share_pool.c 111.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* SPDX-License-Identifier: GPL-2.0 */
/*
 * Huawei Ascend Share Pool Memory
 *
 * Copyright (C) 2020 Huawei Limited
 * Author: Tang Yizhou <tangyizhou@huawei.com>
 *         Zefan Li <lizefan@huawei.com>
 *         Wu Peng <wupeng58@huawei.com>
 *         Ding Tianhong <dingtgianhong@huawei.com>
 *         Zhou Guanghui <zhouguanghui1@huawei.com>
 *         Li Ming <limingming.li@huawei.com>
 *
 * This code is based on the hisilicon ascend platform.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#define pr_fmt(fmt) "share pool: " fmt

#include <linux/share_pool.h>
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
#include <linux/sched.h>
#include <linux/sched/task.h>
#include <linux/sched/mm.h>
#include <linux/mm_types.h>
#include <linux/idr.h>
#include <linux/mutex.h>
#include <linux/rwsem.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/rbtree.h>
#include <linux/shmem_fs.h>
#include <linux/file.h>
#include <linux/printk.h>
#include <linux/hugetlb.h>
#include <linux/vmalloc.h>
#include <linux/pid.h>
#include <linux/pid_namespace.h>
#include <linux/atomic.h>
#include <linux/lockdep.h>
#include <linux/kernel.h>
#include <linux/falloc.h>
#include <linux/types.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/rmap.h>
#include <linux/preempt.h>
#include <linux/swapops.h>
#include <linux/mmzone.h>
#include <linux/timekeeping.h>
#include <linux/time64.h>
52
#include <linux/pagewalk.h>
53

54 55
#define spg_valid(spg)		((spg)->is_alive == true)

56 57 58 59 60
/* Use spa va address as mmap offset. This can work because spa_file
 * is setup with 64-bit address space. So va shall be well covered.
 */
#define addr_offset(spa)	((spa)->va_start)

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
#define byte2kb(size)		((size) >> 10)
#define byte2mb(size)		((size) >> 20)
#define page2kb(page_num)	((page_num) << (PAGE_SHIFT - 10))

#define MAX_GROUP_FOR_SYSTEM	50000
#define MAX_GROUP_FOR_TASK	3000
#define MAX_PROC_PER_GROUP	1024

#define GROUP_NONE		0

#define SEC2US(sec)		((sec) * 1000000)
#define NS2US(ns)		((ns) / 1000)

#define PF_DOMAIN_CORE		0x10000000	/* AOS CORE processes in sched.h */

76 77
static int system_group_count;

78 79 80 81 82
/* idr of all sp_groups */
static DEFINE_IDR(sp_group_idr);
/* rw semaphore for sp_group_idr and mm->sp_group_master */
static DECLARE_RWSEM(sp_group_sem);

83 84
static BLOCKING_NOTIFIER_HEAD(sp_notifier_chain);

85 86 87 88
static DEFINE_IDA(sp_group_id_ida);

/*** Statistical and maintenance tools ***/

89 90 91 92
/* list of all sp_group_masters */
static LIST_HEAD(master_list);
/* mutex to protect insert/delete ops from master_list */
static DEFINE_MUTEX(master_list_lock);
93

94 95 96 97 98
/* list of all spm-dvpp */
static LIST_HEAD(spm_dvpp_list);
/* mutex to protect insert/delete ops from master_list */
static DEFINE_MUTEX(spm_list_lock);

99 100 101
/* for kthread buff_module_guard_work */
static struct sp_proc_stat kthread_stat;

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
#ifndef __GENKSYMS__
struct sp_spg_stat {
	int spg_id;
	/* record the number of hugepage allocation failures */
	atomic_t hugepage_failures;
	/* number of sp_area */
	atomic_t	 spa_num;
	/* total size of all sp_area from sp_alloc and k2u */
	atomic64_t	 size;
	/* total size of all sp_area from sp_alloc 0-order page */
	atomic64_t	 alloc_nsize;
	/* total size of all sp_area from sp_alloc hugepage */
	atomic64_t	 alloc_hsize;
	/* total size of all sp_area from ap_alloc */
	atomic64_t	 alloc_size;
	/* total size of all sp_area from sp_k2u */
	atomic64_t	 k2u_size;
};

/* per process memory usage statistics indexed by tgid */
struct sp_proc_stat {
	int tgid;
	struct mm_struct *mm;
	char comm[TASK_COMM_LEN];
	/*
	 * alloc amount minus free amount, may be negative when freed by
	 * another task in the same sp group.
	 */
	atomic64_t alloc_size;
	atomic64_t alloc_nsize;
	atomic64_t alloc_hsize;
	atomic64_t k2u_size;
};

/* per process/sp-group memory usage statistics */
struct spg_proc_stat {
	int tgid;
	int spg_id;  /* 0 for non-group data, such as k2u_task */
	/*
	 * alloc amount minus free amount, may be negative when freed by
	 * another task in the same sp group.
	 */
	atomic64_t alloc_size;
	atomic64_t alloc_nsize;
	atomic64_t alloc_hsize;
	atomic64_t k2u_size;
};

/*
 * address space management
 */
struct sp_mapping {
	unsigned long flag;
	atomic_t user;
	unsigned long start[MAX_DEVID];
	unsigned long end[MAX_DEVID];
	struct rb_root area_root;

	struct rb_node *free_area_cache;
	unsigned long cached_hole_size;
	unsigned long cached_vstart;

	/* list head for all groups attached to this mapping, dvpp mapping only */
	struct list_head group_head;
166
	struct list_head spm_node;
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
};

/* Processes in the same sp_group can share memory.
 * Memory layout for share pool:
 *
 * |-------------------- 8T -------------------|---|------ 8T ------------|
 * |		Device 0	   |  Device 1 |...|                      |
 * |----------------------------------------------------------------------|
 * |------------- 16G -------------|    16G    |   |                      |
 * | DVPP GROUP0   | DVPP GROUP1   | ... | ... |...|  sp normal memory    |
 * |     sp        |    sp         |     |     |   |                      |
 * |----------------------------------------------------------------------|
 *
 * The host SVM feature reserves 8T virtual memory by mmap, and due to the
 * restriction of DVPP, while SVM and share pool will both allocate memory
 * for DVPP, the memory have to be in the same 32G range.
 *
 * Share pool reserves 16T memory, with 8T for normal uses and 8T for DVPP.
 * Within this 8T DVPP memory, SVM will call sp_config_dvpp_range() to
 * tell us which 16G memory range is reserved for share pool .
 *
 * In some scenarios where there is no host SVM feature, share pool uses
 * the default 8G memory setting for DVPP.
 */
struct sp_group {
	int		 id;
	unsigned long	 flag;
	struct file	 *file;
	struct file	 *file_hugetlb;
	/* number of process in this group */
	int		 proc_num;
	/* list head of processes (sp_group_node, each represents a process) */
	struct list_head procs;
	/* list head of sp_area. it is protected by spin_lock sp_area_lock */
	struct list_head spa_list;
	/* group statistics */
	struct sp_spg_stat instat;
	/* is_alive == false means it's being destroyed */
	bool		 is_alive;
	atomic_t	 use_count;
	/* protect the group internal elements, except spa_list */
	struct rw_semaphore	rw_lock;
	/* list node for dvpp mapping */
	struct list_head	mnode;
	struct sp_mapping	*dvpp;
	struct sp_mapping	*normal;
};

/* a per-process(per mm) struct which manages a sp_group_node list */
struct sp_group_master {
	/*
	 * number of sp groups the process belongs to,
	 * a.k.a the number of sp_node in node_list
	 */
	unsigned int count;
	/* list head of sp_node */
	struct list_head node_list;
	struct mm_struct *mm;
	/*
	 * Used to apply for the shared pool memory of the current process.
	 * For example, sp_alloc non-share memory or k2task.
	 */
	struct sp_group *local;
	struct sp_proc_stat instat;
	struct list_head list_node;
};

/*
 * each instance represents an sp group the process belongs to
 * sp_group_master    : sp_group_node   = 1 : N
 * sp_group_node->spg : sp_group        = 1 : 1
 * sp_group_node      : sp_group->procs = N : 1
 */
struct sp_group_node {
	/* list node in sp_group->procs */
	struct list_head proc_node;
	/* list node in sp_group_maseter->node_list */
	struct list_head group_node;
	struct sp_group_master *master;
	struct sp_group *spg;
	unsigned long prot;
	struct spg_proc_stat instat;
};
#endif

/* The caller should hold mmap_sem to protect master (TBD) */
G
Guo Mengqi 已提交
253 254
static void sp_init_group_master_stat(int tgid, struct mm_struct *mm,
		struct sp_proc_stat *stat)
255 256 257 258 259
{
	atomic64_set(&stat->alloc_nsize, 0);
	atomic64_set(&stat->alloc_hsize, 0);
	atomic64_set(&stat->k2u_size, 0);
	stat->mm = mm;
G
Guo Mengqi 已提交
260
	stat->tgid = tgid;
261 262 263
	get_task_comm(stat->comm, current);
}

264 265 266 267
#define SP_MAPPING_DVPP		0x1
#define SP_MAPPING_NORMAL	0x2
static struct sp_mapping *sp_mapping_normal;

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
static void sp_mapping_add_to_list(struct sp_mapping *spm)
{
	mutex_lock(&spm_list_lock);
	if (spm->flag & SP_MAPPING_DVPP)
		list_add_tail(&spm->spm_node, &spm_dvpp_list);
	mutex_unlock(&spm_list_lock);
}

static void sp_mapping_remove_from_list(struct sp_mapping *spm)
{
	mutex_lock(&spm_list_lock);
	if (spm->flag & SP_MAPPING_DVPP)
		list_del(&spm->spm_node);
	mutex_unlock(&spm_list_lock);
}

284 285 286 287 288 289
static void sp_mapping_range_init(struct sp_mapping *spm)
{
	int i;

	for (i = 0; i < MAX_DEVID; i++) {
		if (spm->flag & SP_MAPPING_NORMAL) {
290 291
			spm->start[i] = MMAP_SHARE_POOL_NORMAL_START;
			spm->end[i] = MMAP_SHARE_POOL_NORMAL_END;
292 293 294
			continue;
		}

295
		spm->start[i] = MMAP_SHARE_POOL_DVPP_START +
296 297
			i * MMAP_SHARE_POOL_16G_SIZE;
		spm->end[i] = spm->start[i] + MMAP_SHARE_POOL_16G_SIZE;
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	}
}

static struct sp_mapping *sp_mapping_create(unsigned long flag)
{
	struct sp_mapping *spm;

	spm = kzalloc(sizeof(struct sp_mapping), GFP_KERNEL);
	if (!spm)
		return ERR_PTR(-ENOMEM);

	spm->flag = flag;
	sp_mapping_range_init(spm);
	atomic_set(&spm->user, 0);
	spm->area_root = RB_ROOT;
313
	INIT_LIST_HEAD(&spm->group_head);
314
	sp_mapping_add_to_list(spm);
315 316 317 318

	return spm;
}

319 320
static void sp_mapping_destroy(struct sp_mapping *spm)
{
321
	sp_mapping_remove_from_list(spm);
322 323 324 325 326 327
	kfree(spm);
}

static void sp_mapping_attach(struct sp_group *spg, struct sp_mapping *spm)
{
	atomic_inc(&spm->user);
328
	if (spm->flag & SP_MAPPING_DVPP) {
329
		spg->dvpp = spm;
330 331
		list_add_tail(&spg->mnode, &spm->group_head);
	} else if (spm->flag & SP_MAPPING_NORMAL)
332 333 334 335 336
		spg->normal = spm;
}

static void sp_mapping_detach(struct sp_group *spg, struct sp_mapping *spm)
{
337 338 339 340 341
	if (!spm)
		return;
	if (spm->flag & SP_MAPPING_DVPP)
		list_del(&spg->mnode);
	if (atomic_dec_and_test(&spm->user))
342 343 344
		sp_mapping_destroy(spm);
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
/* merge old mapping to new, and the old mapping would be destroyed */
static void sp_mapping_merge(struct sp_mapping *new, struct sp_mapping *old)
{
	struct sp_group *spg, *tmp;

	if (new == old)
		return;

	list_for_each_entry_safe(spg, tmp, &old->group_head, mnode) {
		list_move_tail(&spg->mnode, &new->group_head);
		spg->dvpp = new;
	}

	atomic_add(atomic_read(&old->user), &new->user);
	sp_mapping_destroy(old);
}

static bool is_mapping_empty(struct sp_mapping *spm)
{
	return RB_EMPTY_ROOT(&spm->area_root);
}

367 368 369 370
static bool can_mappings_merge(struct sp_mapping *m1, struct sp_mapping *m2)
{
	int i;

371
	for (i = 0; i < MAX_DEVID; i++)
372 373 374 375 376 377
		if (m1->start[i] != m2->start[i] || m1->end[i] != m2->end[i])
			return false;

	return true;
}

378
/*
379 380 381 382 383
 * 1. The mappings of local group is set on creating.
 * 2. This is used to setup the mapping for groups created during add_task.
 * 3. The normal mapping exists for all groups.
 * 4. The dvpp mappings for the new group and local group can merge _iff_ at
 *    least one of the mapping is empty.
384
 * the caller must hold sp_group_sem
385
 * NOTE: undo the mergeing when the later process failed.
386 387 388 389 390 391
 */
static int sp_mapping_group_setup(struct mm_struct *mm, struct sp_group *spg)
{
	struct sp_group_master *master = mm->sp_group_master;
	struct sp_group *local = master->local;

392
	if (!list_empty(&spg->procs) && !(spg->flag & SPG_FLAG_NON_DVPP)) {
393 394 395 396 397 398 399 400 401
		/*
		 * Don't return an error when the mappings' address range conflict.
		 * As long as the mapping is unused, we can drop the empty mapping.
		 * This may change the address range for the task or group implicitly,
		 * give a warn for it.
		 */
		bool is_conflict = !can_mappings_merge(local->dvpp, spg->dvpp);

		if (is_mapping_empty(local->dvpp)) {
402
			sp_mapping_merge(spg->dvpp, local->dvpp);
403 404 405
			if (is_conflict)
				pr_warn_ratelimited("task address space conflict, spg_id=%d\n", spg->id);
		} else if (is_mapping_empty(spg->dvpp)) {
406
			sp_mapping_merge(local->dvpp, spg->dvpp);
407 408 409
			if (is_conflict)
				pr_warn_ratelimited("group address space conflict, spg_id=%d\n", spg->id);
		} else {
410 411
			pr_info_ratelimited("Duplicate address space, id=%d\n", spg->id);
			return -EINVAL;
412 413
		}
	} else {
414 415 416 417 418
		if (!(spg->flag & SPG_FLAG_NON_DVPP))
			/* the mapping of local group is always set */
			sp_mapping_attach(spg, local->dvpp);
		if (!spg->normal)
			sp_mapping_attach(spg, sp_mapping_normal);
419 420 421 422 423
	}

	return 0;
}

424
static struct sp_group *create_spg(int spg_id, unsigned long flag);
425
static void free_new_spg_id(bool new, int spg_id);
426 427 428
static void free_sp_group_locked(struct sp_group *spg);
static int local_group_add_task(struct mm_struct *mm, struct sp_group *spg);
static int init_local_group(struct mm_struct *mm)
429
{
430
	int spg_id, ret;
431
	struct sp_group *spg;
432
	struct sp_mapping *spm;
433 434
	struct sp_group_master *master = mm->sp_group_master;

435 436 437 438
	spg_id = ida_alloc_range(&sp_group_id_ida, SPG_ID_LOCAL_MIN,
				 SPG_ID_LOCAL_MAX, GFP_ATOMIC);
	if (spg_id < 0) {
		pr_err_ratelimited("generate local group id failed %d\n", spg_id);
439
		return spg_id;
440 441
	}

442
	spg = create_spg(spg_id, 0);
443
	if (IS_ERR(spg)) {
444 445
		ret = PTR_ERR(spg);
		goto free_spg_id;
446 447 448
	}

	master->local = spg;
449 450 451 452 453 454 455
	spm = sp_mapping_create(SP_MAPPING_DVPP);
	if (IS_ERR(spm)) {
		ret = PTR_ERR(spm);
		goto free_spg;
	}
	sp_mapping_attach(master->local, spm);
	sp_mapping_attach(master->local, sp_mapping_normal);
456

457 458
	ret = local_group_add_task(mm, spg);
	if (ret < 0)
459
		/* The spm would be released while destroying the spg*/
460 461
		goto free_spg;

462
	return 0;
463 464 465

free_spg:
	free_sp_group_locked(spg);
466
	master->local = NULL;
467 468
free_spg_id:
	free_new_spg_id(true, spg_id);
469

470
	return ret;
471 472
}

473 474
/* The caller must hold sp_group_sem */
static int sp_init_group_master_locked(struct task_struct *tsk, struct mm_struct *mm)
475
{
476
	int ret;
477 478
	struct sp_group_master *master;

479
	if (mm->sp_group_master)
480 481
		return 0;

482 483 484 485 486 487 488
	master = kmalloc(sizeof(struct sp_group_master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

	INIT_LIST_HEAD(&master->node_list);
	master->count = 0;
	master->mm = mm;
G
Guo Mengqi 已提交
489
	sp_init_group_master_stat(tsk->tgid, mm, &master->instat);
490 491
	mm->sp_group_master = master;

492 493 494
	mutex_lock(&master_list_lock);
	list_add_tail(&master->list_node, &master_list);
	mutex_unlock(&master_list_lock);
495 496 497

	ret = init_local_group(mm);
	if (ret)
498
		goto free_master;
499 500

	return 0;
501 502

free_master:
503
	mutex_lock(&master_list_lock);
504
	list_del(&master->list_node);
505
	mutex_unlock(&master_list_lock);
506 507 508 509 510 511 512 513 514
	mm->sp_group_master = NULL;
	kfree(master);

	return ret;
}

static inline bool is_local_group(int spg_id)
{
	return spg_id >= SPG_ID_LOCAL_MIN && spg_id <= SPG_ID_LOCAL_MAX;
515 516
}

517
static struct sp_group *sp_get_local_group(struct task_struct *tsk, struct mm_struct *mm)
518 519 520 521 522 523 524 525 526 527 528 529 530 531
{
	int ret;
	struct sp_group_master *master;

	down_read(&sp_group_sem);
	master = mm->sp_group_master;
	if (master && master->local) {
		atomic_inc(&master->local->use_count);
		up_read(&sp_group_sem);
		return master->local;
	}
	up_read(&sp_group_sem);

	down_write(&sp_group_sem);
532
	ret = sp_init_group_master_locked(tsk, mm);
533 534 535 536 537 538 539 540 541 542 543
	if (ret) {
		up_write(&sp_group_sem);
		return ERR_PTR(ret);
	}
	master = mm->sp_group_master;
	atomic_inc(&master->local->use_count);
	up_write(&sp_group_sem);

	return master->local;
}

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
static void update_spg_stat_alloc(unsigned long size, bool inc,
	bool huge, struct sp_spg_stat *stat)
{
	if (inc) {
		atomic_inc(&stat->spa_num);
		atomic64_add(size, &stat->size);
		atomic64_add(size, &stat->alloc_size);
		if (huge)
			atomic64_add(size, &stat->alloc_hsize);
		else
			atomic64_add(size, &stat->alloc_nsize);
	} else {
		atomic_dec(&stat->spa_num);
		atomic64_sub(size, &stat->size);
		atomic64_sub(size, &stat->alloc_size);
		if (huge)
			atomic64_sub(size, &stat->alloc_hsize);
		else
			atomic64_sub(size, &stat->alloc_nsize);
	}
}

static void update_spg_stat_k2u(unsigned long size, bool inc,
	struct sp_spg_stat *stat)
{
	if (inc) {
		atomic_inc(&stat->spa_num);
		atomic64_add(size, &stat->size);
		atomic64_add(size, &stat->k2u_size);
	} else {
		atomic_dec(&stat->spa_num);
		atomic64_sub(size, &stat->size);
		atomic64_sub(size, &stat->k2u_size);
	}
}

580 581
static void update_mem_usage_alloc(unsigned long size, bool inc,
		bool is_hugepage, struct sp_group_node *spg_node)
582
{
583
	struct sp_proc_stat *proc_stat = &spg_node->master->instat;
584 585

	if (inc) {
586 587 588 589 590 591 592 593
		if (is_hugepage) {
			atomic64_add(size, &spg_node->instat.alloc_hsize);
			atomic64_add(size, &proc_stat->alloc_hsize);
			return;
		}
		atomic64_add(size, &spg_node->instat.alloc_nsize);
		atomic64_add(size, &proc_stat->alloc_nsize);
		return;
594
	}
595 596 597 598 599 600 601 602 603

	if (is_hugepage) {
		atomic64_sub(size, &spg_node->instat.alloc_hsize);
		atomic64_sub(size, &proc_stat->alloc_hsize);
		return;
	}
	atomic64_sub(size, &spg_node->instat.alloc_nsize);
	atomic64_sub(size, &proc_stat->alloc_nsize);
	return;
604 605
}

606 607
static void update_mem_usage_k2u(unsigned long size, bool inc,
		struct sp_group_node *spg_node)
608
{
609
	struct sp_proc_stat *proc_stat = &spg_node->master->instat;
610 611

	if (inc) {
612
		atomic64_add(size, &spg_node->instat.k2u_size);
613 614
		atomic64_add(size, &proc_stat->k2u_size);
	} else {
615
		atomic64_sub(size, &spg_node->instat.k2u_size);
616 617 618 619
		atomic64_sub(size, &proc_stat->k2u_size);
	}
}

620
static void sp_init_spg_proc_stat(struct spg_proc_stat *stat, int spg_id)
621
{
622
	stat->tgid = current->tgid;
623
	stat->spg_id = spg_id;
624 625
	atomic64_set(&stat->alloc_nsize, 0);
	atomic64_set(&stat->alloc_hsize, 0);
626 627 628
	atomic64_set(&stat->k2u_size, 0);
}

629
static void sp_init_group_stat(struct sp_spg_stat *stat)
630 631 632 633 634 635 636
{
	atomic_set(&stat->hugepage_failures, 0);
	atomic_set(&stat->spa_num, 0);
	atomic64_set(&stat->size, 0);
	atomic64_set(&stat->alloc_nsize, 0);
	atomic64_set(&stat->alloc_hsize, 0);
	atomic64_set(&stat->alloc_size, 0);
637
	atomic64_set(&stat->k2u_size, 0);
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
}

/* statistics of all sp area, protected by sp_area_lock */
struct sp_spa_stat {
	unsigned int total_num;
	unsigned int alloc_num;
	unsigned int k2u_task_num;
	unsigned int k2u_spg_num;
	unsigned long total_size;
	unsigned long alloc_size;
	unsigned long k2u_task_size;
	unsigned long k2u_spg_size;
	unsigned long dvpp_size;
	unsigned long dvpp_va_size;
};

static struct sp_spa_stat spa_stat;

/* statistics of all sp group born from sp_alloc and k2u(spg) */
struct sp_overall_stat {
	atomic_t spa_total_num;
	atomic64_t spa_total_size;
};

static struct sp_overall_stat sp_overall_stat;

/*** Global share pool VA allocator ***/

enum spa_type {
	SPA_TYPE_ALLOC = 1,
668 669
	/* NOTE: reorganize after the statisical structure is reconstructed. */
	SPA_TYPE_ALLOC_PRIVATE = SPA_TYPE_ALLOC,
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
	SPA_TYPE_K2TASK,
	SPA_TYPE_K2SPG,
};

/*
 * We bump the reference when each mmap succeeds, and it will be dropped
 * when vma is about to release, so sp_area object will be automatically
 * freed when all tasks in the sp group has exited.
 */
struct sp_area {
	unsigned long va_start;
	unsigned long va_end;		/* va_end always align to hugepage */
	unsigned long real_size;	/* real size with alignment */
	unsigned long region_vstart;	/* belong to normal region or DVPP region */
	unsigned long flags;
	bool is_hugepage;
	bool is_dead;
	atomic_t use_count;		/* How many vmas use this VA region */
	struct rb_node rb_node;		/* address sorted rbtree */
	struct list_head link;		/* link to the spg->head */
	struct sp_group *spg;
	enum spa_type type;		/* where spa born from */
	struct mm_struct *mm;		/* owner of k2u(task) */
	unsigned long kva;		/* shared kva */
	pid_t applier;			/* the original applier process */
	int node_id;			/* memory node */
	int device_id;
};
static DEFINE_SPINLOCK(sp_area_lock);

static unsigned long spa_size(struct sp_area *spa)
{
	return spa->real_size;
}

static struct file *spa_file(struct sp_area *spa)
{
	if (spa->is_hugepage)
		return spa->spg->file_hugetlb;
	else
		return spa->spg->file;
}

713 714
/* the caller should hold sp_area_lock */
static void spa_inc_usage(struct sp_area *spa)
715
{
716 717 718 719 720 721 722 723 724
	enum spa_type type = spa->type;
	unsigned long size = spa->real_size;
	bool is_dvpp = spa->flags & SP_DVPP;
	bool is_huge = spa->is_hugepage;

	switch (type) {
	case SPA_TYPE_ALLOC:
		spa_stat.alloc_num += 1;
		spa_stat.alloc_size += size;
725
		update_spg_stat_alloc(size, true, is_huge, &spa->spg->instat);
726 727 728 729
		break;
	case SPA_TYPE_K2TASK:
		spa_stat.k2u_task_num += 1;
		spa_stat.k2u_task_size += size;
730
		update_spg_stat_k2u(size, true, &spa->spg->instat);
731 732 733 734
		break;
	case SPA_TYPE_K2SPG:
		spa_stat.k2u_spg_num += 1;
		spa_stat.k2u_spg_size += size;
735
		update_spg_stat_k2u(size, true, &spa->spg->instat);
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
		break;
	default:
		WARN(1, "invalid spa type");
	}

	if (is_dvpp) {
		spa_stat.dvpp_size += size;
		spa_stat.dvpp_va_size += ALIGN(size, PMD_SIZE);
	}

	/*
	 * all the calculations won't overflow due to system limitation and
	 * parameter checking in sp_alloc_area()
	 */
	spa_stat.total_num += 1;
	spa_stat.total_size += size;

753
	if (!is_local_group(spa->spg->id)) {
754 755 756
		atomic_inc(&sp_overall_stat.spa_total_num);
		atomic64_add(size, &sp_overall_stat.spa_total_size);
	}
757 758
}

759 760
/* the caller should hold sp_area_lock */
static void spa_dec_usage(struct sp_area *spa)
761
{
762 763 764 765 766 767 768 769 770
	enum spa_type type = spa->type;
	unsigned long size = spa->real_size;
	bool is_dvpp = spa->flags & SP_DVPP;
	bool is_huge = spa->is_hugepage;

	switch (type) {
	case SPA_TYPE_ALLOC:
		spa_stat.alloc_num -= 1;
		spa_stat.alloc_size -= size;
771
		update_spg_stat_alloc(size, false, is_huge, &spa->spg->instat);
772 773 774 775
		break;
	case SPA_TYPE_K2TASK:
		spa_stat.k2u_task_num -= 1;
		spa_stat.k2u_task_size -= size;
776
		update_spg_stat_k2u(size, false, &spa->spg->instat);
777 778 779 780
		break;
	case SPA_TYPE_K2SPG:
		spa_stat.k2u_spg_num -= 1;
		spa_stat.k2u_spg_size -= size;
781
		update_spg_stat_k2u(size, false, &spa->spg->instat);
782 783 784 785 786 787 788 789 790 791 792 793 794
		break;
	default:
		WARN(1, "invalid spa type");
	}

	if (is_dvpp) {
		spa_stat.dvpp_size -= size;
		spa_stat.dvpp_va_size -= ALIGN(size, PMD_SIZE);
	}

	spa_stat.total_num -= 1;
	spa_stat.total_size -= size;

795
	if (!is_local_group(spa->spg->id)) {
796 797 798
		atomic_dec(&sp_overall_stat.spa_total_num);
		atomic64_sub(spa->real_size, &sp_overall_stat.spa_total_size);
	}
799 800
}

801 802
static void update_mem_usage(unsigned long size, bool inc, bool is_hugepage,
	struct sp_group_node *spg_node, enum spa_type type)
803
{
804 805
	switch (type) {
	case SPA_TYPE_ALLOC:
806
		update_mem_usage_alloc(size, inc, is_hugepage, spg_node);
807 808 809
		break;
	case SPA_TYPE_K2TASK:
	case SPA_TYPE_K2SPG:
810
		update_mem_usage_k2u(size, inc, spg_node);
811 812 813 814
		break;
	default:
		WARN(1, "invalid stat type\n");
	}
815 816
}

817 818 819 820 821 822 823 824 825 826 827 828
struct sp_group_node *find_spg_node_by_spg(struct mm_struct *mm,
		struct sp_group *spg)
{
	struct sp_group_node *spg_node;

	list_for_each_entry(spg_node, &mm->sp_group_master->node_list, group_node) {
		if (spg_node->spg == spg)
			return spg_node;
	}
	return NULL;
}

829 830
static void sp_update_process_stat(struct task_struct *tsk, bool inc,
	struct sp_area *spa)
831
{
832
	struct sp_group_node *spg_node;
833 834
	unsigned long size = spa->real_size;
	enum spa_type type = spa->type;
835

836
	spg_node = find_spg_node_by_spg(tsk->mm, spa->spg);
G
Guo Mengqi 已提交
837
	update_mem_usage(size, inc, spa->is_hugepage, spg_node, type);
838 839 840 841 842 843
}

static inline void check_interrupt_context(void)
{
	if (unlikely(in_interrupt()))
		panic("function can't be used in interrupt context\n");
844 845
}

846 847 848 849 850 851 852 853
static inline bool check_aoscore_process(struct task_struct *tsk)
{
	if (tsk->flags & PF_DOMAIN_CORE)
		return true;
	else
		return false;
}

854 855
static unsigned long sp_mmap(struct mm_struct *mm, struct file *file,
			     struct sp_area *spa, unsigned long *populate,
856
			     unsigned long prot, struct vm_area_struct **pvma);
857
static void sp_munmap(struct mm_struct *mm, unsigned long addr, unsigned long size);
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872

#define K2U_NORMAL	0
#define K2U_COREDUMP	1

struct sp_k2u_context {
	unsigned long kva;
	unsigned long kva_aligned;
	unsigned long size;
	unsigned long size_aligned;
	unsigned long sp_flags;
	int state;
	int spg_id;
	bool to_task;
};

873
static unsigned long sp_remap_kva_to_vma(unsigned long kva, struct sp_area *spa,
874
				struct mm_struct *mm, unsigned long prot, struct sp_k2u_context *kc);
875

876 877 878
static void free_sp_group_id(int spg_id)
{
	/* ida operation is protected by an internal spin_lock */
879 880
	if ((spg_id >= SPG_ID_AUTO_MIN && spg_id <= SPG_ID_AUTO_MAX) ||
	    (spg_id >= SPG_ID_LOCAL_MIN && spg_id <= SPG_ID_LOCAL_MAX))
881 882 883
		ida_free(&sp_group_id_ida, spg_id);
}

884 885 886 887 888 889
static void free_new_spg_id(bool new, int spg_id)
{
	if (new)
		free_sp_group_id(spg_id);
}

890
static void free_sp_group_locked(struct sp_group *spg)
891 892 893 894 895
{
	fput(spg->file);
	fput(spg->file_hugetlb);
	idr_remove(&sp_group_idr, spg->id);
	free_sp_group_id((unsigned int)spg->id);
896 897 898 899
	sp_mapping_detach(spg, spg->dvpp);
	sp_mapping_detach(spg, spg->normal);
	if (!is_local_group(spg->id))
		system_group_count--;
900 901 902 903
	kfree(spg);
	WARN(system_group_count < 0, "unexpected group count\n");
}

904 905 906 907 908 909 910
static void free_sp_group(struct sp_group *spg)
{
	down_write(&sp_group_sem);
	free_sp_group_locked(spg);
	up_write(&sp_group_sem);
}

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
static void sp_group_drop(struct sp_group *spg)
{
	if (atomic_dec_and_test(&spg->use_count))
		free_sp_group(spg);
}

/* use with put_task_struct(task) */
static int get_task(int pid, struct task_struct **task)
{
	struct task_struct *tsk;

	rcu_read_lock();
	tsk = find_task_by_vpid(pid);
	if (!tsk || (tsk->flags & PF_EXITING)) {
		rcu_read_unlock();
		return -ESRCH;
	}
	get_task_struct(tsk);
	rcu_read_unlock();

	*task = tsk;
	return 0;
}

/*
 * the caller must:
 * 1. hold spg->rw_lock
 * 2. ensure no concurrency problem for mm_struct
 */
940
static bool is_process_in_group(struct sp_group *spg,
941 942 943 944 945 946
						 struct mm_struct *mm)
{
	struct sp_group_node *spg_node;

	list_for_each_entry(spg_node, &spg->procs, proc_node)
		if (spg_node->master->mm == mm)
947
			return true;
948

949
	return false;
950 951 952 953 954 955 956 957 958 959
}

/* user must call sp_group_drop() after use */
static struct sp_group *__sp_find_spg_locked(int pid, int spg_id)
{
	struct sp_group *spg = NULL;
	struct task_struct *tsk = NULL;
	int ret = 0;

	if (spg_id == SPG_ID_DEFAULT) {
960 961 962 963
		ret = get_task(pid, &tsk);
		if (ret)
			return NULL;

964 965 966
		task_lock(tsk);
		if (tsk->mm == NULL)
			spg = NULL;
967 968
		else if (tsk->mm->sp_group_master)
			spg = tsk->mm->sp_group_master->local;
969
		task_unlock(tsk);
970 971

		put_task_struct(tsk);
972 973 974 975
	} else {
		spg = idr_find(&sp_group_idr, spg_id);
	}

976 977
	if (!spg || !atomic_inc_not_zero(&spg->use_count))
		return NULL;
978

979
	return spg;
980 981 982 983 984 985 986 987 988 989 990 991
}

static struct sp_group *__sp_find_spg(int pid, int spg_id)
{
	struct sp_group *spg;

	down_read(&sp_group_sem);
	spg = __sp_find_spg_locked(pid, spg_id);
	up_read(&sp_group_sem);
	return spg;
}

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/**
 * mp_sp_group_id_by_pid() - Get the sp_group ID array of a process.
 * @pid: pid of target process.
 * @spg_ids: point to an array to save the group ids the process belongs to
 * @num: input the spg_ids array size; output the spg number of the process
 *
 * Return:
 * >0		- the sp_group ID.
 * -ENODEV	- target process doesn't belong to any sp_group.
 * -EINVAL	- spg_ids or num is NULL.
 * -E2BIG	- the num of groups process belongs to is larger than *num
 */
int mg_sp_group_id_by_pid(int pid, int *spg_ids, int *num)
{
1006
	int ret = 0, real_count;
1007 1008 1009 1010
	struct sp_group_node *node;
	struct sp_group_master *master = NULL;
	struct task_struct *tsk;

1011 1012 1013
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

1014 1015
	check_interrupt_context();

1016
	if (!spg_ids || !num || *num <= 0)
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
		return -EINVAL;

	ret = get_task(pid, &tsk);
	if (ret)
		return ret;

	down_read(&sp_group_sem);
	task_lock(tsk);
	if (tsk->mm)
		master = tsk->mm->sp_group_master;
	task_unlock(tsk);

	if (!master) {
		ret = -ENODEV;
		goto out_up_read;
	}

1034 1035 1036 1037 1038 1039 1040 1041
	/*
	 * There is a local group for each process which is used for
	 * passthrough allocation. The local group is a internal
	 * implementation for convenience and is not attempt to bother
	 * the user.
	 */
	real_count = master->count - 1;
	if (real_count <= 0) {
1042 1043 1044
		ret = -ENODEV;
		goto out_up_read;
	}
1045
	if ((unsigned int)*num < real_count) {
1046 1047 1048
		ret = -E2BIG;
		goto out_up_read;
	}
1049
	*num = real_count;
1050

1051 1052 1053
	list_for_each_entry(node, &master->node_list, group_node) {
		if (is_local_group(node->spg->id))
			continue;
1054
		*(spg_ids++) = node->spg->id;
1055
	}
1056 1057 1058 1059 1060

out_up_read:
	up_read(&sp_group_sem);
	put_task_struct(tsk);
	return ret;
1061 1062 1063
}
EXPORT_SYMBOL_GPL(mg_sp_group_id_by_pid);

1064 1065 1066 1067 1068
static bool is_online_node_id(int node_id)
{
	return node_id >= 0 && node_id < MAX_NUMNODES && node_online(node_id);
}

1069
static struct sp_group *create_spg(int spg_id, unsigned long flag)
1070
{
1071 1072 1073 1074 1075 1076
	int ret;
	struct sp_group *spg;
	char name[20];
	struct user_struct *user = NULL;
	int hsize_log = MAP_HUGE_2MB >> MAP_HUGE_SHIFT;

1077 1078
	if (unlikely(system_group_count + 1 == MAX_GROUP_FOR_SYSTEM &&
		     !is_local_group(spg_id))) {
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
		pr_err_ratelimited("reach system max group num\n");
		return ERR_PTR(-ENOSPC);
	}

	spg = kzalloc(sizeof(*spg), GFP_KERNEL);
	if (spg == NULL)
		return ERR_PTR(-ENOMEM);

	ret = idr_alloc(&sp_group_idr, spg, spg_id, spg_id + 1, GFP_KERNEL);
	if (ret < 0) {
		pr_err_ratelimited("group %d idr alloc failed %d\n",
				   spg_id, ret);
		goto out_kfree;
	}

	spg->id = spg_id;
1095
	spg->flag = flag;
1096 1097 1098 1099 1100
	spg->is_alive = true;
	spg->proc_num = 0;
	atomic_set(&spg->use_count, 1);
	INIT_LIST_HEAD(&spg->procs);
	INIT_LIST_HEAD(&spg->spa_list);
1101
	INIT_LIST_HEAD(&spg->mnode);
1102
	init_rwsem(&spg->rw_lock);
1103
	sp_init_group_stat(&spg->instat);
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

	sprintf(name, "sp_group_%d", spg_id);
	spg->file = shmem_kernel_file_setup(name, MAX_LFS_FILESIZE,
					    VM_NORESERVE);
	if (IS_ERR(spg->file)) {
		pr_err("spg file setup failed %ld\n", PTR_ERR(spg->file));
		ret = PTR_ERR(spg->file);
		goto out_idr;
	}

	spg->file_hugetlb = hugetlb_file_setup(name, MAX_LFS_FILESIZE,
					       VM_NORESERVE, &user, HUGETLB_ANONHUGE_INODE, hsize_log);
	if (IS_ERR(spg->file_hugetlb)) {
		pr_err("spg file_hugetlb setup failed %ld\n",
		       PTR_ERR(spg->file_hugetlb));
		ret = PTR_ERR(spg->file_hugetlb);
		goto out_fput;
	}

1123 1124
	if (!is_local_group(spg_id))
		system_group_count++;
1125 1126 1127 1128 1129 1130 1131 1132 1133
	return spg;

out_fput:
	fput(spg->file);
out_idr:
	idr_remove(&sp_group_idr, spg_id);
out_kfree:
	kfree(spg);
	return ERR_PTR(ret);
1134 1135
}

1136
/* the caller must hold sp_group_sem */
1137
static struct sp_group *find_or_alloc_sp_group(int spg_id, unsigned long flag)
1138 1139 1140 1141 1142 1143
{
	struct sp_group *spg;

	spg = __sp_find_spg_locked(current->pid, spg_id);

	if (!spg) {
1144
		spg = create_spg(spg_id, flag);
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	} else {
		down_read(&spg->rw_lock);
		if (!spg_valid(spg)) {
			up_read(&spg->rw_lock);
			sp_group_drop(spg);
			return ERR_PTR(-ENODEV);
		}
		up_read(&spg->rw_lock);
		/* spg->use_count has increased due to __sp_find_spg() */
	}

	return spg;
}

static void __sp_area_drop_locked(struct sp_area *spa);

/* The caller must down_write(&mm->mmap_lock) */
static void sp_munmap_task_areas(struct mm_struct *mm, struct sp_group *spg, struct list_head *stop)
{
	struct sp_area *spa, *prev = NULL;
	int err;


	spin_lock(&sp_area_lock);
	list_for_each_entry(spa, &spg->spa_list, link) {
		if (&spa->link == stop)
			break;

		__sp_area_drop_locked(prev);
		prev = spa;

		atomic_inc(&spa->use_count);
		spin_unlock(&sp_area_lock);

		err = do_munmap(mm, spa->va_start, spa_size(spa), NULL);
		if (err) {
			/* we are not supposed to fail */
			pr_err("failed to unmap VA %pK when munmap task areas\n",
			       (void *)spa->va_start);
		}

		spin_lock(&sp_area_lock);
	}
	__sp_area_drop_locked(prev);

	spin_unlock(&sp_area_lock);
}

/* the caller must hold sp_group_sem */
1194 1195
static int mm_add_group_init(struct task_struct *tsk, struct mm_struct *mm,
			     struct sp_group *spg)
1196
{
1197 1198
	int ret;
	struct sp_group_master *master;
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208
	if (!mm->sp_group_master) {
		ret = sp_init_group_master_locked(tsk, mm);
		if (ret)
			return ret;
	} else {
		if (is_process_in_group(spg, mm)) {
			pr_err_ratelimited("task already in target group, id=%d\n", spg->id);
			return -EEXIST;
		}
1209

1210 1211 1212 1213 1214
		master = mm->sp_group_master;
		if (master->count == MAX_GROUP_FOR_TASK) {
			pr_err("task reaches max group num\n");
			return -ENOSPC;
		}
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
	}

	return 0;
}

/* the caller must hold sp_group_sem */
static struct sp_group_node *create_spg_node(struct mm_struct *mm,
	unsigned long prot, struct sp_group *spg)
{
	struct sp_group_master *master = mm->sp_group_master;
	struct sp_group_node *spg_node;

	spg_node = kzalloc(sizeof(struct sp_group_node), GFP_KERNEL);
	if (spg_node == NULL)
		return ERR_PTR(-ENOMEM);

	INIT_LIST_HEAD(&spg_node->group_node);
	INIT_LIST_HEAD(&spg_node->proc_node);
	spg_node->spg = spg;
	spg_node->master = master;
	spg_node->prot = prot;
1236
	sp_init_spg_proc_stat(&spg_node->instat, spg->id);
1237 1238 1239 1240 1241 1242 1243 1244 1245

	list_add_tail(&spg_node->group_node, &master->node_list);
	master->count++;

	return spg_node;
}

/* the caller must down_write(&spg->rw_lock) */
static int insert_spg_node(struct sp_group *spg, struct sp_group_node *node)
1246
{
1247 1248 1249 1250 1251 1252 1253
	if (spg->proc_num + 1 == MAX_PROC_PER_GROUP) {
		pr_err_ratelimited("add group: group reaches max process num\n");
		return -ENOSPC;
	}

	spg->proc_num++;
	list_add_tail(&node->proc_node, &spg->procs);
1254 1255 1256 1257

	return 0;
}

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
/* the caller must down_write(&spg->rw_lock) */
static void delete_spg_node(struct sp_group *spg, struct sp_group_node *node)
{
	list_del(&node->proc_node);
	spg->proc_num--;
}

/* the caller must hold sp_group_sem */
static void free_spg_node(struct mm_struct *mm, struct sp_group *spg,
	struct sp_group_node *spg_node)
{
	struct sp_group_master *master = mm->sp_group_master;

	list_del(&spg_node->group_node);
	master->count--;

	kfree(spg_node);
}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
static int local_group_add_task(struct mm_struct *mm, struct sp_group *spg)
{
	struct sp_group_node *node;

	node = create_spg_node(mm, PROT_READ | PROT_WRITE, spg);
	if (IS_ERR(node))
		return PTR_ERR(node);

	insert_spg_node(spg, node);
	mmget(mm);

	return 0;
}

1291
/**
1292
 * mg_sp_group_add_task() - Add a process to an share group (sp_group).
1293 1294 1295
 * @pid: the pid of the task to be added.
 * @prot: the prot of task for this spg.
 * @spg_id: the ID of the sp_group.
1296
 * @flag: to give some special message.
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
 *
 * A process can't be added to more than one sp_group in single group mode
 * and can in multiple group mode.
 *
 * Return: A postive group number for success, -errno on failure.
 *
 * The manually specified ID is between [SPG_ID_MIN, SPG_ID_MAX].
 * The automatically allocated ID is between [SPG_ID_AUTO_MIN, SPG_ID_AUTO_MAX].
 * When negative, the return value is -errno.
 */
int mg_sp_group_add_task(int pid, unsigned long prot, int spg_id)
{
1309
	unsigned long flag = 0;
1310 1311 1312 1313 1314 1315 1316 1317
	struct task_struct *tsk;
	struct mm_struct *mm;
	struct sp_group *spg;
	struct sp_group_node *node = NULL;
	int ret = 0;
	bool id_newly_generated = false;
	struct sp_area *spa, *prev = NULL;

1318 1319 1320
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	check_interrupt_context();

	/* only allow READ, READ | WRITE */
	if (!((prot == PROT_READ)
	      || (prot == (PROT_READ | PROT_WRITE)))) {
		pr_err_ratelimited("prot is invalid 0x%lx\n", prot);
		return -EINVAL;
	}

	if (spg_id < SPG_ID_MIN || spg_id > SPG_ID_AUTO) {
		pr_err_ratelimited("add group failed, invalid group id %d\n", spg_id);
		return -EINVAL;
	}

	if (spg_id >= SPG_ID_AUTO_MIN && spg_id <= SPG_ID_AUTO_MAX) {
		spg = __sp_find_spg(pid, spg_id);

		if (!spg) {
			pr_err_ratelimited("spg %d hasn't been created\n", spg_id);
			return -EINVAL;
		}

		down_read(&spg->rw_lock);
		if (!spg_valid(spg)) {
			up_read(&spg->rw_lock);
			pr_err_ratelimited("add group failed, group id %d is dead\n", spg_id);
			sp_group_drop(spg);
			return -EINVAL;
		}
		up_read(&spg->rw_lock);

		sp_group_drop(spg);
	}

	if (spg_id == SPG_ID_AUTO) {
		spg_id = ida_alloc_range(&sp_group_id_ida, SPG_ID_AUTO_MIN,
					 SPG_ID_AUTO_MAX, GFP_ATOMIC);
		if (spg_id < 0) {
			pr_err_ratelimited("add group failed, auto generate group id failed\n");
			return spg_id;
		}
		id_newly_generated = true;
	}

	down_write(&sp_group_sem);

	ret = get_task(pid, &tsk);
	if (ret) {
		up_write(&sp_group_sem);
		free_new_spg_id(id_newly_generated, spg_id);
		goto out;
	}

	if (check_aoscore_process(tsk)) {
		up_write(&sp_group_sem);
		ret = -EACCES;
		free_new_spg_id(id_newly_generated, spg_id);
		goto out_put_task;
	}

	/*
	 * group_leader: current thread may be exiting in a multithread process
	 *
	 * DESIGN IDEA
	 * We increase mm->mm_users deliberately to ensure it's decreased in
	 * share pool under only 2 circumstances, which will simply the overall
	 * design as mm won't be freed unexpectedly.
	 *
	 * The corresponding refcount decrements are as follows:
	 * 1. the error handling branch of THIS function.
	 * 2. In sp_group_exit(). It's called only when process is exiting.
	 */
	mm = get_task_mm(tsk->group_leader);
	if (!mm) {
		up_write(&sp_group_sem);
		ret = -ESRCH;
		free_new_spg_id(id_newly_generated, spg_id);
		goto out_put_task;
	}

1401
	spg = find_or_alloc_sp_group(spg_id, flag);
1402 1403 1404 1405 1406 1407 1408
	if (IS_ERR(spg)) {
		up_write(&sp_group_sem);
		ret = PTR_ERR(spg);
		free_new_spg_id(id_newly_generated, spg_id);
		goto out_put_mm;
	}

1409 1410 1411 1412
	down_write(&spg->rw_lock);
	ret = mm_add_group_init(tsk, mm, spg);
	if (ret) {
		up_write(&spg->rw_lock);
1413
		goto out_drop_group;
1414
	}
1415

1416
	ret = sp_mapping_group_setup(mm, spg);
1417 1418
	if (ret) {
		up_write(&spg->rw_lock);
1419
		goto out_drop_group;
1420
	}
1421

1422 1423
	node = create_spg_node(mm, prot, spg);
	if (unlikely(IS_ERR(node))) {
1424
		up_write(&spg->rw_lock);
1425
		ret = PTR_ERR(node);
1426
		goto out_drop_group;
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	}

	ret = insert_spg_node(spg, node);
	if (unlikely(ret)) {
		up_write(&spg->rw_lock);
		goto out_drop_spg_node;
	}

	/*
	 * create mappings of existing shared memory segments into this
	 * new process' page table.
	 */
	spin_lock(&sp_area_lock);

	list_for_each_entry(spa, &spg->spa_list, link) {
		unsigned long populate = 0;
		struct file *file = spa_file(spa);
		unsigned long addr;

		__sp_area_drop_locked(prev);
		prev = spa;

		atomic_inc(&spa->use_count);

		if (spa->is_dead == true)
			continue;

		spin_unlock(&sp_area_lock);

		if (spa->type == SPA_TYPE_K2SPG && spa->kva) {
1457
			addr = sp_remap_kva_to_vma(spa->kva, spa, mm, prot, NULL);
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
			if (IS_ERR_VALUE(addr))
				pr_warn("add group remap k2u failed %ld\n", addr);

			spin_lock(&sp_area_lock);
			continue;
		}

		down_write(&mm->mmap_lock);
		if (unlikely(mm->core_state)) {
			sp_munmap_task_areas(mm, spg, &spa->link);
			up_write(&mm->mmap_lock);
			ret = -EBUSY;
			pr_err("add group: encountered coredump, abort\n");
			spin_lock(&sp_area_lock);
			break;
		}

1475
		addr = sp_mmap(mm, file, spa, &populate, prot, NULL);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
		if (IS_ERR_VALUE(addr)) {
			sp_munmap_task_areas(mm, spg, &spa->link);
			up_write(&mm->mmap_lock);
			ret = addr;
			pr_err("add group: sp mmap failed %d\n", ret);
			spin_lock(&sp_area_lock);
			break;
		}
		up_write(&mm->mmap_lock);

		if (populate) {
			ret = do_mm_populate(mm, spa->va_start, populate, 0);
			if (ret) {
				if (unlikely(fatal_signal_pending(current)))
					pr_warn_ratelimited("add group failed, current thread is killed\n");
				else
					pr_warn_ratelimited("add group failed, mm populate failed (potential no enough memory when -12): %d, spa type is %d\n",
					ret, spa->type);
				down_write(&mm->mmap_lock);
				sp_munmap_task_areas(mm, spg, spa->link.next);
				up_write(&mm->mmap_lock);
				spin_lock(&sp_area_lock);
				break;
			}
		}

		spin_lock(&sp_area_lock);
	}
	__sp_area_drop_locked(prev);
	spin_unlock(&sp_area_lock);

	if (unlikely(ret))
		delete_spg_node(spg, node);
	up_write(&spg->rw_lock);

out_drop_spg_node:
	if (unlikely(ret))
		free_spg_node(mm, spg, node);
	/*
	 * to simplify design, we don't release the resource of
	 * group_master and proc_stat, they will be freed when
	 * process is exiting.
	 */
out_drop_group:
	if (unlikely(ret)) {
		up_write(&sp_group_sem);
		sp_group_drop(spg);
	} else
		up_write(&sp_group_sem);
out_put_mm:
	/* No need to put the mm if the sp group adds this mm successfully */
	if (unlikely(ret))
		mmput(mm);
out_put_task:
	put_task_struct(tsk);
out:
	return ret == 0 ? spg_id : ret;
}
1534 1535
EXPORT_SYMBOL_GPL(mg_sp_group_add_task);

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
/**
 * mg_sp_group_del_task() - delete a process from a sp group.
 * @pid: the pid of the task to be deleted
 * @spg_id: sharepool group id
 *
 * the group's spa list must be empty, or deletion will fail.
 *
 * Return:
 * * if success, return 0.
 * * -EINVAL, spg_id invalid or spa_lsit not emtpy or spg dead
 * * -ESRCH, the task group of pid is not in group / process dead
 */
int mg_sp_group_del_task(int pid, int spg_id)
{
1550 1551 1552 1553 1554 1555 1556
	int ret = 0;
	struct sp_group *spg;
	struct sp_group_node *spg_node;
	struct task_struct *tsk = NULL;
	struct mm_struct *mm = NULL;
	bool is_alive = true;

1557 1558 1559
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	if (spg_id < SPG_ID_MIN || spg_id > SPG_ID_AUTO) {
		pr_err_ratelimited("del from group failed, invalid group id %d\n", spg_id);
		return -EINVAL;
	}

	spg = __sp_find_spg(pid, spg_id);
	if (!spg) {
		pr_err_ratelimited("spg not found or get task failed.");
		return -EINVAL;
	}
	down_write(&sp_group_sem);

	if (!spg_valid(spg)) {
		up_write(&sp_group_sem);
		pr_err_ratelimited("spg dead.");
		ret = -EINVAL;
		goto out;
	}

	if (!list_empty(&spg->spa_list)) {
		up_write(&sp_group_sem);
		pr_err_ratelimited("spa is not empty");
		ret = -EINVAL;
		goto out;
	}

	ret = get_task(pid, &tsk);
	if (ret) {
		up_write(&sp_group_sem);
		pr_err_ratelimited("task is not found");
		goto out;
	}
	mm = get_task_mm(tsk->group_leader);
	if (!mm) {
		up_write(&sp_group_sem);
		pr_err_ratelimited("mm is not found");
		ret = -ESRCH;
		goto out_put_task;
	}

1600
	spg_node = find_spg_node_by_spg(mm, spg);
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
	if (!spg_node) {
		up_write(&sp_group_sem);
		pr_err_ratelimited("process not in group");
		ret = -ESRCH;
		goto out_put_mm;
	}

	down_write(&spg->rw_lock);
	if (list_is_singular(&spg->procs))
		is_alive = spg->is_alive = false;
	spg->proc_num--;
	list_del(&spg_node->proc_node);
	sp_group_drop(spg);
	up_write(&spg->rw_lock);
	if (!is_alive)
		blocking_notifier_call_chain(&sp_notifier_chain, 0, spg);

	list_del(&spg_node->group_node);
	mm->sp_group_master->count--;
	kfree(spg_node);
1621
	atomic_dec(&mm->mm_users);
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

	up_write(&sp_group_sem);

out_put_mm:
	mmput(mm);
out_put_task:
	put_task_struct(tsk);
out:
	sp_group_drop(spg); /* if spg dead, freed here */
	return ret;
1632 1633 1634
}
EXPORT_SYMBOL_GPL(mg_sp_group_del_task);

1635
int mg_sp_id_of_current(void)
1636 1637 1638 1639
{
	int ret, spg_id;
	struct sp_group_master *master;

1640 1641 1642
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

1643 1644 1645 1646 1647
	if (current->flags & PF_KTHREAD || !current->mm)
		return -EINVAL;

	down_read(&sp_group_sem);
	master = current->mm->sp_group_master;
1648
	if (master) {
1649 1650 1651 1652 1653 1654 1655
		spg_id = master->local->id;
		up_read(&sp_group_sem);
		return spg_id;
	}
	up_read(&sp_group_sem);

	down_write(&sp_group_sem);
1656
	ret = sp_init_group_master_locked(current, current->mm);
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	if (ret) {
		up_write(&sp_group_sem);
		return ret;
	}
	master = current->mm->sp_group_master;
	spg_id = master->local->id;
	up_write(&sp_group_sem);

	return spg_id;
}
EXPORT_SYMBOL_GPL(mg_sp_id_of_current);

1669
/* the caller must hold sp_area_lock */
1670
static void __insert_sp_area(struct sp_mapping *spm, struct sp_area *spa)
1671
{
1672
	struct rb_node **p = &spm->area_root.rb_node;
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
	struct rb_node *parent = NULL;

	while (*p) {
		struct sp_area *tmp;

		parent = *p;
		tmp = rb_entry(parent, struct sp_area, rb_node);
		if (spa->va_start < tmp->va_end)
			p = &(*p)->rb_left;
		else if (spa->va_end > tmp->va_start)
			p = &(*p)->rb_right;
		else
			BUG();
	}

	rb_link_node(&spa->rb_node, parent, p);
1689
	rb_insert_color(&spa->rb_node, &spm->area_root);
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
}

/**
 * sp_alloc_area() - Allocate a region of VA from the share pool.
 * @size: the size of VA to allocate.
 * @flags: how to allocate the memory.
 * @spg: the share group that the memory is allocated to.
 * @type: the type of the region.
 * @applier: the pid of the task which allocates the region.
 *
 * Return: a valid pointer for success, NULL on failure.
 */
static struct sp_area *sp_alloc_area(unsigned long size, unsigned long flags,
				     struct sp_group *spg, enum spa_type type,
				     pid_t applier)
{
	struct sp_area *spa, *first, *err;
	struct rb_node *n;
1708 1709
	unsigned long vstart;
	unsigned long vend;
1710 1711 1712
	unsigned long addr;
	unsigned long size_align = ALIGN(size, PMD_SIZE); /* va aligned to 2M */
	int device_id, node_id;
1713
	struct sp_mapping *mapping;
1714 1715 1716 1717 1718 1719 1720 1721 1722

	device_id = sp_flags_device_id(flags);
	node_id = flags & SP_SPEC_NODE_ID ? sp_flags_node_id(flags) : device_id;

	if (!is_online_node_id(node_id)) {
		pr_err_ratelimited("invalid numa node id %d\n", node_id);
		return ERR_PTR(-EINVAL);
	}

1723 1724 1725 1726
	if (flags & SP_DVPP)
		mapping = spg->dvpp;
	else
		mapping = spg->normal;
1727

1728 1729 1730 1731 1732
	if (!mapping) {
		pr_err_ratelimited("non DVPP spg, id %d\n", spg->id);
		return ERR_PTR(-EINVAL);
	}

1733 1734
	vstart = mapping->start[device_id];
	vend = mapping->end[device_id];
1735 1736 1737 1738 1739 1740 1741 1742 1743
	spa = __kmalloc_node(sizeof(struct sp_area), GFP_KERNEL, node_id);
	if (unlikely(!spa))
		return ERR_PTR(-ENOMEM);

	spin_lock(&sp_area_lock);

	/*
	 * Invalidate cache if we have more permissive parameters.
	 * cached_hole_size notes the largest hole noticed _below_
1744
	 * the sp_area cached in free_area_cache: if size fits
1745
	 * into that hole, we want to scan from vstart to reuse
1746 1747
	 * the hole instead of allocating above free_area_cache.
	 * Note that sp_free_area may update free_area_cache
1748 1749
	 * without updating cached_hole_size.
	 */
1750 1751 1752 1753
	if (!mapping->free_area_cache || size_align < mapping->cached_hole_size ||
	    vstart != mapping->cached_vstart) {
		mapping->cached_hole_size = 0;
		mapping->free_area_cache = NULL;
1754 1755 1756
	}

	/* record if we encounter less permissive parameters */
1757
	mapping->cached_vstart = vstart;
1758 1759

	/* find starting point for our search */
1760 1761
	if (mapping->free_area_cache) {
		first = rb_entry(mapping->free_area_cache, struct sp_area, rb_node);
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
		addr = first->va_end;
		if (addr + size_align < addr) {
			err = ERR_PTR(-EOVERFLOW);
			goto error;
		}
	} else {
		addr = vstart;
		if (addr + size_align < addr) {
			err = ERR_PTR(-EOVERFLOW);
			goto error;
		}

1774
		n = mapping->area_root.rb_node;
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
		first = NULL;

		while (n) {
			struct sp_area *tmp;

			tmp = rb_entry(n, struct sp_area, rb_node);
			if (tmp->va_end >= addr) {
				first = tmp;
				if (tmp->va_start <= addr)
					break;
				n = n->rb_left;
			} else
				n = n->rb_right;
		}

		if (!first)
			goto found;
	}

	/* from the starting point, traverse areas until a suitable hole is found */
	while (addr + size_align > first->va_start && addr + size_align <= vend) {
1796 1797
		if (addr + mapping->cached_hole_size < first->va_start)
			mapping->cached_hole_size = first->va_start - addr;
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
		addr = first->va_end;
		if (addr + size_align < addr) {
			err = ERR_PTR(-EOVERFLOW);
			goto error;
		}

		n = rb_next(&first->rb_node);
		if (n)
			first = rb_entry(n, struct sp_area, rb_node);
		else
			goto found;
	}

found:
	if (addr + size_align > vend) {
		err = ERR_PTR(-EOVERFLOW);
		goto error;
	}

	spa->va_start = addr;
	spa->va_end = addr + size_align;
	spa->real_size = size;
	spa->region_vstart = vstart;
	spa->flags = flags;
	spa->is_hugepage = (flags & SP_HUGEPAGE);
	spa->is_dead = false;
	spa->spg = spg;
	atomic_set(&spa->use_count, 1);
	spa->type = type;
	spa->mm = NULL;
	spa->kva = 0;   /* NULL pointer */
	spa->applier = applier;
	spa->node_id = node_id;
	spa->device_id = device_id;

	spa_inc_usage(spa);
1834
	__insert_sp_area(mapping, spa);
1835 1836
	mapping->free_area_cache = &spa->rb_node;
	list_add_tail(&spa->link, &spg->spa_list);
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848

	spin_unlock(&sp_area_lock);

	return spa;

error:
	spin_unlock(&sp_area_lock);
	kfree(spa);
	return err;
}

/* the caller should hold sp_area_lock */
1849 1850
static struct sp_area *__find_sp_area_locked(struct sp_group *spg,
		unsigned long addr)
1851
{
1852 1853
	struct rb_node *n;

1854
	if (addr >= MMAP_SHARE_POOL_NORMAL_START && addr < MMAP_SHARE_POOL_NORMAL_END)
1855 1856 1857
		n = spg->normal->area_root.rb_node;
	else
		n = spg->dvpp->area_root.rb_node;
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874

	while (n) {
		struct sp_area *spa;

		spa = rb_entry(n, struct sp_area, rb_node);
		if (addr < spa->va_start) {
			n = n->rb_left;
		} else if (addr > spa->va_start) {
			n = n->rb_right;
		} else {
			return spa;
		}
	}

	return NULL;
}

1875
static struct sp_area *__find_sp_area(struct sp_group *spg, unsigned long addr)
1876 1877 1878 1879
{
	struct sp_area *n;

	spin_lock(&sp_area_lock);
1880
	n = __find_sp_area_locked(spg, addr);
1881 1882 1883 1884 1885 1886
	if (n)
		atomic_inc(&n->use_count);
	spin_unlock(&sp_area_lock);
	return n;
}

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
static bool vmalloc_area_clr_flag(unsigned long kva, unsigned long flags)
{
	struct vm_struct *area;

	area = find_vm_area((void *)kva);
	if (area) {
		area->flags &= ~flags;
		return true;
	}

	return false;
}

1900 1901 1902 1903 1904
/*
 * Free the VA region starting from addr to the share pool
 */
static void sp_free_area(struct sp_area *spa)
{
1905 1906 1907
	unsigned long addr = spa->va_start;
	struct sp_mapping *spm;

1908 1909
	lockdep_assert_held(&sp_area_lock);

1910
	if (addr >= MMAP_SHARE_POOL_NORMAL_START && addr < MMAP_SHARE_POOL_NORMAL_END)
1911 1912 1913 1914 1915
		spm = spa->spg->normal;
	else
		spm = spa->spg->dvpp;

	if (spm->free_area_cache) {
1916 1917
		struct sp_area *cache;

1918
		cache = rb_entry(spm->free_area_cache, struct sp_area, rb_node);
1919
		if (spa->va_start <= cache->va_start) {
1920
			spm->free_area_cache = rb_prev(&spa->rb_node);
1921 1922 1923 1924
			/*
			 * the new cache node may be changed to another region,
			 * i.e. from DVPP region to normal region
			 */
1925 1926
			if (spm->free_area_cache) {
				cache = rb_entry(spm->free_area_cache,
1927
						 struct sp_area, rb_node);
1928
				spm->cached_vstart = cache->region_vstart;
1929 1930 1931 1932 1933 1934 1935 1936
			}
			/*
			 * We don't try to update cached_hole_size,
			 * but it won't go very wrong.
			 */
		}
	}

1937 1938 1939
	if (spa->kva && !vmalloc_area_clr_flag(spa->kva, VM_SHAREPOOL))
		pr_debug("clear spa->kva %ld is not valid\n", spa->kva);

1940
	spa_dec_usage(spa);
1941
	list_del(&spa->link);
1942

1943
	rb_erase(&spa->rb_node, &spm->area_root);
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
	RB_CLEAR_NODE(&spa->rb_node);
	kfree(spa);
}

static void __sp_area_drop_locked(struct sp_area *spa)
{
	/*
	 * Considering a situation where task A and B are in the same spg.
	 * A is exiting and calling remove_vma(). Before A calls this func,
	 * B calls sp_free() to free the same spa. So spa maybe NULL when A
	 * calls this func later.
	 */
	if (!spa)
		return;

	if (atomic_dec_and_test(&spa->use_count))
		sp_free_area(spa);
}

static void __sp_area_drop(struct sp_area *spa)
{
	spin_lock(&sp_area_lock);
	__sp_area_drop_locked(spa);
	spin_unlock(&sp_area_lock);
}

void sp_area_drop(struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARE_POOL))
		return;

	/*
	 * Considering a situation where task A and B are in the same spg.
	 * A is exiting and calling remove_vma() -> ... -> sp_area_drop().
	 * Concurrently, B is calling sp_free() to free the same spa.
	 * __find_sp_area_locked() and __sp_area_drop_locked() should be
	 * an atomic operation.
	 */
	spin_lock(&sp_area_lock);
1983
	__sp_area_drop_locked(vma->vm_private_data);
1984 1985 1986
	spin_unlock(&sp_area_lock);
}

W
Wang Wensheng 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
/*
 * The function calls of do_munmap() won't change any non-atomic member
 * of struct sp_group. Please review the following chain:
 * do_munmap -> remove_vma_list -> remove_vma -> sp_area_drop ->
 * __sp_area_drop_locked -> sp_free_area
 */
static void sp_munmap(struct mm_struct *mm, unsigned long addr,
			   unsigned long size)
{
	int err;

	down_write(&mm->mmap_lock);
	if (unlikely(mm->core_state)) {
		up_write(&mm->mmap_lock);
		pr_info("munmap: encoutered coredump\n");
		return;
	}

	err = do_munmap(mm, addr, size, NULL);
	/* we are not supposed to fail */
	if (err)
		pr_err("failed to unmap VA %pK when sp munmap\n", (void *)addr);

	up_write(&mm->mmap_lock);
}

static void __sp_free(struct sp_group *spg, unsigned long addr,
		      unsigned long size, struct mm_struct *stop)
{
	struct mm_struct *mm;
	struct sp_group_node *spg_node = NULL;

	list_for_each_entry(spg_node, &spg->procs, proc_node) {
		mm = spg_node->master->mm;
		if (mm == stop)
			break;
		sp_munmap(mm, addr, size);
	}
}

/* Free the memory of the backing shmem or hugetlbfs */
static void sp_fallocate(struct sp_area *spa)
{
	int ret;
	unsigned long mode = FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE;
	unsigned long offset = addr_offset(spa);

	ret = vfs_fallocate(spa_file(spa), mode, offset, spa_size(spa));
	if (ret)
		WARN(1, "sp fallocate failed %d\n", ret);
}

static void sp_free_unmap_fallocate(struct sp_area *spa)
{
2041 2042 2043 2044
	down_read(&spa->spg->rw_lock);
	__sp_free(spa->spg, spa->va_start, spa_size(spa), NULL);
	sp_fallocate(spa);
	up_read(&spa->spg->rw_lock);
W
Wang Wensheng 已提交
2045 2046 2047 2048 2049 2050 2051
}

static int sp_check_caller_permission(struct sp_group *spg, struct mm_struct *mm)
{
	int ret = 0;

	down_read(&spg->rw_lock);
2052
	if (!is_process_in_group(spg, mm))
W
Wang Wensheng 已提交
2053 2054
		ret = -EPERM;
	up_read(&spg->rw_lock);
2055

W
Wang Wensheng 已提交
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	return ret;
}

#define FREE_CONT	1
#define FREE_END	2

struct sp_free_context {
	unsigned long addr;
	struct sp_area *spa;
	int state;
2066
	int spg_id;
W
Wang Wensheng 已提交
2067 2068 2069 2070 2071 2072 2073 2074
};

/* when success, __sp_area_drop(spa) should be used */
static int sp_free_get_spa(struct sp_free_context *fc)
{
	int ret = 0;
	unsigned long addr = fc->addr;
	struct sp_area *spa;
2075 2076 2077 2078 2079 2080 2081
	struct sp_group *spg;

	spg = __sp_find_spg(current->tgid, fc->spg_id);
	if (!spg) {
		pr_debug("sp free get group failed %d\n", fc->spg_id);
		return -EINVAL;
	}
W
Wang Wensheng 已提交
2082 2083 2084

	fc->state = FREE_CONT;

2085 2086
	spa = __find_sp_area(spg, addr);
	sp_group_drop(spg);
W
Wang Wensheng 已提交
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
	if (!spa) {
		pr_debug("sp free invalid input addr %lx\n", addr);
		return -EINVAL;
	}

	if (spa->type != SPA_TYPE_ALLOC) {
		ret = -EINVAL;
		pr_debug("sp free failed, %lx is not sp alloc addr\n", addr);
		goto drop_spa;
	}
	fc->spa = spa;

2099 2100
	if (!current->mm)
		goto check_spa;
W
Wang Wensheng 已提交
2101

2102 2103 2104
	ret = sp_check_caller_permission(spa->spg, current->mm);
	if (ret < 0)
		goto drop_spa;
W
Wang Wensheng 已提交
2105 2106

check_spa:
2107 2108 2109 2110
	if (is_local_group(spa->spg->id) && (current->tgid != spa->applier)) {
		ret = -EPERM;
		goto drop_spa;
	}
W
Wang Wensheng 已提交
2111

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
	down_write(&spa->spg->rw_lock);
	if (!spg_valid(spa->spg)) {
		fc->state = FREE_END;
		up_write(&spa->spg->rw_lock);
		goto drop_spa;
		/* we must return success(0) in this situation */
	}
	/* the life cycle of spa has a direct relation with sp group */
	if (unlikely(spa->is_dead)) {
		up_write(&spa->spg->rw_lock);
		pr_err_ratelimited("unexpected double sp free\n");
		dump_stack();
		ret = -EINVAL;
		goto drop_spa;
W
Wang Wensheng 已提交
2126
	}
2127 2128 2129
	spa->is_dead = true;
	up_write(&spa->spg->rw_lock);

W
Wang Wensheng 已提交
2130 2131 2132 2133 2134 2135 2136
	return 0;

drop_spa:
	__sp_area_drop(spa);
	return ret;
}

2137
/**
2138
 * mg_sp_free() - Free the memory allocated by mg_sp_alloc().
2139
 * @addr: the starting VA of the memory.
2140
 * @id: Address space identifier, which is used to distinguish the addr.
2141 2142 2143 2144 2145 2146
 *
 * Return:
 * * 0		- success.
 * * -EINVAL	- the memory can't be found or was not allocted by share pool.
 * * -EPERM	- the caller has no permision to free the memory.
 */
2147
int mg_sp_free(unsigned long addr, int id)
2148
{
W
Wang Wensheng 已提交
2149 2150 2151
	int ret = 0;
	struct sp_free_context fc = {
		.addr = addr,
2152
		.spg_id = id,
W
Wang Wensheng 已提交
2153 2154
	};

2155 2156 2157
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

W
Wang Wensheng 已提交
2158 2159
	check_interrupt_context();

2160 2161 2162
	if (current->flags & PF_KTHREAD)
		return -EINVAL;

W
Wang Wensheng 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
	ret = sp_free_get_spa(&fc);
	if (ret || fc.state == FREE_END)
		goto out;

	sp_free_unmap_fallocate(fc.spa);

	if (current->mm == NULL)
		atomic64_sub(fc.spa->real_size, &kthread_stat.alloc_size);
	else
		sp_update_process_stat(current, false, fc.spa);

	__sp_area_drop(fc.spa);  /* match __find_sp_area in sp_free_get_spa */
out:
	return ret;
2177 2178 2179
}
EXPORT_SYMBOL_GPL(mg_sp_free);

2180 2181 2182
/* wrapper of __do_mmap() and the caller must hold down_write(&mm->mmap_lock). */
static unsigned long sp_mmap(struct mm_struct *mm, struct file *file,
			     struct sp_area *spa, unsigned long *populate,
2183
			     unsigned long prot, struct vm_area_struct **pvma)
2184 2185 2186 2187 2188 2189 2190
{
	unsigned long addr = spa->va_start;
	unsigned long size = spa_size(spa);
	unsigned long flags = MAP_FIXED | MAP_SHARED | MAP_POPULATE |
			      MAP_SHARE_POOL;
	unsigned long vm_flags = VM_NORESERVE | VM_SHARE_POOL | VM_DONTCOPY;
	unsigned long pgoff = addr_offset(spa) >> PAGE_SHIFT;
2191
	struct vm_area_struct *vma;
2192 2193 2194 2195 2196 2197 2198 2199 2200

	atomic_inc(&spa->use_count);
	addr = __do_mmap_mm(mm, file, addr, size, prot, flags, vm_flags, pgoff,
			 populate, NULL);
	if (IS_ERR_VALUE(addr)) {
		atomic_dec(&spa->use_count);
		pr_err("do_mmap fails %ld\n", addr);
	} else {
		BUG_ON(addr != spa->va_start);
2201 2202 2203 2204
		vma = find_vma(mm, addr);
		vma->vm_private_data = spa;
		if (pvma)
			*pvma = vma;
2205 2206 2207 2208 2209
	}

	return addr;
}

W
Wang Wensheng 已提交
2210 2211 2212
#define ALLOC_NORMAL	1
#define ALLOC_RETRY	2
#define ALLOC_NOMEM	3
2213
#define ALLOC_COREDUMP	4
W
Wang Wensheng 已提交
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223

struct sp_alloc_context {
	struct sp_group *spg;
	struct file *file;
	unsigned long size;
	unsigned long size_aligned;
	unsigned long sp_flags;
	unsigned long populate;
	int state;
	bool need_fallocate;
2224
	bool have_mbind;
2225
	enum spa_type type;
W
Wang Wensheng 已提交
2226 2227 2228 2229 2230 2231 2232 2233 2234
};

static int sp_alloc_prepare(unsigned long size, unsigned long sp_flags,
	int spg_id, struct sp_alloc_context *ac)
{
	struct sp_group *spg;

	check_interrupt_context();

2235 2236 2237 2238 2239
	if (current->flags & PF_KTHREAD) {
		pr_err_ratelimited("allocation failed, task is kthread\n");
		return -EINVAL;
	}

W
Wang Wensheng 已提交
2240 2241 2242 2243 2244
	if (unlikely(!size || (size >> PAGE_SHIFT) > totalram_pages())) {
		pr_err_ratelimited("allocation failed, invalid size %lu\n", size);
		return -EINVAL;
	}

2245
	if (spg_id != SPG_ID_DEFAULT && (spg_id < SPG_ID_MIN || spg_id >= SPG_ID_AUTO)) {
W
Wang Wensheng 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
		pr_err_ratelimited("allocation failed, invalid group id %d\n", spg_id);
		return -EINVAL;
	}

	if (sp_flags & (~SP_FLAG_MASK)) {
		pr_err_ratelimited("allocation failed, invalid flag %lx\n", sp_flags);
		return -EINVAL;
	}

	if (sp_flags & SP_HUGEPAGE_ONLY)
		sp_flags |= SP_HUGEPAGE;

2258 2259 2260 2261 2262
	if (spg_id != SPG_ID_DEFAULT) {
		spg = __sp_find_spg(current->pid, spg_id);
		if (!spg) {
			pr_err_ratelimited("allocation failed, can't find group\n");
			return -ENODEV;
W
Wang Wensheng 已提交
2263 2264
		}

2265 2266 2267 2268 2269 2270 2271 2272
		/* up_read will be at the end of sp_alloc */
		down_read(&spg->rw_lock);
		if (!spg_valid(spg)) {
			up_read(&spg->rw_lock);
			sp_group_drop(spg);
			pr_err_ratelimited("allocation failed, spg is dead\n");
			return -ENODEV;
		}
W
Wang Wensheng 已提交
2273

2274 2275 2276 2277 2278
		if (!is_process_in_group(spg, current->mm)) {
			up_read(&spg->rw_lock);
			sp_group_drop(spg);
			pr_err_ratelimited("allocation failed, task not in group\n");
			return -ENODEV;
W
Wang Wensheng 已提交
2279
		}
2280
		ac->type = SPA_TYPE_ALLOC;
2281
	} else {  /* allocation pass through scene */
2282
		spg = sp_get_local_group(current, current->mm);
2283 2284
		if (IS_ERR(spg))
			return PTR_ERR(spg);
2285 2286
		down_read(&spg->rw_lock);
		ac->type = SPA_TYPE_ALLOC_PRIVATE;
W
Wang Wensheng 已提交
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
	}

	if (sp_flags & SP_HUGEPAGE) {
		ac->file = spg->file_hugetlb;
		ac->size_aligned = ALIGN(size, PMD_SIZE);
	} else {
		ac->file = spg->file;
		ac->size_aligned = ALIGN(size, PAGE_SIZE);
	}

	ac->spg = spg;
	ac->size = size;
	ac->sp_flags = sp_flags;
	ac->state = ALLOC_NORMAL;
	ac->need_fallocate = false;
2302
	ac->have_mbind = false;
W
Wang Wensheng 已提交
2303 2304 2305 2306 2307 2308
	return 0;
}

static void sp_alloc_unmap(struct mm_struct *mm, struct sp_area *spa,
	struct sp_group_node *spg_node)
{
2309
	__sp_free(spa->spg, spa->va_start, spa->real_size, mm);
W
Wang Wensheng 已提交
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
}

static int sp_alloc_mmap(struct mm_struct *mm, struct sp_area *spa,
	struct sp_group_node *spg_node, struct sp_alloc_context *ac)
{
	int ret = 0;
	unsigned long mmap_addr;
	/* pass through default permission */
	unsigned long prot = PROT_READ | PROT_WRITE;
	unsigned long populate = 0;
	struct vm_area_struct *vma;

	down_write(&mm->mmap_lock);
	if (unlikely(mm->core_state)) {
		up_write(&mm->mmap_lock);
2325
		ac->state = ALLOC_COREDUMP;
W
Wang Wensheng 已提交
2326 2327 2328 2329 2330 2331 2332
		pr_info("allocation encountered coredump\n");
		return -EFAULT;
	}

	if (spg_node)
		prot = spg_node->prot;

2333 2334 2335
	if (ac->sp_flags & SP_PROT_RO)
		prot = PROT_READ;

W
Wang Wensheng 已提交
2336
	/* when success, mmap_addr == spa->va_start */
2337
	mmap_addr = sp_mmap(mm, spa_file(spa), spa, &populate, prot, &vma);
W
Wang Wensheng 已提交
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
	if (IS_ERR_VALUE(mmap_addr)) {
		up_write(&mm->mmap_lock);
		sp_alloc_unmap(mm, spa, spg_node);
		pr_err("sp mmap in allocation failed %ld\n", mmap_addr);
		return PTR_ERR((void *)mmap_addr);
	}

	if (unlikely(populate == 0)) {
		up_write(&mm->mmap_lock);
		pr_err("allocation sp mmap populate failed\n");
		ret = -EFAULT;
		goto unmap;
	}
	ac->populate = populate;

2353 2354 2355
	if (ac->sp_flags & SP_PROT_RO)
		vma->vm_flags &= ~VM_MAYWRITE;

W
Wang Wensheng 已提交
2356 2357 2358 2359 2360 2361 2362 2363
	/* clean PTE_RDONLY flags or trigger SMMU event */
	if (prot & PROT_WRITE)
		vma->vm_page_prot = __pgprot(((~PTE_RDONLY) & vma->vm_page_prot.pgprot) | PTE_DIRTY);
	up_write(&mm->mmap_lock);

	return ret;

unmap:
2364
	sp_alloc_unmap(list_next_entry(spg_node, proc_node)->master->mm, spa, spg_node);
W
Wang Wensheng 已提交
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
	return ret;
}

static void sp_alloc_fallback(struct sp_area *spa, struct sp_alloc_context *ac)
{
	if (ac->file == ac->spg->file) {
		ac->state = ALLOC_NOMEM;
		return;
	}

2375
	atomic_inc(&ac->spg->instat.hugepage_failures);
W
Wang Wensheng 已提交
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
	if (!(ac->sp_flags & SP_HUGEPAGE_ONLY)) {
		ac->file = ac->spg->file;
		ac->size_aligned = ALIGN(ac->size, PAGE_SIZE);
		ac->sp_flags &= ~SP_HUGEPAGE;
		ac->state = ALLOC_RETRY;
		__sp_area_drop(spa);
		return;
	}
	ac->state = ALLOC_NOMEM;
}

static int sp_alloc_populate(struct mm_struct *mm, struct sp_area *spa,
2388
			     struct sp_alloc_context *ac)
W
Wang Wensheng 已提交
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
{
	int ret = 0;
	unsigned long sp_addr = spa->va_start;
	unsigned int noreclaim_flag = 0;

	/*
	 * The direct reclaim and compact may take a long
	 * time. As a result, sp mutex will be hold for too
	 * long time to casue the hung task problem. In this
	 * case, set the PF_MEMALLOC flag to prevent the
	 * direct reclaim and compact from being executed.
	 * Since direct reclaim and compact are not performed
	 * when the fragmentation is severe or the memory is
	 * insufficient, 2MB continuous physical pages fail
	 * to be allocated. This situation is allowed.
	 */
	if (spa->is_hugepage)
		noreclaim_flag = memalloc_noreclaim_save();

	/*
	 * We are not ignoring errors, so if we fail to allocate
	 * physical memory we just return failure, so we won't encounter
	 * page fault later on, and more importantly sp_make_share_u2k()
	 * depends on this feature (and MAP_LOCKED) to work correctly.
	 */
	ret = do_mm_populate(mm, sp_addr, ac->populate, 0);
2415
	if (spa->is_hugepage)
W
Wang Wensheng 已提交
2416
		memalloc_noreclaim_restore(noreclaim_flag);
2417

W
Wang Wensheng 已提交
2418 2419 2420
	return ret;
}

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
static long sp_mbind(struct mm_struct *mm, unsigned long start, unsigned long len,
		unsigned long node)
{
	nodemask_t nmask;

	nodes_clear(nmask);
	node_set(node, nmask);
	return __do_mbind(start, len, MPOL_BIND, MPOL_F_STATIC_NODES,
			&nmask, MPOL_MF_STRICT, mm);
}

W
Wang Wensheng 已提交
2432 2433 2434 2435 2436 2437
static int __sp_alloc_mmap_populate(struct mm_struct *mm, struct sp_area *spa,
	struct sp_group_node *spg_node, struct sp_alloc_context *ac)
{
	int ret;

	ret = sp_alloc_mmap(mm, spa, spg_node, ac);
2438
	if (ret < 0)
W
Wang Wensheng 已提交
2439 2440
		return ret;

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
	if (!ac->have_mbind) {
		ret = sp_mbind(mm, spa->va_start, spa->real_size, spa->node_id);
		if (ret < 0) {
			pr_err("cannot bind the memory range to specified node:%d, err:%d\n",
				spa->node_id, ret);
			goto err;
		}
		ac->have_mbind = true;
	}

	ret = sp_alloc_populate(mm, spa, ac);
	if (ret) {
err:
		if (unlikely(fatal_signal_pending(current)))
			pr_warn_ratelimited("allocation failed, current thread is killed\n");
		else
			pr_warn_ratelimited("allocation failed due to mm populate failed(potential no enough memory when -12): %d\n",
2458
					ret);
2459 2460
	} else
		ac->need_fallocate = true;
W
Wang Wensheng 已提交
2461 2462 2463 2464 2465 2466
	return ret;
}

static int sp_alloc_mmap_populate(struct sp_area *spa,
				  struct sp_alloc_context *ac)
{
2467 2468
	int ret = -EINVAL;
	int mmap_ret = 0;
2469
	struct mm_struct *mm, *end_mm = NULL;
W
Wang Wensheng 已提交
2470 2471
	struct sp_group_node *spg_node;

2472 2473 2474 2475 2476 2477
	/* create mapping for each process in the group */
	list_for_each_entry(spg_node, &spa->spg->procs, proc_node) {
		mm = spg_node->master->mm;
		mmap_ret = __sp_alloc_mmap_populate(mm, spa, spg_node, ac);
		if (mmap_ret) {
			if (ac->state != ALLOC_COREDUMP)
2478
				goto unmap;
2479 2480
			ac->state = ALLOC_NORMAL;
			continue;
W
Wang Wensheng 已提交
2481
		}
2482
		ret = mmap_ret;
W
Wang Wensheng 已提交
2483
	}
2484

W
Wang Wensheng 已提交
2485
	return ret;
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504

unmap:
	/* use the next mm in proc list as end mark */
	if (!list_is_last(&spg_node->proc_node, &spa->spg->procs))
		end_mm = list_next_entry(spg_node, proc_node)->master->mm;
	sp_alloc_unmap(end_mm, spa, spg_node);

	/* only fallocate spa if physical memory had been allocated */
	if (ac->need_fallocate) {
		sp_fallocate(spa);
		ac->need_fallocate = false;
	}

	/* if hugepage allocation fails, this will transfer to normal page
	 * and try again. (only if SP_HUGEPAGE_ONLY is not flagged
	 */
	sp_alloc_fallback(spa, ac);

	return mmap_ret;
W
Wang Wensheng 已提交
2505 2506 2507 2508
}

/* spa maybe an error pointer, so introduce variable spg */
static void sp_alloc_finish(int result, struct sp_area *spa,
2509
		struct sp_alloc_context *ac)
W
Wang Wensheng 已提交
2510 2511 2512
{
	struct sp_group *spg = ac->spg;

2513
	/* match sp_alloc_prepare */
2514
	up_read(&spg->rw_lock);
W
Wang Wensheng 已提交
2515 2516 2517 2518 2519

	if (!result)
		sp_update_process_stat(current, true, spa);

	/* this will free spa if mmap failed */
2520
	if (spa && !IS_ERR(spa))
W
Wang Wensheng 已提交
2521 2522
		__sp_area_drop(spa);

2523
	sp_group_drop(spg);
W
Wang Wensheng 已提交
2524 2525
}

2526
/**
2527
 * mg_sp_alloc() - Allocate shared memory for all the processes in a sp_group.
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
 * @size: the size of memory to allocate.
 * @sp_flags: how to allocate the memory.
 * @spg_id: the share group that the memory is allocated to.
 *
 * Use pass through allocation if spg_id == SPG_ID_DEFAULT in multi-group mode.
 *
 * Return:
 * * if succeed, return the starting address of the shared memory.
 * * if fail, return the pointer of -errno.
 */
2538
void *mg_sp_alloc(unsigned long size, unsigned long sp_flags, int spg_id)
2539
{
W
Wang Wensheng 已提交
2540 2541 2542 2543
	struct sp_area *spa = NULL;
	int ret = 0;
	struct sp_alloc_context ac;

2544 2545 2546
	if (!sp_is_enabled())
		return ERR_PTR(-EOPNOTSUPP);

W
Wang Wensheng 已提交
2547 2548 2549 2550 2551 2552
	ret = sp_alloc_prepare(size, sp_flags, spg_id, &ac);
	if (ret)
		return ERR_PTR(ret);

try_again:
	spa = sp_alloc_area(ac.size_aligned, ac.sp_flags, ac.spg,
2553
			    ac.type, current->tgid);
W
Wang Wensheng 已提交
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
	if (IS_ERR(spa)) {
		pr_err_ratelimited("alloc spa failed in allocation(potential no enough virtual memory when -75): %ld\n",
			PTR_ERR(spa));
		ret = PTR_ERR(spa);
		goto out;
	}

	ret = sp_alloc_mmap_populate(spa, &ac);
	if (ret && ac.state == ALLOC_RETRY)
		goto try_again;

out:
	sp_alloc_finish(ret, spa, &ac);
	if (ret)
		return ERR_PTR(ret);
	else
		return (void *)(spa->va_start);
2571 2572 2573
}
EXPORT_SYMBOL_GPL(mg_sp_alloc);

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
/**
 * is_vmap_hugepage() - Check if a kernel address belongs to vmalloc family.
 * @addr: the kernel space address to be checked.
 *
 * Return:
 * * >0		- a vmalloc hugepage addr.
 * * =0		- a normal vmalloc addr.
 * * -errno	- failure.
 */
static int is_vmap_hugepage(unsigned long addr)
{
	struct vm_struct *area;

	if (unlikely(!addr)) {
		pr_err_ratelimited("null vmap addr pointer\n");
		return -EINVAL;
	}

	area = find_vm_area((void *)addr);
	if (unlikely(!area)) {
		pr_debug("can't find vm area(%lx)\n", addr);
		return -EINVAL;
	}

	if (area->flags & VM_HUGE_PAGES)
		return 1;
	else
		return 0;
}

2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
static unsigned long __sp_remap_get_pfn(unsigned long kva)
{
	unsigned long pfn;

	if (is_vmalloc_addr((void *)kva))
		pfn = vmalloc_to_pfn((void *)kva);
	else
		pfn = virt_to_pfn(kva);

	return pfn;
}

/* when called by k2u to group, always make sure rw_lock of spg is down */
static unsigned long sp_remap_kva_to_vma(unsigned long kva, struct sp_area *spa,
2618
					 struct mm_struct *mm, unsigned long prot, struct sp_k2u_context *kc)
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
{
	struct vm_area_struct *vma;
	unsigned long ret_addr;
	unsigned long populate = 0;
	int ret = 0;
	unsigned long addr, buf, offset;

	down_write(&mm->mmap_lock);
	if (unlikely(mm->core_state)) {
		pr_err("k2u mmap: encountered coredump, abort\n");
		ret_addr = -EBUSY;
2630 2631
		if (kc)
			kc->state = K2U_COREDUMP;
2632 2633 2634
		goto put_mm;
	}

2635 2636 2637
	if (kc && kc->sp_flags & SP_PROT_RO)
		prot = PROT_READ;

2638
	ret_addr = sp_mmap(mm, spa_file(spa), spa, &populate, prot, &vma);
2639 2640 2641 2642 2643 2644 2645 2646
	if (IS_ERR_VALUE(ret_addr)) {
		pr_debug("k2u mmap failed %lx\n", ret_addr);
		goto put_mm;
	}

	if (prot & PROT_WRITE)
		vma->vm_page_prot = __pgprot(((~PTE_RDONLY) & vma->vm_page_prot.pgprot) | PTE_DIRTY);

2647 2648 2649
	if (kc && kc->sp_flags & SP_PROT_RO)
		vma->vm_flags &= ~VM_MAYWRITE;

2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
	if (is_vm_hugetlb_page(vma)) {
		ret = remap_vmalloc_hugepage_range(vma, (void *)kva, 0);
		if (ret) {
			do_munmap(mm, ret_addr, spa_size(spa), NULL);
			pr_debug("remap vmalloc hugepage failed, ret %d, kva is %lx\n",
				 ret, (unsigned long)kva);
			ret_addr = ret;
			goto put_mm;
		}
		vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
	} else {
		buf = ret_addr;
		addr = kva;
		offset = 0;
		do {
			ret = remap_pfn_range(vma, buf, __sp_remap_get_pfn(addr), PAGE_SIZE,
					__pgprot(vma->vm_page_prot.pgprot));
			if (ret) {
				do_munmap(mm, ret_addr, spa_size(spa), NULL);
				pr_err("remap_pfn_range failed %d\n", ret);
				ret_addr = ret;
				goto put_mm;
			}
			offset += PAGE_SIZE;
			buf += PAGE_SIZE;
			addr += PAGE_SIZE;
		} while (offset < spa_size(spa));
	}

put_mm:
	up_write(&mm->mmap_lock);

	return ret_addr;
}

/**
 * sp_make_share_kva_to_task() - Share kernel memory to current task.
 * @kva: the VA of shared kernel memory
 * @size: the size of area to share, should be aligned properly
 * @sp_flags: the flags for the opreation
 *
 * Return:
 * * if succeed, return the shared user address to start at.
 * * if fail, return the pointer of -errno.
 */
static void *sp_make_share_kva_to_task(unsigned long kva, unsigned long size, unsigned long sp_flags)
{
2697
	int ret;
2698 2699
	void *uva;
	struct sp_area *spa;
2700
	struct sp_group_node *spg_node;
2701
	unsigned long prot = PROT_READ | PROT_WRITE;
2702
	struct sp_k2u_context kc;
2703
	struct sp_group *spg;
2704 2705

	down_write(&sp_group_sem);
2706
	ret = sp_init_group_master_locked(current, current->mm);
2707 2708 2709 2710 2711 2712 2713 2714
	if (ret) {
		up_write(&sp_group_sem);
		pr_err_ratelimited("k2u_task init local mapping failed %d\n", ret);
		return ERR_PTR(ret);
	}

	spg = current->mm->sp_group_master->local;
	up_write(&sp_group_sem);
2715

2716
	spa = sp_alloc_area(size, sp_flags, spg, SPA_TYPE_K2TASK, current->tgid);
2717 2718 2719 2720 2721 2722 2723
	if (IS_ERR(spa)) {
		pr_err_ratelimited("alloc spa failed in k2u_task (potential no enough virtual memory when -75): %ld\n",
				PTR_ERR(spa));
		return spa;
	}

	spa->kva = kva;
2724 2725
	kc.sp_flags = sp_flags;
	uva = (void *)sp_remap_kva_to_vma(kva, spa, current->mm, prot, &kc);
2726 2727 2728
	if (IS_ERR(uva))
		pr_err("remap k2u to task failed %ld\n", PTR_ERR(uva));
	else {
2729
		spg_node = find_spg_node_by_spg(current->mm, spa->spg);
G
Guo Mengqi 已提交
2730
		update_mem_usage(size, true, spa->is_hugepage, spg_node, SPA_TYPE_K2TASK);
2731 2732
		spa->mm = current->mm;
	}
Z
Zhou Guanghui 已提交
2733
	__sp_area_drop(spa);
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753

	return uva;
}

/**
 * Share kernel memory to a spg, the current process must be in that group
 * @kva: the VA of shared kernel memory
 * @size: the size of area to share, should be aligned properly
 * @sp_flags: the flags for the opreation
 * @spg: the sp group to be shared with
 *
 * Return: the shared user address to start at
 */
static void *sp_make_share_kva_to_spg(unsigned long kva, unsigned long size,
				      unsigned long sp_flags, struct sp_group *spg)
{
	struct sp_area *spa;
	struct mm_struct *mm;
	struct sp_group_node *spg_node;
	void *uva = ERR_PTR(-ENODEV);
2754 2755
	struct sp_k2u_context kc;
	unsigned long ret_addr = -ENODEV;
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766

	down_read(&spg->rw_lock);
	spa = sp_alloc_area(size, sp_flags, spg, SPA_TYPE_K2SPG, current->tgid);
	if (IS_ERR(spa)) {
		up_read(&spg->rw_lock);
		pr_err_ratelimited("alloc spa failed in k2u_spg (potential no enough virtual memory when -75): %ld\n",
				PTR_ERR(spa));
		return spa;
	}

	spa->kva = kva;
2767
	kc.sp_flags = sp_flags;
2768 2769
	list_for_each_entry(spg_node, &spg->procs, proc_node) {
		mm = spg_node->master->mm;
2770 2771 2772 2773 2774 2775
		kc.state = K2U_NORMAL;
		ret_addr = sp_remap_kva_to_vma(kva, spa, mm, spg_node->prot, &kc);
		if (IS_ERR_VALUE(ret_addr)) {
			if (kc.state == K2U_COREDUMP)
				continue;
			uva = (void *)ret_addr;
2776 2777 2778 2779
			pr_err("remap k2u to spg failed %ld\n", PTR_ERR(uva));
			__sp_free(spg, spa->va_start, spa_size(spa), mm);
			goto out;
		}
2780
		uva = (void *)ret_addr;
2781 2782 2783 2784 2785 2786
	}

out:
	up_read(&spg->rw_lock);
	if (!IS_ERR(uva))
		sp_update_process_stat(current, true, spa);
Z
Zhou Guanghui 已提交
2787
	__sp_area_drop(spa);
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811

	return uva;
}

static bool vmalloc_area_set_flag(unsigned long kva, unsigned long flags)
{
	struct vm_struct *area;

	area = find_vm_area((void *)kva);
	if (area) {
		area->flags |= flags;
		return true;
	}

	return false;
}

static int sp_k2u_prepare(unsigned long kva, unsigned long size,
	unsigned long sp_flags, int spg_id, struct sp_k2u_context *kc)
{
	int is_hugepage;
	unsigned int page_size = PAGE_SIZE;
	unsigned long kva_aligned, size_aligned;

2812
	if (sp_flags & ~SP_FLAG_MASK) {
2813 2814 2815
		pr_err_ratelimited("k2u sp_flags %lx error\n", sp_flags);
		return -EINVAL;
	}
2816
	sp_flags &= ~SP_HUGEPAGE;
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848

	if (!current->mm) {
		pr_err_ratelimited("k2u: kthread is not allowed\n");
		return -EPERM;
	}

	is_hugepage = is_vmap_hugepage(kva);
	if (is_hugepage > 0) {
		sp_flags |= SP_HUGEPAGE;
		page_size = PMD_SIZE;
	} else if (is_hugepage == 0) {
		/* do nothing */
	} else {
		pr_err_ratelimited("k2u kva is not vmalloc address\n");
		return is_hugepage;
	}

	/* aligned down kva is convenient for caller to start with any valid kva */
	kva_aligned = ALIGN_DOWN(kva, page_size);
	size_aligned = ALIGN(kva + size, page_size) - kva_aligned;

	if (!vmalloc_area_set_flag(kva_aligned, VM_SHAREPOOL)) {
		pr_debug("k2u_task kva %lx is not valid\n", kva_aligned);
		return -EINVAL;
	}

	kc->kva = kva;
	kc->kva_aligned = kva_aligned;
	kc->size = size;
	kc->size_aligned = size_aligned;
	kc->sp_flags = sp_flags;
	kc->spg_id = spg_id;
2849 2850 2851 2852
	if (spg_id == SPG_ID_DEFAULT || spg_id == SPG_ID_NONE)
		kc->to_task = true;
	else
		kc->to_task = false;
2853

2854
	return 0;
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
}

static void *sp_k2u_finish(void *uva, struct sp_k2u_context *kc)
{
	if (IS_ERR(uva))
		vmalloc_area_clr_flag(kc->kva_aligned, VM_SHAREPOOL);
	else
		uva = uva + (kc->kva - kc->kva_aligned);

	return uva;
}

2867
/**
2868
 * mg_sp_make_share_k2u() - Share kernel memory to current process or an sp_group.
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
 * @kva: the VA of shared kernel memory.
 * @size: the size of shared kernel memory.
 * @sp_flags: how to allocate the memory. We only support SP_DVPP.
 * @pid:  the pid of the specified process (Not currently in use).
 * @spg_id: the share group that the memory is shared to.
 *
 * Return: the shared target user address to start at
 *
 * Share kernel memory to current task if spg_id == SPG_ID_NONE
 * or SPG_ID_DEFAULT in multi-group mode.
 *
 * Return:
 * * if succeed, return the shared user address to start at.
 * * if fail, return the pointer of -errno.
 */
2884
void *mg_sp_make_share_k2u(unsigned long kva, unsigned long size,
2885 2886
			unsigned long sp_flags, int pid, int spg_id)
{
2887 2888 2889 2890
	void *uva;
	int ret;
	struct sp_k2u_context kc;

2891 2892 2893
	if (!sp_is_enabled())
		return ERR_PTR(-EOPNOTSUPP);

2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
	check_interrupt_context();

	ret = sp_k2u_prepare(kva, size, sp_flags, spg_id, &kc);
	if (ret)
		return ERR_PTR(ret);

	if (kc.to_task)
		uva = sp_make_share_kva_to_task(kc.kva_aligned, kc.size_aligned, kc.sp_flags);
	else {
		struct sp_group *spg;

		spg = __sp_find_spg(current->pid, kc.spg_id);
		if (spg) {
			ret = sp_check_caller_permission(spg, current->mm);
			if (ret < 0) {
				sp_group_drop(spg);
				uva = ERR_PTR(ret);
				goto out;
			}
			uva = sp_make_share_kva_to_spg(kc.kva_aligned, kc.size_aligned, kc.sp_flags, spg);
			sp_group_drop(spg);
		} else
			uva = ERR_PTR(-ENODEV);
	}

out:
	return sp_k2u_finish(uva, &kc);
2921 2922 2923
}
EXPORT_SYMBOL_GPL(mg_sp_make_share_k2u);

2924 2925 2926
static int sp_pmd_entry(pmd_t *pmd, unsigned long addr,
			unsigned long next, struct mm_walk *walk)
{
2927
	struct page *page;
2928 2929
	struct sp_walk_data *sp_walk_data = walk->private;

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
	/*
	 * There exist a scene in DVPP where the pagetable is huge page but its
	 * vma doesn't record it, something like THP.
	 * So we cannot make out whether it is a hugepage map until we access the
	 * pmd here. If mixed size of pages appear, just return an error.
	 */
	if (pmd_huge(*pmd)) {
		if (!sp_walk_data->is_page_type_set) {
			sp_walk_data->is_page_type_set = true;
			sp_walk_data->is_hugepage = true;
		} else if (!sp_walk_data->is_hugepage)
			return -EFAULT;

		/* To skip pte level walk */
		walk->action = ACTION_CONTINUE;

		page = pmd_page(*pmd);
		get_page(page);
		sp_walk_data->pages[sp_walk_data->page_count++] = page;

		return 0;
	}

	if (!sp_walk_data->is_page_type_set) {
		sp_walk_data->is_page_type_set = true;
		sp_walk_data->is_hugepage = false;
	} else if (sp_walk_data->is_hugepage)
		return -EFAULT;

2959
	sp_walk_data->pmd = pmd;
2960

2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
	return 0;
}

static int sp_pte_entry(pte_t *pte, unsigned long addr,
			unsigned long next, struct mm_walk *walk)
{
	struct page *page;
	struct sp_walk_data *sp_walk_data = walk->private;
	pmd_t *pmd = sp_walk_data->pmd;

retry:
	if (unlikely(!pte_present(*pte))) {
		swp_entry_t entry;

		if (pte_none(*pte))
			goto no_page;
		entry = pte_to_swp_entry(*pte);
		if (!is_migration_entry(entry))
			goto no_page;
		migration_entry_wait(walk->mm, pmd, addr);
		goto retry;
	}

	page = pte_page(*pte);
	get_page(page);
	sp_walk_data->pages[sp_walk_data->page_count++] = page;
	return 0;

no_page:
	pr_debug("the page of addr %lx unexpectedly not in RAM\n",
		 (unsigned long)addr);
	return -EFAULT;
}

static int sp_test_walk(unsigned long addr, unsigned long next,
			struct mm_walk *walk)
{
	/*
	 * FIXME: The devmm driver uses remap_pfn_range() but actually there
	 * are associated struct pages, so they should use vm_map_pages() or
	 * similar APIs. Before the driver has been converted to correct APIs
	 * we use this test_walk() callback so we can treat VM_PFNMAP VMAs as
	 * normal VMAs.
	 */
	return 0;
}

static int sp_pte_hole(unsigned long start, unsigned long end,
		       int depth, struct mm_walk *walk)
{
	pr_debug("hole [%lx, %lx) appeared unexpectedly\n", (unsigned long)start, (unsigned long)end);
	return -EFAULT;
}

static int sp_hugetlb_entry(pte_t *ptep, unsigned long hmask,
			    unsigned long addr, unsigned long next,
			    struct mm_walk *walk)
{
	pte_t pte = huge_ptep_get(ptep);
	struct page *page = pte_page(pte);
	struct sp_walk_data *sp_walk_data;

	if (unlikely(!pte_present(pte))) {
		pr_debug("the page of addr %lx unexpectedly not in RAM\n", (unsigned long)addr);
		return -EFAULT;
	}

	sp_walk_data = walk->private;
	get_page(page);
	sp_walk_data->pages[sp_walk_data->page_count++] = page;
	return 0;
}

/*
 * __sp_walk_page_range() - Walk page table with caller specific callbacks.
 * @uva: the start VA of user memory.
 * @size: the size of user memory.
 * @mm: mm struct of the target task.
 * @sp_walk_data: a structure of a page pointer array.
 *
 * the caller must hold mm->mmap_lock
 *
 * Notes for parameter alignment:
 * When size == 0, let it be page_size, so that at least one page is walked.
 *
 * When size > 0, for convenience, usually the parameters of uva and
 * size are not page aligned. There are four different alignment scenarios and
 * we must handler all of them correctly.
 *
 * The basic idea is to align down uva and align up size so all the pages
 * in range [uva, uva + size) are walked. However, there are special cases.
 *
 * Considering a 2M-hugepage addr scenario. Assuming the caller wants to
 * traverse range [1001M, 1004.5M), so uva and size is 1001M and 3.5M
 * accordingly. The aligned-down uva is 1000M and the aligned-up size is 4M.
 * The traverse range will be [1000M, 1004M). Obviously, the final page for
 * [1004M, 1004.5M) is not covered.
 *
 * To fix this problem, we need to walk an additional page, size should be
 * ALIGN(uva+size) - uva_aligned
 */
static int __sp_walk_page_range(unsigned long uva, unsigned long size,
	struct mm_struct *mm, struct sp_walk_data *sp_walk_data)
{
	int ret = 0;
	struct vm_area_struct *vma;
	unsigned long page_nr;
	struct page **pages = NULL;
	bool is_hugepage = false;
	unsigned long uva_aligned;
	unsigned long size_aligned;
	unsigned int page_size = PAGE_SIZE;
	struct mm_walk_ops sp_walk = {};

	/*
	 * Here we also support non share pool memory in this interface
	 * because the caller can't distinguish whether a uva is from the
	 * share pool or not. It is not the best idea to do so, but currently
	 * it simplifies overall design.
	 *
	 * In this situation, the correctness of the parameters is mainly
	 * guaranteed by the caller.
	 */
	vma = find_vma(mm, uva);
	if (!vma) {
		pr_debug("u2k input uva %lx is invalid\n", (unsigned long)uva);
		return -EINVAL;
	}
	if (is_vm_hugetlb_page(vma))
		is_hugepage = true;

	sp_walk.pte_hole = sp_pte_hole;
	sp_walk.test_walk = sp_test_walk;
	if (is_hugepage) {
		sp_walk_data->is_hugepage = true;
		sp_walk.hugetlb_entry = sp_hugetlb_entry;
		page_size = PMD_SIZE;
	} else {
		sp_walk_data->is_hugepage = false;
		sp_walk.pte_entry = sp_pte_entry;
		sp_walk.pmd_entry = sp_pmd_entry;
	}

3104 3105
	sp_walk_data->is_page_type_set = false;
	sp_walk_data->page_count = 0;
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
	sp_walk_data->page_size = page_size;
	uva_aligned = ALIGN_DOWN(uva, page_size);
	sp_walk_data->uva_aligned = uva_aligned;
	if (size == 0)
		size_aligned = page_size;
	else
		/* special alignment handling */
		size_aligned = ALIGN(uva + size, page_size) - uva_aligned;

	if (uva_aligned + size_aligned < uva_aligned) {
		pr_err_ratelimited("overflow happened in walk page range\n");
		return -EINVAL;
	}

	page_nr = size_aligned / page_size;
	pages = kvmalloc(page_nr * sizeof(struct page *), GFP_KERNEL);
	if (!pages) {
		pr_err_ratelimited("alloc page array failed in walk page range\n");
		return -ENOMEM;
	}
	sp_walk_data->pages = pages;

	ret = walk_page_range(mm, uva_aligned, uva_aligned + size_aligned,
			      &sp_walk, sp_walk_data);
3130 3131 3132
	if (ret) {
		while (sp_walk_data->page_count--)
			put_page(pages[sp_walk_data->page_count]);
3133
		kvfree(pages);
3134 3135
		sp_walk_data->pages = NULL;
	}
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155

	return ret;
}

static void __sp_walk_page_free(struct sp_walk_data *data)
{
	int i = 0;
	struct page *page;

	while (i < data->page_count) {
		page = data->pages[i++];
		put_page(page);
	}

	kvfree(data->pages);
	/* prevent repeated release */
	data->page_count = 0;
	data->pages = NULL;
}

3156
/**
3157
 * mg_sp_make_share_u2k() - Share user memory of a specified process to kernel.
3158 3159 3160 3161 3162 3163 3164 3165
 * @uva: the VA of shared user memory
 * @size: the size of shared user memory
 * @pid: the pid of the specified process(Not currently in use)
 *
 * Return:
 * * if success, return the starting kernel address of the shared memory.
 * * if failed, return the pointer of -errno.
 */
3166
void *mg_sp_make_share_u2k(unsigned long uva, unsigned long size, int pid)
3167
{
3168 3169 3170
	int ret = 0;
	struct mm_struct *mm = current->mm;
	void *p = ERR_PTR(-ESRCH);
3171
	struct sp_walk_data sp_walk_data;
3172 3173
	struct vm_struct *area;

3174 3175 3176
	if (!sp_is_enabled())
		return ERR_PTR(-EOPNOTSUPP);

3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
	check_interrupt_context();

	if (mm == NULL) {
		pr_err("u2k: kthread is not allowed\n");
		return ERR_PTR(-EPERM);
	}

	down_write(&mm->mmap_lock);
	if (unlikely(mm->core_state)) {
		up_write(&mm->mmap_lock);
		pr_err("u2k: encountered coredump, abort\n");
		return p;
	}

	ret = __sp_walk_page_range(uva, size, mm, &sp_walk_data);
	if (ret) {
		pr_err_ratelimited("walk page range failed %d\n", ret);
		up_write(&mm->mmap_lock);
		return ERR_PTR(ret);
	}

	if (sp_walk_data.is_hugepage)
		p = vmap_hugepage(sp_walk_data.pages, sp_walk_data.page_count,
				  VM_MAP, PAGE_KERNEL);
	else
		p = vmap(sp_walk_data.pages, sp_walk_data.page_count, VM_MAP,
			 PAGE_KERNEL);
	up_write(&mm->mmap_lock);

	if (!p) {
		pr_err("vmap(huge) in u2k failed\n");
		__sp_walk_page_free(&sp_walk_data);
		return ERR_PTR(-ENOMEM);
	}

	p = p + (uva - sp_walk_data.uva_aligned);

	/*
	 * kva p may be used later in k2u. Since p comes from uva originally,
	 * it's reasonable to add flag VM_USERMAP so that p can be remapped
	 * into userspace again.
	 */
	area = find_vm_area(p);
	area->flags |= VM_USERMAP;

	kvfree(sp_walk_data.pages);
	return p;
3224 3225 3226
}
EXPORT_SYMBOL_GPL(mg_sp_make_share_u2k);

3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
/*
 * Input parameters uva, pid and spg_id are now useless. spg_id will be useful
 * when supporting a process in multiple sp groups.
 *
 * Procedure of unshare uva must be compatible with:
 *
 * 1. DVPP channel destroy procedure:
 * do_exit() -> exit_mm() (mm no longer in spg and current->mm == NULL) ->
 * exit_task_work() -> task_work_run() -> __fput() -> ... -> vdec_close() ->
 * sp_unshare(uva, SPG_ID_DEFAULT)
 *
 * 2. Process A once was the target of k2u(to group), then it exits.
 * Guard worker kthread tries to free this uva and it must succeed, otherwise
 * spa of this uva leaks.
 *
 * This also means we must trust DVPP channel destroy and guard worker code.
 */
3244
static int sp_unshare_uva(unsigned long uva, unsigned long size, int group_id)
3245
{
3246 3247 3248 3249 3250 3251
	int ret = 0;
	struct mm_struct *mm;
	struct sp_area *spa;
	unsigned long uva_aligned;
	unsigned long size_aligned;
	unsigned int page_size;
3252 3253 3254 3255 3256 3257 3258
	struct sp_group *spg;

	spg = __sp_find_spg(current->tgid, group_id);
	if (!spg) {
		pr_debug("sp unshare find group failed %d\n", group_id);
		return -EINVAL;
	}
3259 3260 3261 3262 3263

	/*
	 * at first we guess it's a hugepage addr
	 * we can tolerate at most PMD_SIZE or PAGE_SIZE which is matched in k2u
	 */
3264
	spa = __find_sp_area(spg, ALIGN_DOWN(uva, PMD_SIZE));
3265
	if (!spa) {
3266
		spa = __find_sp_area(spg, ALIGN_DOWN(uva, PAGE_SIZE));
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
		if (!spa) {
			ret = -EINVAL;
			pr_debug("invalid input uva %lx in unshare uva\n", (unsigned long)uva);
			goto out;
		}
	}

	if (spa->type != SPA_TYPE_K2TASK && spa->type != SPA_TYPE_K2SPG) {
		pr_err_ratelimited("unshare wrong type spa\n");
		ret = -EINVAL;
		goto out_drop_area;
	}
	/*
	 * 1. overflow actually won't happen due to an spa must be valid.
	 * 2. we must unshare [spa->va_start, spa->va_start + spa->real_size) completely
	 *    because an spa is one-to-one correspondence with an vma.
	 *    Thus input parameter size is not necessarily needed.
	 */
	page_size = (spa->is_hugepage ? PMD_SIZE : PAGE_SIZE);
	uva_aligned = spa->va_start;
	size_aligned = spa->real_size;

	if (size_aligned < ALIGN(size, page_size)) {
		ret = -EINVAL;
		pr_err_ratelimited("unshare uva failed, invalid parameter size %lu\n", size);
		goto out_drop_area;
	}

	if (spa->type == SPA_TYPE_K2TASK) {
		if (spa->applier != current->tgid) {
			pr_err_ratelimited("unshare uva(to task) no permission\n");
			ret = -EPERM;
			goto out_drop_area;
		}

		/*
		 * current thread may be exiting in a multithread process
		 *
		 * 1. never need a kthread to make unshare when process has exited
		 * 2. in dvpp channel destroy procedure, exit_mm() has been called
		 *    and don't need to make unshare
		 */
		mm = get_task_mm(current->group_leader);
		if (!mm) {
			pr_info_ratelimited("no need to unshare uva(to task), target process mm is exiting\n");
			goto out_clr_flag;
		}

		down_write(&mm->mmap_lock);
		if (unlikely(mm->core_state)) {
			ret = 0;
			up_write(&mm->mmap_lock);
			mmput(mm);
			goto out_drop_area;
		}

		ret = do_munmap(mm, uva_aligned, size_aligned, NULL);
		up_write(&mm->mmap_lock);
		mmput(mm);
		/* we are not supposed to fail */
		if (ret)
			pr_err("failed to unmap VA %pK when munmap in unshare uva\n",
			       (void *)uva_aligned);
		sp_update_process_stat(current, false, spa);

	} else if (spa->type == SPA_TYPE_K2SPG) {
		down_read(&spa->spg->rw_lock);
		/* always allow kthread and dvpp channel destroy procedure */
		if (current->mm) {
			if (!is_process_in_group(spa->spg, current->mm)) {
				up_read(&spa->spg->rw_lock);
				pr_err_ratelimited("unshare uva(to group) failed, caller process doesn't belong to target group\n");
				ret = -EPERM;
				goto out_drop_area;
			}
		}
		up_read(&spa->spg->rw_lock);

		down_write(&spa->spg->rw_lock);
		if (!spg_valid(spa->spg)) {
			up_write(&spa->spg->rw_lock);
			pr_info_ratelimited("share pool: no need to unshare uva(to group), sp group of spa is dead\n");
			goto out_clr_flag;
		}
		/* the life cycle of spa has a direct relation with sp group */
		if (unlikely(spa->is_dead)) {
			up_write(&spa->spg->rw_lock);
			pr_err_ratelimited("unexpected double sp unshare\n");
			dump_stack();
			ret = -EINVAL;
			goto out_drop_area;
		}
		spa->is_dead = true;
		up_write(&spa->spg->rw_lock);

		down_read(&spa->spg->rw_lock);
		__sp_free(spa->spg, uva_aligned, size_aligned, NULL);
		up_read(&spa->spg->rw_lock);

		if (current->mm == NULL)
			atomic64_sub(spa->real_size, &kthread_stat.k2u_size);
		else
			sp_update_process_stat(current, false, spa);
	} else {
		WARN(1, "unshare uva invalid spa type");
	}

out_clr_flag:
	if (!vmalloc_area_clr_flag(spa->kva, VM_SHAREPOOL))
		pr_debug("clear spa->kva %ld is not valid\n", spa->kva);
	spa->kva = 0;

out_drop_area:
	__sp_area_drop(spa);
out:
3382
	sp_group_drop(spg);
3383
	return ret;
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
}

/* No possible concurrent protection, take care when use */
static int sp_unshare_kva(unsigned long kva, unsigned long size)
{
	unsigned long addr, kva_aligned;
	struct page *page;
	unsigned long size_aligned;
	unsigned long step;
	bool is_hugepage = true;
	int ret;

	ret = is_vmap_hugepage(kva);
	if (ret > 0) {
		kva_aligned = ALIGN_DOWN(kva, PMD_SIZE);
		size_aligned = ALIGN(kva + size, PMD_SIZE) - kva_aligned;
		step = PMD_SIZE;
	} else if (ret == 0) {
		kva_aligned = ALIGN_DOWN(kva, PAGE_SIZE);
		size_aligned = ALIGN(kva + size, PAGE_SIZE) - kva_aligned;
		step = PAGE_SIZE;
		is_hugepage = false;
	} else {
		pr_err_ratelimited("check vmap hugepage failed %d\n", ret);
		return -EINVAL;
	}

	if (kva_aligned + size_aligned < kva_aligned) {
		pr_err_ratelimited("overflow happened in unshare kva\n");
		return -EINVAL;
	}

	for (addr = kva_aligned; addr < (kva_aligned + size_aligned); addr += step) {
		page = vmalloc_to_page((void *)addr);
		if (page)
			put_page(page);
		else
			WARN(1, "vmalloc %pK to page/hugepage failed\n",
			       (void *)addr);
	}

	vunmap((void *)kva_aligned);

	return 0;
}

3430
/**
3431
 * mg_sp_unshare() - Unshare the kernel or user memory which shared by calling
3432 3433 3434 3435 3436 3437 3438 3439
 *                sp_make_share_{k2u,u2k}().
 * @va: the specified virtual address of memory
 * @size: the size of unshared memory
 *
 * Use spg_id of current thread if spg_id == SPG_ID_DEFAULT.
 *
 * Return: 0 for success, -errno on failure.
 */
3440
int mg_sp_unshare(unsigned long va, unsigned long size, int spg_id)
3441
{
3442 3443
	int ret = 0;

3444 3445 3446
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

3447 3448
	check_interrupt_context();

3449 3450 3451
	if (current->flags & PF_KTHREAD)
		return -EINVAL;

3452 3453
	if (va < TASK_SIZE) {
		/* user address */
3454
		ret = sp_unshare_uva(va, size, spg_id);
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
	} else if (va >= PAGE_OFFSET) {
		/* kernel address */
		ret = sp_unshare_kva(va, size);
	} else {
		/* regard user and kernel address ranges as bad address */
		pr_debug("unshare addr %lx is not a user or kernel addr\n", (unsigned long)va);
		ret = -EFAULT;
	}

	return ret;
3465 3466 3467 3468
}
EXPORT_SYMBOL_GPL(mg_sp_unshare);

/**
3469
 * mg_sp_walk_page_range() - Walk page table with caller specific callbacks.
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
 * @uva: the start VA of user memory.
 * @size: the size of user memory.
 * @tsk: task struct of the target task.
 * @sp_walk_data: a structure of a page pointer array.
 *
 * Return: 0 for success, -errno on failure.
 *
 * When return 0, sp_walk_data describing [uva, uva+size) can be used.
 * When return -errno, information in sp_walk_data is useless.
 */
3480
int mg_sp_walk_page_range(unsigned long uva, unsigned long size,
3481 3482
	struct task_struct *tsk, struct sp_walk_data *sp_walk_data)
{
3483 3484 3485
	struct mm_struct *mm;
	int ret = 0;

3486 3487 3488
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
	check_interrupt_context();

	if (unlikely(!sp_walk_data)) {
		pr_err_ratelimited("null pointer when walk page range\n");
		return -EINVAL;
	}
	if (!tsk || (tsk->flags & PF_EXITING))
		return -ESRCH;

	get_task_struct(tsk);
	mm = get_task_mm(tsk);
	if (!mm) {
		put_task_struct(tsk);
		return -ESRCH;
	}

	down_write(&mm->mmap_lock);
	if (likely(!mm->core_state))
		ret = __sp_walk_page_range(uva, size, mm, sp_walk_data);
	else {
		pr_err("walk page range: encoutered coredump\n");
		ret = -ESRCH;
	}
	up_write(&mm->mmap_lock);

	mmput(mm);
	put_task_struct(tsk);

	return ret;
3518 3519 3520 3521
}
EXPORT_SYMBOL_GPL(mg_sp_walk_page_range);

/**
3522
 * mg_sp_walk_page_free() - Free the sp_walk_data structure.
3523 3524
 * @sp_walk_data: a structure of a page pointer array to be freed.
 */
3525
void mg_sp_walk_page_free(struct sp_walk_data *sp_walk_data)
3526
{
3527 3528 3529
	if (!sp_is_enabled())
		return;

3530 3531 3532 3533 3534 3535
	check_interrupt_context();

	if (!sp_walk_data)
		return;

	__sp_walk_page_free(sp_walk_data);
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
}
EXPORT_SYMBOL_GPL(mg_sp_walk_page_free);

int sp_register_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&sp_notifier_chain, nb);
}
EXPORT_SYMBOL_GPL(sp_register_notifier);

int sp_unregister_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&sp_notifier_chain, nb);
}
EXPORT_SYMBOL_GPL(sp_unregister_notifier);

3551
static bool is_sp_dynamic_dvpp_addr(unsigned long addr);
3552
/**
3553
 * mg_sp_config_dvpp_range() - User can config the share pool start address
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
 *                          of each Da-vinci device.
 * @start: the value of share pool start
 * @size: the value of share pool
 * @device_id: the num of Da-vinci device
 * @pid: the pid of device process
 *
 * Return true for success.
 * Return false if parameter invalid or has been set up.
 * This functuon has no concurrent problem.
 */
3564
bool mg_sp_config_dvpp_range(size_t start, size_t size, int device_id, int pid)
3565
{
3566 3567 3568 3569 3570 3571 3572 3573
	int ret;
	bool err = false;
	struct task_struct *tsk;
	struct mm_struct *mm;
	struct sp_group *spg;
	struct sp_mapping *spm;
	unsigned long default_start;

3574 3575 3576
	if (!sp_is_enabled())
		return false;

3577 3578
	/* NOTE: check the start address */
	if (pid < 0 || size <= 0 || size > MMAP_SHARE_POOL_16G_SIZE ||
3579
	    device_id < 0 || device_id >= MAX_DEVID || !is_online_node_id(device_id)
3580
		|| !is_sp_dynamic_dvpp_addr(start) || !is_sp_dynamic_dvpp_addr(start + size))
3581 3582
		return false;

3583 3584 3585 3586 3587 3588 3589 3590
	ret = get_task(pid, &tsk);
	if (ret)
		return false;

	mm = get_task_mm(tsk->group_leader);
	if (!mm)
		goto put_task;

3591
	spg = sp_get_local_group(tsk, mm);
3592 3593 3594 3595
	if (IS_ERR(spg))
		goto put_mm;

	spm = spg->dvpp;
3596
	default_start = MMAP_SHARE_POOL_DVPP_START + device_id * MMAP_SHARE_POOL_16G_SIZE;
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
	/* The dvpp range of each group can be configured only once */
	if (spm->start[device_id] != default_start)
		goto put_spg;

	spm->start[device_id] = start;
	spm->end[device_id] = start + size;

	err = true;

put_spg:
	sp_group_drop(spg);
put_mm:
	mmput(mm);
put_task:
	put_task_struct(tsk);

	return err;
3614 3615 3616
}
EXPORT_SYMBOL_GPL(mg_sp_config_dvpp_range);

3617
static bool is_sp_reserve_addr(unsigned long addr)
3618
{
3619
	return addr >= MMAP_SHARE_POOL_START && addr < MMAP_SHARE_POOL_END;
3620 3621
}

3622 3623 3624 3625 3626 3627 3628
/*
 *	| 16G host | 16G device | ... |     |
 *	^
 *	|
 *	MMAP_SHARE_POOL_DVPP_BASE + 16G * 64
 *	We only check the device regions.
 */
3629
static bool is_sp_dynamic_dvpp_addr(unsigned long addr)
3630
{
3631
	if (addr < MMAP_SHARE_POOL_DYNAMIC_DVPP_BASE || addr >= MMAP_SHARE_POOL_DYNAMIC_DVPP_END)
3632 3633
		return false;

3634
	return (addr - MMAP_SHARE_POOL_DYNAMIC_DVPP_BASE) & MMAP_SHARE_POOL_16G_SIZE;
3635 3636
}

3637
/**
3638
 * mg_is_sharepool_addr() - Check if a user memory address belongs to share pool.
3639 3640 3641 3642
 * @addr: the userspace address to be checked.
 *
 * Return true if addr belongs to share pool, or false vice versa.
 */
3643
bool mg_is_sharepool_addr(unsigned long addr)
3644
{
3645
	return sp_is_enabled() &&
3646
		((is_sp_reserve_addr(addr) || is_sp_dynamic_dvpp_addr(addr)));
3647 3648 3649
}
EXPORT_SYMBOL_GPL(mg_is_sharepool_addr);

3650 3651 3652 3653 3654 3655 3656 3657
int sp_node_id(struct vm_area_struct *vma)
{
	struct sp_area *spa;
	int node_id = numa_node_id();

	if (!sp_is_enabled())
		return node_id;

3658 3659 3660
	if (vma && vma->vm_flags & VM_SHARE_POOL && vma->vm_private_data) {
		spa = vma->vm_private_data;
		node_id = spa->node_id;
3661 3662 3663 3664 3665
	}

	return node_id;
}

3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
/*** Statistical and maintenance functions ***/

static void get_mm_rss_info(struct mm_struct *mm, unsigned long *anon,
	unsigned long *file, unsigned long *shmem, unsigned long *total_rss)
{
	*anon = get_mm_counter(mm, MM_ANONPAGES);
	*file = get_mm_counter(mm, MM_FILEPAGES);
	*shmem = get_mm_counter(mm, MM_SHMEMPAGES);
	*total_rss = *anon + *file + *shmem;
}

static long get_proc_k2u(struct sp_proc_stat *stat)
{
	return byte2kb(atomic64_read(&stat->k2u_size));
}

3682
static long get_proc_alloc(struct sp_proc_stat *stat)
3683
{
3684 3685
	return byte2kb(atomic64_read(&stat->alloc_nsize) +
			atomic64_read(&stat->alloc_hsize));
3686 3687
}

G
Guo Mengqi 已提交
3688
static void get_process_sp_res(struct sp_group_master *master,
3689
		long *sp_res_out, long *sp_res_nsize_out)
3690
{
G
Guo Mengqi 已提交
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
	struct sp_group *spg;
	struct sp_group_node *spg_node;

	*sp_res_out = 0;
	*sp_res_nsize_out = 0;

	list_for_each_entry(spg_node, &master->node_list, group_node) {
		spg = spg_node->spg;
		*sp_res_out += byte2kb(atomic64_read(&spg->instat.alloc_nsize));
		*sp_res_out += byte2kb(atomic64_read(&spg->instat.alloc_hsize));
		*sp_res_nsize_out += byte2kb(atomic64_read(&spg->instat.alloc_nsize));
	}
3703 3704
}

3705
static long get_sp_res_by_spg_proc(struct sp_group_node *spg_node)
3706
{
G
Guo Mengqi 已提交
3707 3708
	return byte2kb(atomic64_read(&spg_node->spg->instat.alloc_nsize) +
			atomic64_read(&spg_node->spg->instat.alloc_hsize));
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
}

/*
 *  Statistics of RSS has a maximum 64 pages deviation (256KB).
 *  Please check_sync_rss_stat().
 */
static void get_process_non_sp_res(unsigned long total_rss, unsigned long shmem,
	long sp_res_nsize, long *non_sp_res_out, long *non_sp_shm_out)
{
	long non_sp_res, non_sp_shm;

	non_sp_res = page2kb(total_rss) - sp_res_nsize;
	non_sp_res = non_sp_res < 0 ? 0 : non_sp_res;
	non_sp_shm = page2kb(shmem) - sp_res_nsize;
	non_sp_shm = non_sp_shm < 0 ? 0 : non_sp_shm;

	*non_sp_res_out = non_sp_res;
	*non_sp_shm_out = non_sp_shm;
}

3729
static long get_spg_proc_alloc(struct sp_group_node *spg_node)
3730
{
3731 3732
	return byte2kb(atomic64_read(&spg_node->instat.alloc_nsize) +
				atomic64_read(&spg_node->instat.alloc_hsize));
3733 3734
}

3735
static long get_spg_proc_k2u(struct sp_group_node *spg_node)
3736
{
3737
	return byte2kb(atomic64_read(&spg_node->instat.k2u_size));
3738 3739 3740 3741 3742 3743 3744 3745
}

static void print_process_prot(struct seq_file *seq, unsigned long prot)
{
	if (prot == PROT_READ)
		seq_puts(seq, "R");
	else if (prot == (PROT_READ | PROT_WRITE))
		seq_puts(seq, "RW");
3746
	else
3747 3748 3749 3750 3751 3752
		seq_puts(seq, "-");
}

int proc_sp_group_state(struct seq_file *m, struct pid_namespace *ns,
			struct pid *pid, struct task_struct *task)
{
Z
Zhou Guanghui 已提交
3753
	struct mm_struct *mm;
3754 3755
	struct sp_group_master *master;
	struct sp_proc_stat *proc_stat;
3756 3757
	struct sp_group_node *spg_node;
	unsigned long anon, file, shmem, total_rss;
3758 3759
	long sp_res, sp_res_nsize, non_sp_res, non_sp_shm;

3760 3761 3762
	if (!sp_is_enabled())
		return 0;

Z
Zhou Guanghui 已提交
3763
	mm = get_task_mm(task);
3764 3765 3766
	if (!mm)
		return 0;

3767
	down_read(&sp_group_sem);
3768
	down_read(&mm->mmap_lock);
3769
	master = mm->sp_group_master;
Z
Zhou Guanghui 已提交
3770 3771
	if (!master)
		goto out;
3772 3773

	get_mm_rss_info(mm, &anon, &file, &shmem, &total_rss);
3774
	proc_stat = &master->instat;
G
Guo Mengqi 已提交
3775
	get_process_sp_res(master, &sp_res, &sp_res_nsize);
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
	get_process_non_sp_res(total_rss, shmem, sp_res_nsize,
			       &non_sp_res, &non_sp_shm);

	seq_puts(m, "Share Pool Aggregate Data of This Process\n\n");
	seq_printf(m, "%-8s %-16s %-9s %-9s %-9s %-10s %-10s %-8s\n",
		   "PID", "COMM", "SP_ALLOC", "SP_K2U", "SP_RES", "Non-SP_RES",
		   "Non-SP_Shm", "VIRT");
	seq_printf(m, "%-8d %-16s %-9ld %-9ld %-9ld %-10ld %-10ld %-8ld\n",
		   proc_stat->tgid, proc_stat->comm,
		   get_proc_alloc(proc_stat),
		   get_proc_k2u(proc_stat),
		   sp_res, non_sp_res, non_sp_shm,
		   page2kb(mm->total_vm));

	seq_puts(m, "\n\nProcess in Each SP Group\n\n");
	seq_printf(m, "%-8s %-9s %-9s %-9s %-4s\n",
3792
			"Group_ID", "SP_ALLOC", "SP_K2U", "SP_RES", "PROT");
3793

3794
	list_for_each_entry(spg_node, &master->node_list, group_node) {
3795
		seq_printf(m, "%-8d %-9ld %-9ld %-9ld ",
3796 3797 3798 3799 3800
				spg_node->spg->id,
				get_spg_proc_alloc(spg_node),
				get_spg_proc_k2u(spg_node),
				get_sp_res_by_spg_proc(spg_node));
		print_process_prot(m, spg_node->prot);
3801 3802
		seq_putc(m, '\n');
	}
Z
Zhou Guanghui 已提交
3803 3804

out:
3805
	up_read(&mm->mmap_lock);
3806
	up_read(&sp_group_sem);
Z
Zhou Guanghui 已提交
3807
	mmput(mm);
3808 3809 3810
	return 0;
}

3811
static void spa_stat_of_mapping_show(struct seq_file *seq, struct sp_mapping *spm)
3812 3813 3814 3815 3816
{
	struct rb_node *node;
	struct sp_area *spa, *prev = NULL;

	spin_lock(&sp_area_lock);
3817
	for (node = rb_first(&spm->area_root); node; node = rb_next(node)) {
3818 3819 3820 3821 3822 3823 3824
		__sp_area_drop_locked(prev);

		spa = rb_entry(node, struct sp_area, rb_node);
		prev = spa;
		atomic_inc(&spa->use_count);
		spin_unlock(&sp_area_lock);

3825 3826 3827 3828
		if (spg_valid(spa->spg))  /* k2u to group */
			seq_printf(seq, "%-10d ", spa->spg->id);
		else  /* spg is dead */
			seq_printf(seq, "%-10s ", "Dead");
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863

		seq_printf(seq, "%2s%-14lx %2s%-14lx %-10ld ",
			   "0x", spa->va_start,
			   "0x", spa->va_end,
			   byte2kb(spa->real_size));

		switch (spa->type) {
		case SPA_TYPE_ALLOC:
			seq_printf(seq, "%-7s ", "ALLOC");
			break;
		case SPA_TYPE_K2TASK:
			seq_printf(seq, "%-7s ", "TASK");
			break;
		case SPA_TYPE_K2SPG:
			seq_printf(seq, "%-7s ", "SPG");
			break;
		default:
			/* usually impossible, perhaps a developer's mistake */
			break;
		}

		if (spa->is_hugepage)
			seq_printf(seq, "%-5s ", "Y");
		else
			seq_printf(seq, "%-5s ", "N");

		seq_printf(seq, "%-8d ",  spa->applier);
		seq_printf(seq, "%-8d\n", atomic_read(&spa->use_count));

		spin_lock(&sp_area_lock);
	}
	__sp_area_drop_locked(prev);
	spin_unlock(&sp_area_lock);
}

3864 3865 3866 3867 3868 3869 3870
static void spa_normal_stat_show(struct seq_file *seq)
{
	spa_stat_of_mapping_show(seq, sp_mapping_normal);
}

static void spa_dvpp_stat_show(struct seq_file *seq)
{
3871 3872 3873 3874 3875 3876
	struct sp_mapping *spm;

	mutex_lock(&spm_list_lock);
	list_for_each_entry(spm, &spm_dvpp_list, spm_node)
		spa_stat_of_mapping_show(seq, spm);
	mutex_unlock(&spm_list_lock);
3877 3878 3879
}


3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
void spa_overview_show(struct seq_file *seq)
{
	unsigned int total_num, alloc_num, k2u_task_num, k2u_spg_num;
	unsigned long total_size, alloc_size, k2u_task_size, k2u_spg_size;
	unsigned long dvpp_size, dvpp_va_size;

	if (!sp_is_enabled())
		return;

	spin_lock(&sp_area_lock);
	total_num     = spa_stat.total_num;
	alloc_num     = spa_stat.alloc_num;
	k2u_task_num  = spa_stat.k2u_task_num;
	k2u_spg_num   = spa_stat.k2u_spg_num;
	total_size    = spa_stat.total_size;
	alloc_size    = spa_stat.alloc_size;
	k2u_task_size = spa_stat.k2u_task_size;
	k2u_spg_size  = spa_stat.k2u_spg_size;
	dvpp_size     = spa_stat.dvpp_size;
	dvpp_va_size  = spa_stat.dvpp_va_size;
	spin_unlock(&sp_area_lock);

	if (seq != NULL) {
		seq_printf(seq, "Spa total num %u.\n", total_num);
		seq_printf(seq, "Spa alloc num %u, k2u(task) num %u, k2u(spg) num %u.\n",
			   alloc_num, k2u_task_num, k2u_spg_num);
		seq_printf(seq, "Spa total size:     %13lu KB\n", byte2kb(total_size));
		seq_printf(seq, "Spa alloc size:     %13lu KB\n", byte2kb(alloc_size));
		seq_printf(seq, "Spa k2u(task) size: %13lu KB\n", byte2kb(k2u_task_size));
		seq_printf(seq, "Spa k2u(spg) size:  %13lu KB\n", byte2kb(k2u_spg_size));
		seq_printf(seq, "Spa dvpp size:      %13lu KB\n", byte2kb(dvpp_size));
		seq_printf(seq, "Spa dvpp va size:   %13lu MB\n", byte2mb(dvpp_va_size));
		seq_puts(seq, "\n");
	} else {
		pr_info("Spa total num %u.\n", total_num);
		pr_info("Spa alloc num %u, k2u(task) num %u, k2u(spg) num %u.\n",
			alloc_num, k2u_task_num, k2u_spg_num);
		pr_info("Spa total size:     %13lu KB\n", byte2kb(total_size));
		pr_info("Spa alloc size:     %13lu KB\n", byte2kb(alloc_size));
		pr_info("Spa k2u(task) size: %13lu KB\n", byte2kb(k2u_task_size));
		pr_info("Spa k2u(spg) size:  %13lu KB\n", byte2kb(k2u_spg_size));
		pr_info("Spa dvpp size:      %13lu KB\n", byte2kb(dvpp_size));
		pr_info("Spa dvpp va size:   %13lu MB\n", byte2mb(dvpp_va_size));
		pr_info("\n");
	}
}

3927
static int spg_info_show(int id, void *p, void *data)
3928
{
3929
	struct sp_group *spg = p;
3930 3931
	struct seq_file *seq = data;

3932
	if (id >= SPG_ID_LOCAL_MIN && id <= SPG_ID_LOCAL_MAX)
3933
		return 0;
3934

3935
	if (seq != NULL) {
G
Guo Mengqi 已提交
3936
		seq_printf(seq, "Group %6d ", id);
3937 3938

		down_read(&spg->rw_lock);
3939
		seq_printf(seq, "size: %lld KB, spa num: %d, total alloc: %lld KB, normal alloc: %lld KB, huge alloc: %lld KB\n",
3940 3941 3942 3943 3944 3945
				byte2kb(atomic64_read(&spg->instat.size)),
				atomic_read(&spg->instat.spa_num),
				byte2kb(atomic64_read(&spg->instat.alloc_size)),
				byte2kb(atomic64_read(&spg->instat.alloc_nsize)),
				byte2kb(atomic64_read(&spg->instat.alloc_hsize)));
		up_read(&spg->rw_lock);
3946
	} else {
G
Guo Mengqi 已提交
3947
		pr_info("Group %6d ", id);
3948 3949

		down_read(&spg->rw_lock);
3950
		pr_info("size: %lld KB, spa num: %d, total alloc: %lld KB, normal alloc: %lld KB, huge alloc: %lld KB\n",
3951 3952 3953 3954 3955 3956
				byte2kb(atomic64_read(&spg->instat.size)),
				atomic_read(&spg->instat.spa_num),
				byte2kb(atomic64_read(&spg->instat.alloc_size)),
				byte2kb(atomic64_read(&spg->instat.alloc_nsize)),
				byte2kb(atomic64_read(&spg->instat.alloc_hsize)));
		up_read(&spg->rw_lock);
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
	}

	return 0;
}

void spg_overview_show(struct seq_file *seq)
{
	if (!sp_is_enabled())
		return;

	if (seq != NULL) {
		seq_printf(seq, "Share pool total size: %lld KB, spa total num: %d.\n",
3969 3970
				byte2kb(atomic64_read(&sp_overall_stat.spa_total_size)),
				atomic_read(&sp_overall_stat.spa_total_num));
3971 3972
	} else {
		pr_info("Share pool total size: %lld KB, spa total num: %d.\n",
3973 3974
				byte2kb(atomic64_read(&sp_overall_stat.spa_total_size)),
				atomic_read(&sp_overall_stat.spa_total_num));
3975 3976
	}

3977 3978 3979
	down_read(&sp_group_sem);
	idr_for_each(&sp_group_idr, spg_info_show, seq);
	up_read(&sp_group_sem);
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992

	if (seq != NULL)
		seq_puts(seq, "\n");
	else
		pr_info("\n");
}

static int spa_stat_show(struct seq_file *seq, void *offset)
{
	spg_overview_show(seq);
	spa_overview_show(seq);
	/* print the file header */
	seq_printf(seq, "%-10s %-16s %-16s %-10s %-7s %-5s %-8s %-8s\n",
3993
			"Group ID", "va_start", "va_end", "Size(KB)", "Type", "Huge", "PID", "Ref");
3994 3995
	spa_normal_stat_show(seq);
	spa_dvpp_stat_show(seq);
3996 3997 3998
	return 0;
}

3999
static int proc_usage_by_group(int id, void *p, void *data)
4000
{
4001
	struct sp_group *spg = p;
4002
	struct seq_file *seq = data;
4003
	struct sp_group_node *spg_node;
4004
	struct mm_struct *mm;
4005 4006 4007
	struct sp_group_master *master;
	int tgid;
	unsigned long anon, file, shmem, total_rss;
4008

4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
	down_read(&spg->rw_lock);
	list_for_each_entry(spg_node, &spg->procs, proc_node) {

		master = spg_node->master;
		if (!master) {
			pr_info("master is NULL! process %d, group %d\n",
					spg_node->instat.tgid, id);
			continue;
		}
		mm = master->mm;
		tgid = master->instat.tgid;
4020 4021 4022 4023

		get_mm_rss_info(mm, &anon, &file, &shmem, &total_rss);

		seq_printf(seq, "%-8d ", tgid);
4024 4025
		seq_printf(seq, "%-8d ", id);
		seq_printf(seq, "%-9ld %-9ld %-9ld %-8ld %-7ld %-7ld ",
4026 4027 4028 4029
				get_spg_proc_alloc(spg_node),
				get_spg_proc_k2u(spg_node),
				get_sp_res_by_spg_proc(spg_node),
				page2kb(mm->total_vm), page2kb(total_rss),
4030
				page2kb(shmem));
4031
		print_process_prot(seq, spg_node->prot);
4032 4033
		seq_putc(seq, '\n');
	}
4034
	up_read(&spg->rw_lock);
4035
	cond_resched();
4036

4037 4038 4039
	return 0;
}

4040
static int proc_group_usage_show(struct seq_file *seq, void *offset)
4041 4042 4043
{
	spg_overview_show(seq);
	spa_overview_show(seq);
4044

4045
	/* print the file header */
4046 4047 4048
	seq_printf(seq, "%-8s %-8s %-9s %-9s %-9s %-8s %-7s %-7s %-4s\n",
			"PID", "Group_ID", "SP_ALLOC", "SP_K2U", "SP_RES",
			"VIRT", "RES", "Shm", "PROT");
4049 4050
	/* print kthread buff_module_guard_work */
	seq_printf(seq, "%-8s %-8s %-9lld %-9lld\n",
4051 4052 4053
			"guard", "-",
			byte2kb(atomic64_read(&kthread_stat.alloc_size)),
			byte2kb(atomic64_read(&kthread_stat.k2u_size)));
4054

W
Wang Wensheng 已提交
4055
	down_read(&sp_group_sem);
4056
	idr_for_each(&sp_group_idr, proc_usage_by_group, seq);
W
Wang Wensheng 已提交
4057 4058
	up_read(&sp_group_sem);

4059 4060 4061
	return 0;
}

4062
static int proc_usage_show(struct seq_file *seq, void *offset)
4063
{
4064
	struct sp_group_master *master = NULL;
4065 4066
	unsigned long anon, file, shmem, total_rss;
	long sp_res, sp_res_nsize, non_sp_res, non_sp_shm;
4067
	struct sp_proc_stat *proc_stat;
4068 4069

	seq_printf(seq, "%-8s %-16s %-9s %-9s %-9s %-10s %-10s %-8s\n",
4070 4071 4072
			"PID", "COMM", "SP_ALLOC", "SP_K2U", "SP_RES", "Non-SP_RES",
			"Non-SP_Shm", "VIRT");

4073
	down_read(&sp_group_sem);
4074 4075 4076 4077
	mutex_lock(&master_list_lock);
	list_for_each_entry(master, &master_list, list_node) {
		proc_stat = &master->instat;
		get_mm_rss_info(master->mm, &anon, &file, &shmem, &total_rss);
G
Guo Mengqi 已提交
4078
		get_process_sp_res(master, &sp_res, &sp_res_nsize);
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
		get_process_non_sp_res(total_rss, shmem, sp_res_nsize,
				&non_sp_res, &non_sp_shm);
		seq_printf(seq, "%-8d %-16s %-9ld %-9ld %-9ld %-10ld %-10ld %-8ld\n",
				proc_stat->tgid, proc_stat->comm,
				get_proc_alloc(proc_stat),
				get_proc_k2u(proc_stat),
				sp_res, non_sp_res, non_sp_shm,
				page2kb(master->mm->total_vm));
	}
	mutex_unlock(&master_list_lock);
4089
	up_read(&sp_group_sem);
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099

	return 0;
}

static void __init proc_sharepool_init(void)
{
	if (!proc_mkdir("sharepool", NULL))
		return;

	proc_create_single_data("sharepool/spa_stat", 0400, NULL, spa_stat_show, NULL);
4100 4101
	proc_create_single_data("sharepool/proc_stat", 0400, NULL, proc_group_usage_show, NULL);
	proc_create_single_data("sharepool/proc_overview", 0400, NULL, proc_usage_show, NULL);
4102 4103 4104 4105
}

/*** End of tatistical and maintenance functions ***/

4106 4107
bool sp_check_addr(unsigned long addr)
{
4108
	if (sp_is_enabled() && mg_is_sharepool_addr(addr) &&
4109
	    !check_aoscore_process(current))
4110
		return true;
4111
	else
4112 4113 4114 4115 4116
		return false;
}

bool sp_check_mmap_addr(unsigned long addr, unsigned long flags)
{
4117
	if (sp_is_enabled() && mg_is_sharepool_addr(addr) &&
4118
	    !check_aoscore_process(current) && !(flags & MAP_SHARE_POOL))
4119
		return true;
4120
	else
4121 4122 4123
		return false;
}

4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
vm_fault_t sharepool_no_page(struct mm_struct *mm,
			struct vm_area_struct *vma,
			struct address_space *mapping, pgoff_t idx,
			unsigned long address, pte_t *ptep, unsigned int flags)
{
	struct hstate *h = hstate_vma(vma);
	vm_fault_t ret = VM_FAULT_SIGBUS;
	unsigned long size;
	struct page *page;
	pte_t new_pte;
	spinlock_t *ptl;
	unsigned long haddr = address & huge_page_mask(h);
	bool new_page = false;
	int err;
	int node_id;
	struct sp_area *spa;

4141
	spa = vma->vm_private_data;
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
	if (!spa) {
		pr_err("share pool: vma is invalid, not from sp mmap\n");
		return ret;
	}
	node_id = spa->node_id;

retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
		size = i_size_read(mapping->host) >> huge_page_shift(h);
		if (idx >= size)
			goto out;

		page = alloc_huge_page(vma, haddr, 0);
		if (IS_ERR(page)) {
			page = alloc_huge_page_nodemask(hstate_file(vma->vm_file),
						    node_id, NULL, GFP_KERNEL);
			if (!page)
				page = ERR_PTR(-ENOMEM);
		}
		if (IS_ERR(page)) {
			ptl = huge_pte_lock(h, mm, ptep);
			if (!huge_pte_none(huge_ptep_get(ptep))) {
				ret = 0;
				spin_unlock(ptl);
				goto out;
			}
			spin_unlock(ptl);
			ret = vmf_error(PTR_ERR(page));
			goto out;
		}
		__SetPageUptodate(page);
		new_page = true;

		/* sharepool pages are all shared */
		err = huge_add_to_page_cache(page, mapping, idx);
		if (err) {
			put_page(page);
			if (err == -EEXIST)
				goto retry;
			goto out;
		}
	}


	ptl = huge_pte_lock(h, mm, ptep);
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	if (idx >= size)
		goto backout;

	ret = 0;
	if (!huge_pte_none(huge_ptep_get(ptep)))
		goto backout;

	page_dup_rmap(page, true);
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, haddr, ptep, new_pte);

	hugetlb_count_add(pages_per_huge_page(h), mm);

	spin_unlock(ptl);

	if (new_page) {
		SetPagePrivate(&page[1]);
	}

	unlock_page(page);
out:
	return ret;

backout:
	spin_unlock(ptl);
	unlock_page(page);
	put_page(page);
	goto out;
}

4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
#define MM_WOULD_FREE	1

/*
 * Recall we add mm->users by 1 deliberately in sp_group_add_task().
 * If the mm_users == sp_group_master->count + 1, it means that the mm is ready
 * to be freed because the last owner of this mm is in exiting procedure:
 * do_exit() -> exit_mm() -> mmput() -> sp_group_exit -> THIS function.
 */
static bool need_free_sp_group(struct mm_struct *mm,
			      struct sp_group_master *master)
{
	/* thread exits but process is still alive */
	if ((unsigned int)atomic_read(&mm->mm_users) != master->count + MM_WOULD_FREE) {
		if (atomic_dec_and_test(&mm->mm_users))
			WARN(1, "Invalid user counting\n");
		return false;
	}

	return true;
}

/*
 * Return:
 * 1	- let mmput() return immediately
 * 0	- let mmput() decrease mm_users and try __mmput()
 */
int sp_group_exit(struct mm_struct *mm)
{
	struct sp_group *spg;
	struct sp_group_master *master;
	struct sp_group_node *spg_node, *tmp;
	bool is_alive = true;

	if (!sp_is_enabled())
		return 0;

	down_write(&sp_group_sem);

	master = mm->sp_group_master;
	if (!master) {
		up_write(&sp_group_sem);
		return 0;
	}

	if (!need_free_sp_group(mm, master)) {
		up_write(&sp_group_sem);
		return 1;
	}

	list_for_each_entry_safe(spg_node, tmp, &master->node_list, group_node) {
		spg = spg_node->spg;

		down_write(&spg->rw_lock);
		/* a dead group should NOT be reactive again */
		if (spg_valid(spg) && list_is_singular(&spg->procs))
			is_alive = spg->is_alive = false;
		spg->proc_num--;
		list_del(&spg_node->proc_node);
		up_write(&spg->rw_lock);

		if (!is_alive)
			blocking_notifier_call_chain(&sp_notifier_chain, 0,
						     spg);
	}

	/* match with get_task_mm() in sp_group_add_task() */
	if (atomic_sub_and_test(master->count, &mm->mm_users)) {
		up_write(&sp_group_sem);
		WARN(1, "Invalid user counting\n");
		return 1;
	}

	up_write(&sp_group_sem);
	return 0;
}

void sp_group_post_exit(struct mm_struct *mm)
{
	struct sp_proc_stat *stat;
	long alloc_size, k2u_size;
	/* lockless visit */
	struct sp_group_master *master = mm->sp_group_master;
	struct sp_group_node *spg_node, *tmp;
	struct sp_group *spg;

	if (!sp_is_enabled() || !master)
		return;

	/*
	 * There are two basic scenarios when a process in the share pool is
	 * exiting but its share pool memory usage is not 0.
	 * 1. Process A called sp_alloc(), but it terminates without calling
	 *    sp_free(). Then its share pool memory usage is a positive number.
	 * 2. Process A never called sp_alloc(), and process B in the same spg
	 *    called sp_alloc() to get an addr u. Then A gets u somehow and
	 *    called sp_free(u). Now A's share pool memory usage is a negative
	 *    number. Notice B's memory usage will be a positive number.
	 *
	 * We decide to print an info when seeing both of the scenarios.
	 *
	 * A process not in an sp group doesn't need to print because there
	 * wont't be any memory which is not freed.
	 */
4323
	stat = &master->instat;
4324
	if (stat) {
4325
		alloc_size = atomic64_read(&stat->alloc_nsize) + atomic64_read(&stat->alloc_hsize);
4326 4327 4328 4329 4330 4331 4332 4333
		k2u_size = atomic64_read(&stat->k2u_size);

		if (alloc_size != 0 || k2u_size != 0)
			pr_info("process %s(%d) exits. It applied %ld aligned KB, k2u shared %ld aligned KB\n",
				stat->comm, stat->tgid,
				byte2kb(alloc_size), byte2kb(k2u_size));
	}

4334
	down_write(&sp_group_sem);
4335 4336 4337
	list_for_each_entry_safe(spg_node, tmp, &master->node_list, group_node) {
		spg = spg_node->spg;
		/* match with refcount inc in sp_group_add_task */
4338 4339
		if (atomic_dec_and_test(&spg->use_count))
			free_sp_group_locked(spg);
4340
		list_del(&spg_node->group_node);
4341 4342
		kfree(spg_node);
	}
4343
	up_write(&sp_group_sem);
4344

4345 4346 4347 4348
	mutex_lock(&master_list_lock);
	list_del(&master->list_node);
	mutex_unlock(&master_list_lock);

4349 4350 4351
	kfree(master);
}

4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
DEFINE_STATIC_KEY_FALSE(share_pool_enabled_key);

static int __init enable_share_pool(char *s)
{
	static_branch_enable(&share_pool_enabled_key);
	pr_info("Ascend enable share pool features via bootargs\n");

	return 1;
}
__setup("enable_ascend_share_pool", enable_share_pool);
4362 4363 4364

static int __init share_pool_init(void)
{
4365 4366 4367 4368
	if (!sp_is_enabled())
		return 0;

	sp_mapping_normal = sp_mapping_create(SP_MAPPING_NORMAL);
4369
	if (IS_ERR(sp_mapping_normal))
4370 4371 4372
		goto fail;
	atomic_inc(&sp_mapping_normal->user);

4373
	proc_sharepool_init();
4374 4375 4376 4377 4378 4379 4380 4381

	return 0;
fail:
	pr_err("Ascend share pool initialization failed\n");
	static_branch_disable(&share_pool_enabled_key);
	return 1;
}
late_initcall(share_pool_init);