share_pool.c 112.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* SPDX-License-Identifier: GPL-2.0 */
/*
 * Huawei Ascend Share Pool Memory
 *
 * Copyright (C) 2020 Huawei Limited
 * Author: Tang Yizhou <tangyizhou@huawei.com>
 *         Zefan Li <lizefan@huawei.com>
 *         Wu Peng <wupeng58@huawei.com>
 *         Ding Tianhong <dingtgianhong@huawei.com>
 *         Zhou Guanghui <zhouguanghui1@huawei.com>
 *         Li Ming <limingming.li@huawei.com>
 *
 * This code is based on the hisilicon ascend platform.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#define pr_fmt(fmt) "share pool: " fmt

#include <linux/share_pool.h>
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
#include <linux/sched.h>
#include <linux/sched/task.h>
#include <linux/sched/mm.h>
#include <linux/mm_types.h>
#include <linux/idr.h>
#include <linux/mutex.h>
#include <linux/rwsem.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/rbtree.h>
#include <linux/shmem_fs.h>
#include <linux/file.h>
#include <linux/printk.h>
#include <linux/hugetlb.h>
#include <linux/vmalloc.h>
#include <linux/pid.h>
#include <linux/pid_namespace.h>
#include <linux/atomic.h>
#include <linux/lockdep.h>
#include <linux/kernel.h>
#include <linux/falloc.h>
#include <linux/types.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/rmap.h>
#include <linux/preempt.h>
#include <linux/swapops.h>
#include <linux/mmzone.h>
#include <linux/timekeeping.h>
#include <linux/time64.h>
52
#include <linux/pagewalk.h>
53

54 55
#define spg_valid(spg)		((spg)->is_alive == true)

56 57 58 59 60
/* Use spa va address as mmap offset. This can work because spa_file
 * is setup with 64-bit address space. So va shall be well covered.
 */
#define addr_offset(spa)	((spa)->va_start)

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
#define byte2kb(size)		((size) >> 10)
#define byte2mb(size)		((size) >> 20)
#define page2kb(page_num)	((page_num) << (PAGE_SHIFT - 10))

#define MAX_GROUP_FOR_SYSTEM	50000
#define MAX_GROUP_FOR_TASK	3000
#define MAX_PROC_PER_GROUP	1024

#define GROUP_NONE		0

#define SEC2US(sec)		((sec) * 1000000)
#define NS2US(ns)		((ns) / 1000)

#define PF_DOMAIN_CORE		0x10000000	/* AOS CORE processes in sched.h */

76 77
static int system_group_count;

78 79 80 81 82
/* idr of all sp_groups */
static DEFINE_IDR(sp_group_idr);
/* rw semaphore for sp_group_idr and mm->sp_group_master */
static DECLARE_RWSEM(sp_group_sem);

83 84
static BLOCKING_NOTIFIER_HEAD(sp_notifier_chain);

85 86 87 88
static DEFINE_IDA(sp_group_id_ida);

/*** Statistical and maintenance tools ***/

89 90 91 92
/* list of all sp_group_masters */
static LIST_HEAD(master_list);
/* mutex to protect insert/delete ops from master_list */
static DEFINE_MUTEX(master_list_lock);
93

94 95 96 97 98
/* list of all spm-dvpp */
static LIST_HEAD(spm_dvpp_list);
/* mutex to protect insert/delete ops from master_list */
static DEFINE_MUTEX(spm_list_lock);

99 100 101
/* for kthread buff_module_guard_work */
static struct sp_proc_stat kthread_stat;

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
#ifndef __GENKSYMS__
struct sp_spg_stat {
	int spg_id;
	/* record the number of hugepage allocation failures */
	atomic_t hugepage_failures;
	/* number of sp_area */
	atomic_t	 spa_num;
	/* total size of all sp_area from sp_alloc and k2u */
	atomic64_t	 size;
	/* total size of all sp_area from sp_alloc 0-order page */
	atomic64_t	 alloc_nsize;
	/* total size of all sp_area from sp_alloc hugepage */
	atomic64_t	 alloc_hsize;
	/* total size of all sp_area from ap_alloc */
	atomic64_t	 alloc_size;
	/* total size of all sp_area from sp_k2u */
	atomic64_t	 k2u_size;
};

/* per process memory usage statistics indexed by tgid */
struct sp_proc_stat {
	int tgid;
	struct mm_struct *mm;
	char comm[TASK_COMM_LEN];
	/*
	 * alloc amount minus free amount, may be negative when freed by
	 * another task in the same sp group.
	 */
	atomic64_t alloc_size;
	atomic64_t alloc_nsize;
	atomic64_t alloc_hsize;
	atomic64_t k2u_size;
};

/* per process/sp-group memory usage statistics */
struct spg_proc_stat {
	int tgid;
	int spg_id;  /* 0 for non-group data, such as k2u_task */
	/*
	 * alloc amount minus free amount, may be negative when freed by
	 * another task in the same sp group.
	 */
	atomic64_t alloc_size;
	atomic64_t alloc_nsize;
	atomic64_t alloc_hsize;
	atomic64_t k2u_size;
};

150 151 152 153
enum sp_mapping_type {
	SP_MAPPING_START,
	SP_MAPPING_DVPP		= SP_MAPPING_START,
	SP_MAPPING_NORMAL,
C
Chen Jun 已提交
154
	SP_MAPPING_RO,
155 156 157
	SP_MAPPING_END,
};

158 159 160 161
/*
 * address space management
 */
struct sp_mapping {
162
	unsigned long type;
163 164 165 166 167 168 169 170 171 172 173
	atomic_t user;
	unsigned long start[MAX_DEVID];
	unsigned long end[MAX_DEVID];
	struct rb_root area_root;

	struct rb_node *free_area_cache;
	unsigned long cached_hole_size;
	unsigned long cached_vstart;

	/* list head for all groups attached to this mapping, dvpp mapping only */
	struct list_head group_head;
174
	struct list_head spm_node;
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
};

/* Processes in the same sp_group can share memory.
 * Memory layout for share pool:
 *
 * |-------------------- 8T -------------------|---|------ 8T ------------|
 * |		Device 0	   |  Device 1 |...|                      |
 * |----------------------------------------------------------------------|
 * |------------- 16G -------------|    16G    |   |                      |
 * | DVPP GROUP0   | DVPP GROUP1   | ... | ... |...|  sp normal memory    |
 * |     sp        |    sp         |     |     |   |                      |
 * |----------------------------------------------------------------------|
 *
 * The host SVM feature reserves 8T virtual memory by mmap, and due to the
 * restriction of DVPP, while SVM and share pool will both allocate memory
 * for DVPP, the memory have to be in the same 32G range.
 *
 * Share pool reserves 16T memory, with 8T for normal uses and 8T for DVPP.
 * Within this 8T DVPP memory, SVM will call sp_config_dvpp_range() to
 * tell us which 16G memory range is reserved for share pool .
 *
 * In some scenarios where there is no host SVM feature, share pool uses
 * the default 8G memory setting for DVPP.
 */
struct sp_group {
	int		 id;
	unsigned long	 flag;
	struct file	 *file;
	struct file	 *file_hugetlb;
	/* number of process in this group */
	int		 proc_num;
	/* list head of processes (sp_group_node, each represents a process) */
	struct list_head procs;
	/* list head of sp_area. it is protected by spin_lock sp_area_lock */
	struct list_head spa_list;
	/* group statistics */
	struct sp_spg_stat instat;
	/* is_alive == false means it's being destroyed */
	bool		 is_alive;
	atomic_t	 use_count;
	/* protect the group internal elements, except spa_list */
	struct rw_semaphore	rw_lock;
	/* list node for dvpp mapping */
	struct list_head	mnode;
219
	struct sp_mapping	*mapping[SP_MAPPING_END];
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
};

/* a per-process(per mm) struct which manages a sp_group_node list */
struct sp_group_master {
	/*
	 * number of sp groups the process belongs to,
	 * a.k.a the number of sp_node in node_list
	 */
	unsigned int count;
	/* list head of sp_node */
	struct list_head node_list;
	struct mm_struct *mm;
	/*
	 * Used to apply for the shared pool memory of the current process.
	 * For example, sp_alloc non-share memory or k2task.
	 */
	struct sp_group *local;
	struct sp_proc_stat instat;
	struct list_head list_node;
};

/*
 * each instance represents an sp group the process belongs to
 * sp_group_master    : sp_group_node   = 1 : N
 * sp_group_node->spg : sp_group        = 1 : 1
 * sp_group_node      : sp_group->procs = N : 1
 */
struct sp_group_node {
	/* list node in sp_group->procs */
	struct list_head proc_node;
	/* list node in sp_group_maseter->node_list */
	struct list_head group_node;
	struct sp_group_master *master;
	struct sp_group *spg;
	unsigned long prot;
	struct spg_proc_stat instat;
};
#endif

/* The caller should hold mmap_sem to protect master (TBD) */
G
Guo Mengqi 已提交
260 261
static void sp_init_group_master_stat(int tgid, struct mm_struct *mm,
		struct sp_proc_stat *stat)
262 263 264 265 266
{
	atomic64_set(&stat->alloc_nsize, 0);
	atomic64_set(&stat->alloc_hsize, 0);
	atomic64_set(&stat->k2u_size, 0);
	stat->mm = mm;
G
Guo Mengqi 已提交
267
	stat->tgid = tgid;
268 269 270
	get_task_comm(stat->comm, current);
}

271 272 273 274 275 276 277 278 279 280
static unsigned long sp_mapping_type(struct sp_mapping *spm)
{
	return spm->type;
}

static void sp_mapping_set_type(struct sp_mapping *spm, unsigned long type)
{
	spm->type = type;
}

281
static struct sp_mapping *sp_mapping_normal;
C
Chen Jun 已提交
282
static struct sp_mapping *sp_mapping_ro;
283

284 285 286
static void sp_mapping_add_to_list(struct sp_mapping *spm)
{
	mutex_lock(&spm_list_lock);
287
	if (sp_mapping_type(spm) == SP_MAPPING_DVPP)
288 289 290 291 292 293 294
		list_add_tail(&spm->spm_node, &spm_dvpp_list);
	mutex_unlock(&spm_list_lock);
}

static void sp_mapping_remove_from_list(struct sp_mapping *spm)
{
	mutex_lock(&spm_list_lock);
295
	if (sp_mapping_type(spm) == SP_MAPPING_DVPP)
296 297 298 299
		list_del(&spm->spm_node);
	mutex_unlock(&spm_list_lock);
}

300 301 302 303 304
static void sp_mapping_range_init(struct sp_mapping *spm)
{
	int i;

	for (i = 0; i < MAX_DEVID; i++) {
305
		switch (sp_mapping_type(spm)) {
C
Chen Jun 已提交
306 307 308 309
		case SP_MAPPING_RO:
			spm->start[i] = MMAP_SHARE_POOL_RO_START;
			spm->end[i]   = MMAP_SHARE_POOL_RO_END;
			break;
310
		case SP_MAPPING_NORMAL:
311
			spm->start[i] = MMAP_SHARE_POOL_NORMAL_START;
312 313 314 315 316 317 318 319 320
			spm->end[i]   = MMAP_SHARE_POOL_NORMAL_END;
			break;
		case SP_MAPPING_DVPP:
			spm->start[i] = MMAP_SHARE_POOL_DVPP_START + i * MMAP_SHARE_POOL_16G_SIZE;
			spm->end[i]   = spm->start[i] + MMAP_SHARE_POOL_16G_SIZE;
			break;
		default:
			pr_err("Invalid sp_mapping type [%lu]\n", sp_mapping_type(spm));
			break;
321 322 323 324
		}
	}
}

325
static struct sp_mapping *sp_mapping_create(unsigned long type)
326 327 328 329 330 331 332
{
	struct sp_mapping *spm;

	spm = kzalloc(sizeof(struct sp_mapping), GFP_KERNEL);
	if (!spm)
		return ERR_PTR(-ENOMEM);

333
	sp_mapping_set_type(spm, type);
334 335 336
	sp_mapping_range_init(spm);
	atomic_set(&spm->user, 0);
	spm->area_root = RB_ROOT;
337
	INIT_LIST_HEAD(&spm->group_head);
338
	sp_mapping_add_to_list(spm);
339 340 341 342

	return spm;
}

343 344
static void sp_mapping_destroy(struct sp_mapping *spm)
{
345
	sp_mapping_remove_from_list(spm);
346 347 348 349 350
	kfree(spm);
}

static void sp_mapping_attach(struct sp_group *spg, struct sp_mapping *spm)
{
351
	unsigned long type = sp_mapping_type(spm);
352
	atomic_inc(&spm->user);
353

354 355
	spg->mapping[type] = spm;
	if (type == SP_MAPPING_DVPP)
356
		list_add_tail(&spg->mnode, &spm->group_head);
357 358 359 360
}

static void sp_mapping_detach(struct sp_group *spg, struct sp_mapping *spm)
{
361 362
	unsigned long type;

363 364
	if (!spm)
		return;
365

366 367 368
	type = sp_mapping_type(spm);

	if (type == SP_MAPPING_DVPP)
369 370
		list_del(&spg->mnode);
	if (atomic_dec_and_test(&spm->user))
371
		sp_mapping_destroy(spm);
372 373

	spg->mapping[type] = NULL;
374 375
}

376 377 378 379 380 381 382 383 384 385
/* merge old mapping to new, and the old mapping would be destroyed */
static void sp_mapping_merge(struct sp_mapping *new, struct sp_mapping *old)
{
	struct sp_group *spg, *tmp;

	if (new == old)
		return;

	list_for_each_entry_safe(spg, tmp, &old->group_head, mnode) {
		list_move_tail(&spg->mnode, &new->group_head);
386
		spg->mapping[SP_MAPPING_DVPP] = new;
387 388 389 390 391 392 393 394 395 396 397
	}

	atomic_add(atomic_read(&old->user), &new->user);
	sp_mapping_destroy(old);
}

static bool is_mapping_empty(struct sp_mapping *spm)
{
	return RB_EMPTY_ROOT(&spm->area_root);
}

398 399 400 401
static bool can_mappings_merge(struct sp_mapping *m1, struct sp_mapping *m2)
{
	int i;

402
	for (i = 0; i < MAX_DEVID; i++)
403 404 405 406 407 408
		if (m1->start[i] != m2->start[i] || m1->end[i] != m2->end[i])
			return false;

	return true;
}

409
/*
410 411 412 413 414
 * 1. The mappings of local group is set on creating.
 * 2. This is used to setup the mapping for groups created during add_task.
 * 3. The normal mapping exists for all groups.
 * 4. The dvpp mappings for the new group and local group can merge _iff_ at
 *    least one of the mapping is empty.
415
 * the caller must hold sp_group_sem
416
 * NOTE: undo the mergeing when the later process failed.
417 418 419
 */
static int sp_mapping_group_setup(struct mm_struct *mm, struct sp_group *spg)
{
420 421 422 423
	struct sp_mapping *local_dvpp_mapping, *spg_dvpp_mapping;

	local_dvpp_mapping = mm->sp_group_master->local->mapping[SP_MAPPING_DVPP];
	spg_dvpp_mapping = spg->mapping[SP_MAPPING_DVPP];
424

425
	if (!list_empty(&spg->procs) && !(spg->flag & SPG_FLAG_NON_DVPP)) {
426 427 428 429 430 431
		/*
		 * Don't return an error when the mappings' address range conflict.
		 * As long as the mapping is unused, we can drop the empty mapping.
		 * This may change the address range for the task or group implicitly,
		 * give a warn for it.
		 */
432
		bool is_conflict = !can_mappings_merge(local_dvpp_mapping, spg_dvpp_mapping);
433

434 435
		if (is_mapping_empty(local_dvpp_mapping)) {
			sp_mapping_merge(spg_dvpp_mapping, local_dvpp_mapping);
436 437
			if (is_conflict)
				pr_warn_ratelimited("task address space conflict, spg_id=%d\n", spg->id);
438 439
		} else if (is_mapping_empty(spg_dvpp_mapping)) {
			sp_mapping_merge(local_dvpp_mapping, spg_dvpp_mapping);
440 441 442
			if (is_conflict)
				pr_warn_ratelimited("group address space conflict, spg_id=%d\n", spg->id);
		} else {
443 444
			pr_info_ratelimited("Duplicate address space, id=%d\n", spg->id);
			return -EINVAL;
445 446
		}
	} else {
447 448
		if (!(spg->flag & SPG_FLAG_NON_DVPP))
			/* the mapping of local group is always set */
449 450
			sp_mapping_attach(spg, local_dvpp_mapping);
		if (!spg->mapping[SP_MAPPING_NORMAL])
451
			sp_mapping_attach(spg, sp_mapping_normal);
C
Chen Jun 已提交
452 453
		if (!spg->mapping[SP_MAPPING_RO])
			sp_mapping_attach(spg, sp_mapping_ro);
454 455 456 457 458
	}

	return 0;
}

C
Chen Jun 已提交
459 460 461 462 463 464
static inline struct sp_mapping *sp_mapping_find(struct sp_group *spg,
						 unsigned long addr)
{
	if (addr >= MMAP_SHARE_POOL_NORMAL_START && addr < MMAP_SHARE_POOL_NORMAL_END)
		return spg->mapping[SP_MAPPING_NORMAL];

C
Chen Jun 已提交
465 466 467
	if (addr >= MMAP_SHARE_POOL_RO_START && addr < MMAP_SHARE_POOL_RO_END)
		return spg->mapping[SP_MAPPING_RO];

C
Chen Jun 已提交
468 469 470
	return spg->mapping[SP_MAPPING_DVPP];
}

471
static struct sp_group *create_spg(int spg_id, unsigned long flag);
472
static void free_new_spg_id(bool new, int spg_id);
473 474 475
static void free_sp_group_locked(struct sp_group *spg);
static int local_group_add_task(struct mm_struct *mm, struct sp_group *spg);
static int init_local_group(struct mm_struct *mm)
476
{
477
	int spg_id, ret;
478
	struct sp_group *spg;
479
	struct sp_mapping *spm;
480 481
	struct sp_group_master *master = mm->sp_group_master;

482 483 484 485
	spg_id = ida_alloc_range(&sp_group_id_ida, SPG_ID_LOCAL_MIN,
				 SPG_ID_LOCAL_MAX, GFP_ATOMIC);
	if (spg_id < 0) {
		pr_err_ratelimited("generate local group id failed %d\n", spg_id);
486
		return spg_id;
487 488
	}

489
	spg = create_spg(spg_id, 0);
490
	if (IS_ERR(spg)) {
491 492
		ret = PTR_ERR(spg);
		goto free_spg_id;
493 494 495
	}

	master->local = spg;
496 497 498 499 500 501 502
	spm = sp_mapping_create(SP_MAPPING_DVPP);
	if (IS_ERR(spm)) {
		ret = PTR_ERR(spm);
		goto free_spg;
	}
	sp_mapping_attach(master->local, spm);
	sp_mapping_attach(master->local, sp_mapping_normal);
C
Chen Jun 已提交
503
	sp_mapping_attach(master->local, sp_mapping_ro);
504

505 506
	ret = local_group_add_task(mm, spg);
	if (ret < 0)
507
		/* The spm would be released while destroying the spg*/
508 509
		goto free_spg;

510
	return 0;
511 512 513

free_spg:
	free_sp_group_locked(spg);
514
	master->local = NULL;
515 516
free_spg_id:
	free_new_spg_id(true, spg_id);
517

518
	return ret;
519 520
}

521 522
/* The caller must hold sp_group_sem */
static int sp_init_group_master_locked(struct task_struct *tsk, struct mm_struct *mm)
523
{
524
	int ret;
525 526
	struct sp_group_master *master;

527
	if (mm->sp_group_master)
528 529
		return 0;

530 531 532 533 534 535 536
	master = kmalloc(sizeof(struct sp_group_master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

	INIT_LIST_HEAD(&master->node_list);
	master->count = 0;
	master->mm = mm;
G
Guo Mengqi 已提交
537
	sp_init_group_master_stat(tsk->tgid, mm, &master->instat);
538 539
	mm->sp_group_master = master;

540 541 542
	mutex_lock(&master_list_lock);
	list_add_tail(&master->list_node, &master_list);
	mutex_unlock(&master_list_lock);
543 544 545

	ret = init_local_group(mm);
	if (ret)
546
		goto free_master;
547 548

	return 0;
549 550

free_master:
551
	mutex_lock(&master_list_lock);
552
	list_del(&master->list_node);
553
	mutex_unlock(&master_list_lock);
554 555 556 557 558 559 560 561 562
	mm->sp_group_master = NULL;
	kfree(master);

	return ret;
}

static inline bool is_local_group(int spg_id)
{
	return spg_id >= SPG_ID_LOCAL_MIN && spg_id <= SPG_ID_LOCAL_MAX;
563 564
}

565
static struct sp_group *sp_get_local_group(struct task_struct *tsk, struct mm_struct *mm)
566 567 568 569 570 571 572 573 574 575 576 577 578 579
{
	int ret;
	struct sp_group_master *master;

	down_read(&sp_group_sem);
	master = mm->sp_group_master;
	if (master && master->local) {
		atomic_inc(&master->local->use_count);
		up_read(&sp_group_sem);
		return master->local;
	}
	up_read(&sp_group_sem);

	down_write(&sp_group_sem);
580
	ret = sp_init_group_master_locked(tsk, mm);
581 582 583 584 585 586 587 588 589 590 591
	if (ret) {
		up_write(&sp_group_sem);
		return ERR_PTR(ret);
	}
	master = mm->sp_group_master;
	atomic_inc(&master->local->use_count);
	up_write(&sp_group_sem);

	return master->local;
}

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
static void update_spg_stat_alloc(unsigned long size, bool inc,
	bool huge, struct sp_spg_stat *stat)
{
	if (inc) {
		atomic_inc(&stat->spa_num);
		atomic64_add(size, &stat->size);
		atomic64_add(size, &stat->alloc_size);
		if (huge)
			atomic64_add(size, &stat->alloc_hsize);
		else
			atomic64_add(size, &stat->alloc_nsize);
	} else {
		atomic_dec(&stat->spa_num);
		atomic64_sub(size, &stat->size);
		atomic64_sub(size, &stat->alloc_size);
		if (huge)
			atomic64_sub(size, &stat->alloc_hsize);
		else
			atomic64_sub(size, &stat->alloc_nsize);
	}
}

static void update_spg_stat_k2u(unsigned long size, bool inc,
	struct sp_spg_stat *stat)
{
	if (inc) {
		atomic_inc(&stat->spa_num);
		atomic64_add(size, &stat->size);
		atomic64_add(size, &stat->k2u_size);
	} else {
		atomic_dec(&stat->spa_num);
		atomic64_sub(size, &stat->size);
		atomic64_sub(size, &stat->k2u_size);
	}
}

628 629
static void update_mem_usage_alloc(unsigned long size, bool inc,
		bool is_hugepage, struct sp_group_node *spg_node)
630
{
631
	struct sp_proc_stat *proc_stat = &spg_node->master->instat;
632 633

	if (inc) {
634 635 636 637 638 639 640 641
		if (is_hugepage) {
			atomic64_add(size, &spg_node->instat.alloc_hsize);
			atomic64_add(size, &proc_stat->alloc_hsize);
			return;
		}
		atomic64_add(size, &spg_node->instat.alloc_nsize);
		atomic64_add(size, &proc_stat->alloc_nsize);
		return;
642
	}
643 644 645 646 647 648 649 650 651

	if (is_hugepage) {
		atomic64_sub(size, &spg_node->instat.alloc_hsize);
		atomic64_sub(size, &proc_stat->alloc_hsize);
		return;
	}
	atomic64_sub(size, &spg_node->instat.alloc_nsize);
	atomic64_sub(size, &proc_stat->alloc_nsize);
	return;
652 653
}

654 655
static void update_mem_usage_k2u(unsigned long size, bool inc,
		struct sp_group_node *spg_node)
656
{
657
	struct sp_proc_stat *proc_stat = &spg_node->master->instat;
658 659

	if (inc) {
660
		atomic64_add(size, &spg_node->instat.k2u_size);
661 662
		atomic64_add(size, &proc_stat->k2u_size);
	} else {
663
		atomic64_sub(size, &spg_node->instat.k2u_size);
664 665 666 667
		atomic64_sub(size, &proc_stat->k2u_size);
	}
}

668
static void sp_init_spg_proc_stat(struct spg_proc_stat *stat, int spg_id)
669
{
670
	stat->tgid = current->tgid;
671
	stat->spg_id = spg_id;
672 673
	atomic64_set(&stat->alloc_nsize, 0);
	atomic64_set(&stat->alloc_hsize, 0);
674 675 676
	atomic64_set(&stat->k2u_size, 0);
}

677
static void sp_init_group_stat(struct sp_spg_stat *stat)
678 679 680 681 682 683 684
{
	atomic_set(&stat->hugepage_failures, 0);
	atomic_set(&stat->spa_num, 0);
	atomic64_set(&stat->size, 0);
	atomic64_set(&stat->alloc_nsize, 0);
	atomic64_set(&stat->alloc_hsize, 0);
	atomic64_set(&stat->alloc_size, 0);
685
	atomic64_set(&stat->k2u_size, 0);
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
}

/* statistics of all sp area, protected by sp_area_lock */
struct sp_spa_stat {
	unsigned int total_num;
	unsigned int alloc_num;
	unsigned int k2u_task_num;
	unsigned int k2u_spg_num;
	unsigned long total_size;
	unsigned long alloc_size;
	unsigned long k2u_task_size;
	unsigned long k2u_spg_size;
	unsigned long dvpp_size;
	unsigned long dvpp_va_size;
};

static struct sp_spa_stat spa_stat;

/* statistics of all sp group born from sp_alloc and k2u(spg) */
struct sp_overall_stat {
	atomic_t spa_total_num;
	atomic64_t spa_total_size;
};

static struct sp_overall_stat sp_overall_stat;

/*** Global share pool VA allocator ***/

enum spa_type {
	SPA_TYPE_ALLOC = 1,
716 717
	/* NOTE: reorganize after the statisical structure is reconstructed. */
	SPA_TYPE_ALLOC_PRIVATE = SPA_TYPE_ALLOC,
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	SPA_TYPE_K2TASK,
	SPA_TYPE_K2SPG,
};

/*
 * We bump the reference when each mmap succeeds, and it will be dropped
 * when vma is about to release, so sp_area object will be automatically
 * freed when all tasks in the sp group has exited.
 */
struct sp_area {
	unsigned long va_start;
	unsigned long va_end;		/* va_end always align to hugepage */
	unsigned long real_size;	/* real size with alignment */
	unsigned long region_vstart;	/* belong to normal region or DVPP region */
	unsigned long flags;
	bool is_hugepage;
	bool is_dead;
	atomic_t use_count;		/* How many vmas use this VA region */
	struct rb_node rb_node;		/* address sorted rbtree */
	struct list_head link;		/* link to the spg->head */
	struct sp_group *spg;
	enum spa_type type;		/* where spa born from */
	struct mm_struct *mm;		/* owner of k2u(task) */
	unsigned long kva;		/* shared kva */
	pid_t applier;			/* the original applier process */
	int node_id;			/* memory node */
	int device_id;
};
static DEFINE_SPINLOCK(sp_area_lock);

static unsigned long spa_size(struct sp_area *spa)
{
	return spa->real_size;
}

static struct file *spa_file(struct sp_area *spa)
{
	if (spa->is_hugepage)
		return spa->spg->file_hugetlb;
	else
		return spa->spg->file;
}

761 762
/* the caller should hold sp_area_lock */
static void spa_inc_usage(struct sp_area *spa)
763
{
764 765 766 767 768 769 770 771 772
	enum spa_type type = spa->type;
	unsigned long size = spa->real_size;
	bool is_dvpp = spa->flags & SP_DVPP;
	bool is_huge = spa->is_hugepage;

	switch (type) {
	case SPA_TYPE_ALLOC:
		spa_stat.alloc_num += 1;
		spa_stat.alloc_size += size;
773
		update_spg_stat_alloc(size, true, is_huge, &spa->spg->instat);
774 775 776 777
		break;
	case SPA_TYPE_K2TASK:
		spa_stat.k2u_task_num += 1;
		spa_stat.k2u_task_size += size;
778
		update_spg_stat_k2u(size, true, &spa->spg->instat);
779 780 781 782
		break;
	case SPA_TYPE_K2SPG:
		spa_stat.k2u_spg_num += 1;
		spa_stat.k2u_spg_size += size;
783
		update_spg_stat_k2u(size, true, &spa->spg->instat);
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
		break;
	default:
		WARN(1, "invalid spa type");
	}

	if (is_dvpp) {
		spa_stat.dvpp_size += size;
		spa_stat.dvpp_va_size += ALIGN(size, PMD_SIZE);
	}

	/*
	 * all the calculations won't overflow due to system limitation and
	 * parameter checking in sp_alloc_area()
	 */
	spa_stat.total_num += 1;
	spa_stat.total_size += size;

801
	if (!is_local_group(spa->spg->id)) {
802 803 804
		atomic_inc(&sp_overall_stat.spa_total_num);
		atomic64_add(size, &sp_overall_stat.spa_total_size);
	}
805 806
}

807 808
/* the caller should hold sp_area_lock */
static void spa_dec_usage(struct sp_area *spa)
809
{
810 811 812 813 814 815 816 817 818
	enum spa_type type = spa->type;
	unsigned long size = spa->real_size;
	bool is_dvpp = spa->flags & SP_DVPP;
	bool is_huge = spa->is_hugepage;

	switch (type) {
	case SPA_TYPE_ALLOC:
		spa_stat.alloc_num -= 1;
		spa_stat.alloc_size -= size;
819
		update_spg_stat_alloc(size, false, is_huge, &spa->spg->instat);
820 821 822 823
		break;
	case SPA_TYPE_K2TASK:
		spa_stat.k2u_task_num -= 1;
		spa_stat.k2u_task_size -= size;
824
		update_spg_stat_k2u(size, false, &spa->spg->instat);
825 826 827 828
		break;
	case SPA_TYPE_K2SPG:
		spa_stat.k2u_spg_num -= 1;
		spa_stat.k2u_spg_size -= size;
829
		update_spg_stat_k2u(size, false, &spa->spg->instat);
830 831 832 833 834 835 836 837 838 839 840 841 842
		break;
	default:
		WARN(1, "invalid spa type");
	}

	if (is_dvpp) {
		spa_stat.dvpp_size -= size;
		spa_stat.dvpp_va_size -= ALIGN(size, PMD_SIZE);
	}

	spa_stat.total_num -= 1;
	spa_stat.total_size -= size;

843
	if (!is_local_group(spa->spg->id)) {
844 845 846
		atomic_dec(&sp_overall_stat.spa_total_num);
		atomic64_sub(spa->real_size, &sp_overall_stat.spa_total_size);
	}
847 848
}

849 850
static void update_mem_usage(unsigned long size, bool inc, bool is_hugepage,
	struct sp_group_node *spg_node, enum spa_type type)
851
{
852 853
	switch (type) {
	case SPA_TYPE_ALLOC:
854
		update_mem_usage_alloc(size, inc, is_hugepage, spg_node);
855 856 857
		break;
	case SPA_TYPE_K2TASK:
	case SPA_TYPE_K2SPG:
858
		update_mem_usage_k2u(size, inc, spg_node);
859 860 861 862
		break;
	default:
		WARN(1, "invalid stat type\n");
	}
863 864
}

865 866 867 868 869 870 871 872 873 874 875 876
struct sp_group_node *find_spg_node_by_spg(struct mm_struct *mm,
		struct sp_group *spg)
{
	struct sp_group_node *spg_node;

	list_for_each_entry(spg_node, &mm->sp_group_master->node_list, group_node) {
		if (spg_node->spg == spg)
			return spg_node;
	}
	return NULL;
}

877 878
static void sp_update_process_stat(struct task_struct *tsk, bool inc,
	struct sp_area *spa)
879
{
880
	struct sp_group_node *spg_node;
881 882
	unsigned long size = spa->real_size;
	enum spa_type type = spa->type;
883

884
	spg_node = find_spg_node_by_spg(tsk->mm, spa->spg);
G
Guo Mengqi 已提交
885
	update_mem_usage(size, inc, spa->is_hugepage, spg_node, type);
886 887 888 889 890 891
}

static inline void check_interrupt_context(void)
{
	if (unlikely(in_interrupt()))
		panic("function can't be used in interrupt context\n");
892 893
}

894 895 896 897 898 899 900 901
static inline bool check_aoscore_process(struct task_struct *tsk)
{
	if (tsk->flags & PF_DOMAIN_CORE)
		return true;
	else
		return false;
}

902 903
static unsigned long sp_mmap(struct mm_struct *mm, struct file *file,
			     struct sp_area *spa, unsigned long *populate,
904
			     unsigned long prot, struct vm_area_struct **pvma);
905
static void sp_munmap(struct mm_struct *mm, unsigned long addr, unsigned long size);
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920

#define K2U_NORMAL	0
#define K2U_COREDUMP	1

struct sp_k2u_context {
	unsigned long kva;
	unsigned long kva_aligned;
	unsigned long size;
	unsigned long size_aligned;
	unsigned long sp_flags;
	int state;
	int spg_id;
	bool to_task;
};

921
static unsigned long sp_remap_kva_to_vma(unsigned long kva, struct sp_area *spa,
922
				struct mm_struct *mm, unsigned long prot, struct sp_k2u_context *kc);
923

924 925 926
static void free_sp_group_id(int spg_id)
{
	/* ida operation is protected by an internal spin_lock */
927 928
	if ((spg_id >= SPG_ID_AUTO_MIN && spg_id <= SPG_ID_AUTO_MAX) ||
	    (spg_id >= SPG_ID_LOCAL_MIN && spg_id <= SPG_ID_LOCAL_MAX))
929 930 931
		ida_free(&sp_group_id_ida, spg_id);
}

932 933 934 935 936 937
static void free_new_spg_id(bool new, int spg_id)
{
	if (new)
		free_sp_group_id(spg_id);
}

938
static void free_sp_group_locked(struct sp_group *spg)
939
{
940 941
	int type;

942 943 944 945
	fput(spg->file);
	fput(spg->file_hugetlb);
	idr_remove(&sp_group_idr, spg->id);
	free_sp_group_id((unsigned int)spg->id);
946 947 948 949

	for (type = SP_MAPPING_START; type < SP_MAPPING_END; type++)
		sp_mapping_detach(spg, spg->mapping[type]);

950 951
	if (!is_local_group(spg->id))
		system_group_count--;
952

953 954 955 956
	kfree(spg);
	WARN(system_group_count < 0, "unexpected group count\n");
}

957 958 959 960 961 962 963
static void free_sp_group(struct sp_group *spg)
{
	down_write(&sp_group_sem);
	free_sp_group_locked(spg);
	up_write(&sp_group_sem);
}

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
static void sp_group_drop(struct sp_group *spg)
{
	if (atomic_dec_and_test(&spg->use_count))
		free_sp_group(spg);
}

/* use with put_task_struct(task) */
static int get_task(int pid, struct task_struct **task)
{
	struct task_struct *tsk;

	rcu_read_lock();
	tsk = find_task_by_vpid(pid);
	if (!tsk || (tsk->flags & PF_EXITING)) {
		rcu_read_unlock();
		return -ESRCH;
	}
	get_task_struct(tsk);
	rcu_read_unlock();

	*task = tsk;
	return 0;
}

/*
 * the caller must:
 * 1. hold spg->rw_lock
 * 2. ensure no concurrency problem for mm_struct
 */
993
static bool is_process_in_group(struct sp_group *spg,
994 995 996 997 998 999
						 struct mm_struct *mm)
{
	struct sp_group_node *spg_node;

	list_for_each_entry(spg_node, &spg->procs, proc_node)
		if (spg_node->master->mm == mm)
1000
			return true;
1001

1002
	return false;
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
}

/* user must call sp_group_drop() after use */
static struct sp_group *__sp_find_spg_locked(int pid, int spg_id)
{
	struct sp_group *spg = NULL;
	struct task_struct *tsk = NULL;
	int ret = 0;

	if (spg_id == SPG_ID_DEFAULT) {
1013 1014 1015 1016
		ret = get_task(pid, &tsk);
		if (ret)
			return NULL;

1017 1018 1019
		task_lock(tsk);
		if (tsk->mm == NULL)
			spg = NULL;
1020 1021
		else if (tsk->mm->sp_group_master)
			spg = tsk->mm->sp_group_master->local;
1022
		task_unlock(tsk);
1023 1024

		put_task_struct(tsk);
1025 1026 1027 1028
	} else {
		spg = idr_find(&sp_group_idr, spg_id);
	}

1029 1030
	if (!spg || !atomic_inc_not_zero(&spg->use_count))
		return NULL;
1031

1032
	return spg;
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
}

static struct sp_group *__sp_find_spg(int pid, int spg_id)
{
	struct sp_group *spg;

	down_read(&sp_group_sem);
	spg = __sp_find_spg_locked(pid, spg_id);
	up_read(&sp_group_sem);
	return spg;
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
/**
 * mp_sp_group_id_by_pid() - Get the sp_group ID array of a process.
 * @pid: pid of target process.
 * @spg_ids: point to an array to save the group ids the process belongs to
 * @num: input the spg_ids array size; output the spg number of the process
 *
 * Return:
 * >0		- the sp_group ID.
 * -ENODEV	- target process doesn't belong to any sp_group.
 * -EINVAL	- spg_ids or num is NULL.
 * -E2BIG	- the num of groups process belongs to is larger than *num
 */
int mg_sp_group_id_by_pid(int pid, int *spg_ids, int *num)
{
1059
	int ret = 0, real_count;
1060 1061 1062 1063
	struct sp_group_node *node;
	struct sp_group_master *master = NULL;
	struct task_struct *tsk;

1064 1065 1066
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

1067 1068
	check_interrupt_context();

1069
	if (!spg_ids || !num || *num <= 0)
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
		return -EINVAL;

	ret = get_task(pid, &tsk);
	if (ret)
		return ret;

	down_read(&sp_group_sem);
	task_lock(tsk);
	if (tsk->mm)
		master = tsk->mm->sp_group_master;
	task_unlock(tsk);

	if (!master) {
		ret = -ENODEV;
		goto out_up_read;
	}

1087 1088 1089 1090 1091 1092 1093 1094
	/*
	 * There is a local group for each process which is used for
	 * passthrough allocation. The local group is a internal
	 * implementation for convenience and is not attempt to bother
	 * the user.
	 */
	real_count = master->count - 1;
	if (real_count <= 0) {
1095 1096 1097
		ret = -ENODEV;
		goto out_up_read;
	}
1098
	if ((unsigned int)*num < real_count) {
1099 1100 1101
		ret = -E2BIG;
		goto out_up_read;
	}
1102
	*num = real_count;
1103

1104 1105 1106
	list_for_each_entry(node, &master->node_list, group_node) {
		if (is_local_group(node->spg->id))
			continue;
1107
		*(spg_ids++) = node->spg->id;
1108
	}
1109 1110 1111 1112 1113

out_up_read:
	up_read(&sp_group_sem);
	put_task_struct(tsk);
	return ret;
1114 1115 1116
}
EXPORT_SYMBOL_GPL(mg_sp_group_id_by_pid);

1117 1118 1119 1120 1121
static bool is_online_node_id(int node_id)
{
	return node_id >= 0 && node_id < MAX_NUMNODES && node_online(node_id);
}

1122
static struct sp_group *create_spg(int spg_id, unsigned long flag)
1123
{
1124 1125 1126 1127 1128 1129
	int ret;
	struct sp_group *spg;
	char name[20];
	struct user_struct *user = NULL;
	int hsize_log = MAP_HUGE_2MB >> MAP_HUGE_SHIFT;

1130 1131
	if (unlikely(system_group_count + 1 == MAX_GROUP_FOR_SYSTEM &&
		     !is_local_group(spg_id))) {
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
		pr_err_ratelimited("reach system max group num\n");
		return ERR_PTR(-ENOSPC);
	}

	spg = kzalloc(sizeof(*spg), GFP_KERNEL);
	if (spg == NULL)
		return ERR_PTR(-ENOMEM);

	ret = idr_alloc(&sp_group_idr, spg, spg_id, spg_id + 1, GFP_KERNEL);
	if (ret < 0) {
		pr_err_ratelimited("group %d idr alloc failed %d\n",
				   spg_id, ret);
		goto out_kfree;
	}

	spg->id = spg_id;
1148
	spg->flag = flag;
1149 1150 1151 1152 1153
	spg->is_alive = true;
	spg->proc_num = 0;
	atomic_set(&spg->use_count, 1);
	INIT_LIST_HEAD(&spg->procs);
	INIT_LIST_HEAD(&spg->spa_list);
1154
	INIT_LIST_HEAD(&spg->mnode);
1155
	init_rwsem(&spg->rw_lock);
1156
	sp_init_group_stat(&spg->instat);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

	sprintf(name, "sp_group_%d", spg_id);
	spg->file = shmem_kernel_file_setup(name, MAX_LFS_FILESIZE,
					    VM_NORESERVE);
	if (IS_ERR(spg->file)) {
		pr_err("spg file setup failed %ld\n", PTR_ERR(spg->file));
		ret = PTR_ERR(spg->file);
		goto out_idr;
	}

	spg->file_hugetlb = hugetlb_file_setup(name, MAX_LFS_FILESIZE,
					       VM_NORESERVE, &user, HUGETLB_ANONHUGE_INODE, hsize_log);
	if (IS_ERR(spg->file_hugetlb)) {
		pr_err("spg file_hugetlb setup failed %ld\n",
		       PTR_ERR(spg->file_hugetlb));
		ret = PTR_ERR(spg->file_hugetlb);
		goto out_fput;
	}

1176 1177
	if (!is_local_group(spg_id))
		system_group_count++;
1178 1179 1180 1181 1182 1183 1184 1185 1186
	return spg;

out_fput:
	fput(spg->file);
out_idr:
	idr_remove(&sp_group_idr, spg_id);
out_kfree:
	kfree(spg);
	return ERR_PTR(ret);
1187 1188
}

1189
/* the caller must hold sp_group_sem */
1190
static struct sp_group *find_or_alloc_sp_group(int spg_id, unsigned long flag)
1191 1192 1193 1194 1195 1196
{
	struct sp_group *spg;

	spg = __sp_find_spg_locked(current->pid, spg_id);

	if (!spg) {
1197
		spg = create_spg(spg_id, flag);
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	} else {
		down_read(&spg->rw_lock);
		if (!spg_valid(spg)) {
			up_read(&spg->rw_lock);
			sp_group_drop(spg);
			return ERR_PTR(-ENODEV);
		}
		up_read(&spg->rw_lock);
		/* spg->use_count has increased due to __sp_find_spg() */
	}

	return spg;
}

static void __sp_area_drop_locked(struct sp_area *spa);

/* The caller must down_write(&mm->mmap_lock) */
static void sp_munmap_task_areas(struct mm_struct *mm, struct sp_group *spg, struct list_head *stop)
{
	struct sp_area *spa, *prev = NULL;
	int err;


	spin_lock(&sp_area_lock);
	list_for_each_entry(spa, &spg->spa_list, link) {
		if (&spa->link == stop)
			break;

		__sp_area_drop_locked(prev);
		prev = spa;

		atomic_inc(&spa->use_count);
		spin_unlock(&sp_area_lock);

		err = do_munmap(mm, spa->va_start, spa_size(spa), NULL);
		if (err) {
			/* we are not supposed to fail */
			pr_err("failed to unmap VA %pK when munmap task areas\n",
			       (void *)spa->va_start);
		}

		spin_lock(&sp_area_lock);
	}
	__sp_area_drop_locked(prev);

	spin_unlock(&sp_area_lock);
}

/* the caller must hold sp_group_sem */
1247 1248
static int mm_add_group_init(struct task_struct *tsk, struct mm_struct *mm,
			     struct sp_group *spg)
1249
{
1250 1251
	int ret;
	struct sp_group_master *master;
1252

1253 1254 1255 1256 1257 1258 1259 1260 1261
	if (!mm->sp_group_master) {
		ret = sp_init_group_master_locked(tsk, mm);
		if (ret)
			return ret;
	} else {
		if (is_process_in_group(spg, mm)) {
			pr_err_ratelimited("task already in target group, id=%d\n", spg->id);
			return -EEXIST;
		}
1262

1263 1264 1265 1266 1267
		master = mm->sp_group_master;
		if (master->count == MAX_GROUP_FOR_TASK) {
			pr_err("task reaches max group num\n");
			return -ENOSPC;
		}
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	}

	return 0;
}

/* the caller must hold sp_group_sem */
static struct sp_group_node *create_spg_node(struct mm_struct *mm,
	unsigned long prot, struct sp_group *spg)
{
	struct sp_group_master *master = mm->sp_group_master;
	struct sp_group_node *spg_node;

	spg_node = kzalloc(sizeof(struct sp_group_node), GFP_KERNEL);
	if (spg_node == NULL)
		return ERR_PTR(-ENOMEM);

	INIT_LIST_HEAD(&spg_node->group_node);
	INIT_LIST_HEAD(&spg_node->proc_node);
	spg_node->spg = spg;
	spg_node->master = master;
	spg_node->prot = prot;
1289
	sp_init_spg_proc_stat(&spg_node->instat, spg->id);
1290 1291 1292 1293 1294 1295 1296 1297 1298

	list_add_tail(&spg_node->group_node, &master->node_list);
	master->count++;

	return spg_node;
}

/* the caller must down_write(&spg->rw_lock) */
static int insert_spg_node(struct sp_group *spg, struct sp_group_node *node)
1299
{
1300 1301 1302 1303 1304 1305 1306
	if (spg->proc_num + 1 == MAX_PROC_PER_GROUP) {
		pr_err_ratelimited("add group: group reaches max process num\n");
		return -ENOSPC;
	}

	spg->proc_num++;
	list_add_tail(&node->proc_node, &spg->procs);
1307 1308 1309 1310

	return 0;
}

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
/* the caller must down_write(&spg->rw_lock) */
static void delete_spg_node(struct sp_group *spg, struct sp_group_node *node)
{
	list_del(&node->proc_node);
	spg->proc_num--;
}

/* the caller must hold sp_group_sem */
static void free_spg_node(struct mm_struct *mm, struct sp_group *spg,
	struct sp_group_node *spg_node)
{
	struct sp_group_master *master = mm->sp_group_master;

	list_del(&spg_node->group_node);
	master->count--;

	kfree(spg_node);
}

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
static int local_group_add_task(struct mm_struct *mm, struct sp_group *spg)
{
	struct sp_group_node *node;

	node = create_spg_node(mm, PROT_READ | PROT_WRITE, spg);
	if (IS_ERR(node))
		return PTR_ERR(node);

	insert_spg_node(spg, node);
	mmget(mm);

	return 0;
}

1344
/**
1345
 * mg_sp_group_add_task() - Add a process to an share group (sp_group).
1346 1347 1348
 * @pid: the pid of the task to be added.
 * @prot: the prot of task for this spg.
 * @spg_id: the ID of the sp_group.
1349
 * @flag: to give some special message.
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
 *
 * A process can't be added to more than one sp_group in single group mode
 * and can in multiple group mode.
 *
 * Return: A postive group number for success, -errno on failure.
 *
 * The manually specified ID is between [SPG_ID_MIN, SPG_ID_MAX].
 * The automatically allocated ID is between [SPG_ID_AUTO_MIN, SPG_ID_AUTO_MAX].
 * When negative, the return value is -errno.
 */
int mg_sp_group_add_task(int pid, unsigned long prot, int spg_id)
{
1362
	unsigned long flag = 0;
1363 1364 1365 1366 1367 1368 1369 1370
	struct task_struct *tsk;
	struct mm_struct *mm;
	struct sp_group *spg;
	struct sp_group_node *node = NULL;
	int ret = 0;
	bool id_newly_generated = false;
	struct sp_area *spa, *prev = NULL;

1371 1372 1373
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	check_interrupt_context();

	/* only allow READ, READ | WRITE */
	if (!((prot == PROT_READ)
	      || (prot == (PROT_READ | PROT_WRITE)))) {
		pr_err_ratelimited("prot is invalid 0x%lx\n", prot);
		return -EINVAL;
	}

	if (spg_id < SPG_ID_MIN || spg_id > SPG_ID_AUTO) {
		pr_err_ratelimited("add group failed, invalid group id %d\n", spg_id);
		return -EINVAL;
	}

	if (spg_id >= SPG_ID_AUTO_MIN && spg_id <= SPG_ID_AUTO_MAX) {
		spg = __sp_find_spg(pid, spg_id);

		if (!spg) {
			pr_err_ratelimited("spg %d hasn't been created\n", spg_id);
			return -EINVAL;
		}

		down_read(&spg->rw_lock);
		if (!spg_valid(spg)) {
			up_read(&spg->rw_lock);
			pr_err_ratelimited("add group failed, group id %d is dead\n", spg_id);
			sp_group_drop(spg);
			return -EINVAL;
		}
		up_read(&spg->rw_lock);

		sp_group_drop(spg);
	}

	if (spg_id == SPG_ID_AUTO) {
		spg_id = ida_alloc_range(&sp_group_id_ida, SPG_ID_AUTO_MIN,
					 SPG_ID_AUTO_MAX, GFP_ATOMIC);
		if (spg_id < 0) {
			pr_err_ratelimited("add group failed, auto generate group id failed\n");
			return spg_id;
		}
		id_newly_generated = true;
	}

	down_write(&sp_group_sem);

	ret = get_task(pid, &tsk);
	if (ret) {
		up_write(&sp_group_sem);
		free_new_spg_id(id_newly_generated, spg_id);
		goto out;
	}

	if (check_aoscore_process(tsk)) {
		up_write(&sp_group_sem);
		ret = -EACCES;
		free_new_spg_id(id_newly_generated, spg_id);
		goto out_put_task;
	}

	/*
	 * group_leader: current thread may be exiting in a multithread process
	 *
	 * DESIGN IDEA
	 * We increase mm->mm_users deliberately to ensure it's decreased in
	 * share pool under only 2 circumstances, which will simply the overall
	 * design as mm won't be freed unexpectedly.
	 *
	 * The corresponding refcount decrements are as follows:
	 * 1. the error handling branch of THIS function.
	 * 2. In sp_group_exit(). It's called only when process is exiting.
	 */
	mm = get_task_mm(tsk->group_leader);
	if (!mm) {
		up_write(&sp_group_sem);
		ret = -ESRCH;
		free_new_spg_id(id_newly_generated, spg_id);
		goto out_put_task;
	}

1454
	spg = find_or_alloc_sp_group(spg_id, flag);
1455 1456 1457 1458 1459 1460 1461
	if (IS_ERR(spg)) {
		up_write(&sp_group_sem);
		ret = PTR_ERR(spg);
		free_new_spg_id(id_newly_generated, spg_id);
		goto out_put_mm;
	}

1462 1463 1464 1465
	down_write(&spg->rw_lock);
	ret = mm_add_group_init(tsk, mm, spg);
	if (ret) {
		up_write(&spg->rw_lock);
1466
		goto out_drop_group;
1467
	}
1468

1469
	ret = sp_mapping_group_setup(mm, spg);
1470 1471
	if (ret) {
		up_write(&spg->rw_lock);
1472
		goto out_drop_group;
1473
	}
1474

1475 1476
	node = create_spg_node(mm, prot, spg);
	if (unlikely(IS_ERR(node))) {
1477
		up_write(&spg->rw_lock);
1478
		ret = PTR_ERR(node);
1479
		goto out_drop_group;
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
	}

	ret = insert_spg_node(spg, node);
	if (unlikely(ret)) {
		up_write(&spg->rw_lock);
		goto out_drop_spg_node;
	}

	/*
	 * create mappings of existing shared memory segments into this
	 * new process' page table.
	 */
	spin_lock(&sp_area_lock);

	list_for_each_entry(spa, &spg->spa_list, link) {
		unsigned long populate = 0;
		struct file *file = spa_file(spa);
		unsigned long addr;
C
Chen Jun 已提交
1498 1499 1500 1501
		unsigned long __prot = prot;

		if ((spa->flags & (SP_PROT_RO | SP_PROT_FOCUS)) == (SP_PROT_RO | SP_PROT_FOCUS))
			__prot &= ~PROT_WRITE;
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

		__sp_area_drop_locked(prev);
		prev = spa;

		atomic_inc(&spa->use_count);

		if (spa->is_dead == true)
			continue;

		spin_unlock(&sp_area_lock);

		if (spa->type == SPA_TYPE_K2SPG && spa->kva) {
C
Chen Jun 已提交
1514
			addr = sp_remap_kva_to_vma(spa->kva, spa, mm, __prot, NULL);
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
			if (IS_ERR_VALUE(addr))
				pr_warn("add group remap k2u failed %ld\n", addr);

			spin_lock(&sp_area_lock);
			continue;
		}

		down_write(&mm->mmap_lock);
		if (unlikely(mm->core_state)) {
			sp_munmap_task_areas(mm, spg, &spa->link);
			up_write(&mm->mmap_lock);
			ret = -EBUSY;
			pr_err("add group: encountered coredump, abort\n");
			spin_lock(&sp_area_lock);
			break;
		}

C
Chen Jun 已提交
1532
		addr = sp_mmap(mm, file, spa, &populate, __prot, NULL);
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
		if (IS_ERR_VALUE(addr)) {
			sp_munmap_task_areas(mm, spg, &spa->link);
			up_write(&mm->mmap_lock);
			ret = addr;
			pr_err("add group: sp mmap failed %d\n", ret);
			spin_lock(&sp_area_lock);
			break;
		}
		up_write(&mm->mmap_lock);

		if (populate) {
			ret = do_mm_populate(mm, spa->va_start, populate, 0);
			if (ret) {
				if (unlikely(fatal_signal_pending(current)))
					pr_warn_ratelimited("add group failed, current thread is killed\n");
				else
					pr_warn_ratelimited("add group failed, mm populate failed (potential no enough memory when -12): %d, spa type is %d\n",
					ret, spa->type);
				down_write(&mm->mmap_lock);
				sp_munmap_task_areas(mm, spg, spa->link.next);
				up_write(&mm->mmap_lock);
				spin_lock(&sp_area_lock);
				break;
			}
		}

		spin_lock(&sp_area_lock);
	}
	__sp_area_drop_locked(prev);
	spin_unlock(&sp_area_lock);

	if (unlikely(ret))
		delete_spg_node(spg, node);
	up_write(&spg->rw_lock);

out_drop_spg_node:
	if (unlikely(ret))
		free_spg_node(mm, spg, node);
	/*
	 * to simplify design, we don't release the resource of
	 * group_master and proc_stat, they will be freed when
	 * process is exiting.
	 */
out_drop_group:
	if (unlikely(ret)) {
		up_write(&sp_group_sem);
		sp_group_drop(spg);
	} else
		up_write(&sp_group_sem);
out_put_mm:
	/* No need to put the mm if the sp group adds this mm successfully */
	if (unlikely(ret))
		mmput(mm);
out_put_task:
	put_task_struct(tsk);
out:
	return ret == 0 ? spg_id : ret;
}
1591 1592
EXPORT_SYMBOL_GPL(mg_sp_group_add_task);

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
/**
 * mg_sp_group_del_task() - delete a process from a sp group.
 * @pid: the pid of the task to be deleted
 * @spg_id: sharepool group id
 *
 * the group's spa list must be empty, or deletion will fail.
 *
 * Return:
 * * if success, return 0.
 * * -EINVAL, spg_id invalid or spa_lsit not emtpy or spg dead
 * * -ESRCH, the task group of pid is not in group / process dead
 */
int mg_sp_group_del_task(int pid, int spg_id)
{
1607 1608 1609 1610 1611 1612 1613
	int ret = 0;
	struct sp_group *spg;
	struct sp_group_node *spg_node;
	struct task_struct *tsk = NULL;
	struct mm_struct *mm = NULL;
	bool is_alive = true;

1614 1615 1616
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	if (spg_id < SPG_ID_MIN || spg_id > SPG_ID_AUTO) {
		pr_err_ratelimited("del from group failed, invalid group id %d\n", spg_id);
		return -EINVAL;
	}

	spg = __sp_find_spg(pid, spg_id);
	if (!spg) {
		pr_err_ratelimited("spg not found or get task failed.");
		return -EINVAL;
	}
	down_write(&sp_group_sem);

	if (!spg_valid(spg)) {
		up_write(&sp_group_sem);
		pr_err_ratelimited("spg dead.");
		ret = -EINVAL;
		goto out;
	}

	if (!list_empty(&spg->spa_list)) {
		up_write(&sp_group_sem);
		pr_err_ratelimited("spa is not empty");
		ret = -EINVAL;
		goto out;
	}

	ret = get_task(pid, &tsk);
	if (ret) {
		up_write(&sp_group_sem);
		pr_err_ratelimited("task is not found");
		goto out;
	}
	mm = get_task_mm(tsk->group_leader);
	if (!mm) {
		up_write(&sp_group_sem);
		pr_err_ratelimited("mm is not found");
		ret = -ESRCH;
		goto out_put_task;
	}

1657
	spg_node = find_spg_node_by_spg(mm, spg);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	if (!spg_node) {
		up_write(&sp_group_sem);
		pr_err_ratelimited("process not in group");
		ret = -ESRCH;
		goto out_put_mm;
	}

	down_write(&spg->rw_lock);
	if (list_is_singular(&spg->procs))
		is_alive = spg->is_alive = false;
	spg->proc_num--;
	list_del(&spg_node->proc_node);
	sp_group_drop(spg);
	up_write(&spg->rw_lock);
	if (!is_alive)
		blocking_notifier_call_chain(&sp_notifier_chain, 0, spg);

	list_del(&spg_node->group_node);
	mm->sp_group_master->count--;
	kfree(spg_node);
1678
	atomic_dec(&mm->mm_users);
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688

	up_write(&sp_group_sem);

out_put_mm:
	mmput(mm);
out_put_task:
	put_task_struct(tsk);
out:
	sp_group_drop(spg); /* if spg dead, freed here */
	return ret;
1689 1690 1691
}
EXPORT_SYMBOL_GPL(mg_sp_group_del_task);

1692
int mg_sp_id_of_current(void)
1693 1694 1695 1696
{
	int ret, spg_id;
	struct sp_group_master *master;

1697 1698 1699
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

1700 1701 1702 1703 1704
	if (current->flags & PF_KTHREAD || !current->mm)
		return -EINVAL;

	down_read(&sp_group_sem);
	master = current->mm->sp_group_master;
1705
	if (master) {
1706 1707 1708 1709 1710 1711 1712
		spg_id = master->local->id;
		up_read(&sp_group_sem);
		return spg_id;
	}
	up_read(&sp_group_sem);

	down_write(&sp_group_sem);
1713
	ret = sp_init_group_master_locked(current, current->mm);
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
	if (ret) {
		up_write(&sp_group_sem);
		return ret;
	}
	master = current->mm->sp_group_master;
	spg_id = master->local->id;
	up_write(&sp_group_sem);

	return spg_id;
}
EXPORT_SYMBOL_GPL(mg_sp_id_of_current);

1726
/* the caller must hold sp_area_lock */
1727
static void __insert_sp_area(struct sp_mapping *spm, struct sp_area *spa)
1728
{
1729
	struct rb_node **p = &spm->area_root.rb_node;
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
	struct rb_node *parent = NULL;

	while (*p) {
		struct sp_area *tmp;

		parent = *p;
		tmp = rb_entry(parent, struct sp_area, rb_node);
		if (spa->va_start < tmp->va_end)
			p = &(*p)->rb_left;
		else if (spa->va_end > tmp->va_start)
			p = &(*p)->rb_right;
		else
			BUG();
	}

	rb_link_node(&spa->rb_node, parent, p);
1746
	rb_insert_color(&spa->rb_node, &spm->area_root);
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
}

/**
 * sp_alloc_area() - Allocate a region of VA from the share pool.
 * @size: the size of VA to allocate.
 * @flags: how to allocate the memory.
 * @spg: the share group that the memory is allocated to.
 * @type: the type of the region.
 * @applier: the pid of the task which allocates the region.
 *
 * Return: a valid pointer for success, NULL on failure.
 */
static struct sp_area *sp_alloc_area(unsigned long size, unsigned long flags,
				     struct sp_group *spg, enum spa_type type,
				     pid_t applier)
{
	struct sp_area *spa, *first, *err;
	struct rb_node *n;
1765 1766
	unsigned long vstart;
	unsigned long vend;
1767 1768 1769
	unsigned long addr;
	unsigned long size_align = ALIGN(size, PMD_SIZE); /* va aligned to 2M */
	int device_id, node_id;
1770
	struct sp_mapping *mapping;
1771 1772 1773 1774 1775 1776 1777 1778 1779

	device_id = sp_flags_device_id(flags);
	node_id = flags & SP_SPEC_NODE_ID ? sp_flags_node_id(flags) : device_id;

	if (!is_online_node_id(node_id)) {
		pr_err_ratelimited("invalid numa node id %d\n", node_id);
		return ERR_PTR(-EINVAL);
	}

C
Chen Jun 已提交
1780 1781 1782 1783 1784 1785 1786
	if (flags & SP_PROT_FOCUS) {
		if ((flags & (SP_DVPP | SP_PROT_RO)) != SP_PROT_RO) {
			pr_err("invalid sp_flags [%lx]\n", flags);
			return ERR_PTR(-EINVAL);
		}
		mapping = spg->mapping[SP_MAPPING_RO];
	} else if (flags & SP_DVPP)
1787
		mapping = spg->mapping[SP_MAPPING_DVPP];
1788
	else
1789
		mapping = spg->mapping[SP_MAPPING_NORMAL];
1790

1791 1792 1793 1794 1795
	if (!mapping) {
		pr_err_ratelimited("non DVPP spg, id %d\n", spg->id);
		return ERR_PTR(-EINVAL);
	}

1796 1797
	vstart = mapping->start[device_id];
	vend = mapping->end[device_id];
1798 1799 1800 1801 1802 1803 1804 1805 1806
	spa = __kmalloc_node(sizeof(struct sp_area), GFP_KERNEL, node_id);
	if (unlikely(!spa))
		return ERR_PTR(-ENOMEM);

	spin_lock(&sp_area_lock);

	/*
	 * Invalidate cache if we have more permissive parameters.
	 * cached_hole_size notes the largest hole noticed _below_
1807
	 * the sp_area cached in free_area_cache: if size fits
1808
	 * into that hole, we want to scan from vstart to reuse
1809 1810
	 * the hole instead of allocating above free_area_cache.
	 * Note that sp_free_area may update free_area_cache
1811 1812
	 * without updating cached_hole_size.
	 */
1813 1814 1815 1816
	if (!mapping->free_area_cache || size_align < mapping->cached_hole_size ||
	    vstart != mapping->cached_vstart) {
		mapping->cached_hole_size = 0;
		mapping->free_area_cache = NULL;
1817 1818 1819
	}

	/* record if we encounter less permissive parameters */
1820
	mapping->cached_vstart = vstart;
1821 1822

	/* find starting point for our search */
1823 1824
	if (mapping->free_area_cache) {
		first = rb_entry(mapping->free_area_cache, struct sp_area, rb_node);
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
		addr = first->va_end;
		if (addr + size_align < addr) {
			err = ERR_PTR(-EOVERFLOW);
			goto error;
		}
	} else {
		addr = vstart;
		if (addr + size_align < addr) {
			err = ERR_PTR(-EOVERFLOW);
			goto error;
		}

1837
		n = mapping->area_root.rb_node;
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
		first = NULL;

		while (n) {
			struct sp_area *tmp;

			tmp = rb_entry(n, struct sp_area, rb_node);
			if (tmp->va_end >= addr) {
				first = tmp;
				if (tmp->va_start <= addr)
					break;
				n = n->rb_left;
			} else
				n = n->rb_right;
		}

		if (!first)
			goto found;
	}

	/* from the starting point, traverse areas until a suitable hole is found */
	while (addr + size_align > first->va_start && addr + size_align <= vend) {
1859 1860
		if (addr + mapping->cached_hole_size < first->va_start)
			mapping->cached_hole_size = first->va_start - addr;
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
		addr = first->va_end;
		if (addr + size_align < addr) {
			err = ERR_PTR(-EOVERFLOW);
			goto error;
		}

		n = rb_next(&first->rb_node);
		if (n)
			first = rb_entry(n, struct sp_area, rb_node);
		else
			goto found;
	}

found:
	if (addr + size_align > vend) {
		err = ERR_PTR(-EOVERFLOW);
		goto error;
	}

	spa->va_start = addr;
	spa->va_end = addr + size_align;
	spa->real_size = size;
	spa->region_vstart = vstart;
	spa->flags = flags;
	spa->is_hugepage = (flags & SP_HUGEPAGE);
	spa->is_dead = false;
	spa->spg = spg;
	atomic_set(&spa->use_count, 1);
	spa->type = type;
	spa->mm = NULL;
	spa->kva = 0;   /* NULL pointer */
	spa->applier = applier;
	spa->node_id = node_id;
	spa->device_id = device_id;

	spa_inc_usage(spa);
1897
	__insert_sp_area(mapping, spa);
1898 1899
	mapping->free_area_cache = &spa->rb_node;
	list_add_tail(&spa->link, &spg->spa_list);
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911

	spin_unlock(&sp_area_lock);

	return spa;

error:
	spin_unlock(&sp_area_lock);
	kfree(spa);
	return err;
}

/* the caller should hold sp_area_lock */
1912 1913
static struct sp_area *__find_sp_area_locked(struct sp_group *spg,
		unsigned long addr)
1914
{
C
Chen Jun 已提交
1915 1916
	struct sp_mapping *spm = sp_mapping_find(spg, addr);
	struct rb_node *n = spm->area_root.rb_node;
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	while (n) {
		struct sp_area *spa;

		spa = rb_entry(n, struct sp_area, rb_node);
		if (addr < spa->va_start) {
			n = n->rb_left;
		} else if (addr > spa->va_start) {
			n = n->rb_right;
		} else {
			return spa;
		}
	}

	return NULL;
}

1933
static struct sp_area *__find_sp_area(struct sp_group *spg, unsigned long addr)
1934 1935 1936 1937
{
	struct sp_area *n;

	spin_lock(&sp_area_lock);
1938
	n = __find_sp_area_locked(spg, addr);
1939 1940 1941 1942 1943 1944
	if (n)
		atomic_inc(&n->use_count);
	spin_unlock(&sp_area_lock);
	return n;
}

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
static bool vmalloc_area_clr_flag(unsigned long kva, unsigned long flags)
{
	struct vm_struct *area;

	area = find_vm_area((void *)kva);
	if (area) {
		area->flags &= ~flags;
		return true;
	}

	return false;
}

1958 1959 1960 1961 1962
/*
 * Free the VA region starting from addr to the share pool
 */
static void sp_free_area(struct sp_area *spa)
{
1963 1964 1965
	unsigned long addr = spa->va_start;
	struct sp_mapping *spm;

1966 1967
	lockdep_assert_held(&sp_area_lock);

C
Chen Jun 已提交
1968
	spm = sp_mapping_find(spa->spg, addr);
1969
	if (spm->free_area_cache) {
1970 1971
		struct sp_area *cache;

1972
		cache = rb_entry(spm->free_area_cache, struct sp_area, rb_node);
1973
		if (spa->va_start <= cache->va_start) {
1974
			spm->free_area_cache = rb_prev(&spa->rb_node);
1975 1976 1977 1978
			/*
			 * the new cache node may be changed to another region,
			 * i.e. from DVPP region to normal region
			 */
1979 1980
			if (spm->free_area_cache) {
				cache = rb_entry(spm->free_area_cache,
1981
						 struct sp_area, rb_node);
1982
				spm->cached_vstart = cache->region_vstart;
1983 1984 1985 1986 1987 1988 1989 1990
			}
			/*
			 * We don't try to update cached_hole_size,
			 * but it won't go very wrong.
			 */
		}
	}

1991 1992 1993
	if (spa->kva && !vmalloc_area_clr_flag(spa->kva, VM_SHAREPOOL))
		pr_debug("clear spa->kva %ld is not valid\n", spa->kva);

1994
	spa_dec_usage(spa);
1995
	list_del(&spa->link);
1996

1997
	rb_erase(&spa->rb_node, &spm->area_root);
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
	RB_CLEAR_NODE(&spa->rb_node);
	kfree(spa);
}

static void __sp_area_drop_locked(struct sp_area *spa)
{
	/*
	 * Considering a situation where task A and B are in the same spg.
	 * A is exiting and calling remove_vma(). Before A calls this func,
	 * B calls sp_free() to free the same spa. So spa maybe NULL when A
	 * calls this func later.
	 */
	if (!spa)
		return;

	if (atomic_dec_and_test(&spa->use_count))
		sp_free_area(spa);
}

static void __sp_area_drop(struct sp_area *spa)
{
	spin_lock(&sp_area_lock);
	__sp_area_drop_locked(spa);
	spin_unlock(&sp_area_lock);
}

void sp_area_drop(struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARE_POOL))
		return;

	/*
	 * Considering a situation where task A and B are in the same spg.
	 * A is exiting and calling remove_vma() -> ... -> sp_area_drop().
	 * Concurrently, B is calling sp_free() to free the same spa.
	 * __find_sp_area_locked() and __sp_area_drop_locked() should be
	 * an atomic operation.
	 */
	spin_lock(&sp_area_lock);
2037
	__sp_area_drop_locked(vma->vm_private_data);
2038 2039 2040
	spin_unlock(&sp_area_lock);
}

W
Wang Wensheng 已提交
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
/*
 * The function calls of do_munmap() won't change any non-atomic member
 * of struct sp_group. Please review the following chain:
 * do_munmap -> remove_vma_list -> remove_vma -> sp_area_drop ->
 * __sp_area_drop_locked -> sp_free_area
 */
static void sp_munmap(struct mm_struct *mm, unsigned long addr,
			   unsigned long size)
{
	int err;

	down_write(&mm->mmap_lock);
	if (unlikely(mm->core_state)) {
		up_write(&mm->mmap_lock);
		pr_info("munmap: encoutered coredump\n");
		return;
	}

	err = do_munmap(mm, addr, size, NULL);
	/* we are not supposed to fail */
	if (err)
		pr_err("failed to unmap VA %pK when sp munmap\n", (void *)addr);

	up_write(&mm->mmap_lock);
}

static void __sp_free(struct sp_group *spg, unsigned long addr,
		      unsigned long size, struct mm_struct *stop)
{
	struct mm_struct *mm;
	struct sp_group_node *spg_node = NULL;

	list_for_each_entry(spg_node, &spg->procs, proc_node) {
		mm = spg_node->master->mm;
		if (mm == stop)
			break;
		sp_munmap(mm, addr, size);
	}
}

/* Free the memory of the backing shmem or hugetlbfs */
static void sp_fallocate(struct sp_area *spa)
{
	int ret;
	unsigned long mode = FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE;
	unsigned long offset = addr_offset(spa);

	ret = vfs_fallocate(spa_file(spa), mode, offset, spa_size(spa));
	if (ret)
		WARN(1, "sp fallocate failed %d\n", ret);
}

static void sp_free_unmap_fallocate(struct sp_area *spa)
{
2095 2096 2097 2098
	down_read(&spa->spg->rw_lock);
	__sp_free(spa->spg, spa->va_start, spa_size(spa), NULL);
	sp_fallocate(spa);
	up_read(&spa->spg->rw_lock);
W
Wang Wensheng 已提交
2099 2100 2101 2102 2103 2104 2105
}

static int sp_check_caller_permission(struct sp_group *spg, struct mm_struct *mm)
{
	int ret = 0;

	down_read(&spg->rw_lock);
2106
	if (!is_process_in_group(spg, mm))
W
Wang Wensheng 已提交
2107 2108
		ret = -EPERM;
	up_read(&spg->rw_lock);
2109

W
Wang Wensheng 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
	return ret;
}

#define FREE_CONT	1
#define FREE_END	2

struct sp_free_context {
	unsigned long addr;
	struct sp_area *spa;
	int state;
2120
	int spg_id;
W
Wang Wensheng 已提交
2121 2122 2123 2124 2125 2126 2127 2128
};

/* when success, __sp_area_drop(spa) should be used */
static int sp_free_get_spa(struct sp_free_context *fc)
{
	int ret = 0;
	unsigned long addr = fc->addr;
	struct sp_area *spa;
2129 2130 2131 2132 2133 2134 2135
	struct sp_group *spg;

	spg = __sp_find_spg(current->tgid, fc->spg_id);
	if (!spg) {
		pr_debug("sp free get group failed %d\n", fc->spg_id);
		return -EINVAL;
	}
W
Wang Wensheng 已提交
2136 2137 2138

	fc->state = FREE_CONT;

2139 2140
	spa = __find_sp_area(spg, addr);
	sp_group_drop(spg);
W
Wang Wensheng 已提交
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
	if (!spa) {
		pr_debug("sp free invalid input addr %lx\n", addr);
		return -EINVAL;
	}

	if (spa->type != SPA_TYPE_ALLOC) {
		ret = -EINVAL;
		pr_debug("sp free failed, %lx is not sp alloc addr\n", addr);
		goto drop_spa;
	}
	fc->spa = spa;

2153 2154
	if (!current->mm)
		goto check_spa;
W
Wang Wensheng 已提交
2155

2156 2157 2158
	ret = sp_check_caller_permission(spa->spg, current->mm);
	if (ret < 0)
		goto drop_spa;
W
Wang Wensheng 已提交
2159 2160

check_spa:
2161 2162 2163 2164
	if (is_local_group(spa->spg->id) && (current->tgid != spa->applier)) {
		ret = -EPERM;
		goto drop_spa;
	}
W
Wang Wensheng 已提交
2165

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
	down_write(&spa->spg->rw_lock);
	if (!spg_valid(spa->spg)) {
		fc->state = FREE_END;
		up_write(&spa->spg->rw_lock);
		goto drop_spa;
		/* we must return success(0) in this situation */
	}
	/* the life cycle of spa has a direct relation with sp group */
	if (unlikely(spa->is_dead)) {
		up_write(&spa->spg->rw_lock);
		pr_err_ratelimited("unexpected double sp free\n");
		dump_stack();
		ret = -EINVAL;
		goto drop_spa;
W
Wang Wensheng 已提交
2180
	}
2181 2182 2183
	spa->is_dead = true;
	up_write(&spa->spg->rw_lock);

W
Wang Wensheng 已提交
2184 2185 2186 2187 2188 2189 2190
	return 0;

drop_spa:
	__sp_area_drop(spa);
	return ret;
}

2191
/**
2192
 * mg_sp_free() - Free the memory allocated by mg_sp_alloc().
2193
 * @addr: the starting VA of the memory.
2194
 * @id: Address space identifier, which is used to distinguish the addr.
2195 2196 2197 2198 2199 2200
 *
 * Return:
 * * 0		- success.
 * * -EINVAL	- the memory can't be found or was not allocted by share pool.
 * * -EPERM	- the caller has no permision to free the memory.
 */
2201
int mg_sp_free(unsigned long addr, int id)
2202
{
W
Wang Wensheng 已提交
2203 2204 2205
	int ret = 0;
	struct sp_free_context fc = {
		.addr = addr,
2206
		.spg_id = id,
W
Wang Wensheng 已提交
2207 2208
	};

2209 2210 2211
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

W
Wang Wensheng 已提交
2212 2213
	check_interrupt_context();

2214 2215 2216
	if (current->flags & PF_KTHREAD)
		return -EINVAL;

W
Wang Wensheng 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
	ret = sp_free_get_spa(&fc);
	if (ret || fc.state == FREE_END)
		goto out;

	sp_free_unmap_fallocate(fc.spa);

	if (current->mm == NULL)
		atomic64_sub(fc.spa->real_size, &kthread_stat.alloc_size);
	else
		sp_update_process_stat(current, false, fc.spa);

	__sp_area_drop(fc.spa);  /* match __find_sp_area in sp_free_get_spa */
out:
	return ret;
2231 2232 2233
}
EXPORT_SYMBOL_GPL(mg_sp_free);

2234 2235 2236
/* wrapper of __do_mmap() and the caller must hold down_write(&mm->mmap_lock). */
static unsigned long sp_mmap(struct mm_struct *mm, struct file *file,
			     struct sp_area *spa, unsigned long *populate,
2237
			     unsigned long prot, struct vm_area_struct **pvma)
2238 2239 2240 2241 2242 2243 2244
{
	unsigned long addr = spa->va_start;
	unsigned long size = spa_size(spa);
	unsigned long flags = MAP_FIXED | MAP_SHARED | MAP_POPULATE |
			      MAP_SHARE_POOL;
	unsigned long vm_flags = VM_NORESERVE | VM_SHARE_POOL | VM_DONTCOPY;
	unsigned long pgoff = addr_offset(spa) >> PAGE_SHIFT;
2245
	struct vm_area_struct *vma;
2246 2247 2248 2249 2250 2251 2252 2253 2254

	atomic_inc(&spa->use_count);
	addr = __do_mmap_mm(mm, file, addr, size, prot, flags, vm_flags, pgoff,
			 populate, NULL);
	if (IS_ERR_VALUE(addr)) {
		atomic_dec(&spa->use_count);
		pr_err("do_mmap fails %ld\n", addr);
	} else {
		BUG_ON(addr != spa->va_start);
2255 2256 2257 2258
		vma = find_vma(mm, addr);
		vma->vm_private_data = spa;
		if (pvma)
			*pvma = vma;
2259 2260 2261 2262 2263
	}

	return addr;
}

W
Wang Wensheng 已提交
2264 2265 2266
#define ALLOC_NORMAL	1
#define ALLOC_RETRY	2
#define ALLOC_NOMEM	3
2267
#define ALLOC_COREDUMP	4
W
Wang Wensheng 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277

struct sp_alloc_context {
	struct sp_group *spg;
	struct file *file;
	unsigned long size;
	unsigned long size_aligned;
	unsigned long sp_flags;
	unsigned long populate;
	int state;
	bool need_fallocate;
2278
	bool have_mbind;
2279
	enum spa_type type;
W
Wang Wensheng 已提交
2280 2281 2282 2283 2284 2285 2286 2287 2288
};

static int sp_alloc_prepare(unsigned long size, unsigned long sp_flags,
	int spg_id, struct sp_alloc_context *ac)
{
	struct sp_group *spg;

	check_interrupt_context();

2289 2290 2291 2292 2293
	if (current->flags & PF_KTHREAD) {
		pr_err_ratelimited("allocation failed, task is kthread\n");
		return -EINVAL;
	}

W
Wang Wensheng 已提交
2294 2295 2296 2297 2298
	if (unlikely(!size || (size >> PAGE_SHIFT) > totalram_pages())) {
		pr_err_ratelimited("allocation failed, invalid size %lu\n", size);
		return -EINVAL;
	}

2299
	if (spg_id != SPG_ID_DEFAULT && (spg_id < SPG_ID_MIN || spg_id >= SPG_ID_AUTO)) {
W
Wang Wensheng 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
		pr_err_ratelimited("allocation failed, invalid group id %d\n", spg_id);
		return -EINVAL;
	}

	if (sp_flags & (~SP_FLAG_MASK)) {
		pr_err_ratelimited("allocation failed, invalid flag %lx\n", sp_flags);
		return -EINVAL;
	}

	if (sp_flags & SP_HUGEPAGE_ONLY)
		sp_flags |= SP_HUGEPAGE;

2312 2313 2314 2315 2316
	if (spg_id != SPG_ID_DEFAULT) {
		spg = __sp_find_spg(current->pid, spg_id);
		if (!spg) {
			pr_err_ratelimited("allocation failed, can't find group\n");
			return -ENODEV;
W
Wang Wensheng 已提交
2317 2318
		}

2319 2320 2321 2322 2323 2324 2325 2326
		/* up_read will be at the end of sp_alloc */
		down_read(&spg->rw_lock);
		if (!spg_valid(spg)) {
			up_read(&spg->rw_lock);
			sp_group_drop(spg);
			pr_err_ratelimited("allocation failed, spg is dead\n");
			return -ENODEV;
		}
W
Wang Wensheng 已提交
2327

2328 2329 2330 2331 2332
		if (!is_process_in_group(spg, current->mm)) {
			up_read(&spg->rw_lock);
			sp_group_drop(spg);
			pr_err_ratelimited("allocation failed, task not in group\n");
			return -ENODEV;
W
Wang Wensheng 已提交
2333
		}
2334
		ac->type = SPA_TYPE_ALLOC;
2335
	} else {  /* allocation pass through scene */
2336
		spg = sp_get_local_group(current, current->mm);
2337 2338
		if (IS_ERR(spg))
			return PTR_ERR(spg);
2339 2340
		down_read(&spg->rw_lock);
		ac->type = SPA_TYPE_ALLOC_PRIVATE;
W
Wang Wensheng 已提交
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
	}

	if (sp_flags & SP_HUGEPAGE) {
		ac->file = spg->file_hugetlb;
		ac->size_aligned = ALIGN(size, PMD_SIZE);
	} else {
		ac->file = spg->file;
		ac->size_aligned = ALIGN(size, PAGE_SIZE);
	}

	ac->spg = spg;
	ac->size = size;
	ac->sp_flags = sp_flags;
	ac->state = ALLOC_NORMAL;
	ac->need_fallocate = false;
2356
	ac->have_mbind = false;
W
Wang Wensheng 已提交
2357 2358 2359 2360 2361 2362
	return 0;
}

static void sp_alloc_unmap(struct mm_struct *mm, struct sp_area *spa,
	struct sp_group_node *spg_node)
{
2363
	__sp_free(spa->spg, spa->va_start, spa->real_size, mm);
W
Wang Wensheng 已提交
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
}

static int sp_alloc_mmap(struct mm_struct *mm, struct sp_area *spa,
	struct sp_group_node *spg_node, struct sp_alloc_context *ac)
{
	int ret = 0;
	unsigned long mmap_addr;
	/* pass through default permission */
	unsigned long prot = PROT_READ | PROT_WRITE;
	unsigned long populate = 0;
	struct vm_area_struct *vma;

	down_write(&mm->mmap_lock);
	if (unlikely(mm->core_state)) {
		up_write(&mm->mmap_lock);
2379
		ac->state = ALLOC_COREDUMP;
W
Wang Wensheng 已提交
2380 2381 2382 2383 2384 2385 2386
		pr_info("allocation encountered coredump\n");
		return -EFAULT;
	}

	if (spg_node)
		prot = spg_node->prot;

2387 2388 2389
	if (ac->sp_flags & SP_PROT_RO)
		prot = PROT_READ;

W
Wang Wensheng 已提交
2390
	/* when success, mmap_addr == spa->va_start */
2391
	mmap_addr = sp_mmap(mm, spa_file(spa), spa, &populate, prot, &vma);
W
Wang Wensheng 已提交
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
	if (IS_ERR_VALUE(mmap_addr)) {
		up_write(&mm->mmap_lock);
		sp_alloc_unmap(mm, spa, spg_node);
		pr_err("sp mmap in allocation failed %ld\n", mmap_addr);
		return PTR_ERR((void *)mmap_addr);
	}

	if (unlikely(populate == 0)) {
		up_write(&mm->mmap_lock);
		pr_err("allocation sp mmap populate failed\n");
		ret = -EFAULT;
		goto unmap;
	}
	ac->populate = populate;

2407 2408 2409
	if (ac->sp_flags & SP_PROT_RO)
		vma->vm_flags &= ~VM_MAYWRITE;

W
Wang Wensheng 已提交
2410 2411 2412 2413 2414 2415 2416 2417
	/* clean PTE_RDONLY flags or trigger SMMU event */
	if (prot & PROT_WRITE)
		vma->vm_page_prot = __pgprot(((~PTE_RDONLY) & vma->vm_page_prot.pgprot) | PTE_DIRTY);
	up_write(&mm->mmap_lock);

	return ret;

unmap:
2418
	sp_alloc_unmap(list_next_entry(spg_node, proc_node)->master->mm, spa, spg_node);
W
Wang Wensheng 已提交
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	return ret;
}

static void sp_alloc_fallback(struct sp_area *spa, struct sp_alloc_context *ac)
{
	if (ac->file == ac->spg->file) {
		ac->state = ALLOC_NOMEM;
		return;
	}

2429
	atomic_inc(&ac->spg->instat.hugepage_failures);
W
Wang Wensheng 已提交
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
	if (!(ac->sp_flags & SP_HUGEPAGE_ONLY)) {
		ac->file = ac->spg->file;
		ac->size_aligned = ALIGN(ac->size, PAGE_SIZE);
		ac->sp_flags &= ~SP_HUGEPAGE;
		ac->state = ALLOC_RETRY;
		__sp_area_drop(spa);
		return;
	}
	ac->state = ALLOC_NOMEM;
}

static int sp_alloc_populate(struct mm_struct *mm, struct sp_area *spa,
2442
			     struct sp_alloc_context *ac)
W
Wang Wensheng 已提交
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
{
	int ret = 0;
	unsigned long sp_addr = spa->va_start;
	unsigned int noreclaim_flag = 0;

	/*
	 * The direct reclaim and compact may take a long
	 * time. As a result, sp mutex will be hold for too
	 * long time to casue the hung task problem. In this
	 * case, set the PF_MEMALLOC flag to prevent the
	 * direct reclaim and compact from being executed.
	 * Since direct reclaim and compact are not performed
	 * when the fragmentation is severe or the memory is
	 * insufficient, 2MB continuous physical pages fail
	 * to be allocated. This situation is allowed.
	 */
	if (spa->is_hugepage)
		noreclaim_flag = memalloc_noreclaim_save();

	/*
	 * We are not ignoring errors, so if we fail to allocate
	 * physical memory we just return failure, so we won't encounter
	 * page fault later on, and more importantly sp_make_share_u2k()
	 * depends on this feature (and MAP_LOCKED) to work correctly.
	 */
	ret = do_mm_populate(mm, sp_addr, ac->populate, 0);
2469
	if (spa->is_hugepage)
W
Wang Wensheng 已提交
2470
		memalloc_noreclaim_restore(noreclaim_flag);
2471

W
Wang Wensheng 已提交
2472 2473 2474
	return ret;
}

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
static long sp_mbind(struct mm_struct *mm, unsigned long start, unsigned long len,
		unsigned long node)
{
	nodemask_t nmask;

	nodes_clear(nmask);
	node_set(node, nmask);
	return __do_mbind(start, len, MPOL_BIND, MPOL_F_STATIC_NODES,
			&nmask, MPOL_MF_STRICT, mm);
}

W
Wang Wensheng 已提交
2486 2487 2488 2489 2490 2491
static int __sp_alloc_mmap_populate(struct mm_struct *mm, struct sp_area *spa,
	struct sp_group_node *spg_node, struct sp_alloc_context *ac)
{
	int ret;

	ret = sp_alloc_mmap(mm, spa, spg_node, ac);
2492
	if (ret < 0)
W
Wang Wensheng 已提交
2493 2494
		return ret;

2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
	if (!ac->have_mbind) {
		ret = sp_mbind(mm, spa->va_start, spa->real_size, spa->node_id);
		if (ret < 0) {
			pr_err("cannot bind the memory range to specified node:%d, err:%d\n",
				spa->node_id, ret);
			goto err;
		}
		ac->have_mbind = true;
	}

	ret = sp_alloc_populate(mm, spa, ac);
	if (ret) {
err:
		if (unlikely(fatal_signal_pending(current)))
			pr_warn_ratelimited("allocation failed, current thread is killed\n");
		else
			pr_warn_ratelimited("allocation failed due to mm populate failed(potential no enough memory when -12): %d\n",
2512
					ret);
2513 2514
	} else
		ac->need_fallocate = true;
W
Wang Wensheng 已提交
2515 2516 2517 2518 2519 2520
	return ret;
}

static int sp_alloc_mmap_populate(struct sp_area *spa,
				  struct sp_alloc_context *ac)
{
2521 2522
	int ret = -EINVAL;
	int mmap_ret = 0;
2523
	struct mm_struct *mm, *end_mm = NULL;
W
Wang Wensheng 已提交
2524 2525
	struct sp_group_node *spg_node;

2526 2527 2528 2529 2530 2531
	/* create mapping for each process in the group */
	list_for_each_entry(spg_node, &spa->spg->procs, proc_node) {
		mm = spg_node->master->mm;
		mmap_ret = __sp_alloc_mmap_populate(mm, spa, spg_node, ac);
		if (mmap_ret) {
			if (ac->state != ALLOC_COREDUMP)
2532
				goto unmap;
2533 2534
			ac->state = ALLOC_NORMAL;
			continue;
W
Wang Wensheng 已提交
2535
		}
2536
		ret = mmap_ret;
W
Wang Wensheng 已提交
2537
	}
2538

W
Wang Wensheng 已提交
2539
	return ret;
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558

unmap:
	/* use the next mm in proc list as end mark */
	if (!list_is_last(&spg_node->proc_node, &spa->spg->procs))
		end_mm = list_next_entry(spg_node, proc_node)->master->mm;
	sp_alloc_unmap(end_mm, spa, spg_node);

	/* only fallocate spa if physical memory had been allocated */
	if (ac->need_fallocate) {
		sp_fallocate(spa);
		ac->need_fallocate = false;
	}

	/* if hugepage allocation fails, this will transfer to normal page
	 * and try again. (only if SP_HUGEPAGE_ONLY is not flagged
	 */
	sp_alloc_fallback(spa, ac);

	return mmap_ret;
W
Wang Wensheng 已提交
2559 2560 2561 2562
}

/* spa maybe an error pointer, so introduce variable spg */
static void sp_alloc_finish(int result, struct sp_area *spa,
2563
		struct sp_alloc_context *ac)
W
Wang Wensheng 已提交
2564 2565 2566
{
	struct sp_group *spg = ac->spg;

2567
	/* match sp_alloc_prepare */
2568
	up_read(&spg->rw_lock);
W
Wang Wensheng 已提交
2569 2570 2571 2572 2573

	if (!result)
		sp_update_process_stat(current, true, spa);

	/* this will free spa if mmap failed */
2574
	if (spa && !IS_ERR(spa))
W
Wang Wensheng 已提交
2575 2576
		__sp_area_drop(spa);

2577
	sp_group_drop(spg);
W
Wang Wensheng 已提交
2578 2579
}

2580
/**
2581
 * mg_sp_alloc() - Allocate shared memory for all the processes in a sp_group.
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
 * @size: the size of memory to allocate.
 * @sp_flags: how to allocate the memory.
 * @spg_id: the share group that the memory is allocated to.
 *
 * Use pass through allocation if spg_id == SPG_ID_DEFAULT in multi-group mode.
 *
 * Return:
 * * if succeed, return the starting address of the shared memory.
 * * if fail, return the pointer of -errno.
 */
2592
void *mg_sp_alloc(unsigned long size, unsigned long sp_flags, int spg_id)
2593
{
W
Wang Wensheng 已提交
2594 2595 2596 2597
	struct sp_area *spa = NULL;
	int ret = 0;
	struct sp_alloc_context ac;

2598 2599 2600
	if (!sp_is_enabled())
		return ERR_PTR(-EOPNOTSUPP);

W
Wang Wensheng 已提交
2601 2602 2603 2604 2605 2606
	ret = sp_alloc_prepare(size, sp_flags, spg_id, &ac);
	if (ret)
		return ERR_PTR(ret);

try_again:
	spa = sp_alloc_area(ac.size_aligned, ac.sp_flags, ac.spg,
2607
			    ac.type, current->tgid);
W
Wang Wensheng 已提交
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
	if (IS_ERR(spa)) {
		pr_err_ratelimited("alloc spa failed in allocation(potential no enough virtual memory when -75): %ld\n",
			PTR_ERR(spa));
		ret = PTR_ERR(spa);
		goto out;
	}

	ret = sp_alloc_mmap_populate(spa, &ac);
	if (ret && ac.state == ALLOC_RETRY)
		goto try_again;

out:
	sp_alloc_finish(ret, spa, &ac);
	if (ret)
		return ERR_PTR(ret);
	else
		return (void *)(spa->va_start);
2625 2626 2627
}
EXPORT_SYMBOL_GPL(mg_sp_alloc);

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
/**
 * is_vmap_hugepage() - Check if a kernel address belongs to vmalloc family.
 * @addr: the kernel space address to be checked.
 *
 * Return:
 * * >0		- a vmalloc hugepage addr.
 * * =0		- a normal vmalloc addr.
 * * -errno	- failure.
 */
static int is_vmap_hugepage(unsigned long addr)
{
	struct vm_struct *area;

	if (unlikely(!addr)) {
		pr_err_ratelimited("null vmap addr pointer\n");
		return -EINVAL;
	}

	area = find_vm_area((void *)addr);
	if (unlikely(!area)) {
		pr_debug("can't find vm area(%lx)\n", addr);
		return -EINVAL;
	}

	if (area->flags & VM_HUGE_PAGES)
		return 1;
	else
		return 0;
}

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
static unsigned long __sp_remap_get_pfn(unsigned long kva)
{
	unsigned long pfn;

	if (is_vmalloc_addr((void *)kva))
		pfn = vmalloc_to_pfn((void *)kva);
	else
		pfn = virt_to_pfn(kva);

	return pfn;
}

/* when called by k2u to group, always make sure rw_lock of spg is down */
static unsigned long sp_remap_kva_to_vma(unsigned long kva, struct sp_area *spa,
2672
					 struct mm_struct *mm, unsigned long prot, struct sp_k2u_context *kc)
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
{
	struct vm_area_struct *vma;
	unsigned long ret_addr;
	unsigned long populate = 0;
	int ret = 0;
	unsigned long addr, buf, offset;

	down_write(&mm->mmap_lock);
	if (unlikely(mm->core_state)) {
		pr_err("k2u mmap: encountered coredump, abort\n");
		ret_addr = -EBUSY;
2684 2685
		if (kc)
			kc->state = K2U_COREDUMP;
2686 2687 2688
		goto put_mm;
	}

2689 2690 2691
	if (kc && kc->sp_flags & SP_PROT_RO)
		prot = PROT_READ;

2692
	ret_addr = sp_mmap(mm, spa_file(spa), spa, &populate, prot, &vma);
2693 2694 2695 2696 2697 2698 2699 2700
	if (IS_ERR_VALUE(ret_addr)) {
		pr_debug("k2u mmap failed %lx\n", ret_addr);
		goto put_mm;
	}

	if (prot & PROT_WRITE)
		vma->vm_page_prot = __pgprot(((~PTE_RDONLY) & vma->vm_page_prot.pgprot) | PTE_DIRTY);

2701 2702 2703
	if (kc && kc->sp_flags & SP_PROT_RO)
		vma->vm_flags &= ~VM_MAYWRITE;

2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
	if (is_vm_hugetlb_page(vma)) {
		ret = remap_vmalloc_hugepage_range(vma, (void *)kva, 0);
		if (ret) {
			do_munmap(mm, ret_addr, spa_size(spa), NULL);
			pr_debug("remap vmalloc hugepage failed, ret %d, kva is %lx\n",
				 ret, (unsigned long)kva);
			ret_addr = ret;
			goto put_mm;
		}
		vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
	} else {
		buf = ret_addr;
		addr = kva;
		offset = 0;
		do {
			ret = remap_pfn_range(vma, buf, __sp_remap_get_pfn(addr), PAGE_SIZE,
					__pgprot(vma->vm_page_prot.pgprot));
			if (ret) {
				do_munmap(mm, ret_addr, spa_size(spa), NULL);
				pr_err("remap_pfn_range failed %d\n", ret);
				ret_addr = ret;
				goto put_mm;
			}
			offset += PAGE_SIZE;
			buf += PAGE_SIZE;
			addr += PAGE_SIZE;
		} while (offset < spa_size(spa));
	}

put_mm:
	up_write(&mm->mmap_lock);

	return ret_addr;
}

/**
 * sp_make_share_kva_to_task() - Share kernel memory to current task.
 * @kva: the VA of shared kernel memory
 * @size: the size of area to share, should be aligned properly
 * @sp_flags: the flags for the opreation
 *
 * Return:
 * * if succeed, return the shared user address to start at.
 * * if fail, return the pointer of -errno.
 */
static void *sp_make_share_kva_to_task(unsigned long kva, unsigned long size, unsigned long sp_flags)
{
2751
	int ret;
2752 2753
	void *uva;
	struct sp_area *spa;
2754
	struct sp_group_node *spg_node;
2755
	unsigned long prot = PROT_READ | PROT_WRITE;
2756
	struct sp_k2u_context kc;
2757
	struct sp_group *spg;
2758 2759

	down_write(&sp_group_sem);
2760
	ret = sp_init_group_master_locked(current, current->mm);
2761 2762 2763 2764 2765 2766 2767 2768
	if (ret) {
		up_write(&sp_group_sem);
		pr_err_ratelimited("k2u_task init local mapping failed %d\n", ret);
		return ERR_PTR(ret);
	}

	spg = current->mm->sp_group_master->local;
	up_write(&sp_group_sem);
2769

2770
	spa = sp_alloc_area(size, sp_flags, spg, SPA_TYPE_K2TASK, current->tgid);
2771 2772 2773 2774 2775 2776 2777
	if (IS_ERR(spa)) {
		pr_err_ratelimited("alloc spa failed in k2u_task (potential no enough virtual memory when -75): %ld\n",
				PTR_ERR(spa));
		return spa;
	}

	spa->kva = kva;
2778 2779
	kc.sp_flags = sp_flags;
	uva = (void *)sp_remap_kva_to_vma(kva, spa, current->mm, prot, &kc);
2780 2781 2782
	if (IS_ERR(uva))
		pr_err("remap k2u to task failed %ld\n", PTR_ERR(uva));
	else {
2783
		spg_node = find_spg_node_by_spg(current->mm, spa->spg);
G
Guo Mengqi 已提交
2784
		update_mem_usage(size, true, spa->is_hugepage, spg_node, SPA_TYPE_K2TASK);
2785 2786
		spa->mm = current->mm;
	}
Z
Zhou Guanghui 已提交
2787
	__sp_area_drop(spa);
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807

	return uva;
}

/**
 * Share kernel memory to a spg, the current process must be in that group
 * @kva: the VA of shared kernel memory
 * @size: the size of area to share, should be aligned properly
 * @sp_flags: the flags for the opreation
 * @spg: the sp group to be shared with
 *
 * Return: the shared user address to start at
 */
static void *sp_make_share_kva_to_spg(unsigned long kva, unsigned long size,
				      unsigned long sp_flags, struct sp_group *spg)
{
	struct sp_area *spa;
	struct mm_struct *mm;
	struct sp_group_node *spg_node;
	void *uva = ERR_PTR(-ENODEV);
2808 2809
	struct sp_k2u_context kc;
	unsigned long ret_addr = -ENODEV;
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820

	down_read(&spg->rw_lock);
	spa = sp_alloc_area(size, sp_flags, spg, SPA_TYPE_K2SPG, current->tgid);
	if (IS_ERR(spa)) {
		up_read(&spg->rw_lock);
		pr_err_ratelimited("alloc spa failed in k2u_spg (potential no enough virtual memory when -75): %ld\n",
				PTR_ERR(spa));
		return spa;
	}

	spa->kva = kva;
2821
	kc.sp_flags = sp_flags;
2822 2823
	list_for_each_entry(spg_node, &spg->procs, proc_node) {
		mm = spg_node->master->mm;
2824 2825 2826 2827 2828 2829
		kc.state = K2U_NORMAL;
		ret_addr = sp_remap_kva_to_vma(kva, spa, mm, spg_node->prot, &kc);
		if (IS_ERR_VALUE(ret_addr)) {
			if (kc.state == K2U_COREDUMP)
				continue;
			uva = (void *)ret_addr;
2830 2831 2832 2833
			pr_err("remap k2u to spg failed %ld\n", PTR_ERR(uva));
			__sp_free(spg, spa->va_start, spa_size(spa), mm);
			goto out;
		}
2834
		uva = (void *)ret_addr;
2835 2836 2837 2838 2839 2840
	}

out:
	up_read(&spg->rw_lock);
	if (!IS_ERR(uva))
		sp_update_process_stat(current, true, spa);
Z
Zhou Guanghui 已提交
2841
	__sp_area_drop(spa);
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865

	return uva;
}

static bool vmalloc_area_set_flag(unsigned long kva, unsigned long flags)
{
	struct vm_struct *area;

	area = find_vm_area((void *)kva);
	if (area) {
		area->flags |= flags;
		return true;
	}

	return false;
}

static int sp_k2u_prepare(unsigned long kva, unsigned long size,
	unsigned long sp_flags, int spg_id, struct sp_k2u_context *kc)
{
	int is_hugepage;
	unsigned int page_size = PAGE_SIZE;
	unsigned long kva_aligned, size_aligned;

2866
	if (sp_flags & ~SP_FLAG_MASK) {
2867 2868 2869
		pr_err_ratelimited("k2u sp_flags %lx error\n", sp_flags);
		return -EINVAL;
	}
2870
	sp_flags &= ~SP_HUGEPAGE;
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902

	if (!current->mm) {
		pr_err_ratelimited("k2u: kthread is not allowed\n");
		return -EPERM;
	}

	is_hugepage = is_vmap_hugepage(kva);
	if (is_hugepage > 0) {
		sp_flags |= SP_HUGEPAGE;
		page_size = PMD_SIZE;
	} else if (is_hugepage == 0) {
		/* do nothing */
	} else {
		pr_err_ratelimited("k2u kva is not vmalloc address\n");
		return is_hugepage;
	}

	/* aligned down kva is convenient for caller to start with any valid kva */
	kva_aligned = ALIGN_DOWN(kva, page_size);
	size_aligned = ALIGN(kva + size, page_size) - kva_aligned;

	if (!vmalloc_area_set_flag(kva_aligned, VM_SHAREPOOL)) {
		pr_debug("k2u_task kva %lx is not valid\n", kva_aligned);
		return -EINVAL;
	}

	kc->kva = kva;
	kc->kva_aligned = kva_aligned;
	kc->size = size;
	kc->size_aligned = size_aligned;
	kc->sp_flags = sp_flags;
	kc->spg_id = spg_id;
2903 2904 2905 2906
	if (spg_id == SPG_ID_DEFAULT || spg_id == SPG_ID_NONE)
		kc->to_task = true;
	else
		kc->to_task = false;
2907

2908
	return 0;
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
}

static void *sp_k2u_finish(void *uva, struct sp_k2u_context *kc)
{
	if (IS_ERR(uva))
		vmalloc_area_clr_flag(kc->kva_aligned, VM_SHAREPOOL);
	else
		uva = uva + (kc->kva - kc->kva_aligned);

	return uva;
}

2921
/**
2922
 * mg_sp_make_share_k2u() - Share kernel memory to current process or an sp_group.
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
 * @kva: the VA of shared kernel memory.
 * @size: the size of shared kernel memory.
 * @sp_flags: how to allocate the memory. We only support SP_DVPP.
 * @pid:  the pid of the specified process (Not currently in use).
 * @spg_id: the share group that the memory is shared to.
 *
 * Return: the shared target user address to start at
 *
 * Share kernel memory to current task if spg_id == SPG_ID_NONE
 * or SPG_ID_DEFAULT in multi-group mode.
 *
 * Return:
 * * if succeed, return the shared user address to start at.
 * * if fail, return the pointer of -errno.
 */
2938
void *mg_sp_make_share_k2u(unsigned long kva, unsigned long size,
2939 2940
			unsigned long sp_flags, int pid, int spg_id)
{
2941 2942 2943 2944
	void *uva;
	int ret;
	struct sp_k2u_context kc;

2945 2946 2947
	if (!sp_is_enabled())
		return ERR_PTR(-EOPNOTSUPP);

2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
	check_interrupt_context();

	ret = sp_k2u_prepare(kva, size, sp_flags, spg_id, &kc);
	if (ret)
		return ERR_PTR(ret);

	if (kc.to_task)
		uva = sp_make_share_kva_to_task(kc.kva_aligned, kc.size_aligned, kc.sp_flags);
	else {
		struct sp_group *spg;

		spg = __sp_find_spg(current->pid, kc.spg_id);
		if (spg) {
			ret = sp_check_caller_permission(spg, current->mm);
			if (ret < 0) {
				sp_group_drop(spg);
				uva = ERR_PTR(ret);
				goto out;
			}
			uva = sp_make_share_kva_to_spg(kc.kva_aligned, kc.size_aligned, kc.sp_flags, spg);
			sp_group_drop(spg);
		} else
			uva = ERR_PTR(-ENODEV);
	}

out:
	return sp_k2u_finish(uva, &kc);
2975 2976 2977
}
EXPORT_SYMBOL_GPL(mg_sp_make_share_k2u);

2978 2979 2980
static int sp_pmd_entry(pmd_t *pmd, unsigned long addr,
			unsigned long next, struct mm_walk *walk)
{
2981
	struct page *page;
2982 2983
	struct sp_walk_data *sp_walk_data = walk->private;

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
	/*
	 * There exist a scene in DVPP where the pagetable is huge page but its
	 * vma doesn't record it, something like THP.
	 * So we cannot make out whether it is a hugepage map until we access the
	 * pmd here. If mixed size of pages appear, just return an error.
	 */
	if (pmd_huge(*pmd)) {
		if (!sp_walk_data->is_page_type_set) {
			sp_walk_data->is_page_type_set = true;
			sp_walk_data->is_hugepage = true;
		} else if (!sp_walk_data->is_hugepage)
			return -EFAULT;

		/* To skip pte level walk */
		walk->action = ACTION_CONTINUE;

		page = pmd_page(*pmd);
		get_page(page);
		sp_walk_data->pages[sp_walk_data->page_count++] = page;

		return 0;
	}

	if (!sp_walk_data->is_page_type_set) {
		sp_walk_data->is_page_type_set = true;
		sp_walk_data->is_hugepage = false;
	} else if (sp_walk_data->is_hugepage)
		return -EFAULT;

3013
	sp_walk_data->pmd = pmd;
3014

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
	return 0;
}

static int sp_pte_entry(pte_t *pte, unsigned long addr,
			unsigned long next, struct mm_walk *walk)
{
	struct page *page;
	struct sp_walk_data *sp_walk_data = walk->private;
	pmd_t *pmd = sp_walk_data->pmd;

retry:
	if (unlikely(!pte_present(*pte))) {
		swp_entry_t entry;

		if (pte_none(*pte))
			goto no_page;
		entry = pte_to_swp_entry(*pte);
		if (!is_migration_entry(entry))
			goto no_page;
		migration_entry_wait(walk->mm, pmd, addr);
		goto retry;
	}

	page = pte_page(*pte);
	get_page(page);
	sp_walk_data->pages[sp_walk_data->page_count++] = page;
	return 0;

no_page:
	pr_debug("the page of addr %lx unexpectedly not in RAM\n",
		 (unsigned long)addr);
	return -EFAULT;
}

static int sp_test_walk(unsigned long addr, unsigned long next,
			struct mm_walk *walk)
{
	/*
	 * FIXME: The devmm driver uses remap_pfn_range() but actually there
	 * are associated struct pages, so they should use vm_map_pages() or
	 * similar APIs. Before the driver has been converted to correct APIs
	 * we use this test_walk() callback so we can treat VM_PFNMAP VMAs as
	 * normal VMAs.
	 */
	return 0;
}

static int sp_pte_hole(unsigned long start, unsigned long end,
		       int depth, struct mm_walk *walk)
{
	pr_debug("hole [%lx, %lx) appeared unexpectedly\n", (unsigned long)start, (unsigned long)end);
	return -EFAULT;
}

static int sp_hugetlb_entry(pte_t *ptep, unsigned long hmask,
			    unsigned long addr, unsigned long next,
			    struct mm_walk *walk)
{
	pte_t pte = huge_ptep_get(ptep);
	struct page *page = pte_page(pte);
	struct sp_walk_data *sp_walk_data;

	if (unlikely(!pte_present(pte))) {
		pr_debug("the page of addr %lx unexpectedly not in RAM\n", (unsigned long)addr);
		return -EFAULT;
	}

	sp_walk_data = walk->private;
	get_page(page);
	sp_walk_data->pages[sp_walk_data->page_count++] = page;
	return 0;
}

/*
 * __sp_walk_page_range() - Walk page table with caller specific callbacks.
 * @uva: the start VA of user memory.
 * @size: the size of user memory.
 * @mm: mm struct of the target task.
 * @sp_walk_data: a structure of a page pointer array.
 *
 * the caller must hold mm->mmap_lock
 *
 * Notes for parameter alignment:
 * When size == 0, let it be page_size, so that at least one page is walked.
 *
 * When size > 0, for convenience, usually the parameters of uva and
 * size are not page aligned. There are four different alignment scenarios and
 * we must handler all of them correctly.
 *
 * The basic idea is to align down uva and align up size so all the pages
 * in range [uva, uva + size) are walked. However, there are special cases.
 *
 * Considering a 2M-hugepage addr scenario. Assuming the caller wants to
 * traverse range [1001M, 1004.5M), so uva and size is 1001M and 3.5M
 * accordingly. The aligned-down uva is 1000M and the aligned-up size is 4M.
 * The traverse range will be [1000M, 1004M). Obviously, the final page for
 * [1004M, 1004.5M) is not covered.
 *
 * To fix this problem, we need to walk an additional page, size should be
 * ALIGN(uva+size) - uva_aligned
 */
static int __sp_walk_page_range(unsigned long uva, unsigned long size,
	struct mm_struct *mm, struct sp_walk_data *sp_walk_data)
{
	int ret = 0;
	struct vm_area_struct *vma;
	unsigned long page_nr;
	struct page **pages = NULL;
	bool is_hugepage = false;
	unsigned long uva_aligned;
	unsigned long size_aligned;
	unsigned int page_size = PAGE_SIZE;
	struct mm_walk_ops sp_walk = {};

	/*
	 * Here we also support non share pool memory in this interface
	 * because the caller can't distinguish whether a uva is from the
	 * share pool or not. It is not the best idea to do so, but currently
	 * it simplifies overall design.
	 *
	 * In this situation, the correctness of the parameters is mainly
	 * guaranteed by the caller.
	 */
	vma = find_vma(mm, uva);
	if (!vma) {
		pr_debug("u2k input uva %lx is invalid\n", (unsigned long)uva);
		return -EINVAL;
	}
	if (is_vm_hugetlb_page(vma))
		is_hugepage = true;

	sp_walk.pte_hole = sp_pte_hole;
	sp_walk.test_walk = sp_test_walk;
	if (is_hugepage) {
		sp_walk_data->is_hugepage = true;
		sp_walk.hugetlb_entry = sp_hugetlb_entry;
		page_size = PMD_SIZE;
	} else {
		sp_walk_data->is_hugepage = false;
		sp_walk.pte_entry = sp_pte_entry;
		sp_walk.pmd_entry = sp_pmd_entry;
	}

3158 3159
	sp_walk_data->is_page_type_set = false;
	sp_walk_data->page_count = 0;
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
	sp_walk_data->page_size = page_size;
	uva_aligned = ALIGN_DOWN(uva, page_size);
	sp_walk_data->uva_aligned = uva_aligned;
	if (size == 0)
		size_aligned = page_size;
	else
		/* special alignment handling */
		size_aligned = ALIGN(uva + size, page_size) - uva_aligned;

	if (uva_aligned + size_aligned < uva_aligned) {
		pr_err_ratelimited("overflow happened in walk page range\n");
		return -EINVAL;
	}

	page_nr = size_aligned / page_size;
	pages = kvmalloc(page_nr * sizeof(struct page *), GFP_KERNEL);
	if (!pages) {
		pr_err_ratelimited("alloc page array failed in walk page range\n");
		return -ENOMEM;
	}
	sp_walk_data->pages = pages;

	ret = walk_page_range(mm, uva_aligned, uva_aligned + size_aligned,
			      &sp_walk, sp_walk_data);
3184 3185 3186
	if (ret) {
		while (sp_walk_data->page_count--)
			put_page(pages[sp_walk_data->page_count]);
3187
		kvfree(pages);
3188 3189
		sp_walk_data->pages = NULL;
	}
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209

	return ret;
}

static void __sp_walk_page_free(struct sp_walk_data *data)
{
	int i = 0;
	struct page *page;

	while (i < data->page_count) {
		page = data->pages[i++];
		put_page(page);
	}

	kvfree(data->pages);
	/* prevent repeated release */
	data->page_count = 0;
	data->pages = NULL;
}

3210
/**
3211
 * mg_sp_make_share_u2k() - Share user memory of a specified process to kernel.
3212 3213 3214 3215 3216 3217 3218 3219
 * @uva: the VA of shared user memory
 * @size: the size of shared user memory
 * @pid: the pid of the specified process(Not currently in use)
 *
 * Return:
 * * if success, return the starting kernel address of the shared memory.
 * * if failed, return the pointer of -errno.
 */
3220
void *mg_sp_make_share_u2k(unsigned long uva, unsigned long size, int pid)
3221
{
3222 3223 3224
	int ret = 0;
	struct mm_struct *mm = current->mm;
	void *p = ERR_PTR(-ESRCH);
3225
	struct sp_walk_data sp_walk_data;
3226 3227
	struct vm_struct *area;

3228 3229 3230
	if (!sp_is_enabled())
		return ERR_PTR(-EOPNOTSUPP);

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
	check_interrupt_context();

	if (mm == NULL) {
		pr_err("u2k: kthread is not allowed\n");
		return ERR_PTR(-EPERM);
	}

	down_write(&mm->mmap_lock);
	if (unlikely(mm->core_state)) {
		up_write(&mm->mmap_lock);
		pr_err("u2k: encountered coredump, abort\n");
		return p;
	}

	ret = __sp_walk_page_range(uva, size, mm, &sp_walk_data);
	if (ret) {
		pr_err_ratelimited("walk page range failed %d\n", ret);
		up_write(&mm->mmap_lock);
		return ERR_PTR(ret);
	}

	if (sp_walk_data.is_hugepage)
		p = vmap_hugepage(sp_walk_data.pages, sp_walk_data.page_count,
				  VM_MAP, PAGE_KERNEL);
	else
		p = vmap(sp_walk_data.pages, sp_walk_data.page_count, VM_MAP,
			 PAGE_KERNEL);
	up_write(&mm->mmap_lock);

	if (!p) {
		pr_err("vmap(huge) in u2k failed\n");
		__sp_walk_page_free(&sp_walk_data);
		return ERR_PTR(-ENOMEM);
	}

	p = p + (uva - sp_walk_data.uva_aligned);

	/*
	 * kva p may be used later in k2u. Since p comes from uva originally,
	 * it's reasonable to add flag VM_USERMAP so that p can be remapped
	 * into userspace again.
	 */
	area = find_vm_area(p);
	area->flags |= VM_USERMAP;

	kvfree(sp_walk_data.pages);
	return p;
3278 3279 3280
}
EXPORT_SYMBOL_GPL(mg_sp_make_share_u2k);

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
/*
 * Input parameters uva, pid and spg_id are now useless. spg_id will be useful
 * when supporting a process in multiple sp groups.
 *
 * Procedure of unshare uva must be compatible with:
 *
 * 1. DVPP channel destroy procedure:
 * do_exit() -> exit_mm() (mm no longer in spg and current->mm == NULL) ->
 * exit_task_work() -> task_work_run() -> __fput() -> ... -> vdec_close() ->
 * sp_unshare(uva, SPG_ID_DEFAULT)
 *
 * 2. Process A once was the target of k2u(to group), then it exits.
 * Guard worker kthread tries to free this uva and it must succeed, otherwise
 * spa of this uva leaks.
 *
 * This also means we must trust DVPP channel destroy and guard worker code.
 */
3298
static int sp_unshare_uva(unsigned long uva, unsigned long size, int group_id)
3299
{
3300 3301 3302 3303 3304 3305
	int ret = 0;
	struct mm_struct *mm;
	struct sp_area *spa;
	unsigned long uva_aligned;
	unsigned long size_aligned;
	unsigned int page_size;
3306 3307 3308 3309 3310 3311 3312
	struct sp_group *spg;

	spg = __sp_find_spg(current->tgid, group_id);
	if (!spg) {
		pr_debug("sp unshare find group failed %d\n", group_id);
		return -EINVAL;
	}
3313 3314 3315 3316 3317

	/*
	 * at first we guess it's a hugepage addr
	 * we can tolerate at most PMD_SIZE or PAGE_SIZE which is matched in k2u
	 */
3318
	spa = __find_sp_area(spg, ALIGN_DOWN(uva, PMD_SIZE));
3319
	if (!spa) {
3320
		spa = __find_sp_area(spg, ALIGN_DOWN(uva, PAGE_SIZE));
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
		if (!spa) {
			ret = -EINVAL;
			pr_debug("invalid input uva %lx in unshare uva\n", (unsigned long)uva);
			goto out;
		}
	}

	if (spa->type != SPA_TYPE_K2TASK && spa->type != SPA_TYPE_K2SPG) {
		pr_err_ratelimited("unshare wrong type spa\n");
		ret = -EINVAL;
		goto out_drop_area;
	}
	/*
	 * 1. overflow actually won't happen due to an spa must be valid.
	 * 2. we must unshare [spa->va_start, spa->va_start + spa->real_size) completely
	 *    because an spa is one-to-one correspondence with an vma.
	 *    Thus input parameter size is not necessarily needed.
	 */
	page_size = (spa->is_hugepage ? PMD_SIZE : PAGE_SIZE);
	uva_aligned = spa->va_start;
	size_aligned = spa->real_size;

	if (size_aligned < ALIGN(size, page_size)) {
		ret = -EINVAL;
		pr_err_ratelimited("unshare uva failed, invalid parameter size %lu\n", size);
		goto out_drop_area;
	}

	if (spa->type == SPA_TYPE_K2TASK) {
		if (spa->applier != current->tgid) {
			pr_err_ratelimited("unshare uva(to task) no permission\n");
			ret = -EPERM;
			goto out_drop_area;
		}

		/*
		 * current thread may be exiting in a multithread process
		 *
		 * 1. never need a kthread to make unshare when process has exited
		 * 2. in dvpp channel destroy procedure, exit_mm() has been called
		 *    and don't need to make unshare
		 */
		mm = get_task_mm(current->group_leader);
		if (!mm) {
			pr_info_ratelimited("no need to unshare uva(to task), target process mm is exiting\n");
			goto out_clr_flag;
		}

		down_write(&mm->mmap_lock);
		if (unlikely(mm->core_state)) {
			ret = 0;
			up_write(&mm->mmap_lock);
			mmput(mm);
			goto out_drop_area;
		}

		ret = do_munmap(mm, uva_aligned, size_aligned, NULL);
		up_write(&mm->mmap_lock);
		mmput(mm);
		/* we are not supposed to fail */
		if (ret)
			pr_err("failed to unmap VA %pK when munmap in unshare uva\n",
			       (void *)uva_aligned);
		sp_update_process_stat(current, false, spa);

	} else if (spa->type == SPA_TYPE_K2SPG) {
		down_read(&spa->spg->rw_lock);
		/* always allow kthread and dvpp channel destroy procedure */
		if (current->mm) {
			if (!is_process_in_group(spa->spg, current->mm)) {
				up_read(&spa->spg->rw_lock);
				pr_err_ratelimited("unshare uva(to group) failed, caller process doesn't belong to target group\n");
				ret = -EPERM;
				goto out_drop_area;
			}
		}
		up_read(&spa->spg->rw_lock);

		down_write(&spa->spg->rw_lock);
		if (!spg_valid(spa->spg)) {
			up_write(&spa->spg->rw_lock);
			pr_info_ratelimited("share pool: no need to unshare uva(to group), sp group of spa is dead\n");
			goto out_clr_flag;
		}
		/* the life cycle of spa has a direct relation with sp group */
		if (unlikely(spa->is_dead)) {
			up_write(&spa->spg->rw_lock);
			pr_err_ratelimited("unexpected double sp unshare\n");
			dump_stack();
			ret = -EINVAL;
			goto out_drop_area;
		}
		spa->is_dead = true;
		up_write(&spa->spg->rw_lock);

		down_read(&spa->spg->rw_lock);
		__sp_free(spa->spg, uva_aligned, size_aligned, NULL);
		up_read(&spa->spg->rw_lock);

		if (current->mm == NULL)
			atomic64_sub(spa->real_size, &kthread_stat.k2u_size);
		else
			sp_update_process_stat(current, false, spa);
	} else {
		WARN(1, "unshare uva invalid spa type");
	}

out_clr_flag:
	if (!vmalloc_area_clr_flag(spa->kva, VM_SHAREPOOL))
		pr_debug("clear spa->kva %ld is not valid\n", spa->kva);
	spa->kva = 0;

out_drop_area:
	__sp_area_drop(spa);
out:
3436
	sp_group_drop(spg);
3437
	return ret;
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
}

/* No possible concurrent protection, take care when use */
static int sp_unshare_kva(unsigned long kva, unsigned long size)
{
	unsigned long addr, kva_aligned;
	struct page *page;
	unsigned long size_aligned;
	unsigned long step;
	bool is_hugepage = true;
	int ret;

	ret = is_vmap_hugepage(kva);
	if (ret > 0) {
		kva_aligned = ALIGN_DOWN(kva, PMD_SIZE);
		size_aligned = ALIGN(kva + size, PMD_SIZE) - kva_aligned;
		step = PMD_SIZE;
	} else if (ret == 0) {
		kva_aligned = ALIGN_DOWN(kva, PAGE_SIZE);
		size_aligned = ALIGN(kva + size, PAGE_SIZE) - kva_aligned;
		step = PAGE_SIZE;
		is_hugepage = false;
	} else {
		pr_err_ratelimited("check vmap hugepage failed %d\n", ret);
		return -EINVAL;
	}

	if (kva_aligned + size_aligned < kva_aligned) {
		pr_err_ratelimited("overflow happened in unshare kva\n");
		return -EINVAL;
	}

	for (addr = kva_aligned; addr < (kva_aligned + size_aligned); addr += step) {
		page = vmalloc_to_page((void *)addr);
		if (page)
			put_page(page);
		else
			WARN(1, "vmalloc %pK to page/hugepage failed\n",
			       (void *)addr);
	}

	vunmap((void *)kva_aligned);

	return 0;
}

3484
/**
3485
 * mg_sp_unshare() - Unshare the kernel or user memory which shared by calling
3486 3487 3488 3489 3490 3491 3492 3493
 *                sp_make_share_{k2u,u2k}().
 * @va: the specified virtual address of memory
 * @size: the size of unshared memory
 *
 * Use spg_id of current thread if spg_id == SPG_ID_DEFAULT.
 *
 * Return: 0 for success, -errno on failure.
 */
3494
int mg_sp_unshare(unsigned long va, unsigned long size, int spg_id)
3495
{
3496 3497
	int ret = 0;

3498 3499 3500
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

3501 3502
	check_interrupt_context();

3503 3504 3505
	if (current->flags & PF_KTHREAD)
		return -EINVAL;

3506 3507
	if (va < TASK_SIZE) {
		/* user address */
3508
		ret = sp_unshare_uva(va, size, spg_id);
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
	} else if (va >= PAGE_OFFSET) {
		/* kernel address */
		ret = sp_unshare_kva(va, size);
	} else {
		/* regard user and kernel address ranges as bad address */
		pr_debug("unshare addr %lx is not a user or kernel addr\n", (unsigned long)va);
		ret = -EFAULT;
	}

	return ret;
3519 3520 3521 3522
}
EXPORT_SYMBOL_GPL(mg_sp_unshare);

/**
3523
 * mg_sp_walk_page_range() - Walk page table with caller specific callbacks.
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
 * @uva: the start VA of user memory.
 * @size: the size of user memory.
 * @tsk: task struct of the target task.
 * @sp_walk_data: a structure of a page pointer array.
 *
 * Return: 0 for success, -errno on failure.
 *
 * When return 0, sp_walk_data describing [uva, uva+size) can be used.
 * When return -errno, information in sp_walk_data is useless.
 */
3534
int mg_sp_walk_page_range(unsigned long uva, unsigned long size,
3535 3536
	struct task_struct *tsk, struct sp_walk_data *sp_walk_data)
{
3537 3538 3539
	struct mm_struct *mm;
	int ret = 0;

3540 3541 3542
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
	check_interrupt_context();

	if (unlikely(!sp_walk_data)) {
		pr_err_ratelimited("null pointer when walk page range\n");
		return -EINVAL;
	}
	if (!tsk || (tsk->flags & PF_EXITING))
		return -ESRCH;

	get_task_struct(tsk);
	mm = get_task_mm(tsk);
	if (!mm) {
		put_task_struct(tsk);
		return -ESRCH;
	}

	down_write(&mm->mmap_lock);
	if (likely(!mm->core_state))
		ret = __sp_walk_page_range(uva, size, mm, sp_walk_data);
	else {
		pr_err("walk page range: encoutered coredump\n");
		ret = -ESRCH;
	}
	up_write(&mm->mmap_lock);

	mmput(mm);
	put_task_struct(tsk);

	return ret;
3572 3573 3574 3575
}
EXPORT_SYMBOL_GPL(mg_sp_walk_page_range);

/**
3576
 * mg_sp_walk_page_free() - Free the sp_walk_data structure.
3577 3578
 * @sp_walk_data: a structure of a page pointer array to be freed.
 */
3579
void mg_sp_walk_page_free(struct sp_walk_data *sp_walk_data)
3580
{
3581 3582 3583
	if (!sp_is_enabled())
		return;

3584 3585 3586 3587 3588 3589
	check_interrupt_context();

	if (!sp_walk_data)
		return;

	__sp_walk_page_free(sp_walk_data);
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
}
EXPORT_SYMBOL_GPL(mg_sp_walk_page_free);

int sp_register_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&sp_notifier_chain, nb);
}
EXPORT_SYMBOL_GPL(sp_register_notifier);

int sp_unregister_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&sp_notifier_chain, nb);
}
EXPORT_SYMBOL_GPL(sp_unregister_notifier);

3605
static bool is_sp_dynamic_dvpp_addr(unsigned long addr);
3606
/**
3607
 * mg_sp_config_dvpp_range() - User can config the share pool start address
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
 *                          of each Da-vinci device.
 * @start: the value of share pool start
 * @size: the value of share pool
 * @device_id: the num of Da-vinci device
 * @pid: the pid of device process
 *
 * Return true for success.
 * Return false if parameter invalid or has been set up.
 * This functuon has no concurrent problem.
 */
3618
bool mg_sp_config_dvpp_range(size_t start, size_t size, int device_id, int pid)
3619
{
3620 3621 3622 3623 3624 3625 3626 3627
	int ret;
	bool err = false;
	struct task_struct *tsk;
	struct mm_struct *mm;
	struct sp_group *spg;
	struct sp_mapping *spm;
	unsigned long default_start;

3628 3629 3630
	if (!sp_is_enabled())
		return false;

3631 3632
	/* NOTE: check the start address */
	if (pid < 0 || size <= 0 || size > MMAP_SHARE_POOL_16G_SIZE ||
3633
	    device_id < 0 || device_id >= MAX_DEVID || !is_online_node_id(device_id)
3634
		|| !is_sp_dynamic_dvpp_addr(start) || !is_sp_dynamic_dvpp_addr(start + size))
3635 3636
		return false;

3637 3638 3639 3640 3641 3642 3643 3644
	ret = get_task(pid, &tsk);
	if (ret)
		return false;

	mm = get_task_mm(tsk->group_leader);
	if (!mm)
		goto put_task;

3645
	spg = sp_get_local_group(tsk, mm);
3646 3647 3648
	if (IS_ERR(spg))
		goto put_mm;

3649
	spm = spg->mapping[SP_MAPPING_DVPP];
3650
	default_start = MMAP_SHARE_POOL_DVPP_START + device_id * MMAP_SHARE_POOL_16G_SIZE;
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
	/* The dvpp range of each group can be configured only once */
	if (spm->start[device_id] != default_start)
		goto put_spg;

	spm->start[device_id] = start;
	spm->end[device_id] = start + size;

	err = true;

put_spg:
	sp_group_drop(spg);
put_mm:
	mmput(mm);
put_task:
	put_task_struct(tsk);

	return err;
3668 3669 3670
}
EXPORT_SYMBOL_GPL(mg_sp_config_dvpp_range);

3671
static bool is_sp_reserve_addr(unsigned long addr)
3672
{
3673
	return addr >= MMAP_SHARE_POOL_START && addr < MMAP_SHARE_POOL_END;
3674 3675
}

3676 3677 3678 3679 3680 3681 3682
/*
 *	| 16G host | 16G device | ... |     |
 *	^
 *	|
 *	MMAP_SHARE_POOL_DVPP_BASE + 16G * 64
 *	We only check the device regions.
 */
3683
static bool is_sp_dynamic_dvpp_addr(unsigned long addr)
3684
{
3685
	if (addr < MMAP_SHARE_POOL_DYNAMIC_DVPP_BASE || addr >= MMAP_SHARE_POOL_DYNAMIC_DVPP_END)
3686 3687
		return false;

3688
	return (addr - MMAP_SHARE_POOL_DYNAMIC_DVPP_BASE) & MMAP_SHARE_POOL_16G_SIZE;
3689 3690
}

3691
/**
3692
 * mg_is_sharepool_addr() - Check if a user memory address belongs to share pool.
3693 3694 3695 3696
 * @addr: the userspace address to be checked.
 *
 * Return true if addr belongs to share pool, or false vice versa.
 */
3697
bool mg_is_sharepool_addr(unsigned long addr)
3698
{
3699
	return sp_is_enabled() &&
3700
		((is_sp_reserve_addr(addr) || is_sp_dynamic_dvpp_addr(addr)));
3701 3702 3703
}
EXPORT_SYMBOL_GPL(mg_is_sharepool_addr);

3704 3705 3706 3707 3708 3709 3710 3711
int sp_node_id(struct vm_area_struct *vma)
{
	struct sp_area *spa;
	int node_id = numa_node_id();

	if (!sp_is_enabled())
		return node_id;

3712 3713 3714
	if (vma && vma->vm_flags & VM_SHARE_POOL && vma->vm_private_data) {
		spa = vma->vm_private_data;
		node_id = spa->node_id;
3715 3716 3717 3718 3719
	}

	return node_id;
}

3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
/*** Statistical and maintenance functions ***/

static void get_mm_rss_info(struct mm_struct *mm, unsigned long *anon,
	unsigned long *file, unsigned long *shmem, unsigned long *total_rss)
{
	*anon = get_mm_counter(mm, MM_ANONPAGES);
	*file = get_mm_counter(mm, MM_FILEPAGES);
	*shmem = get_mm_counter(mm, MM_SHMEMPAGES);
	*total_rss = *anon + *file + *shmem;
}

static long get_proc_k2u(struct sp_proc_stat *stat)
{
	return byte2kb(atomic64_read(&stat->k2u_size));
}

3736
static long get_proc_alloc(struct sp_proc_stat *stat)
3737
{
3738 3739
	return byte2kb(atomic64_read(&stat->alloc_nsize) +
			atomic64_read(&stat->alloc_hsize));
3740 3741
}

G
Guo Mengqi 已提交
3742
static void get_process_sp_res(struct sp_group_master *master,
3743
		long *sp_res_out, long *sp_res_nsize_out)
3744
{
G
Guo Mengqi 已提交
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
	struct sp_group *spg;
	struct sp_group_node *spg_node;

	*sp_res_out = 0;
	*sp_res_nsize_out = 0;

	list_for_each_entry(spg_node, &master->node_list, group_node) {
		spg = spg_node->spg;
		*sp_res_out += byte2kb(atomic64_read(&spg->instat.alloc_nsize));
		*sp_res_out += byte2kb(atomic64_read(&spg->instat.alloc_hsize));
		*sp_res_nsize_out += byte2kb(atomic64_read(&spg->instat.alloc_nsize));
	}
3757 3758
}

3759
static long get_sp_res_by_spg_proc(struct sp_group_node *spg_node)
3760
{
G
Guo Mengqi 已提交
3761 3762
	return byte2kb(atomic64_read(&spg_node->spg->instat.alloc_nsize) +
			atomic64_read(&spg_node->spg->instat.alloc_hsize));
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
}

/*
 *  Statistics of RSS has a maximum 64 pages deviation (256KB).
 *  Please check_sync_rss_stat().
 */
static void get_process_non_sp_res(unsigned long total_rss, unsigned long shmem,
	long sp_res_nsize, long *non_sp_res_out, long *non_sp_shm_out)
{
	long non_sp_res, non_sp_shm;

	non_sp_res = page2kb(total_rss) - sp_res_nsize;
	non_sp_res = non_sp_res < 0 ? 0 : non_sp_res;
	non_sp_shm = page2kb(shmem) - sp_res_nsize;
	non_sp_shm = non_sp_shm < 0 ? 0 : non_sp_shm;

	*non_sp_res_out = non_sp_res;
	*non_sp_shm_out = non_sp_shm;
}

3783
static long get_spg_proc_alloc(struct sp_group_node *spg_node)
3784
{
3785 3786
	return byte2kb(atomic64_read(&spg_node->instat.alloc_nsize) +
				atomic64_read(&spg_node->instat.alloc_hsize));
3787 3788
}

3789
static long get_spg_proc_k2u(struct sp_group_node *spg_node)
3790
{
3791
	return byte2kb(atomic64_read(&spg_node->instat.k2u_size));
3792 3793 3794 3795 3796 3797 3798 3799
}

static void print_process_prot(struct seq_file *seq, unsigned long prot)
{
	if (prot == PROT_READ)
		seq_puts(seq, "R");
	else if (prot == (PROT_READ | PROT_WRITE))
		seq_puts(seq, "RW");
3800
	else
3801 3802 3803 3804 3805 3806
		seq_puts(seq, "-");
}

int proc_sp_group_state(struct seq_file *m, struct pid_namespace *ns,
			struct pid *pid, struct task_struct *task)
{
Z
Zhou Guanghui 已提交
3807
	struct mm_struct *mm;
3808 3809
	struct sp_group_master *master;
	struct sp_proc_stat *proc_stat;
3810 3811
	struct sp_group_node *spg_node;
	unsigned long anon, file, shmem, total_rss;
3812 3813
	long sp_res, sp_res_nsize, non_sp_res, non_sp_shm;

3814 3815 3816
	if (!sp_is_enabled())
		return 0;

Z
Zhou Guanghui 已提交
3817
	mm = get_task_mm(task);
3818 3819 3820
	if (!mm)
		return 0;

3821
	down_read(&sp_group_sem);
3822
	down_read(&mm->mmap_lock);
3823
	master = mm->sp_group_master;
Z
Zhou Guanghui 已提交
3824 3825
	if (!master)
		goto out;
3826 3827

	get_mm_rss_info(mm, &anon, &file, &shmem, &total_rss);
3828
	proc_stat = &master->instat;
G
Guo Mengqi 已提交
3829
	get_process_sp_res(master, &sp_res, &sp_res_nsize);
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
	get_process_non_sp_res(total_rss, shmem, sp_res_nsize,
			       &non_sp_res, &non_sp_shm);

	seq_puts(m, "Share Pool Aggregate Data of This Process\n\n");
	seq_printf(m, "%-8s %-16s %-9s %-9s %-9s %-10s %-10s %-8s\n",
		   "PID", "COMM", "SP_ALLOC", "SP_K2U", "SP_RES", "Non-SP_RES",
		   "Non-SP_Shm", "VIRT");
	seq_printf(m, "%-8d %-16s %-9ld %-9ld %-9ld %-10ld %-10ld %-8ld\n",
		   proc_stat->tgid, proc_stat->comm,
		   get_proc_alloc(proc_stat),
		   get_proc_k2u(proc_stat),
		   sp_res, non_sp_res, non_sp_shm,
		   page2kb(mm->total_vm));

	seq_puts(m, "\n\nProcess in Each SP Group\n\n");
	seq_printf(m, "%-8s %-9s %-9s %-9s %-4s\n",
3846
			"Group_ID", "SP_ALLOC", "SP_K2U", "SP_RES", "PROT");
3847

3848
	list_for_each_entry(spg_node, &master->node_list, group_node) {
3849
		seq_printf(m, "%-8d %-9ld %-9ld %-9ld ",
3850 3851 3852 3853 3854
				spg_node->spg->id,
				get_spg_proc_alloc(spg_node),
				get_spg_proc_k2u(spg_node),
				get_sp_res_by_spg_proc(spg_node));
		print_process_prot(m, spg_node->prot);
3855 3856
		seq_putc(m, '\n');
	}
Z
Zhou Guanghui 已提交
3857 3858

out:
3859
	up_read(&mm->mmap_lock);
3860
	up_read(&sp_group_sem);
Z
Zhou Guanghui 已提交
3861
	mmput(mm);
3862 3863 3864
	return 0;
}

3865
static void spa_stat_of_mapping_show(struct seq_file *seq, struct sp_mapping *spm)
3866 3867 3868 3869 3870
{
	struct rb_node *node;
	struct sp_area *spa, *prev = NULL;

	spin_lock(&sp_area_lock);
3871
	for (node = rb_first(&spm->area_root); node; node = rb_next(node)) {
3872 3873 3874 3875 3876 3877 3878
		__sp_area_drop_locked(prev);

		spa = rb_entry(node, struct sp_area, rb_node);
		prev = spa;
		atomic_inc(&spa->use_count);
		spin_unlock(&sp_area_lock);

3879 3880 3881 3882
		if (spg_valid(spa->spg))  /* k2u to group */
			seq_printf(seq, "%-10d ", spa->spg->id);
		else  /* spg is dead */
			seq_printf(seq, "%-10s ", "Dead");
3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917

		seq_printf(seq, "%2s%-14lx %2s%-14lx %-10ld ",
			   "0x", spa->va_start,
			   "0x", spa->va_end,
			   byte2kb(spa->real_size));

		switch (spa->type) {
		case SPA_TYPE_ALLOC:
			seq_printf(seq, "%-7s ", "ALLOC");
			break;
		case SPA_TYPE_K2TASK:
			seq_printf(seq, "%-7s ", "TASK");
			break;
		case SPA_TYPE_K2SPG:
			seq_printf(seq, "%-7s ", "SPG");
			break;
		default:
			/* usually impossible, perhaps a developer's mistake */
			break;
		}

		if (spa->is_hugepage)
			seq_printf(seq, "%-5s ", "Y");
		else
			seq_printf(seq, "%-5s ", "N");

		seq_printf(seq, "%-8d ",  spa->applier);
		seq_printf(seq, "%-8d\n", atomic_read(&spa->use_count));

		spin_lock(&sp_area_lock);
	}
	__sp_area_drop_locked(prev);
	spin_unlock(&sp_area_lock);
}

C
Chen Jun 已提交
3918 3919 3920 3921 3922
static void spa_ro_stat_show(struct seq_file *seq)
{
	spa_stat_of_mapping_show(seq, sp_mapping_ro);
}

3923 3924 3925 3926 3927 3928 3929
static void spa_normal_stat_show(struct seq_file *seq)
{
	spa_stat_of_mapping_show(seq, sp_mapping_normal);
}

static void spa_dvpp_stat_show(struct seq_file *seq)
{
3930 3931 3932 3933 3934 3935
	struct sp_mapping *spm;

	mutex_lock(&spm_list_lock);
	list_for_each_entry(spm, &spm_dvpp_list, spm_node)
		spa_stat_of_mapping_show(seq, spm);
	mutex_unlock(&spm_list_lock);
3936 3937 3938
}


3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
void spa_overview_show(struct seq_file *seq)
{
	unsigned int total_num, alloc_num, k2u_task_num, k2u_spg_num;
	unsigned long total_size, alloc_size, k2u_task_size, k2u_spg_size;
	unsigned long dvpp_size, dvpp_va_size;

	if (!sp_is_enabled())
		return;

	spin_lock(&sp_area_lock);
	total_num     = spa_stat.total_num;
	alloc_num     = spa_stat.alloc_num;
	k2u_task_num  = spa_stat.k2u_task_num;
	k2u_spg_num   = spa_stat.k2u_spg_num;
	total_size    = spa_stat.total_size;
	alloc_size    = spa_stat.alloc_size;
	k2u_task_size = spa_stat.k2u_task_size;
	k2u_spg_size  = spa_stat.k2u_spg_size;
	dvpp_size     = spa_stat.dvpp_size;
	dvpp_va_size  = spa_stat.dvpp_va_size;
	spin_unlock(&sp_area_lock);

	if (seq != NULL) {
		seq_printf(seq, "Spa total num %u.\n", total_num);
		seq_printf(seq, "Spa alloc num %u, k2u(task) num %u, k2u(spg) num %u.\n",
			   alloc_num, k2u_task_num, k2u_spg_num);
		seq_printf(seq, "Spa total size:     %13lu KB\n", byte2kb(total_size));
		seq_printf(seq, "Spa alloc size:     %13lu KB\n", byte2kb(alloc_size));
		seq_printf(seq, "Spa k2u(task) size: %13lu KB\n", byte2kb(k2u_task_size));
		seq_printf(seq, "Spa k2u(spg) size:  %13lu KB\n", byte2kb(k2u_spg_size));
		seq_printf(seq, "Spa dvpp size:      %13lu KB\n", byte2kb(dvpp_size));
		seq_printf(seq, "Spa dvpp va size:   %13lu MB\n", byte2mb(dvpp_va_size));
		seq_puts(seq, "\n");
	} else {
		pr_info("Spa total num %u.\n", total_num);
		pr_info("Spa alloc num %u, k2u(task) num %u, k2u(spg) num %u.\n",
			alloc_num, k2u_task_num, k2u_spg_num);
		pr_info("Spa total size:     %13lu KB\n", byte2kb(total_size));
		pr_info("Spa alloc size:     %13lu KB\n", byte2kb(alloc_size));
		pr_info("Spa k2u(task) size: %13lu KB\n", byte2kb(k2u_task_size));
		pr_info("Spa k2u(spg) size:  %13lu KB\n", byte2kb(k2u_spg_size));
		pr_info("Spa dvpp size:      %13lu KB\n", byte2kb(dvpp_size));
		pr_info("Spa dvpp va size:   %13lu MB\n", byte2mb(dvpp_va_size));
		pr_info("\n");
	}
}

3986
static int spg_info_show(int id, void *p, void *data)
3987
{
3988
	struct sp_group *spg = p;
3989 3990
	struct seq_file *seq = data;

3991
	if (id >= SPG_ID_LOCAL_MIN && id <= SPG_ID_LOCAL_MAX)
3992
		return 0;
3993

3994
	if (seq != NULL) {
G
Guo Mengqi 已提交
3995
		seq_printf(seq, "Group %6d ", id);
3996 3997

		down_read(&spg->rw_lock);
3998
		seq_printf(seq, "size: %lld KB, spa num: %d, total alloc: %lld KB, normal alloc: %lld KB, huge alloc: %lld KB\n",
3999 4000 4001 4002 4003 4004
				byte2kb(atomic64_read(&spg->instat.size)),
				atomic_read(&spg->instat.spa_num),
				byte2kb(atomic64_read(&spg->instat.alloc_size)),
				byte2kb(atomic64_read(&spg->instat.alloc_nsize)),
				byte2kb(atomic64_read(&spg->instat.alloc_hsize)));
		up_read(&spg->rw_lock);
4005
	} else {
G
Guo Mengqi 已提交
4006
		pr_info("Group %6d ", id);
4007 4008

		down_read(&spg->rw_lock);
4009
		pr_info("size: %lld KB, spa num: %d, total alloc: %lld KB, normal alloc: %lld KB, huge alloc: %lld KB\n",
4010 4011 4012 4013 4014 4015
				byte2kb(atomic64_read(&spg->instat.size)),
				atomic_read(&spg->instat.spa_num),
				byte2kb(atomic64_read(&spg->instat.alloc_size)),
				byte2kb(atomic64_read(&spg->instat.alloc_nsize)),
				byte2kb(atomic64_read(&spg->instat.alloc_hsize)));
		up_read(&spg->rw_lock);
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
	}

	return 0;
}

void spg_overview_show(struct seq_file *seq)
{
	if (!sp_is_enabled())
		return;

	if (seq != NULL) {
		seq_printf(seq, "Share pool total size: %lld KB, spa total num: %d.\n",
4028 4029
				byte2kb(atomic64_read(&sp_overall_stat.spa_total_size)),
				atomic_read(&sp_overall_stat.spa_total_num));
4030 4031
	} else {
		pr_info("Share pool total size: %lld KB, spa total num: %d.\n",
4032 4033
				byte2kb(atomic64_read(&sp_overall_stat.spa_total_size)),
				atomic_read(&sp_overall_stat.spa_total_num));
4034 4035
	}

4036 4037 4038
	down_read(&sp_group_sem);
	idr_for_each(&sp_group_idr, spg_info_show, seq);
	up_read(&sp_group_sem);
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051

	if (seq != NULL)
		seq_puts(seq, "\n");
	else
		pr_info("\n");
}

static int spa_stat_show(struct seq_file *seq, void *offset)
{
	spg_overview_show(seq);
	spa_overview_show(seq);
	/* print the file header */
	seq_printf(seq, "%-10s %-16s %-16s %-10s %-7s %-5s %-8s %-8s\n",
4052
			"Group ID", "va_start", "va_end", "Size(KB)", "Type", "Huge", "PID", "Ref");
C
Chen Jun 已提交
4053
	spa_ro_stat_show(seq);
4054 4055
	spa_normal_stat_show(seq);
	spa_dvpp_stat_show(seq);
4056 4057 4058
	return 0;
}

4059
static int proc_usage_by_group(int id, void *p, void *data)
4060
{
4061
	struct sp_group *spg = p;
4062
	struct seq_file *seq = data;
4063
	struct sp_group_node *spg_node;
4064
	struct mm_struct *mm;
4065 4066 4067
	struct sp_group_master *master;
	int tgid;
	unsigned long anon, file, shmem, total_rss;
4068

4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
	down_read(&spg->rw_lock);
	list_for_each_entry(spg_node, &spg->procs, proc_node) {

		master = spg_node->master;
		if (!master) {
			pr_info("master is NULL! process %d, group %d\n",
					spg_node->instat.tgid, id);
			continue;
		}
		mm = master->mm;
		tgid = master->instat.tgid;
4080 4081 4082 4083

		get_mm_rss_info(mm, &anon, &file, &shmem, &total_rss);

		seq_printf(seq, "%-8d ", tgid);
4084 4085
		seq_printf(seq, "%-8d ", id);
		seq_printf(seq, "%-9ld %-9ld %-9ld %-8ld %-7ld %-7ld ",
4086 4087 4088 4089
				get_spg_proc_alloc(spg_node),
				get_spg_proc_k2u(spg_node),
				get_sp_res_by_spg_proc(spg_node),
				page2kb(mm->total_vm), page2kb(total_rss),
4090
				page2kb(shmem));
4091
		print_process_prot(seq, spg_node->prot);
4092 4093
		seq_putc(seq, '\n');
	}
4094
	up_read(&spg->rw_lock);
4095
	cond_resched();
4096

4097 4098 4099
	return 0;
}

4100
static int proc_group_usage_show(struct seq_file *seq, void *offset)
4101 4102 4103
{
	spg_overview_show(seq);
	spa_overview_show(seq);
4104

4105
	/* print the file header */
4106 4107 4108
	seq_printf(seq, "%-8s %-8s %-9s %-9s %-9s %-8s %-7s %-7s %-4s\n",
			"PID", "Group_ID", "SP_ALLOC", "SP_K2U", "SP_RES",
			"VIRT", "RES", "Shm", "PROT");
4109 4110
	/* print kthread buff_module_guard_work */
	seq_printf(seq, "%-8s %-8s %-9lld %-9lld\n",
4111 4112 4113
			"guard", "-",
			byte2kb(atomic64_read(&kthread_stat.alloc_size)),
			byte2kb(atomic64_read(&kthread_stat.k2u_size)));
4114

W
Wang Wensheng 已提交
4115
	down_read(&sp_group_sem);
4116
	idr_for_each(&sp_group_idr, proc_usage_by_group, seq);
W
Wang Wensheng 已提交
4117 4118
	up_read(&sp_group_sem);

4119 4120 4121
	return 0;
}

4122
static int proc_usage_show(struct seq_file *seq, void *offset)
4123
{
4124
	struct sp_group_master *master = NULL;
4125 4126
	unsigned long anon, file, shmem, total_rss;
	long sp_res, sp_res_nsize, non_sp_res, non_sp_shm;
4127
	struct sp_proc_stat *proc_stat;
4128 4129

	seq_printf(seq, "%-8s %-16s %-9s %-9s %-9s %-10s %-10s %-8s\n",
4130 4131 4132
			"PID", "COMM", "SP_ALLOC", "SP_K2U", "SP_RES", "Non-SP_RES",
			"Non-SP_Shm", "VIRT");

4133
	down_read(&sp_group_sem);
4134 4135 4136 4137
	mutex_lock(&master_list_lock);
	list_for_each_entry(master, &master_list, list_node) {
		proc_stat = &master->instat;
		get_mm_rss_info(master->mm, &anon, &file, &shmem, &total_rss);
G
Guo Mengqi 已提交
4138
		get_process_sp_res(master, &sp_res, &sp_res_nsize);
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
		get_process_non_sp_res(total_rss, shmem, sp_res_nsize,
				&non_sp_res, &non_sp_shm);
		seq_printf(seq, "%-8d %-16s %-9ld %-9ld %-9ld %-10ld %-10ld %-8ld\n",
				proc_stat->tgid, proc_stat->comm,
				get_proc_alloc(proc_stat),
				get_proc_k2u(proc_stat),
				sp_res, non_sp_res, non_sp_shm,
				page2kb(master->mm->total_vm));
	}
	mutex_unlock(&master_list_lock);
4149
	up_read(&sp_group_sem);
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159

	return 0;
}

static void __init proc_sharepool_init(void)
{
	if (!proc_mkdir("sharepool", NULL))
		return;

	proc_create_single_data("sharepool/spa_stat", 0400, NULL, spa_stat_show, NULL);
4160 4161
	proc_create_single_data("sharepool/proc_stat", 0400, NULL, proc_group_usage_show, NULL);
	proc_create_single_data("sharepool/proc_overview", 0400, NULL, proc_usage_show, NULL);
4162 4163 4164 4165
}

/*** End of tatistical and maintenance functions ***/

4166 4167
bool sp_check_addr(unsigned long addr)
{
4168
	if (sp_is_enabled() && mg_is_sharepool_addr(addr) &&
4169
	    !check_aoscore_process(current))
4170
		return true;
4171
	else
4172 4173 4174 4175 4176
		return false;
}

bool sp_check_mmap_addr(unsigned long addr, unsigned long flags)
{
4177
	if (sp_is_enabled() && mg_is_sharepool_addr(addr) &&
4178
	    !check_aoscore_process(current) && !(flags & MAP_SHARE_POOL))
4179
		return true;
4180
	else
4181 4182 4183
		return false;
}

4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
vm_fault_t sharepool_no_page(struct mm_struct *mm,
			struct vm_area_struct *vma,
			struct address_space *mapping, pgoff_t idx,
			unsigned long address, pte_t *ptep, unsigned int flags)
{
	struct hstate *h = hstate_vma(vma);
	vm_fault_t ret = VM_FAULT_SIGBUS;
	unsigned long size;
	struct page *page;
	pte_t new_pte;
	spinlock_t *ptl;
	unsigned long haddr = address & huge_page_mask(h);
	bool new_page = false;
	int err;
	int node_id;
	struct sp_area *spa;

4201
	spa = vma->vm_private_data;
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
	if (!spa) {
		pr_err("share pool: vma is invalid, not from sp mmap\n");
		return ret;
	}
	node_id = spa->node_id;

retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
		size = i_size_read(mapping->host) >> huge_page_shift(h);
		if (idx >= size)
			goto out;

		page = alloc_huge_page(vma, haddr, 0);
		if (IS_ERR(page)) {
			page = alloc_huge_page_nodemask(hstate_file(vma->vm_file),
						    node_id, NULL, GFP_KERNEL);
			if (!page)
				page = ERR_PTR(-ENOMEM);
		}
		if (IS_ERR(page)) {
			ptl = huge_pte_lock(h, mm, ptep);
			if (!huge_pte_none(huge_ptep_get(ptep))) {
				ret = 0;
				spin_unlock(ptl);
				goto out;
			}
			spin_unlock(ptl);
			ret = vmf_error(PTR_ERR(page));
			goto out;
		}
		__SetPageUptodate(page);
		new_page = true;

		/* sharepool pages are all shared */
		err = huge_add_to_page_cache(page, mapping, idx);
		if (err) {
			put_page(page);
			if (err == -EEXIST)
				goto retry;
			goto out;
		}
	}


	ptl = huge_pte_lock(h, mm, ptep);
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	if (idx >= size)
		goto backout;

	ret = 0;
	if (!huge_pte_none(huge_ptep_get(ptep)))
		goto backout;

	page_dup_rmap(page, true);
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, haddr, ptep, new_pte);

	hugetlb_count_add(pages_per_huge_page(h), mm);

	spin_unlock(ptl);

	if (new_page) {
		SetPagePrivate(&page[1]);
	}

	unlock_page(page);
out:
	return ret;

backout:
	spin_unlock(ptl);
	unlock_page(page);
	put_page(page);
	goto out;
}

4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
#define MM_WOULD_FREE	1

/*
 * Recall we add mm->users by 1 deliberately in sp_group_add_task().
 * If the mm_users == sp_group_master->count + 1, it means that the mm is ready
 * to be freed because the last owner of this mm is in exiting procedure:
 * do_exit() -> exit_mm() -> mmput() -> sp_group_exit -> THIS function.
 */
static bool need_free_sp_group(struct mm_struct *mm,
			      struct sp_group_master *master)
{
	/* thread exits but process is still alive */
	if ((unsigned int)atomic_read(&mm->mm_users) != master->count + MM_WOULD_FREE) {
		if (atomic_dec_and_test(&mm->mm_users))
			WARN(1, "Invalid user counting\n");
		return false;
	}

	return true;
}

/*
 * Return:
 * 1	- let mmput() return immediately
 * 0	- let mmput() decrease mm_users and try __mmput()
 */
int sp_group_exit(struct mm_struct *mm)
{
	struct sp_group *spg;
	struct sp_group_master *master;
	struct sp_group_node *spg_node, *tmp;
	bool is_alive = true;

	if (!sp_is_enabled())
		return 0;

	down_write(&sp_group_sem);

	master = mm->sp_group_master;
	if (!master) {
		up_write(&sp_group_sem);
		return 0;
	}

	if (!need_free_sp_group(mm, master)) {
		up_write(&sp_group_sem);
		return 1;
	}

	list_for_each_entry_safe(spg_node, tmp, &master->node_list, group_node) {
		spg = spg_node->spg;

		down_write(&spg->rw_lock);
		/* a dead group should NOT be reactive again */
		if (spg_valid(spg) && list_is_singular(&spg->procs))
			is_alive = spg->is_alive = false;
		spg->proc_num--;
		list_del(&spg_node->proc_node);
		up_write(&spg->rw_lock);

		if (!is_alive)
			blocking_notifier_call_chain(&sp_notifier_chain, 0,
						     spg);
	}

	/* match with get_task_mm() in sp_group_add_task() */
	if (atomic_sub_and_test(master->count, &mm->mm_users)) {
		up_write(&sp_group_sem);
		WARN(1, "Invalid user counting\n");
		return 1;
	}

	up_write(&sp_group_sem);
	return 0;
}

void sp_group_post_exit(struct mm_struct *mm)
{
	struct sp_proc_stat *stat;
	long alloc_size, k2u_size;
	/* lockless visit */
	struct sp_group_master *master = mm->sp_group_master;
	struct sp_group_node *spg_node, *tmp;
	struct sp_group *spg;

	if (!sp_is_enabled() || !master)
		return;

	/*
	 * There are two basic scenarios when a process in the share pool is
	 * exiting but its share pool memory usage is not 0.
	 * 1. Process A called sp_alloc(), but it terminates without calling
	 *    sp_free(). Then its share pool memory usage is a positive number.
	 * 2. Process A never called sp_alloc(), and process B in the same spg
	 *    called sp_alloc() to get an addr u. Then A gets u somehow and
	 *    called sp_free(u). Now A's share pool memory usage is a negative
	 *    number. Notice B's memory usage will be a positive number.
	 *
	 * We decide to print an info when seeing both of the scenarios.
	 *
	 * A process not in an sp group doesn't need to print because there
	 * wont't be any memory which is not freed.
	 */
4383
	stat = &master->instat;
4384
	if (stat) {
4385
		alloc_size = atomic64_read(&stat->alloc_nsize) + atomic64_read(&stat->alloc_hsize);
4386 4387 4388 4389 4390 4391 4392 4393
		k2u_size = atomic64_read(&stat->k2u_size);

		if (alloc_size != 0 || k2u_size != 0)
			pr_info("process %s(%d) exits. It applied %ld aligned KB, k2u shared %ld aligned KB\n",
				stat->comm, stat->tgid,
				byte2kb(alloc_size), byte2kb(k2u_size));
	}

4394
	down_write(&sp_group_sem);
4395 4396 4397
	list_for_each_entry_safe(spg_node, tmp, &master->node_list, group_node) {
		spg = spg_node->spg;
		/* match with refcount inc in sp_group_add_task */
4398 4399
		if (atomic_dec_and_test(&spg->use_count))
			free_sp_group_locked(spg);
4400
		list_del(&spg_node->group_node);
4401 4402
		kfree(spg_node);
	}
4403
	up_write(&sp_group_sem);
4404

4405 4406 4407 4408
	mutex_lock(&master_list_lock);
	list_del(&master->list_node);
	mutex_unlock(&master_list_lock);

4409 4410 4411
	kfree(master);
}

4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
DEFINE_STATIC_KEY_FALSE(share_pool_enabled_key);

static int __init enable_share_pool(char *s)
{
	static_branch_enable(&share_pool_enabled_key);
	pr_info("Ascend enable share pool features via bootargs\n");

	return 1;
}
__setup("enable_ascend_share_pool", enable_share_pool);
4422 4423 4424

static int __init share_pool_init(void)
{
4425 4426 4427 4428
	if (!sp_is_enabled())
		return 0;

	sp_mapping_normal = sp_mapping_create(SP_MAPPING_NORMAL);
4429
	if (IS_ERR(sp_mapping_normal))
4430 4431 4432
		goto fail;
	atomic_inc(&sp_mapping_normal->user);

C
Chen Jun 已提交
4433 4434 4435 4436 4437
	sp_mapping_ro = sp_mapping_create(SP_MAPPING_RO);
	if (IS_ERR(sp_mapping_ro))
		goto free_normal;
	atomic_inc(&sp_mapping_ro->user);

4438
	proc_sharepool_init();
4439 4440

	return 0;
C
Chen Jun 已提交
4441 4442 4443

free_normal:
	kfree(sp_mapping_normal);
4444 4445 4446 4447 4448 4449
fail:
	pr_err("Ascend share pool initialization failed\n");
	static_branch_disable(&share_pool_enabled_key);
	return 1;
}
late_initcall(share_pool_init);