote.
4217
		 *
C
Christoph Lameter 已提交
4218 4219
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
4220
		 */
4221
		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4222 4223 4224 4225 4226 4227 4228 4229 4230
			int free = page->objects - page->inuse;

			/* Do not reread page->inuse */
			barrier();

			/* We do not keep full slabs on the list */
			BUG_ON(free <= 0);

			if (free == page->objects) {
4231
				list_move(&page->slab_list, &discard);
4232
				n->nr_partial--;
4233
			} else if (free <= SHRINK_PROMOTE_MAX)
4234
				list_move(&page->slab_list, promote + free - 1);
4235 4236 4237
		}

		/*
4238 4239
		 * Promote the slabs filled up most to the head of the
		 * partial list.
4240
		 */
4241 4242
		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
			list_splice(promote + i, &n->partial);
4243 4244

		spin_unlock_irqrestore(&n->list_lock, flags);
4245 4246

		/* Release empty slabs */
4247
		list_for_each_entry_safe(page, t, &discard, slab_list)
4248
			discard_slab(s, page);
4249 4250 4251

		if (slabs_node(s, node))
			ret = 1;
4252 4253
	}

4254
	return ret;
4255 4256
}

4257 4258 4259 4260
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

4261
	mutex_lock(&slab_mutex);
4262
	list_for_each_entry(s, &slab_caches, list)
4263
		__kmem_cache_shrink(s);
4264
	mutex_unlock(&slab_mutex);
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

4276
	offline_node = marg->status_change_nid_normal;
4277 4278 4279 4280 4281 4282 4283 4284

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

4285
	mutex_lock(&slab_mutex);
4286 4287 4288 4289 4290 4291
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
4292
			 * and offline_pages() function shouldn't call this
4293 4294
			 * callback. So, we must fail.
			 */
4295
			BUG_ON(slabs_node(s, offline_node));
4296 4297

			s->node[offline_node] = NULL;
4298
			kmem_cache_free(kmem_cache_node, n);
4299 4300
		}
	}
4301
	mutex_unlock(&slab_mutex);
4302 4303 4304 4305 4306 4307 4308
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
4309
	int nid = marg->status_change_nid_normal;
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
4320
	 * We are bringing a node online. No memory is available yet. We must
4321 4322 4323
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
4324
	mutex_lock(&slab_mutex);
4325 4326 4327 4328 4329 4330
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
4331
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4332 4333 4334 4335
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
4336
		init_kmem_cache_node(n);
4337 4338 4339
		s->node[nid] = n;
	}
out:
4340
	mutex_unlock(&slab_mutex);
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
4364 4365 4366 4367
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
4368 4369 4370
	return ret;
}

4371 4372 4373 4374
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
4375

C
Christoph Lameter 已提交
4376 4377 4378 4379
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

4380 4381
/*
 * Used for early kmem_cache structures that were allocated using
4382 4383
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
4384 4385
 */

4386
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4387 4388
{
	int node;
4389
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
4390
	struct kmem_cache_node *n;
4391

4392
	memcpy(s, static_cache, kmem_cache->object_size);
4393

4394 4395 4396 4397 4398 4399
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
4400
	for_each_kmem_cache_node(s, node, n) {
4401 4402
		struct page *p;

4403
		list_for_each_entry(p, &n->partial, slab_list)
C
Christoph Lameter 已提交
4404
			p->slab_cache = s;
4405

L
Li Zefan 已提交
4406
#ifdef CONFIG_SLUB_DEBUG
4407
		list_for_each_entry(p, &n->full, slab_list)
C
Christoph Lameter 已提交
4408
			p->slab_cache = s;
4409 4410
#endif
	}
4411 4412
	list_add(&s->list, &slab_caches);
	return s;
4413 4414
}

C
Christoph Lameter 已提交
4415 4416
void __init kmem_cache_init(void)
{
4417 4418
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
4419

4420 4421 4422
	if (debug_guardpage_minorder())
		slub_max_order = 0;

4423 4424
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
4425

4426
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4427
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4428

4429
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
4430 4431 4432 4433

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

4434 4435 4436
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
4437
		       SLAB_HWCACHE_ALIGN, 0, 0);
4438

4439 4440
	kmem_cache = bootstrap(&boot_kmem_cache);
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4441 4442

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4443
	setup_kmalloc_cache_index_table();
4444
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
4445

T
Thomas Garnier 已提交
4446 4447 4448
	/* Setup random freelists for each cache */
	init_freelist_randomization();

4449 4450
	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
				  slub_cpu_dead);
C
Christoph Lameter 已提交
4451

4452
	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4453
		cache_line_size(),
C
Christoph Lameter 已提交
4454 4455 4456 4457
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

4458 4459 4460 4461
void __init kmem_cache_init_late(void)
{
}

4462
struct kmem_cache *
4463
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4464
		   slab_flags_t flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
4465
{
4466
	struct kmem_cache *s;
C
Christoph Lameter 已提交
4467

4468
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
4469 4470
	if (s) {
		s->refcount++;
4471

C
Christoph Lameter 已提交
4472 4473 4474 4475
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
4476
		s->object_size = max(s->object_size, size);
4477
		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
4478

4479 4480
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
4481
			s = NULL;
4482
		}
4483
	}
C
Christoph Lameter 已提交
4484

4485 4486
	return s;
}
P
Pekka Enberg 已提交
4487

4488
int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4489
{
4490 4491 4492 4493 4494
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
4495

4496 4497 4498 4499
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

4500 4501
	err = sysfs_slab_add(s);
	if (err)
4502
		__kmem_cache_release(s);
4503

4504
	return err;
C
Christoph Lameter 已提交
4505 4506
}

4507
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
4508
{
4509
	struct kmem_cache *s;
4510
	void *ret;
4511

4512
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4513 4514
		return kmalloc_large(size, gfpflags);

4515
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4516

4517
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4518
		return s;
C
Christoph Lameter 已提交
4519

4520
	ret = slab_alloc(s, gfpflags, caller);
4521

L
Lucas De Marchi 已提交
4522
	/* Honor the call site pointer we received. */
4523
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4524 4525

	return ret;
C
Christoph Lameter 已提交
4526
}
4527
EXPORT_SYMBOL(__kmalloc_track_caller);
C
Christoph Lameter 已提交
4528

4529
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4530
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4531
					int node, unsigned long caller)
C
Christoph Lameter 已提交
4532
{
4533
	struct kmem_cache *s;
4534
	void *ret;
4535

4536
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4537 4538 4539 4540 4541 4542 4543 4544
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
4545

4546
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4547

4548
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4549
		return s;
C
Christoph Lameter 已提交
4550

4551
	ret = slab_alloc_node(s, gfpflags, node, caller);
4552

L
Lucas De Marchi 已提交
4553
	/* Honor the call site pointer we received. */
4554
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4555 4556

	return ret;
C
Christoph Lameter 已提交
4557
}
4558
EXPORT_SYMBOL(__kmalloc_node_track_caller);
4559
#endif
C
Christoph Lameter 已提交
4560

4561
#ifdef CONFIG_SYSFS
4562 4563 4564 4565 4566 4567 4568 4569 4570
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
4571
#endif
4572

4573
#ifdef CONFIG_SLUB_DEBUG
4574
static void validate_slab(struct kmem_cache *s, struct page *page)
4575 4576
{
	void *p;
4577
	void *addr = page_address(page);
4578 4579 4580
	unsigned long *map;

	slab_lock(page);
4581

Y
Yu Zhao 已提交
4582
	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4583
		goto unlock;
4584 4585

	/* Now we know that a valid freelist exists */
4586
	map = get_map(s, page);
4587
	for_each_object(p, s, addr, page->objects) {
4588
		u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
Y
Yu Zhao 已提交
4589
			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4590

Y
Yu Zhao 已提交
4591 4592 4593
		if (!check_object(s, page, p, val))
			break;
	}
4594 4595
	put_map(map);
unlock:
4596
	slab_unlock(page);
4597 4598
}

4599
static int validate_slab_node(struct kmem_cache *s,
4600
		struct kmem_cache_node *n)
4601 4602 4603 4604 4605 4606 4607
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

4608
	list_for_each_entry(page, &n->partial, slab_list) {
4609
		validate_slab(s, page);
4610 4611 4612
		count++;
	}
	if (count != n->nr_partial)
4613 4614
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
4615 4616 4617 4618

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

4619
	list_for_each_entry(page, &n->full, slab_list) {
4620
		validate_slab(s, page);
4621 4622 4623
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
4624 4625
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
4626 4627 4628 4629 4630 4631

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

4632
static long validate_slab_cache(struct kmem_cache *s)
4633 4634 4635
{
	int node;
	unsigned long count = 0;
C
Christoph Lameter 已提交
4636
	struct kmem_cache_node *n;
4637 4638

	flush_all(s);
C
Christoph Lameter 已提交
4639
	for_each_kmem_cache_node(s, node, n)
4640 4641
		count += validate_slab_node(s, n);

4642 4643
	return count;
}
4644
/*
C
Christoph Lameter 已提交
4645
 * Generate lists of code addresses where slabcache objects are allocated
4646 4647 4648 4649 4650
 * and freed.
 */

struct location {
	unsigned long count;
4651
	unsigned long addr;
4652 4653 4654 4655 4656
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
4657
	DECLARE_BITMAP(cpus, NR_CPUS);
4658
	nodemask_t nodes;
4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4674
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4675 4676 4677 4678 4679 4680
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4681
	l = (void *)__get_free_pages(flags, order);
4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4695
				const struct track *track)
4696 4697 4698
{
	long start, end, pos;
	struct location *l;
4699
	unsigned long caddr;
4700
	unsigned long age = jiffies - track->when;
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4732 4733
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4734 4735
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4736 4737 4738
			return 1;
		}

4739
		if (track->addr < caddr)
4740 4741 4742 4743 4744 4745
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4746
	 * Not found. Insert new tracking element.
4747
	 */
4748
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4749 4750 4751 4752 4753 4754 4755 4756
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4757 4758 4759 4760 4761 4762
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4763 4764
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4765 4766
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4767 4768 4769 4770
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
4771
		struct page *page, enum track_item alloc)
4772
{
4773
	void *addr = page_address(page);
4774
	void *p;
4775
	unsigned long *map;
4776

4777
	map = get_map(s, page);
4778
	for_each_object(p, s, addr, page->objects)
4779
		if (!test_bit(__obj_to_index(s, addr, p), map))
4780
			add_location(t, s, get_track(s, p, alloc));
4781
	put_map(map);
4782 4783 4784
}

static int list_locations(struct kmem_cache *s, char *buf,
4785
			  enum track_item alloc)
4786
{
4787
	int len = 0;
4788
	unsigned long i;
4789
	struct loc_track t = { 0, 0, NULL };
4790
	int node;
C
Christoph Lameter 已提交
4791
	struct kmem_cache_node *n;
4792

4793 4794
	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
			     GFP_KERNEL)) {
4795
		return sysfs_emit(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4796
	}
4797 4798 4799
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4800
	for_each_kmem_cache_node(s, node, n) {
4801 4802 4803
		unsigned long flags;
		struct page *page;

4804
		if (!atomic_long_read(&n->nr_slabs))
4805 4806 4807
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
4808
		list_for_each_entry(page, &n->partial, slab_list)
4809
			process_slab(&t, s, page, alloc);
4810
		list_for_each_entry(page, &n->full, slab_list)
4811
			process_slab(&t, s, page, alloc);
4812 4813 4814 4815
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4816
		struct location *l = &t.loc[i];
4817

4818
		len += sysfs_emit_at(buf, len, "%7ld ", l->count);
4819 4820

		if (l->addr)
4821
			len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr);
4822
		else
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
			len += sysfs_emit_at(buf, len, "<not-available>");

		if (l->sum_time != l->min_time)
			len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld",
					     l->min_time,
					     (long)div_u64(l->sum_time,
							   l->count),
					     l->max_time);
		else
			len += sysfs_emit_at(buf, len, " age=%ld", l->min_time);
4833 4834

		if (l->min_pid != l->max_pid)
4835 4836
			len += sysfs_emit_at(buf, len, " pid=%ld-%ld",
					     l->min_pid, l->max_pid);
4837
		else
4838 4839
			len += sysfs_emit_at(buf, len, " pid=%ld",
					     l->min_pid);
4840

R
Rusty Russell 已提交
4841
		if (num_online_cpus() > 1 &&
4842 4843 4844 4845 4846 4847 4848 4849 4850
		    !cpumask_empty(to_cpumask(l->cpus)))
			len += sysfs_emit_at(buf, len, " cpus=%*pbl",
					     cpumask_pr_args(to_cpumask(l->cpus)));

		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
			len += sysfs_emit_at(buf, len, " nodes=%*pbl",
					     nodemask_pr_args(&l->nodes));

		len += sysfs_emit_at(buf, len, "\n");
4851 4852 4853 4854
	}

	free_loc_track(&t);
	if (!t.count)
4855 4856
		len += sysfs_emit_at(buf, len, "No data\n");

4857
	return len;
4858
}
4859
#endif	/* CONFIG_SLUB_DEBUG */
4860

4861
#ifdef SLUB_RESILIENCY_TEST
4862
static void __init resiliency_test(void)
4863 4864
{
	u8 *p;
4865
	int type = KMALLOC_NORMAL;
4866

4867
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4868

4869 4870 4871
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4872 4873 4874

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4875 4876
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4877

4878
	validate_slab_cache(kmalloc_caches[type][4]);
4879 4880 4881 4882

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4883 4884 4885
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4886

4887
	validate_slab_cache(kmalloc_caches[type][5]);
4888 4889 4890
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4891 4892 4893
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4894
	validate_slab_cache(kmalloc_caches[type][6]);
4895

4896
	pr_err("\nB. Corruption after free\n");
4897 4898 4899
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4900
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4901
	validate_slab_cache(kmalloc_caches[type][7]);
4902 4903 4904 4905

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4906
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4907
	validate_slab_cache(kmalloc_caches[type][8]);
4908 4909 4910 4911

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4912
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4913
	validate_slab_cache(kmalloc_caches[type][9]);
4914 4915 4916 4917 4918
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
4919
#endif	/* SLUB_RESILIENCY_TEST */
4920

4921
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4922
enum slab_stat_type {
4923 4924 4925 4926 4927
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4928 4929
};

4930
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4931 4932 4933
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4934
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4935

4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
#ifdef CONFIG_MEMCG
static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);

static int __init setup_slub_memcg_sysfs(char *str)
{
	int v;

	if (get_option(&str, &v) > 0)
		memcg_sysfs_enabled = v;

	return 1;
}

__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
#endif

4952
static ssize_t show_slab_objects(struct kmem_cache *s,
4953
				 char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4954 4955 4956 4957 4958
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;
4959
	int len = 0;
C
Christoph Lameter 已提交
4960

K
Kees Cook 已提交
4961
	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4962 4963
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4964

4965 4966
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4967

4968
		for_each_possible_cpu(cpu) {
4969 4970
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4971
			int node;
4972
			struct page *page;
4973

4974
			page = READ_ONCE(c->page);
4975 4976
			if (!page)
				continue;
4977

4978 4979 4980 4981 4982 4983 4984
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4985

4986 4987 4988
			total += x;
			nodes[node] += x;

4989
			page = slub_percpu_partial_read_once(c);
4990
			if (page) {
L
Li Zefan 已提交
4991 4992 4993 4994 4995 4996 4997
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4998 4999
				total += x;
				nodes[node] += x;
5000
			}
C
Christoph Lameter 已提交
5001 5002 5003
		}
	}

5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014
	/*
	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
	 * already held which will conflict with an existing lock order:
	 *
	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
	 *
	 * We don't really need mem_hotplug_lock (to hold off
	 * slab_mem_going_offline_callback) here because slab's memory hot
	 * unplug code doesn't destroy the kmem_cache->node[] data.
	 */

5015
#ifdef CONFIG_SLUB_DEBUG
5016
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
5017 5018 5019
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
5020

5021 5022 5023 5024 5025
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
5026
			else
5027
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
5028 5029 5030 5031
			total += x;
			nodes[node] += x;
		}

5032 5033 5034
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
5035
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
5036

C
Christoph Lameter 已提交
5037
		for_each_kmem_cache_node(s, node, n) {
5038 5039 5040 5041
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
5042
			else
5043
				x = n->nr_partial;
C
Christoph Lameter 已提交
5044 5045 5046 5047
			total += x;
			nodes[node] += x;
		}
	}
5048 5049

	len += sysfs_emit_at(buf, len, "%lu", total);
C
Christoph Lameter 已提交
5050
#ifdef CONFIG_NUMA
5051
	for (node = 0; node < nr_node_ids; node++) {
C
Christoph Lameter 已提交
5052
		if (nodes[node])
5053 5054 5055
			len += sysfs_emit_at(buf, len, " N%d=%lu",
					     node, nodes[node]);
	}
C
Christoph Lameter 已提交
5056
#endif
5057
	len += sysfs_emit_at(buf, len, "\n");
C
Christoph Lameter 已提交
5058
	kfree(nodes);
5059 5060

	return len;
C
Christoph Lameter 已提交
5061 5062 5063
}

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5064
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
5065 5066 5067 5068 5069 5070 5071 5072

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
5073 5074
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
5075 5076 5077

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
5078
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
5079 5080 5081

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
5082
	return sysfs_emit(buf, "%u\n", s->size);
C
Christoph Lameter 已提交
5083 5084 5085 5086 5087
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
5088
	return sysfs_emit(buf, "%u\n", s->align);
C
Christoph Lameter 已提交
5089 5090 5091 5092 5093
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
5094
	return sysfs_emit(buf, "%u\n", s->object_size);
C
Christoph Lameter 已提交
5095 5096 5097 5098 5099
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
5100
	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
5101 5102 5103 5104 5105
}
SLAB_ATTR_RO(objs_per_slab);

static ssize_t order_show(struct kmem_cache *s, char *buf)
{
5106
	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
C
Christoph Lameter 已提交
5107
}
5108
SLAB_ATTR_RO(order);
C
Christoph Lameter 已提交
5109

5110 5111
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
5112
	return sysfs_emit(buf, "%lu\n", s->min_partial);
5113 5114 5115 5116 5117 5118 5119 5120
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

5121
	err = kstrtoul(buf, 10, &min);
5122 5123 5124
	if (err)
		return err;

5125
	set_min_partial(s, min);
5126 5127 5128 5129
	return length;
}
SLAB_ATTR(min_partial);

5130 5131
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
5132
	return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5133 5134 5135 5136 5137
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
5138
	unsigned int objects;
5139 5140
	int err;

5141
	err = kstrtouint(buf, 10, &objects);
5142 5143
	if (err)
		return err;
5144
	if (objects && !kmem_cache_has_cpu_partial(s))
5145
		return -EINVAL;
5146

5147
	slub_set_cpu_partial(s, objects);
5148 5149 5150 5151 5152
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
5153 5154
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
5155 5156
	if (!s->ctor)
		return 0;
5157
	return sysfs_emit(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
5158 5159 5160 5161 5162
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
5163
	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
5164 5165 5166 5167 5168
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
5169
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
5170 5171 5172 5173 5174
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
5175
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
5176 5177 5178 5179 5180
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
5181
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
5182 5183 5184
}
SLAB_ATTR_RO(objects);

5185 5186 5187 5188 5189 5190
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

5191 5192 5193 5194 5195
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
5196
	int len = 0;
5197 5198

	for_each_online_cpu(cpu) {
5199 5200 5201
		struct page *page;

		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5202 5203 5204 5205 5206 5207 5208

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

5209
	len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5210 5211 5212

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
5213 5214 5215
		struct page *page;

		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5216 5217 5218
		if (page)
			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
					     cpu, page->pobjects, page->pages);
5219 5220
	}
#endif
5221 5222 5223
	len += sysfs_emit_at(buf, len, "\n");

	return len;
5224 5225 5226
}
SLAB_ATTR_RO(slabs_cpu_partial);

5227 5228
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
5229
	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5230
}
5231
SLAB_ATTR_RO(reclaim_account);
5232 5233 5234

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
5235
	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5236 5237 5238 5239 5240 5241
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
5242
	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5243 5244 5245 5246
}
SLAB_ATTR_RO(cache_dma);
#endif

5247 5248
static ssize_t usersize_show(struct kmem_cache *s, char *buf)
{
5249
	return sysfs_emit(buf, "%u\n", s->usersize);
5250 5251 5252
}
SLAB_ATTR_RO(usersize);

5253 5254
static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
5255
	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5256 5257 5258
}
SLAB_ATTR_RO(destroy_by_rcu);

5259
#ifdef CONFIG_SLUB_DEBUG
5260 5261 5262 5263 5264 5265
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

5266 5267 5268 5269 5270 5271
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
5272 5273
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
5274
	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
C
Christoph Lameter 已提交
5275
}
5276
SLAB_ATTR_RO(sanity_checks);
C
Christoph Lameter 已提交
5277 5278 5279

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
5280
	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
C
Christoph Lameter 已提交
5281
}
5282
SLAB_ATTR_RO(trace);
C
Christoph Lameter 已提交
5283 5284 5285

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
5286
	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
C
Christoph Lameter 已提交
5287 5288
}

5289
SLAB_ATTR_RO(red_zone);
C
Christoph Lameter 已提交
5290 5291 5292

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
5293
	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
C
Christoph Lameter 已提交
5294 5295
}

5296
SLAB_ATTR_RO(poison);
C
Christoph Lameter 已提交
5297 5298 5299

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
5300
	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
C
Christoph Lameter 已提交
5301 5302
}

5303
SLAB_ATTR_RO(store_user);
C
Christoph Lameter 已提交
5304

5305 5306 5307 5308 5309 5310 5311 5312
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5313 5314 5315 5316 5317 5318 5319 5320
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
5321 5322
}
SLAB_ATTR(validate);
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
5344
	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5345
}
5346
SLAB_ATTR_RO(failslab);
5347
#endif
5348

5349 5350 5351 5352 5353 5354 5355 5356
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5357
	if (buf[0] == '1')
5358
		kmem_cache_shrink(s);
5359
	else
5360 5361 5362 5363 5364
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
5365
#ifdef CONFIG_NUMA
5366
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
5367
{
5368
	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
5369 5370
}

5371
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
5372 5373
				const char *buf, size_t length)
{
5374
	unsigned int ratio;
5375 5376
	int err;

5377
	err = kstrtouint(buf, 10, &ratio);
5378 5379
	if (err)
		return err;
5380 5381
	if (ratio > 100)
		return -ERANGE;
5382

5383
	s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
5384 5385 5386

	return length;
}
5387
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
5388 5389
#endif

5390 5391 5392 5393 5394
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
5395
	int len = 0;
5396
	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5397 5398 5399 5400 5401

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
5402
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5403 5404 5405 5406 5407

		data[cpu] = x;
		sum += x;
	}

5408
	len += sysfs_emit_at(buf, len, "%lu", sum);
5409

5410
#ifdef CONFIG_SMP
5411
	for_each_online_cpu(cpu) {
5412 5413 5414
		if (data[cpu])
			len += sysfs_emit_at(buf, len, " C%d=%u",
					     cpu, data[cpu]);
5415
	}
5416
#endif
5417
	kfree(data);
5418 5419 5420
	len += sysfs_emit_at(buf, len, "\n");

	return len;
5421 5422
}

D
David Rientjes 已提交
5423 5424 5425 5426 5427
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
5428
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
5429 5430
}

5431 5432 5433 5434 5435
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
5436 5437 5438 5439 5440 5441 5442 5443 5444
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
5456
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5457 5458 5459 5460 5461 5462 5463
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5464
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5465
STAT_ATTR(ORDER_FALLBACK, order_fallback);
5466 5467
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5468 5469
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5470 5471
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5472
#endif	/* CONFIG_SLUB_STATS */
5473

P
Pekka Enberg 已提交
5474
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
5475 5476 5477 5478
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
5479
	&min_partial_attr.attr,
5480
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
5481
	&objects_attr.attr,
5482
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
5483 5484 5485 5486 5487 5488 5489 5490
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
5491
	&shrink_attr.attr,
5492
	&slabs_cpu_partial_attr.attr,
5493
#ifdef CONFIG_SLUB_DEBUG
5494 5495 5496 5497
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
5498 5499 5500
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
5501
	&validate_attr.attr,
5502 5503
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
5504
#endif
C
Christoph Lameter 已提交
5505 5506 5507 5508
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
5509
	&remote_node_defrag_ratio_attr.attr,
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
5522
	&alloc_node_mismatch_attr.attr,
5523 5524 5525 5526 5527 5528 5529
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
5530
	&deactivate_bypass_attr.attr,
5531
	&order_fallback_attr.attr,
5532 5533
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
5534 5535
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
5536 5537
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
5538
#endif
5539 5540 5541
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif
5542
	&usersize_attr.attr,
5543

C
Christoph Lameter 已提交
5544 5545 5546
	NULL
};

5547
static const struct attribute_group slab_attr_group = {
C
Christoph Lameter 已提交
5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
	return err;
}

5588 5589 5590 5591 5592
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5593
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5594 5595 5596 5597 5598 5599
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5600
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5601 5602
};

5603
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5604

5605 5606 5607 5608 5609
static inline struct kset *cache_kset(struct kmem_cache *s)
{
	return slab_kset;
}

C
Christoph Lameter 已提交
5610 5611 5612
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5613 5614
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
5633 5634
	if (s->flags & SLAB_CACHE_DMA32)
		*p++ = 'D';
C
Christoph Lameter 已提交
5635 5636
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
5637
	if (s->flags & SLAB_CONSISTENCY_CHECKS)
C
Christoph Lameter 已提交
5638
		*p++ = 'F';
V
Vladimir Davydov 已提交
5639 5640
	if (s->flags & SLAB_ACCOUNT)
		*p++ = 'A';
C
Christoph Lameter 已提交
5641 5642
	if (p != name + 1)
		*p++ = '-';
A
Alexey Dobriyan 已提交
5643
	p += sprintf(p, "%07u", s->size);
5644

C
Christoph Lameter 已提交
5645 5646 5647 5648 5649 5650 5651 5652
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5653
	struct kset *kset = cache_kset(s);
5654
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5655

5656 5657 5658 5659 5660
	if (!kset) {
		kobject_init(&s->kobj, &slab_ktype);
		return 0;
	}

5661 5662 5663 5664
	if (!unmergeable && disable_higher_order_debug &&
			(slub_debug & DEBUG_METADATA_FLAGS))
		unmergeable = 1;

C
Christoph Lameter 已提交
5665 5666 5667 5668 5669 5670
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5671
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5672 5673 5674 5675 5676 5677 5678 5679 5680
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5681
	s->kobj.kset = kset;
5682
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5683
	if (err)
5684
		goto out;
C
Christoph Lameter 已提交
5685 5686

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5687 5688
	if (err)
		goto out_del_kobj;
5689

C
Christoph Lameter 已提交
5690 5691 5692 5693
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5694 5695 5696 5697 5698 5699 5700
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5701 5702
}

5703 5704 5705 5706 5707 5708
void sysfs_slab_unlink(struct kmem_cache *s)
{
	if (slab_state >= FULL)
		kobject_del(&s->kobj);
}

5709 5710 5711 5712
void sysfs_slab_release(struct kmem_cache *s)
{
	if (slab_state >= FULL)
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5713 5714 5715 5716
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5717
 * available lest we lose that information.
C
Christoph Lameter 已提交
5718 5719 5720 5721 5722 5723 5724
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5725
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5726 5727 5728 5729 5730

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5731
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5732 5733 5734
		/*
		 * If we have a leftover link then remove it.
		 */
5735 5736
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5752
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5753 5754
	int err;

5755
	mutex_lock(&slab_mutex);
5756

5757
	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5758
	if (!slab_kset) {
5759
		mutex_unlock(&slab_mutex);
5760
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5761 5762 5763
		return -ENOSYS;
	}

5764
	slab_state = FULL;
5765

5766
	list_for_each_entry(s, &slab_caches, list) {
5767
		err = sysfs_slab_add(s);
5768
		if (err)
5769 5770
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5771
	}
C
Christoph Lameter 已提交
5772 5773 5774 5775 5776 5777

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5778
		if (err)
5779 5780
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5781 5782 5783
		kfree(al);
	}

5784
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5785 5786 5787 5788 5789
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5790
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5791 5792 5793 5794

/*
 * The /proc/slabinfo ABI
 */
Y
Yang Shi 已提交
5795
#ifdef CONFIG_SLUB_DEBUG
5796
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5797 5798
{
	unsigned long nr_slabs = 0;
5799 5800
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5801
	int node;
C
Christoph Lameter 已提交
5802
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5803

C
Christoph Lameter 已提交
5804
	for_each_kmem_cache_node(s, node, n) {
5805 5806
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5807
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5808 5809
	}

5810 5811 5812 5813 5814 5815
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5816 5817
}

5818
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5819 5820 5821
{
}

5822 5823
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5824
{
5825
	return -EIO;
5826
}
Y
Yang Shi 已提交
5827
#endif /* CONFIG_SLUB_DEBUG */