share_pool.c 112.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* SPDX-License-Identifier: GPL-2.0 */
/*
 * Huawei Ascend Share Pool Memory
 *
 * Copyright (C) 2020 Huawei Limited
 * Author: Tang Yizhou <tangyizhou@huawei.com>
 *         Zefan Li <lizefan@huawei.com>
 *         Wu Peng <wupeng58@huawei.com>
 *         Ding Tianhong <dingtgianhong@huawei.com>
 *         Zhou Guanghui <zhouguanghui1@huawei.com>
 *         Li Ming <limingming.li@huawei.com>
 *
 * This code is based on the hisilicon ascend platform.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#define pr_fmt(fmt) "share pool: " fmt

#include <linux/share_pool.h>
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
#include <linux/sched.h>
#include <linux/sched/task.h>
#include <linux/sched/mm.h>
#include <linux/mm_types.h>
#include <linux/idr.h>
#include <linux/mutex.h>
#include <linux/rwsem.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/rbtree.h>
#include <linux/shmem_fs.h>
#include <linux/file.h>
#include <linux/printk.h>
#include <linux/hugetlb.h>
#include <linux/vmalloc.h>
#include <linux/pid.h>
#include <linux/pid_namespace.h>
#include <linux/atomic.h>
#include <linux/lockdep.h>
#include <linux/kernel.h>
#include <linux/falloc.h>
#include <linux/types.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/rmap.h>
#include <linux/preempt.h>
#include <linux/swapops.h>
#include <linux/mmzone.h>
#include <linux/timekeeping.h>
#include <linux/time64.h>
52
#include <linux/pagewalk.h>
53

54 55
#define spg_valid(spg)		((spg)->is_alive == true)

56 57 58 59 60
/* Use spa va address as mmap offset. This can work because spa_file
 * is setup with 64-bit address space. So va shall be well covered.
 */
#define addr_offset(spa)	((spa)->va_start)

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
#define byte2kb(size)		((size) >> 10)
#define byte2mb(size)		((size) >> 20)
#define page2kb(page_num)	((page_num) << (PAGE_SHIFT - 10))

#define MAX_GROUP_FOR_SYSTEM	50000
#define MAX_GROUP_FOR_TASK	3000
#define MAX_PROC_PER_GROUP	1024

#define GROUP_NONE		0

#define SEC2US(sec)		((sec) * 1000000)
#define NS2US(ns)		((ns) / 1000)

#define PF_DOMAIN_CORE		0x10000000	/* AOS CORE processes in sched.h */

/* mdc scene hack */
static int __read_mostly enable_mdc_default_group;
static const int mdc_default_group_id = 1;

80 81
static int system_group_count;

82 83
static unsigned int sp_device_number;

84 85 86 87 88
/* idr of all sp_groups */
static DEFINE_IDR(sp_group_idr);
/* rw semaphore for sp_group_idr and mm->sp_group_master */
static DECLARE_RWSEM(sp_group_sem);

89 90
static BLOCKING_NOTIFIER_HEAD(sp_notifier_chain);

91 92 93 94
static DEFINE_IDA(sp_group_id_ida);

/*** Statistical and maintenance tools ***/

95 96 97 98
/* list of all sp_group_masters */
static LIST_HEAD(master_list);
/* mutex to protect insert/delete ops from master_list */
static DEFINE_MUTEX(master_list_lock);
99

100 101 102 103 104
/* list of all spm-dvpp */
static LIST_HEAD(spm_dvpp_list);
/* mutex to protect insert/delete ops from master_list */
static DEFINE_MUTEX(spm_list_lock);

105 106 107
/* for kthread buff_module_guard_work */
static struct sp_proc_stat kthread_stat;

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
#ifndef __GENKSYMS__
struct sp_spg_stat {
	int spg_id;
	/* record the number of hugepage allocation failures */
	atomic_t hugepage_failures;
	/* number of sp_area */
	atomic_t	 spa_num;
	/* total size of all sp_area from sp_alloc and k2u */
	atomic64_t	 size;
	/* total size of all sp_area from sp_alloc 0-order page */
	atomic64_t	 alloc_nsize;
	/* total size of all sp_area from sp_alloc hugepage */
	atomic64_t	 alloc_hsize;
	/* total size of all sp_area from ap_alloc */
	atomic64_t	 alloc_size;
	/* total size of all sp_area from sp_k2u */
	atomic64_t	 k2u_size;
};

/* per process memory usage statistics indexed by tgid */
struct sp_proc_stat {
	int tgid;
	struct mm_struct *mm;
	char comm[TASK_COMM_LEN];
	/*
	 * alloc amount minus free amount, may be negative when freed by
	 * another task in the same sp group.
	 */
	atomic64_t alloc_size;
	atomic64_t alloc_nsize;
	atomic64_t alloc_hsize;
	atomic64_t k2u_size;
};

/* per process/sp-group memory usage statistics */
struct spg_proc_stat {
	int tgid;
	int spg_id;  /* 0 for non-group data, such as k2u_task */
	/*
	 * alloc amount minus free amount, may be negative when freed by
	 * another task in the same sp group.
	 */
	atomic64_t alloc_size;
	atomic64_t alloc_nsize;
	atomic64_t alloc_hsize;
	atomic64_t k2u_size;
};

/*
 * address space management
 */
struct sp_mapping {
	unsigned long flag;
	atomic_t user;
	unsigned long start[MAX_DEVID];
	unsigned long end[MAX_DEVID];
	struct rb_root area_root;

	struct rb_node *free_area_cache;
	unsigned long cached_hole_size;
	unsigned long cached_vstart;

	/* list head for all groups attached to this mapping, dvpp mapping only */
	struct list_head group_head;
172
	struct list_head spm_node;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
};

/* Processes in the same sp_group can share memory.
 * Memory layout for share pool:
 *
 * |-------------------- 8T -------------------|---|------ 8T ------------|
 * |		Device 0	   |  Device 1 |...|                      |
 * |----------------------------------------------------------------------|
 * |------------- 16G -------------|    16G    |   |                      |
 * | DVPP GROUP0   | DVPP GROUP1   | ... | ... |...|  sp normal memory    |
 * |     sp        |    sp         |     |     |   |                      |
 * |----------------------------------------------------------------------|
 *
 * The host SVM feature reserves 8T virtual memory by mmap, and due to the
 * restriction of DVPP, while SVM and share pool will both allocate memory
 * for DVPP, the memory have to be in the same 32G range.
 *
 * Share pool reserves 16T memory, with 8T for normal uses and 8T for DVPP.
 * Within this 8T DVPP memory, SVM will call sp_config_dvpp_range() to
 * tell us which 16G memory range is reserved for share pool .
 *
 * In some scenarios where there is no host SVM feature, share pool uses
 * the default 8G memory setting for DVPP.
 */
struct sp_group {
	int		 id;
	unsigned long	 flag;
	struct file	 *file;
	struct file	 *file_hugetlb;
	/* number of process in this group */
	int		 proc_num;
	/* list head of processes (sp_group_node, each represents a process) */
	struct list_head procs;
	/* list head of sp_area. it is protected by spin_lock sp_area_lock */
	struct list_head spa_list;
	/* group statistics */
	struct sp_spg_stat instat;
	/* is_alive == false means it's being destroyed */
	bool		 is_alive;
	atomic_t	 use_count;
	/* protect the group internal elements, except spa_list */
	struct rw_semaphore	rw_lock;
	/* list node for dvpp mapping */
	struct list_head	mnode;
	struct sp_mapping	*dvpp;
	struct sp_mapping	*normal;
};

/* a per-process(per mm) struct which manages a sp_group_node list */
struct sp_group_master {
	/*
	 * number of sp groups the process belongs to,
	 * a.k.a the number of sp_node in node_list
	 */
	unsigned int count;
	/* list head of sp_node */
	struct list_head node_list;
	struct mm_struct *mm;
	/*
	 * Used to apply for the shared pool memory of the current process.
	 * For example, sp_alloc non-share memory or k2task.
	 */
	struct sp_group *local;
	struct sp_proc_stat instat;
	struct list_head list_node;
};

/*
 * each instance represents an sp group the process belongs to
 * sp_group_master    : sp_group_node   = 1 : N
 * sp_group_node->spg : sp_group        = 1 : 1
 * sp_group_node      : sp_group->procs = N : 1
 */
struct sp_group_node {
	/* list node in sp_group->procs */
	struct list_head proc_node;
	/* list node in sp_group_maseter->node_list */
	struct list_head group_node;
	struct sp_group_master *master;
	struct sp_group *spg;
	unsigned long prot;
	struct spg_proc_stat instat;
};
#endif

/* The caller should hold mmap_sem to protect master (TBD) */
static void sp_init_group_master_stat(struct mm_struct *mm, struct sp_proc_stat *stat)
{
	atomic64_set(&stat->alloc_nsize, 0);
	atomic64_set(&stat->alloc_hsize, 0);
	atomic64_set(&stat->k2u_size, 0);
	stat->mm = mm;
	get_task_comm(stat->comm, current);
}

268 269 270 271
#define SP_MAPPING_DVPP		0x1
#define SP_MAPPING_NORMAL	0x2
static struct sp_mapping *sp_mapping_normal;

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
static void sp_mapping_add_to_list(struct sp_mapping *spm)
{
	mutex_lock(&spm_list_lock);
	if (spm->flag & SP_MAPPING_DVPP)
		list_add_tail(&spm->spm_node, &spm_dvpp_list);
	mutex_unlock(&spm_list_lock);
}

static void sp_mapping_remove_from_list(struct sp_mapping *spm)
{
	mutex_lock(&spm_list_lock);
	if (spm->flag & SP_MAPPING_DVPP)
		list_del(&spm->spm_node);
	mutex_unlock(&spm_list_lock);
}

288 289 290 291 292 293 294 295 296 297 298
static void sp_mapping_range_init(struct sp_mapping *spm)
{
	int i;

	for (i = 0; i < MAX_DEVID; i++) {
		if (spm->flag & SP_MAPPING_NORMAL) {
			spm->start[i] = MMAP_SHARE_POOL_START;
			spm->end[i] = MMAP_SHARE_POOL_16G_START;
			continue;
		}

299 300 301
		spm->start[i] = MMAP_SHARE_POOL_16G_START +
			i * MMAP_SHARE_POOL_16G_SIZE;
		spm->end[i] = spm->start[i] + MMAP_SHARE_POOL_16G_SIZE;
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
	}
}

static struct sp_mapping *sp_mapping_create(unsigned long flag)
{
	struct sp_mapping *spm;

	spm = kzalloc(sizeof(struct sp_mapping), GFP_KERNEL);
	if (!spm)
		return ERR_PTR(-ENOMEM);

	spm->flag = flag;
	sp_mapping_range_init(spm);
	atomic_set(&spm->user, 0);
	spm->area_root = RB_ROOT;
317
	INIT_LIST_HEAD(&spm->group_head);
318
	sp_mapping_add_to_list(spm);
319 320 321 322

	return spm;
}

323 324
static void sp_mapping_destroy(struct sp_mapping *spm)
{
325
	sp_mapping_remove_from_list(spm);
326 327 328 329 330 331
	kfree(spm);
}

static void sp_mapping_attach(struct sp_group *spg, struct sp_mapping *spm)
{
	atomic_inc(&spm->user);
332
	if (spm->flag & SP_MAPPING_DVPP) {
333
		spg->dvpp = spm;
334 335
		list_add_tail(&spg->mnode, &spm->group_head);
	} else if (spm->flag & SP_MAPPING_NORMAL)
336 337 338 339 340
		spg->normal = spm;
}

static void sp_mapping_detach(struct sp_group *spg, struct sp_mapping *spm)
{
341 342 343 344 345
	if (!spm)
		return;
	if (spm->flag & SP_MAPPING_DVPP)
		list_del(&spg->mnode);
	if (atomic_dec_and_test(&spm->user))
346 347 348
		sp_mapping_destroy(spm);
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
/* merge old mapping to new, and the old mapping would be destroyed */
static void sp_mapping_merge(struct sp_mapping *new, struct sp_mapping *old)
{
	struct sp_group *spg, *tmp;

	if (new == old)
		return;

	list_for_each_entry_safe(spg, tmp, &old->group_head, mnode) {
		list_move_tail(&spg->mnode, &new->group_head);
		spg->dvpp = new;
	}

	atomic_add(atomic_read(&old->user), &new->user);
	sp_mapping_destroy(old);
}

static bool is_mapping_empty(struct sp_mapping *spm)
{
	return RB_EMPTY_ROOT(&spm->area_root);
}

371 372 373 374 375 376 377 378 379 380 381
static bool can_mappings_merge(struct sp_mapping *m1, struct sp_mapping *m2)
{
	int i;

	for (i = 0; i < sp_device_number; i++)
		if (m1->start[i] != m2->start[i] || m1->end[i] != m2->end[i])
			return false;

	return true;
}

382
/*
383 384 385 386 387
 * 1. The mappings of local group is set on creating.
 * 2. This is used to setup the mapping for groups created during add_task.
 * 3. The normal mapping exists for all groups.
 * 4. The dvpp mappings for the new group and local group can merge _iff_ at
 *    least one of the mapping is empty.
388
 * the caller must hold sp_group_sem
389
 * NOTE: undo the mergeing when the later process failed.
390 391 392 393 394 395
 */
static int sp_mapping_group_setup(struct mm_struct *mm, struct sp_group *spg)
{
	struct sp_group_master *master = mm->sp_group_master;
	struct sp_group *local = master->local;

396
	if (!list_empty(&spg->procs) && !(spg->flag & SPG_FLAG_NON_DVPP)) {
397 398 399 400 401 402 403 404 405
		/*
		 * Don't return an error when the mappings' address range conflict.
		 * As long as the mapping is unused, we can drop the empty mapping.
		 * This may change the address range for the task or group implicitly,
		 * give a warn for it.
		 */
		bool is_conflict = !can_mappings_merge(local->dvpp, spg->dvpp);

		if (is_mapping_empty(local->dvpp)) {
406
			sp_mapping_merge(spg->dvpp, local->dvpp);
407 408 409
			if (is_conflict)
				pr_warn_ratelimited("task address space conflict, spg_id=%d\n", spg->id);
		} else if (is_mapping_empty(spg->dvpp)) {
410
			sp_mapping_merge(local->dvpp, spg->dvpp);
411 412 413
			if (is_conflict)
				pr_warn_ratelimited("group address space conflict, spg_id=%d\n", spg->id);
		} else {
414 415
			pr_info_ratelimited("Duplicate address space, id=%d\n", spg->id);
			return -EINVAL;
416 417
		}
	} else {
418 419 420 421 422
		if (!(spg->flag & SPG_FLAG_NON_DVPP))
			/* the mapping of local group is always set */
			sp_mapping_attach(spg, local->dvpp);
		if (!spg->normal)
			sp_mapping_attach(spg, sp_mapping_normal);
423 424 425 426 427
	}

	return 0;
}

428
static struct sp_group *create_spg(int spg_id, unsigned long flag);
429
static void free_new_spg_id(bool new, int spg_id);
430 431 432
static void free_sp_group_locked(struct sp_group *spg);
static int local_group_add_task(struct mm_struct *mm, struct sp_group *spg);
static int init_local_group(struct mm_struct *mm)
433
{
434
	int spg_id, ret;
435
	struct sp_group *spg;
436
	struct sp_mapping *spm;
437 438
	struct sp_group_master *master = mm->sp_group_master;

439 440 441 442
	spg_id = ida_alloc_range(&sp_group_id_ida, SPG_ID_LOCAL_MIN,
				 SPG_ID_LOCAL_MAX, GFP_ATOMIC);
	if (spg_id < 0) {
		pr_err_ratelimited("generate local group id failed %d\n", spg_id);
443
		return spg_id;
444 445
	}

446
	spg = create_spg(spg_id, 0);
447
	if (IS_ERR(spg)) {
448 449
		ret = PTR_ERR(spg);
		goto free_spg_id;
450 451 452
	}

	master->local = spg;
453 454 455 456 457 458 459
	spm = sp_mapping_create(SP_MAPPING_DVPP);
	if (IS_ERR(spm)) {
		ret = PTR_ERR(spm);
		goto free_spg;
	}
	sp_mapping_attach(master->local, spm);
	sp_mapping_attach(master->local, sp_mapping_normal);
460

461 462
	ret = local_group_add_task(mm, spg);
	if (ret < 0)
463
		/* The spm would be released while destroying the spg*/
464 465
		goto free_spg;

466
	return 0;
467 468 469

free_spg:
	free_sp_group_locked(spg);
470
	master->local = NULL;
471 472
free_spg_id:
	free_new_spg_id(true, spg_id);
473

474
	return ret;
475 476
}

477 478
/* The caller must hold sp_group_sem */
static int sp_init_group_master_locked(struct task_struct *tsk, struct mm_struct *mm)
479
{
480
	int ret;
481 482
	struct sp_group_master *master;

483
	if (mm->sp_group_master)
484 485
		return 0;

486 487 488 489 490 491 492
	master = kmalloc(sizeof(struct sp_group_master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

	INIT_LIST_HEAD(&master->node_list);
	master->count = 0;
	master->mm = mm;
493
	sp_init_group_master_stat(mm, &master->instat);
494 495
	mm->sp_group_master = master;

496 497 498
	mutex_lock(&master_list_lock);
	list_add_tail(&master->list_node, &master_list);
	mutex_unlock(&master_list_lock);
499 500 501

	ret = init_local_group(mm);
	if (ret)
502
		goto free_master;
503 504

	return 0;
505 506 507 508 509 510 511 512 513 514 515

free_master:
	mm->sp_group_master = NULL;
	kfree(master);

	return ret;
}

static inline bool is_local_group(int spg_id)
{
	return spg_id >= SPG_ID_LOCAL_MIN && spg_id <= SPG_ID_LOCAL_MAX;
516 517
}

518
static struct sp_group *sp_get_local_group(struct task_struct *tsk, struct mm_struct *mm)
519 520 521 522 523 524 525 526 527 528 529 530 531 532
{
	int ret;
	struct sp_group_master *master;

	down_read(&sp_group_sem);
	master = mm->sp_group_master;
	if (master && master->local) {
		atomic_inc(&master->local->use_count);
		up_read(&sp_group_sem);
		return master->local;
	}
	up_read(&sp_group_sem);

	down_write(&sp_group_sem);
533
	ret = sp_init_group_master_locked(tsk, mm);
534 535 536 537 538 539 540 541 542 543 544
	if (ret) {
		up_write(&sp_group_sem);
		return ERR_PTR(ret);
	}
	master = mm->sp_group_master;
	atomic_inc(&master->local->use_count);
	up_write(&sp_group_sem);

	return master->local;
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
static void update_spg_stat_alloc(unsigned long size, bool inc,
	bool huge, struct sp_spg_stat *stat)
{
	if (inc) {
		atomic_inc(&stat->spa_num);
		atomic64_add(size, &stat->size);
		atomic64_add(size, &stat->alloc_size);
		if (huge)
			atomic64_add(size, &stat->alloc_hsize);
		else
			atomic64_add(size, &stat->alloc_nsize);
	} else {
		atomic_dec(&stat->spa_num);
		atomic64_sub(size, &stat->size);
		atomic64_sub(size, &stat->alloc_size);
		if (huge)
			atomic64_sub(size, &stat->alloc_hsize);
		else
			atomic64_sub(size, &stat->alloc_nsize);
	}
}

static void update_spg_stat_k2u(unsigned long size, bool inc,
	struct sp_spg_stat *stat)
{
	if (inc) {
		atomic_inc(&stat->spa_num);
		atomic64_add(size, &stat->size);
		atomic64_add(size, &stat->k2u_size);
	} else {
		atomic_dec(&stat->spa_num);
		atomic64_sub(size, &stat->size);
		atomic64_sub(size, &stat->k2u_size);
	}
}

581 582
static void update_mem_usage_alloc(unsigned long size, bool inc,
		bool is_hugepage, struct sp_group_node *spg_node)
583
{
584
	struct sp_proc_stat *proc_stat = &spg_node->master->instat;
585 586

	if (inc) {
587 588 589 590 591 592 593 594
		if (is_hugepage) {
			atomic64_add(size, &spg_node->instat.alloc_hsize);
			atomic64_add(size, &proc_stat->alloc_hsize);
			return;
		}
		atomic64_add(size, &spg_node->instat.alloc_nsize);
		atomic64_add(size, &proc_stat->alloc_nsize);
		return;
595
	}
596 597 598 599 600 601 602 603 604

	if (is_hugepage) {
		atomic64_sub(size, &spg_node->instat.alloc_hsize);
		atomic64_sub(size, &proc_stat->alloc_hsize);
		return;
	}
	atomic64_sub(size, &spg_node->instat.alloc_nsize);
	atomic64_sub(size, &proc_stat->alloc_nsize);
	return;
605 606
}

607 608
static void update_mem_usage_k2u(unsigned long size, bool inc,
		struct sp_group_node *spg_node)
609
{
610
	struct sp_proc_stat *proc_stat = &spg_node->master->instat;
611 612

	if (inc) {
613
		atomic64_add(size, &spg_node->instat.k2u_size);
614 615
		atomic64_add(size, &proc_stat->k2u_size);
	} else {
616
		atomic64_sub(size, &spg_node->instat.k2u_size);
617 618 619 620
		atomic64_sub(size, &proc_stat->k2u_size);
	}
}

621
static void sp_init_spg_proc_stat(struct spg_proc_stat *stat, int spg_id)
622
{
623
	stat->tgid = current->tgid;
624
	stat->spg_id = spg_id;
625 626
	atomic64_set(&stat->alloc_nsize, 0);
	atomic64_set(&stat->alloc_hsize, 0);
627 628 629
	atomic64_set(&stat->k2u_size, 0);
}

630
static void sp_init_group_stat(struct sp_spg_stat *stat)
631 632 633 634 635 636 637
{
	atomic_set(&stat->hugepage_failures, 0);
	atomic_set(&stat->spa_num, 0);
	atomic64_set(&stat->size, 0);
	atomic64_set(&stat->alloc_nsize, 0);
	atomic64_set(&stat->alloc_hsize, 0);
	atomic64_set(&stat->alloc_size, 0);
638
	atomic64_set(&stat->k2u_size, 0);
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
}

/* statistics of all sp area, protected by sp_area_lock */
struct sp_spa_stat {
	unsigned int total_num;
	unsigned int alloc_num;
	unsigned int k2u_task_num;
	unsigned int k2u_spg_num;
	unsigned long total_size;
	unsigned long alloc_size;
	unsigned long k2u_task_size;
	unsigned long k2u_spg_size;
	unsigned long dvpp_size;
	unsigned long dvpp_va_size;
};

static struct sp_spa_stat spa_stat;

/* statistics of all sp group born from sp_alloc and k2u(spg) */
struct sp_overall_stat {
	atomic_t spa_total_num;
	atomic64_t spa_total_size;
};

static struct sp_overall_stat sp_overall_stat;

/*** Global share pool VA allocator ***/

enum spa_type {
	SPA_TYPE_ALLOC = 1,
669 670
	/* NOTE: reorganize after the statisical structure is reconstructed. */
	SPA_TYPE_ALLOC_PRIVATE = SPA_TYPE_ALLOC,
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
	SPA_TYPE_K2TASK,
	SPA_TYPE_K2SPG,
};

/*
 * We bump the reference when each mmap succeeds, and it will be dropped
 * when vma is about to release, so sp_area object will be automatically
 * freed when all tasks in the sp group has exited.
 */
struct sp_area {
	unsigned long va_start;
	unsigned long va_end;		/* va_end always align to hugepage */
	unsigned long real_size;	/* real size with alignment */
	unsigned long region_vstart;	/* belong to normal region or DVPP region */
	unsigned long flags;
	bool is_hugepage;
	bool is_dead;
	atomic_t use_count;		/* How many vmas use this VA region */
	struct rb_node rb_node;		/* address sorted rbtree */
	struct list_head link;		/* link to the spg->head */
	struct sp_group *spg;
	enum spa_type type;		/* where spa born from */
	struct mm_struct *mm;		/* owner of k2u(task) */
	unsigned long kva;		/* shared kva */
	pid_t applier;			/* the original applier process */
	int node_id;			/* memory node */
	int device_id;
};
static DEFINE_SPINLOCK(sp_area_lock);

static unsigned long spa_size(struct sp_area *spa)
{
	return spa->real_size;
}

static struct file *spa_file(struct sp_area *spa)
{
	if (spa->is_hugepage)
		return spa->spg->file_hugetlb;
	else
		return spa->spg->file;
}

714 715
/* the caller should hold sp_area_lock */
static void spa_inc_usage(struct sp_area *spa)
716
{
717 718 719 720 721 722 723 724 725
	enum spa_type type = spa->type;
	unsigned long size = spa->real_size;
	bool is_dvpp = spa->flags & SP_DVPP;
	bool is_huge = spa->is_hugepage;

	switch (type) {
	case SPA_TYPE_ALLOC:
		spa_stat.alloc_num += 1;
		spa_stat.alloc_size += size;
726
		update_spg_stat_alloc(size, true, is_huge, &spa->spg->instat);
727 728 729 730
		break;
	case SPA_TYPE_K2TASK:
		spa_stat.k2u_task_num += 1;
		spa_stat.k2u_task_size += size;
731
		update_spg_stat_k2u(size, true, &spa->spg->instat);
732 733 734 735
		break;
	case SPA_TYPE_K2SPG:
		spa_stat.k2u_spg_num += 1;
		spa_stat.k2u_spg_size += size;
736
		update_spg_stat_k2u(size, true, &spa->spg->instat);
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
		break;
	default:
		WARN(1, "invalid spa type");
	}

	if (is_dvpp) {
		spa_stat.dvpp_size += size;
		spa_stat.dvpp_va_size += ALIGN(size, PMD_SIZE);
	}

	/*
	 * all the calculations won't overflow due to system limitation and
	 * parameter checking in sp_alloc_area()
	 */
	spa_stat.total_num += 1;
	spa_stat.total_size += size;

754
	if (!is_local_group(spa->spg->id)) {
755 756 757
		atomic_inc(&sp_overall_stat.spa_total_num);
		atomic64_add(size, &sp_overall_stat.spa_total_size);
	}
758 759
}

760 761
/* the caller should hold sp_area_lock */
static void spa_dec_usage(struct sp_area *spa)
762
{
763 764 765 766 767 768 769 770 771
	enum spa_type type = spa->type;
	unsigned long size = spa->real_size;
	bool is_dvpp = spa->flags & SP_DVPP;
	bool is_huge = spa->is_hugepage;

	switch (type) {
	case SPA_TYPE_ALLOC:
		spa_stat.alloc_num -= 1;
		spa_stat.alloc_size -= size;
772
		update_spg_stat_alloc(size, false, is_huge, &spa->spg->instat);
773 774 775 776
		break;
	case SPA_TYPE_K2TASK:
		spa_stat.k2u_task_num -= 1;
		spa_stat.k2u_task_size -= size;
777
		update_spg_stat_k2u(size, false, &spa->spg->instat);
778 779 780 781
		break;
	case SPA_TYPE_K2SPG:
		spa_stat.k2u_spg_num -= 1;
		spa_stat.k2u_spg_size -= size;
782
		update_spg_stat_k2u(size, false, &spa->spg->instat);
783 784 785 786 787 788 789 790 791 792 793 794 795
		break;
	default:
		WARN(1, "invalid spa type");
	}

	if (is_dvpp) {
		spa_stat.dvpp_size -= size;
		spa_stat.dvpp_va_size -= ALIGN(size, PMD_SIZE);
	}

	spa_stat.total_num -= 1;
	spa_stat.total_size -= size;

796
	if (!is_local_group(spa->spg->id)) {
797 798 799
		atomic_dec(&sp_overall_stat.spa_total_num);
		atomic64_sub(spa->real_size, &sp_overall_stat.spa_total_size);
	}
800 801
}

802 803
static void update_mem_usage(unsigned long size, bool inc, bool is_hugepage,
	struct sp_group_node *spg_node, enum spa_type type)
804
{
805 806
	if (unlikely(!spg_node)) {
		WARN(1, "null sp group node\n");
807 808 809 810 811
		return;
	}

	switch (type) {
	case SPA_TYPE_ALLOC:
812
		update_mem_usage_alloc(size, inc, is_hugepage, spg_node);
813 814 815
		break;
	case SPA_TYPE_K2TASK:
	case SPA_TYPE_K2SPG:
816
		update_mem_usage_k2u(size, inc, spg_node);
817 818 819 820
		break;
	default:
		WARN(1, "invalid stat type\n");
	}
821 822
}

823 824 825 826 827 828 829 830 831 832 833 834
struct sp_group_node *find_spg_node_by_spg(struct mm_struct *mm,
		struct sp_group *spg)
{
	struct sp_group_node *spg_node;

	list_for_each_entry(spg_node, &mm->sp_group_master->node_list, group_node) {
		if (spg_node->spg == spg)
			return spg_node;
	}
	return NULL;
}

835 836
static void sp_update_process_stat(struct task_struct *tsk, bool inc,
	struct sp_area *spa)
837
{
838
	struct sp_group_node *spg_node;
839 840
	unsigned long size = spa->real_size;
	enum spa_type type = spa->type;
841

842 843 844 845 846
	spg_node = find_spg_node_by_spg(tsk->mm, spa->spg);
	if (!spg_node)
		pr_err("share pool: spg node not found!\n");
	else
		update_mem_usage(size, inc, spa->is_hugepage, spg_node, type);
847 848 849 850 851 852
}

static inline void check_interrupt_context(void)
{
	if (unlikely(in_interrupt()))
		panic("function can't be used in interrupt context\n");
853 854
}

855 856 857 858 859 860 861 862
static inline bool check_aoscore_process(struct task_struct *tsk)
{
	if (tsk->flags & PF_DOMAIN_CORE)
		return true;
	else
		return false;
}

863 864
static unsigned long sp_mmap(struct mm_struct *mm, struct file *file,
			     struct sp_area *spa, unsigned long *populate,
865
			     unsigned long prot, struct vm_area_struct **pvma);
866
static void sp_munmap(struct mm_struct *mm, unsigned long addr, unsigned long size);
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881

#define K2U_NORMAL	0
#define K2U_COREDUMP	1

struct sp_k2u_context {
	unsigned long kva;
	unsigned long kva_aligned;
	unsigned long size;
	unsigned long size_aligned;
	unsigned long sp_flags;
	int state;
	int spg_id;
	bool to_task;
};

882
static unsigned long sp_remap_kva_to_vma(unsigned long kva, struct sp_area *spa,
883
				struct mm_struct *mm, unsigned long prot, struct sp_k2u_context *kc);
884

885 886 887
static void free_sp_group_id(int spg_id)
{
	/* ida operation is protected by an internal spin_lock */
888 889
	if ((spg_id >= SPG_ID_AUTO_MIN && spg_id <= SPG_ID_AUTO_MAX) ||
	    (spg_id >= SPG_ID_LOCAL_MIN && spg_id <= SPG_ID_LOCAL_MAX))
890 891 892
		ida_free(&sp_group_id_ida, spg_id);
}

893 894 895 896 897 898
static void free_new_spg_id(bool new, int spg_id)
{
	if (new)
		free_sp_group_id(spg_id);
}

899
static void free_sp_group_locked(struct sp_group *spg)
900 901 902 903 904
{
	fput(spg->file);
	fput(spg->file_hugetlb);
	idr_remove(&sp_group_idr, spg->id);
	free_sp_group_id((unsigned int)spg->id);
905 906 907 908
	sp_mapping_detach(spg, spg->dvpp);
	sp_mapping_detach(spg, spg->normal);
	if (!is_local_group(spg->id))
		system_group_count--;
909 910 911 912
	kfree(spg);
	WARN(system_group_count < 0, "unexpected group count\n");
}

913 914 915 916 917 918 919
static void free_sp_group(struct sp_group *spg)
{
	down_write(&sp_group_sem);
	free_sp_group_locked(spg);
	up_write(&sp_group_sem);
}

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
static void sp_group_drop(struct sp_group *spg)
{
	if (atomic_dec_and_test(&spg->use_count))
		free_sp_group(spg);
}

/* use with put_task_struct(task) */
static int get_task(int pid, struct task_struct **task)
{
	struct task_struct *tsk;

	rcu_read_lock();
	tsk = find_task_by_vpid(pid);
	if (!tsk || (tsk->flags & PF_EXITING)) {
		rcu_read_unlock();
		return -ESRCH;
	}
	get_task_struct(tsk);
	rcu_read_unlock();

	*task = tsk;
	return 0;
}

/*
 * the caller must:
 * 1. hold spg->rw_lock
 * 2. ensure no concurrency problem for mm_struct
 */
static struct sp_group_node *is_process_in_group(struct sp_group *spg,
						 struct mm_struct *mm)
{
	struct sp_group_node *spg_node;

	list_for_each_entry(spg_node, &spg->procs, proc_node)
		if (spg_node->master->mm == mm)
			return spg_node;

	return NULL;
}

/* user must call sp_group_drop() after use */
static struct sp_group *__sp_find_spg_locked(int pid, int spg_id)
{
	struct sp_group *spg = NULL;
	struct task_struct *tsk = NULL;
	int ret = 0;

	if (spg_id == SPG_ID_DEFAULT) {
969 970 971 972
		ret = get_task(pid, &tsk);
		if (ret)
			return NULL;

973 974 975
		task_lock(tsk);
		if (tsk->mm == NULL)
			spg = NULL;
976 977
		else if (tsk->mm->sp_group_master)
			spg = tsk->mm->sp_group_master->local;
978
		task_unlock(tsk);
979 980

		put_task_struct(tsk);
981 982 983 984
	} else {
		spg = idr_find(&sp_group_idr, spg_id);
	}

985 986
	if (!spg || !atomic_inc_not_zero(&spg->use_count))
		return NULL;
987

988
	return spg;
989 990 991 992 993 994 995 996 997 998 999 1000
}

static struct sp_group *__sp_find_spg(int pid, int spg_id)
{
	struct sp_group *spg;

	down_read(&sp_group_sem);
	spg = __sp_find_spg_locked(pid, spg_id);
	up_read(&sp_group_sem);
	return spg;
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
/**
 * mp_sp_group_id_by_pid() - Get the sp_group ID array of a process.
 * @pid: pid of target process.
 * @spg_ids: point to an array to save the group ids the process belongs to
 * @num: input the spg_ids array size; output the spg number of the process
 *
 * Return:
 * >0		- the sp_group ID.
 * -ENODEV	- target process doesn't belong to any sp_group.
 * -EINVAL	- spg_ids or num is NULL.
 * -E2BIG	- the num of groups process belongs to is larger than *num
 */
int mg_sp_group_id_by_pid(int pid, int *spg_ids, int *num)
{
1015
	int ret = 0, real_count;
1016 1017 1018 1019
	struct sp_group_node *node;
	struct sp_group_master *master = NULL;
	struct task_struct *tsk;

1020 1021 1022
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	check_interrupt_context();

	if (!spg_ids || num <= 0)
		return -EINVAL;

	ret = get_task(pid, &tsk);
	if (ret)
		return ret;

	down_read(&sp_group_sem);
	task_lock(tsk);
	if (tsk->mm)
		master = tsk->mm->sp_group_master;
	task_unlock(tsk);

	if (!master) {
		ret = -ENODEV;
		goto out_up_read;
	}

1043 1044 1045 1046 1047 1048 1049 1050
	/*
	 * There is a local group for each process which is used for
	 * passthrough allocation. The local group is a internal
	 * implementation for convenience and is not attempt to bother
	 * the user.
	 */
	real_count = master->count - 1;
	if (real_count <= 0) {
1051 1052 1053
		ret = -ENODEV;
		goto out_up_read;
	}
1054
	if ((unsigned int)*num < real_count) {
1055 1056 1057
		ret = -E2BIG;
		goto out_up_read;
	}
1058
	*num = real_count;
1059

1060 1061 1062
	list_for_each_entry(node, &master->node_list, group_node) {
		if (is_local_group(node->spg->id))
			continue;
1063
		*(spg_ids++) = node->spg->id;
1064
	}
1065 1066 1067 1068 1069

out_up_read:
	up_read(&sp_group_sem);
	put_task_struct(tsk);
	return ret;
1070 1071 1072
}
EXPORT_SYMBOL_GPL(mg_sp_group_id_by_pid);

1073 1074 1075 1076 1077
static bool is_online_node_id(int node_id)
{
	return node_id >= 0 && node_id < MAX_NUMNODES && node_online(node_id);
}

1078
static struct sp_group *create_spg(int spg_id, unsigned long flag)
1079
{
1080 1081 1082 1083 1084 1085
	int ret;
	struct sp_group *spg;
	char name[20];
	struct user_struct *user = NULL;
	int hsize_log = MAP_HUGE_2MB >> MAP_HUGE_SHIFT;

1086 1087
	if (unlikely(system_group_count + 1 == MAX_GROUP_FOR_SYSTEM &&
		     !is_local_group(spg_id))) {
1088 1089 1090 1091
		pr_err_ratelimited("reach system max group num\n");
		return ERR_PTR(-ENOSPC);
	}

1092 1093 1094 1095 1096
	if (flag & ~SPG_FLAG_MASK) {
		pr_err_ratelimited("invalid flag:%#lx\n", flag);
		return ERR_PTR(-EINVAL);
	}

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	spg = kzalloc(sizeof(*spg), GFP_KERNEL);
	if (spg == NULL)
		return ERR_PTR(-ENOMEM);

	ret = idr_alloc(&sp_group_idr, spg, spg_id, spg_id + 1, GFP_KERNEL);
	if (ret < 0) {
		pr_err_ratelimited("group %d idr alloc failed %d\n",
				   spg_id, ret);
		goto out_kfree;
	}

	spg->id = spg_id;
1109
	spg->flag = flag;
1110 1111 1112 1113 1114
	spg->is_alive = true;
	spg->proc_num = 0;
	atomic_set(&spg->use_count, 1);
	INIT_LIST_HEAD(&spg->procs);
	INIT_LIST_HEAD(&spg->spa_list);
1115
	INIT_LIST_HEAD(&spg->mnode);
1116
	init_rwsem(&spg->rw_lock);
1117
	sp_init_group_stat(&spg->instat);
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

	sprintf(name, "sp_group_%d", spg_id);
	spg->file = shmem_kernel_file_setup(name, MAX_LFS_FILESIZE,
					    VM_NORESERVE);
	if (IS_ERR(spg->file)) {
		pr_err("spg file setup failed %ld\n", PTR_ERR(spg->file));
		ret = PTR_ERR(spg->file);
		goto out_idr;
	}

	spg->file_hugetlb = hugetlb_file_setup(name, MAX_LFS_FILESIZE,
					       VM_NORESERVE, &user, HUGETLB_ANONHUGE_INODE, hsize_log);
	if (IS_ERR(spg->file_hugetlb)) {
		pr_err("spg file_hugetlb setup failed %ld\n",
		       PTR_ERR(spg->file_hugetlb));
		ret = PTR_ERR(spg->file_hugetlb);
		goto out_fput;
	}

1137 1138
	if (!is_local_group(spg_id))
		system_group_count++;
1139 1140 1141 1142 1143 1144 1145 1146 1147
	return spg;

out_fput:
	fput(spg->file);
out_idr:
	idr_remove(&sp_group_idr, spg_id);
out_kfree:
	kfree(spg);
	return ERR_PTR(ret);
1148 1149
}

1150
/* the caller must hold sp_group_sem */
1151
static struct sp_group *find_or_alloc_sp_group(int spg_id, unsigned long flag)
1152 1153 1154 1155 1156 1157
{
	struct sp_group *spg;

	spg = __sp_find_spg_locked(current->pid, spg_id);

	if (!spg) {
1158
		spg = create_spg(spg_id, flag);
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	} else {
		down_read(&spg->rw_lock);
		if (!spg_valid(spg)) {
			up_read(&spg->rw_lock);
			sp_group_drop(spg);
			return ERR_PTR(-ENODEV);
		}
		up_read(&spg->rw_lock);
		/* spg->use_count has increased due to __sp_find_spg() */
	}

	return spg;
}

static void __sp_area_drop_locked(struct sp_area *spa);

/* The caller must down_write(&mm->mmap_lock) */
static void sp_munmap_task_areas(struct mm_struct *mm, struct sp_group *spg, struct list_head *stop)
{
	struct sp_area *spa, *prev = NULL;
	int err;


	spin_lock(&sp_area_lock);
	list_for_each_entry(spa, &spg->spa_list, link) {
		if (&spa->link == stop)
			break;

		__sp_area_drop_locked(prev);
		prev = spa;

		atomic_inc(&spa->use_count);
		spin_unlock(&sp_area_lock);

		err = do_munmap(mm, spa->va_start, spa_size(spa), NULL);
		if (err) {
			/* we are not supposed to fail */
			pr_err("failed to unmap VA %pK when munmap task areas\n",
			       (void *)spa->va_start);
		}

		spin_lock(&sp_area_lock);
	}
	__sp_area_drop_locked(prev);

	spin_unlock(&sp_area_lock);
}

/* the caller must hold sp_group_sem */
1208 1209
static int mm_add_group_init(struct task_struct *tsk, struct mm_struct *mm,
			     struct sp_group *spg)
1210
{
1211 1212
	int ret;
	struct sp_group_master *master;
1213

1214 1215 1216 1217 1218 1219 1220 1221 1222
	if (!mm->sp_group_master) {
		ret = sp_init_group_master_locked(tsk, mm);
		if (ret)
			return ret;
	} else {
		if (is_process_in_group(spg, mm)) {
			pr_err_ratelimited("task already in target group, id=%d\n", spg->id);
			return -EEXIST;
		}
1223

1224 1225 1226 1227 1228
		master = mm->sp_group_master;
		if (master->count == MAX_GROUP_FOR_TASK) {
			pr_err("task reaches max group num\n");
			return -ENOSPC;
		}
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	}

	return 0;
}

/* the caller must hold sp_group_sem */
static struct sp_group_node *create_spg_node(struct mm_struct *mm,
	unsigned long prot, struct sp_group *spg)
{
	struct sp_group_master *master = mm->sp_group_master;
	struct sp_group_node *spg_node;

	spg_node = kzalloc(sizeof(struct sp_group_node), GFP_KERNEL);
	if (spg_node == NULL)
		return ERR_PTR(-ENOMEM);

	INIT_LIST_HEAD(&spg_node->group_node);
	INIT_LIST_HEAD(&spg_node->proc_node);
	spg_node->spg = spg;
	spg_node->master = master;
	spg_node->prot = prot;
1250
	sp_init_spg_proc_stat(&spg_node->instat, spg->id);
1251 1252 1253 1254 1255 1256 1257 1258 1259

	list_add_tail(&spg_node->group_node, &master->node_list);
	master->count++;

	return spg_node;
}

/* the caller must down_write(&spg->rw_lock) */
static int insert_spg_node(struct sp_group *spg, struct sp_group_node *node)
1260
{
1261 1262 1263 1264 1265 1266 1267
	if (spg->proc_num + 1 == MAX_PROC_PER_GROUP) {
		pr_err_ratelimited("add group: group reaches max process num\n");
		return -ENOSPC;
	}

	spg->proc_num++;
	list_add_tail(&node->proc_node, &spg->procs);
1268 1269 1270 1271

	return 0;
}

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
/* the caller must down_write(&spg->rw_lock) */
static void delete_spg_node(struct sp_group *spg, struct sp_group_node *node)
{
	list_del(&node->proc_node);
	spg->proc_num--;
}

/* the caller must hold sp_group_sem */
static void free_spg_node(struct mm_struct *mm, struct sp_group *spg,
	struct sp_group_node *spg_node)
{
	struct sp_group_master *master = mm->sp_group_master;

	list_del(&spg_node->group_node);
	master->count--;

	kfree(spg_node);
}

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
static int local_group_add_task(struct mm_struct *mm, struct sp_group *spg)
{
	struct sp_group_node *node;

	node = create_spg_node(mm, PROT_READ | PROT_WRITE, spg);
	if (IS_ERR(node))
		return PTR_ERR(node);

	insert_spg_node(spg, node);
	mmget(mm);

	return 0;
}

1305
/**
1306
 * mg_sp_group_add_task() - Add a process to an share group (sp_group).
1307 1308 1309
 * @pid: the pid of the task to be added.
 * @prot: the prot of task for this spg.
 * @spg_id: the ID of the sp_group.
1310
 * @flag: to give some special message.
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
 *
 * A process can't be added to more than one sp_group in single group mode
 * and can in multiple group mode.
 *
 * Return: A postive group number for success, -errno on failure.
 *
 * The manually specified ID is between [SPG_ID_MIN, SPG_ID_MAX].
 * The automatically allocated ID is between [SPG_ID_AUTO_MIN, SPG_ID_AUTO_MAX].
 * When negative, the return value is -errno.
 */
int mg_sp_group_add_task(int pid, unsigned long prot, int spg_id)
{
1323
	unsigned long flag = 0;
1324 1325 1326 1327 1328 1329 1330 1331
	struct task_struct *tsk;
	struct mm_struct *mm;
	struct sp_group *spg;
	struct sp_group_node *node = NULL;
	int ret = 0;
	bool id_newly_generated = false;
	struct sp_area *spa, *prev = NULL;

1332 1333 1334
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	check_interrupt_context();

	/* only allow READ, READ | WRITE */
	if (!((prot == PROT_READ)
	      || (prot == (PROT_READ | PROT_WRITE)))) {
		pr_err_ratelimited("prot is invalid 0x%lx\n", prot);
		return -EINVAL;
	}

	/* mdc scene hack */
	if (enable_mdc_default_group)
		spg_id = mdc_default_group_id;

	if (spg_id < SPG_ID_MIN || spg_id > SPG_ID_AUTO) {
		pr_err_ratelimited("add group failed, invalid group id %d\n", spg_id);
		return -EINVAL;
	}

	if (spg_id >= SPG_ID_AUTO_MIN && spg_id <= SPG_ID_AUTO_MAX) {
		spg = __sp_find_spg(pid, spg_id);

		if (!spg) {
			pr_err_ratelimited("spg %d hasn't been created\n", spg_id);
			return -EINVAL;
		}

		down_read(&spg->rw_lock);
		if (!spg_valid(spg)) {
			up_read(&spg->rw_lock);
			pr_err_ratelimited("add group failed, group id %d is dead\n", spg_id);
			sp_group_drop(spg);
			return -EINVAL;
		}
		up_read(&spg->rw_lock);

		sp_group_drop(spg);
	}

	if (spg_id == SPG_ID_AUTO) {
		spg_id = ida_alloc_range(&sp_group_id_ida, SPG_ID_AUTO_MIN,
					 SPG_ID_AUTO_MAX, GFP_ATOMIC);
		if (spg_id < 0) {
			pr_err_ratelimited("add group failed, auto generate group id failed\n");
			return spg_id;
		}
		id_newly_generated = true;
	}

	down_write(&sp_group_sem);

	ret = get_task(pid, &tsk);
	if (ret) {
		up_write(&sp_group_sem);
		free_new_spg_id(id_newly_generated, spg_id);
		goto out;
	}

	if (check_aoscore_process(tsk)) {
		up_write(&sp_group_sem);
		ret = -EACCES;
		free_new_spg_id(id_newly_generated, spg_id);
		goto out_put_task;
	}

	/*
	 * group_leader: current thread may be exiting in a multithread process
	 *
	 * DESIGN IDEA
	 * We increase mm->mm_users deliberately to ensure it's decreased in
	 * share pool under only 2 circumstances, which will simply the overall
	 * design as mm won't be freed unexpectedly.
	 *
	 * The corresponding refcount decrements are as follows:
	 * 1. the error handling branch of THIS function.
	 * 2. In sp_group_exit(). It's called only when process is exiting.
	 */
	mm = get_task_mm(tsk->group_leader);
	if (!mm) {
		up_write(&sp_group_sem);
		ret = -ESRCH;
		free_new_spg_id(id_newly_generated, spg_id);
		goto out_put_task;
	}

1419
	spg = find_or_alloc_sp_group(spg_id, flag);
1420 1421 1422 1423 1424 1425 1426
	if (IS_ERR(spg)) {
		up_write(&sp_group_sem);
		ret = PTR_ERR(spg);
		free_new_spg_id(id_newly_generated, spg_id);
		goto out_put_mm;
	}

1427 1428 1429 1430
	down_write(&spg->rw_lock);
	ret = mm_add_group_init(tsk, mm, spg);
	if (ret) {
		up_write(&spg->rw_lock);
1431
		goto out_drop_group;
1432
	}
1433
	mm->sp_group_master->instat.tgid = tsk->tgid;
1434

1435
	ret = sp_mapping_group_setup(mm, spg);
1436 1437
	if (ret) {
		up_write(&spg->rw_lock);
1438
		goto out_drop_group;
1439
	}
1440

1441 1442
	node = create_spg_node(mm, prot, spg);
	if (unlikely(IS_ERR(node))) {
1443
		up_write(&spg->rw_lock);
1444
		ret = PTR_ERR(node);
1445
		goto out_drop_group;
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	}

	ret = insert_spg_node(spg, node);
	if (unlikely(ret)) {
		up_write(&spg->rw_lock);
		goto out_drop_spg_node;
	}

	/*
	 * create mappings of existing shared memory segments into this
	 * new process' page table.
	 */
	spin_lock(&sp_area_lock);

	list_for_each_entry(spa, &spg->spa_list, link) {
		unsigned long populate = 0;
		struct file *file = spa_file(spa);
		unsigned long addr;

		__sp_area_drop_locked(prev);
		prev = spa;

		atomic_inc(&spa->use_count);

		if (spa->is_dead == true)
			continue;

		spin_unlock(&sp_area_lock);

		if (spa->type == SPA_TYPE_K2SPG && spa->kva) {
1476
			addr = sp_remap_kva_to_vma(spa->kva, spa, mm, prot, NULL);
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
			if (IS_ERR_VALUE(addr))
				pr_warn("add group remap k2u failed %ld\n", addr);

			spin_lock(&sp_area_lock);
			continue;
		}

		down_write(&mm->mmap_lock);
		if (unlikely(mm->core_state)) {
			sp_munmap_task_areas(mm, spg, &spa->link);
			up_write(&mm->mmap_lock);
			ret = -EBUSY;
			pr_err("add group: encountered coredump, abort\n");
			spin_lock(&sp_area_lock);
			break;
		}

1494
		addr = sp_mmap(mm, file, spa, &populate, prot, NULL);
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
		if (IS_ERR_VALUE(addr)) {
			sp_munmap_task_areas(mm, spg, &spa->link);
			up_write(&mm->mmap_lock);
			ret = addr;
			pr_err("add group: sp mmap failed %d\n", ret);
			spin_lock(&sp_area_lock);
			break;
		}
		up_write(&mm->mmap_lock);

		if (populate) {
			ret = do_mm_populate(mm, spa->va_start, populate, 0);
			if (ret) {
				if (unlikely(fatal_signal_pending(current)))
					pr_warn_ratelimited("add group failed, current thread is killed\n");
				else
					pr_warn_ratelimited("add group failed, mm populate failed (potential no enough memory when -12): %d, spa type is %d\n",
					ret, spa->type);
				down_write(&mm->mmap_lock);
				sp_munmap_task_areas(mm, spg, spa->link.next);
				up_write(&mm->mmap_lock);
				spin_lock(&sp_area_lock);
				break;
			}
		}

		spin_lock(&sp_area_lock);
	}
	__sp_area_drop_locked(prev);
	spin_unlock(&sp_area_lock);

	if (unlikely(ret))
		delete_spg_node(spg, node);
	up_write(&spg->rw_lock);

out_drop_spg_node:
	if (unlikely(ret))
		free_spg_node(mm, spg, node);
	/*
	 * to simplify design, we don't release the resource of
	 * group_master and proc_stat, they will be freed when
	 * process is exiting.
	 */
out_drop_group:
	if (unlikely(ret)) {
		up_write(&sp_group_sem);
		sp_group_drop(spg);
	} else
		up_write(&sp_group_sem);
out_put_mm:
	/* No need to put the mm if the sp group adds this mm successfully */
	if (unlikely(ret))
		mmput(mm);
out_put_task:
	put_task_struct(tsk);
out:
	return ret == 0 ? spg_id : ret;
}
1553 1554
EXPORT_SYMBOL_GPL(mg_sp_group_add_task);

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
/**
 * mg_sp_group_del_task() - delete a process from a sp group.
 * @pid: the pid of the task to be deleted
 * @spg_id: sharepool group id
 *
 * the group's spa list must be empty, or deletion will fail.
 *
 * Return:
 * * if success, return 0.
 * * -EINVAL, spg_id invalid or spa_lsit not emtpy or spg dead
 * * -ESRCH, the task group of pid is not in group / process dead
 */
int mg_sp_group_del_task(int pid, int spg_id)
{
1569 1570 1571 1572 1573 1574 1575
	int ret = 0;
	struct sp_group *spg;
	struct sp_group_node *spg_node;
	struct task_struct *tsk = NULL;
	struct mm_struct *mm = NULL;
	bool is_alive = true;

1576 1577 1578
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	if (spg_id < SPG_ID_MIN || spg_id > SPG_ID_AUTO) {
		pr_err_ratelimited("del from group failed, invalid group id %d\n", spg_id);
		return -EINVAL;
	}

	spg = __sp_find_spg(pid, spg_id);
	if (!spg) {
		pr_err_ratelimited("spg not found or get task failed.");
		return -EINVAL;
	}
	down_write(&sp_group_sem);

	if (!spg_valid(spg)) {
		up_write(&sp_group_sem);
		pr_err_ratelimited("spg dead.");
		ret = -EINVAL;
		goto out;
	}

	if (!list_empty(&spg->spa_list)) {
		up_write(&sp_group_sem);
		pr_err_ratelimited("spa is not empty");
		ret = -EINVAL;
		goto out;
	}

	ret = get_task(pid, &tsk);
	if (ret) {
		up_write(&sp_group_sem);
		pr_err_ratelimited("task is not found");
		goto out;
	}
	mm = get_task_mm(tsk->group_leader);
	if (!mm) {
		up_write(&sp_group_sem);
		pr_err_ratelimited("mm is not found");
		ret = -ESRCH;
		goto out_put_task;
	}

	spg_node = is_process_in_group(spg, mm);
	if (!spg_node) {
		up_write(&sp_group_sem);
		pr_err_ratelimited("process not in group");
		ret = -ESRCH;
		goto out_put_mm;
	}

	down_write(&spg->rw_lock);
	if (list_is_singular(&spg->procs))
		is_alive = spg->is_alive = false;
	spg->proc_num--;
	list_del(&spg_node->proc_node);
	sp_group_drop(spg);
	up_write(&spg->rw_lock);
	if (!is_alive)
		blocking_notifier_call_chain(&sp_notifier_chain, 0, spg);

	list_del(&spg_node->group_node);
	mm->sp_group_master->count--;
	kfree(spg_node);
	if (atomic_sub_and_test(1, &mm->mm_users)) {
		up_write(&sp_group_sem);
		WARN(1, "Invalid user counting\n");
		return -EINVAL;
	}

	up_write(&sp_group_sem);

out_put_mm:
	mmput(mm);
out_put_task:
	put_task_struct(tsk);
out:
	sp_group_drop(spg); /* if spg dead, freed here */
	return ret;
1655 1656 1657
}
EXPORT_SYMBOL_GPL(mg_sp_group_del_task);

1658
int mg_sp_id_of_current(void)
1659 1660 1661 1662
{
	int ret, spg_id;
	struct sp_group_master *master;

1663 1664 1665
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

1666 1667 1668 1669 1670
	if (current->flags & PF_KTHREAD || !current->mm)
		return -EINVAL;

	down_read(&sp_group_sem);
	master = current->mm->sp_group_master;
1671
	if (master) {
1672 1673 1674 1675 1676 1677 1678
		spg_id = master->local->id;
		up_read(&sp_group_sem);
		return spg_id;
	}
	up_read(&sp_group_sem);

	down_write(&sp_group_sem);
1679
	ret = sp_init_group_master_locked(current, current->mm);
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
	if (ret) {
		up_write(&sp_group_sem);
		return ret;
	}
	master = current->mm->sp_group_master;
	spg_id = master->local->id;
	up_write(&sp_group_sem);

	return spg_id;
}
EXPORT_SYMBOL_GPL(mg_sp_id_of_current);

1692
/* the caller must hold sp_area_lock */
1693
static void __insert_sp_area(struct sp_mapping *spm, struct sp_area *spa)
1694
{
1695
	struct rb_node **p = &spm->area_root.rb_node;
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	struct rb_node *parent = NULL;

	while (*p) {
		struct sp_area *tmp;

		parent = *p;
		tmp = rb_entry(parent, struct sp_area, rb_node);
		if (spa->va_start < tmp->va_end)
			p = &(*p)->rb_left;
		else if (spa->va_end > tmp->va_start)
			p = &(*p)->rb_right;
		else
			BUG();
	}

	rb_link_node(&spa->rb_node, parent, p);
1712
	rb_insert_color(&spa->rb_node, &spm->area_root);
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
}

/**
 * sp_alloc_area() - Allocate a region of VA from the share pool.
 * @size: the size of VA to allocate.
 * @flags: how to allocate the memory.
 * @spg: the share group that the memory is allocated to.
 * @type: the type of the region.
 * @applier: the pid of the task which allocates the region.
 *
 * Return: a valid pointer for success, NULL on failure.
 */
static struct sp_area *sp_alloc_area(unsigned long size, unsigned long flags,
				     struct sp_group *spg, enum spa_type type,
				     pid_t applier)
{
	struct sp_area *spa, *first, *err;
	struct rb_node *n;
1731 1732
	unsigned long vstart;
	unsigned long vend;
1733 1734 1735
	unsigned long addr;
	unsigned long size_align = ALIGN(size, PMD_SIZE); /* va aligned to 2M */
	int device_id, node_id;
1736
	struct sp_mapping *mapping;
1737 1738 1739 1740 1741 1742 1743 1744 1745

	device_id = sp_flags_device_id(flags);
	node_id = flags & SP_SPEC_NODE_ID ? sp_flags_node_id(flags) : device_id;

	if (!is_online_node_id(node_id)) {
		pr_err_ratelimited("invalid numa node id %d\n", node_id);
		return ERR_PTR(-EINVAL);
	}

1746 1747 1748 1749
	if (flags & SP_DVPP)
		mapping = spg->dvpp;
	else
		mapping = spg->normal;
1750

1751 1752 1753 1754 1755
	if (!mapping) {
		pr_err_ratelimited("non DVPP spg, id %d\n", spg->id);
		return ERR_PTR(-EINVAL);
	}

1756 1757
	vstart = mapping->start[device_id];
	vend = mapping->end[device_id];
1758 1759 1760 1761 1762 1763 1764 1765 1766
	spa = __kmalloc_node(sizeof(struct sp_area), GFP_KERNEL, node_id);
	if (unlikely(!spa))
		return ERR_PTR(-ENOMEM);

	spin_lock(&sp_area_lock);

	/*
	 * Invalidate cache if we have more permissive parameters.
	 * cached_hole_size notes the largest hole noticed _below_
1767
	 * the sp_area cached in free_area_cache: if size fits
1768
	 * into that hole, we want to scan from vstart to reuse
1769 1770
	 * the hole instead of allocating above free_area_cache.
	 * Note that sp_free_area may update free_area_cache
1771 1772
	 * without updating cached_hole_size.
	 */
1773 1774 1775 1776
	if (!mapping->free_area_cache || size_align < mapping->cached_hole_size ||
	    vstart != mapping->cached_vstart) {
		mapping->cached_hole_size = 0;
		mapping->free_area_cache = NULL;
1777 1778 1779
	}

	/* record if we encounter less permissive parameters */
1780
	mapping->cached_vstart = vstart;
1781 1782

	/* find starting point for our search */
1783 1784
	if (mapping->free_area_cache) {
		first = rb_entry(mapping->free_area_cache, struct sp_area, rb_node);
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
		addr = first->va_end;
		if (addr + size_align < addr) {
			err = ERR_PTR(-EOVERFLOW);
			goto error;
		}
	} else {
		addr = vstart;
		if (addr + size_align < addr) {
			err = ERR_PTR(-EOVERFLOW);
			goto error;
		}

1797
		n = mapping->area_root.rb_node;
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
		first = NULL;

		while (n) {
			struct sp_area *tmp;

			tmp = rb_entry(n, struct sp_area, rb_node);
			if (tmp->va_end >= addr) {
				first = tmp;
				if (tmp->va_start <= addr)
					break;
				n = n->rb_left;
			} else
				n = n->rb_right;
		}

		if (!first)
			goto found;
	}

	/* from the starting point, traverse areas until a suitable hole is found */
	while (addr + size_align > first->va_start && addr + size_align <= vend) {
1819 1820
		if (addr + mapping->cached_hole_size < first->va_start)
			mapping->cached_hole_size = first->va_start - addr;
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
		addr = first->va_end;
		if (addr + size_align < addr) {
			err = ERR_PTR(-EOVERFLOW);
			goto error;
		}

		n = rb_next(&first->rb_node);
		if (n)
			first = rb_entry(n, struct sp_area, rb_node);
		else
			goto found;
	}

found:
	if (addr + size_align > vend) {
		err = ERR_PTR(-EOVERFLOW);
		goto error;
	}

	spa->va_start = addr;
	spa->va_end = addr + size_align;
	spa->real_size = size;
	spa->region_vstart = vstart;
	spa->flags = flags;
	spa->is_hugepage = (flags & SP_HUGEPAGE);
	spa->is_dead = false;
	spa->spg = spg;
	atomic_set(&spa->use_count, 1);
	spa->type = type;
	spa->mm = NULL;
	spa->kva = 0;   /* NULL pointer */
	spa->applier = applier;
	spa->node_id = node_id;
	spa->device_id = device_id;

	spa_inc_usage(spa);
1857
	__insert_sp_area(mapping, spa);
1858 1859
	mapping->free_area_cache = &spa->rb_node;
	list_add_tail(&spa->link, &spg->spa_list);
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871

	spin_unlock(&sp_area_lock);

	return spa;

error:
	spin_unlock(&sp_area_lock);
	kfree(spa);
	return err;
}

/* the caller should hold sp_area_lock */
1872 1873
static struct sp_area *__find_sp_area_locked(struct sp_group *spg,
		unsigned long addr)
1874
{
1875 1876 1877 1878 1879 1880
	struct rb_node *n;

	if (addr >= MMAP_SHARE_POOL_START && addr < MMAP_SHARE_POOL_16G_START)
		n = spg->normal->area_root.rb_node;
	else
		n = spg->dvpp->area_root.rb_node;
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897

	while (n) {
		struct sp_area *spa;

		spa = rb_entry(n, struct sp_area, rb_node);
		if (addr < spa->va_start) {
			n = n->rb_left;
		} else if (addr > spa->va_start) {
			n = n->rb_right;
		} else {
			return spa;
		}
	}

	return NULL;
}

1898
static struct sp_area *__find_sp_area(struct sp_group *spg, unsigned long addr)
1899 1900 1901 1902
{
	struct sp_area *n;

	spin_lock(&sp_area_lock);
1903
	n = __find_sp_area_locked(spg, addr);
1904 1905 1906 1907 1908 1909
	if (n)
		atomic_inc(&n->use_count);
	spin_unlock(&sp_area_lock);
	return n;
}

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
static bool vmalloc_area_clr_flag(unsigned long kva, unsigned long flags)
{
	struct vm_struct *area;

	area = find_vm_area((void *)kva);
	if (area) {
		area->flags &= ~flags;
		return true;
	}

	return false;
}

1923 1924 1925 1926 1927
/*
 * Free the VA region starting from addr to the share pool
 */
static void sp_free_area(struct sp_area *spa)
{
1928 1929 1930
	unsigned long addr = spa->va_start;
	struct sp_mapping *spm;

1931 1932
	lockdep_assert_held(&sp_area_lock);

1933 1934 1935 1936 1937 1938
	if (addr >= MMAP_SHARE_POOL_START && addr < MMAP_SHARE_POOL_16G_START)
		spm = spa->spg->normal;
	else
		spm = spa->spg->dvpp;

	if (spm->free_area_cache) {
1939 1940
		struct sp_area *cache;

1941
		cache = rb_entry(spm->free_area_cache, struct sp_area, rb_node);
1942
		if (spa->va_start <= cache->va_start) {
1943
			spm->free_area_cache = rb_prev(&spa->rb_node);
1944 1945 1946 1947
			/*
			 * the new cache node may be changed to another region,
			 * i.e. from DVPP region to normal region
			 */
1948 1949
			if (spm->free_area_cache) {
				cache = rb_entry(spm->free_area_cache,
1950
						 struct sp_area, rb_node);
1951
				spm->cached_vstart = cache->region_vstart;
1952 1953 1954 1955 1956 1957 1958 1959
			}
			/*
			 * We don't try to update cached_hole_size,
			 * but it won't go very wrong.
			 */
		}
	}

1960 1961 1962
	if (spa->kva && !vmalloc_area_clr_flag(spa->kva, VM_SHAREPOOL))
		pr_debug("clear spa->kva %ld is not valid\n", spa->kva);

1963
	spa_dec_usage(spa);
1964
	list_del(&spa->link);
1965

1966
	rb_erase(&spa->rb_node, &spm->area_root);
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	RB_CLEAR_NODE(&spa->rb_node);
	kfree(spa);
}

static void __sp_area_drop_locked(struct sp_area *spa)
{
	/*
	 * Considering a situation where task A and B are in the same spg.
	 * A is exiting and calling remove_vma(). Before A calls this func,
	 * B calls sp_free() to free the same spa. So spa maybe NULL when A
	 * calls this func later.
	 */
	if (!spa)
		return;

	if (atomic_dec_and_test(&spa->use_count))
		sp_free_area(spa);
}

static void __sp_area_drop(struct sp_area *spa)
{
	spin_lock(&sp_area_lock);
	__sp_area_drop_locked(spa);
	spin_unlock(&sp_area_lock);
}

void sp_area_drop(struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARE_POOL))
		return;

	/*
	 * Considering a situation where task A and B are in the same spg.
	 * A is exiting and calling remove_vma() -> ... -> sp_area_drop().
	 * Concurrently, B is calling sp_free() to free the same spa.
	 * __find_sp_area_locked() and __sp_area_drop_locked() should be
	 * an atomic operation.
	 */
	spin_lock(&sp_area_lock);
2006
	__sp_area_drop_locked(vma->vm_private_data);
2007 2008 2009
	spin_unlock(&sp_area_lock);
}

W
Wang Wensheng 已提交
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
/*
 * The function calls of do_munmap() won't change any non-atomic member
 * of struct sp_group. Please review the following chain:
 * do_munmap -> remove_vma_list -> remove_vma -> sp_area_drop ->
 * __sp_area_drop_locked -> sp_free_area
 */
static void sp_munmap(struct mm_struct *mm, unsigned long addr,
			   unsigned long size)
{
	int err;

	down_write(&mm->mmap_lock);
	if (unlikely(mm->core_state)) {
		up_write(&mm->mmap_lock);
		pr_info("munmap: encoutered coredump\n");
		return;
	}

	err = do_munmap(mm, addr, size, NULL);
	/* we are not supposed to fail */
	if (err)
		pr_err("failed to unmap VA %pK when sp munmap\n", (void *)addr);

	up_write(&mm->mmap_lock);
}

static void __sp_free(struct sp_group *spg, unsigned long addr,
		      unsigned long size, struct mm_struct *stop)
{
	struct mm_struct *mm;
	struct sp_group_node *spg_node = NULL;

	list_for_each_entry(spg_node, &spg->procs, proc_node) {
		mm = spg_node->master->mm;
		if (mm == stop)
			break;
		sp_munmap(mm, addr, size);
	}
}

/* Free the memory of the backing shmem or hugetlbfs */
static void sp_fallocate(struct sp_area *spa)
{
	int ret;
	unsigned long mode = FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE;
	unsigned long offset = addr_offset(spa);

	ret = vfs_fallocate(spa_file(spa), mode, offset, spa_size(spa));
	if (ret)
		WARN(1, "sp fallocate failed %d\n", ret);
}

static void sp_free_unmap_fallocate(struct sp_area *spa)
{
2064 2065 2066 2067
	down_read(&spa->spg->rw_lock);
	__sp_free(spa->spg, spa->va_start, spa_size(spa), NULL);
	sp_fallocate(spa);
	up_read(&spa->spg->rw_lock);
W
Wang Wensheng 已提交
2068 2069 2070 2071 2072 2073 2074
}

static int sp_check_caller_permission(struct sp_group *spg, struct mm_struct *mm)
{
	int ret = 0;

	down_read(&spg->rw_lock);
2075
	if (!is_process_in_group(spg, mm))
W
Wang Wensheng 已提交
2076 2077
		ret = -EPERM;
	up_read(&spg->rw_lock);
2078

W
Wang Wensheng 已提交
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
	return ret;
}

#define FREE_CONT	1
#define FREE_END	2

struct sp_free_context {
	unsigned long addr;
	struct sp_area *spa;
	int state;
2089
	int spg_id;
W
Wang Wensheng 已提交
2090 2091 2092 2093 2094 2095 2096 2097
};

/* when success, __sp_area_drop(spa) should be used */
static int sp_free_get_spa(struct sp_free_context *fc)
{
	int ret = 0;
	unsigned long addr = fc->addr;
	struct sp_area *spa;
2098 2099 2100 2101 2102 2103 2104
	struct sp_group *spg;

	spg = __sp_find_spg(current->tgid, fc->spg_id);
	if (!spg) {
		pr_debug("sp free get group failed %d\n", fc->spg_id);
		return -EINVAL;
	}
W
Wang Wensheng 已提交
2105 2106 2107

	fc->state = FREE_CONT;

2108 2109
	spa = __find_sp_area(spg, addr);
	sp_group_drop(spg);
W
Wang Wensheng 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
	if (!spa) {
		pr_debug("sp free invalid input addr %lx\n", addr);
		return -EINVAL;
	}

	if (spa->type != SPA_TYPE_ALLOC) {
		ret = -EINVAL;
		pr_debug("sp free failed, %lx is not sp alloc addr\n", addr);
		goto drop_spa;
	}
	fc->spa = spa;

2122 2123
	if (!current->mm)
		goto check_spa;
W
Wang Wensheng 已提交
2124

2125 2126 2127
	ret = sp_check_caller_permission(spa->spg, current->mm);
	if (ret < 0)
		goto drop_spa;
W
Wang Wensheng 已提交
2128 2129

check_spa:
2130 2131 2132 2133
	if (is_local_group(spa->spg->id) && (current->tgid != spa->applier)) {
		ret = -EPERM;
		goto drop_spa;
	}
W
Wang Wensheng 已提交
2134

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
	down_write(&spa->spg->rw_lock);
	if (!spg_valid(spa->spg)) {
		fc->state = FREE_END;
		up_write(&spa->spg->rw_lock);
		goto drop_spa;
		/* we must return success(0) in this situation */
	}
	/* the life cycle of spa has a direct relation with sp group */
	if (unlikely(spa->is_dead)) {
		up_write(&spa->spg->rw_lock);
		pr_err_ratelimited("unexpected double sp free\n");
		dump_stack();
		ret = -EINVAL;
		goto drop_spa;
W
Wang Wensheng 已提交
2149
	}
2150 2151 2152
	spa->is_dead = true;
	up_write(&spa->spg->rw_lock);

W
Wang Wensheng 已提交
2153 2154 2155 2156 2157 2158 2159
	return 0;

drop_spa:
	__sp_area_drop(spa);
	return ret;
}

2160
/**
2161
 * mg_sp_free() - Free the memory allocated by mg_sp_alloc().
2162
 * @addr: the starting VA of the memory.
2163
 * @id: Address space identifier, which is used to distinguish the addr.
2164 2165 2166 2167 2168 2169
 *
 * Return:
 * * 0		- success.
 * * -EINVAL	- the memory can't be found or was not allocted by share pool.
 * * -EPERM	- the caller has no permision to free the memory.
 */
2170
int mg_sp_free(unsigned long addr, int id)
2171
{
W
Wang Wensheng 已提交
2172 2173 2174
	int ret = 0;
	struct sp_free_context fc = {
		.addr = addr,
2175
		.spg_id = id,
W
Wang Wensheng 已提交
2176 2177
	};

2178 2179 2180
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

W
Wang Wensheng 已提交
2181 2182
	check_interrupt_context();

2183 2184 2185
	if (current->flags & PF_KTHREAD)
		return -EINVAL;

W
Wang Wensheng 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	ret = sp_free_get_spa(&fc);
	if (ret || fc.state == FREE_END)
		goto out;

	sp_free_unmap_fallocate(fc.spa);

	/* current->mm == NULL: allow kthread */
	if (current->mm == NULL)
		atomic64_sub(fc.spa->real_size, &kthread_stat.alloc_size);
	else
		sp_update_process_stat(current, false, fc.spa);

	__sp_area_drop(fc.spa);  /* match __find_sp_area in sp_free_get_spa */
out:
	return ret;
2201 2202 2203
}
EXPORT_SYMBOL_GPL(mg_sp_free);

2204 2205 2206
/* wrapper of __do_mmap() and the caller must hold down_write(&mm->mmap_lock). */
static unsigned long sp_mmap(struct mm_struct *mm, struct file *file,
			     struct sp_area *spa, unsigned long *populate,
2207
			     unsigned long prot, struct vm_area_struct **pvma)
2208 2209 2210 2211 2212 2213 2214
{
	unsigned long addr = spa->va_start;
	unsigned long size = spa_size(spa);
	unsigned long flags = MAP_FIXED | MAP_SHARED | MAP_POPULATE |
			      MAP_SHARE_POOL;
	unsigned long vm_flags = VM_NORESERVE | VM_SHARE_POOL | VM_DONTCOPY;
	unsigned long pgoff = addr_offset(spa) >> PAGE_SHIFT;
2215
	struct vm_area_struct *vma;
2216 2217 2218 2219 2220 2221 2222 2223 2224

	atomic_inc(&spa->use_count);
	addr = __do_mmap_mm(mm, file, addr, size, prot, flags, vm_flags, pgoff,
			 populate, NULL);
	if (IS_ERR_VALUE(addr)) {
		atomic_dec(&spa->use_count);
		pr_err("do_mmap fails %ld\n", addr);
	} else {
		BUG_ON(addr != spa->va_start);
2225 2226 2227 2228
		vma = find_vma(mm, addr);
		vma->vm_private_data = spa;
		if (pvma)
			*pvma = vma;
2229 2230 2231 2232 2233
	}

	return addr;
}

W
Wang Wensheng 已提交
2234 2235 2236
#define ALLOC_NORMAL	1
#define ALLOC_RETRY	2
#define ALLOC_NOMEM	3
2237
#define ALLOC_COREDUMP	4
W
Wang Wensheng 已提交
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247

struct sp_alloc_context {
	struct sp_group *spg;
	struct file *file;
	unsigned long size;
	unsigned long size_aligned;
	unsigned long sp_flags;
	unsigned long populate;
	int state;
	bool need_fallocate;
2248
	bool have_mbind;
2249
	enum spa_type type;
W
Wang Wensheng 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
};

static int sp_alloc_prepare(unsigned long size, unsigned long sp_flags,
	int spg_id, struct sp_alloc_context *ac)
{
	struct sp_group *spg;

	check_interrupt_context();

	/* mdc scene hack */
	if (enable_mdc_default_group)
		spg_id = mdc_default_group_id;

2263 2264 2265 2266 2267
	if (current->flags & PF_KTHREAD) {
		pr_err_ratelimited("allocation failed, task is kthread\n");
		return -EINVAL;
	}

W
Wang Wensheng 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
	if (unlikely(!size || (size >> PAGE_SHIFT) > totalram_pages())) {
		pr_err_ratelimited("allocation failed, invalid size %lu\n", size);
		return -EINVAL;
	}

	if (spg_id != SPG_ID_DEFAULT && spg_id < SPG_ID_MIN) {
		pr_err_ratelimited("allocation failed, invalid group id %d\n", spg_id);
		return -EINVAL;
	}

	if (sp_flags & (~SP_FLAG_MASK)) {
		pr_err_ratelimited("allocation failed, invalid flag %lx\n", sp_flags);
		return -EINVAL;
	}

	if (sp_flags & SP_HUGEPAGE_ONLY)
		sp_flags |= SP_HUGEPAGE;

2286 2287 2288 2289 2290
	if (spg_id != SPG_ID_DEFAULT) {
		spg = __sp_find_spg(current->pid, spg_id);
		if (!spg) {
			pr_err_ratelimited("allocation failed, can't find group\n");
			return -ENODEV;
W
Wang Wensheng 已提交
2291 2292
		}

2293 2294 2295 2296 2297 2298 2299 2300
		/* up_read will be at the end of sp_alloc */
		down_read(&spg->rw_lock);
		if (!spg_valid(spg)) {
			up_read(&spg->rw_lock);
			sp_group_drop(spg);
			pr_err_ratelimited("allocation failed, spg is dead\n");
			return -ENODEV;
		}
W
Wang Wensheng 已提交
2301

2302 2303 2304 2305 2306
		if (!is_process_in_group(spg, current->mm)) {
			up_read(&spg->rw_lock);
			sp_group_drop(spg);
			pr_err_ratelimited("allocation failed, task not in group\n");
			return -ENODEV;
W
Wang Wensheng 已提交
2307
		}
2308
		ac->type = SPA_TYPE_ALLOC;
2309
	} else {  /* allocation pass through scene */
2310
		spg = sp_get_local_group(current, current->mm);
2311 2312
		if (IS_ERR(spg))
			return PTR_ERR(spg);
2313 2314
		down_read(&spg->rw_lock);
		ac->type = SPA_TYPE_ALLOC_PRIVATE;
W
Wang Wensheng 已提交
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
	}

	if (sp_flags & SP_HUGEPAGE) {
		ac->file = spg->file_hugetlb;
		ac->size_aligned = ALIGN(size, PMD_SIZE);
	} else {
		ac->file = spg->file;
		ac->size_aligned = ALIGN(size, PAGE_SIZE);
	}

	ac->spg = spg;
	ac->size = size;
	ac->sp_flags = sp_flags;
	ac->state = ALLOC_NORMAL;
	ac->need_fallocate = false;
2330
	ac->have_mbind = false;
W
Wang Wensheng 已提交
2331 2332 2333 2334 2335 2336
	return 0;
}

static void sp_alloc_unmap(struct mm_struct *mm, struct sp_area *spa,
	struct sp_group_node *spg_node)
{
2337
	__sp_free(spa->spg, spa->va_start, spa->real_size, mm);
W
Wang Wensheng 已提交
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
}

static int sp_alloc_mmap(struct mm_struct *mm, struct sp_area *spa,
	struct sp_group_node *spg_node, struct sp_alloc_context *ac)
{
	int ret = 0;
	unsigned long mmap_addr;
	/* pass through default permission */
	unsigned long prot = PROT_READ | PROT_WRITE;
	unsigned long populate = 0;
	struct vm_area_struct *vma;

	down_write(&mm->mmap_lock);
	if (unlikely(mm->core_state)) {
		up_write(&mm->mmap_lock);
2353
		ac->state = ALLOC_COREDUMP;
W
Wang Wensheng 已提交
2354 2355 2356 2357 2358 2359 2360
		pr_info("allocation encountered coredump\n");
		return -EFAULT;
	}

	if (spg_node)
		prot = spg_node->prot;

2361 2362 2363
	if (ac->sp_flags & SP_PROT_RO)
		prot = PROT_READ;

W
Wang Wensheng 已提交
2364
	/* when success, mmap_addr == spa->va_start */
2365
	mmap_addr = sp_mmap(mm, spa_file(spa), spa, &populate, prot, &vma);
W
Wang Wensheng 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
	if (IS_ERR_VALUE(mmap_addr)) {
		up_write(&mm->mmap_lock);
		sp_alloc_unmap(mm, spa, spg_node);
		pr_err("sp mmap in allocation failed %ld\n", mmap_addr);
		return PTR_ERR((void *)mmap_addr);
	}

	if (unlikely(populate == 0)) {
		up_write(&mm->mmap_lock);
		pr_err("allocation sp mmap populate failed\n");
		ret = -EFAULT;
		goto unmap;
	}
	ac->populate = populate;

2381 2382 2383
	if (ac->sp_flags & SP_PROT_RO)
		vma->vm_flags &= ~VM_MAYWRITE;

W
Wang Wensheng 已提交
2384 2385 2386 2387 2388 2389 2390 2391
	/* clean PTE_RDONLY flags or trigger SMMU event */
	if (prot & PROT_WRITE)
		vma->vm_page_prot = __pgprot(((~PTE_RDONLY) & vma->vm_page_prot.pgprot) | PTE_DIRTY);
	up_write(&mm->mmap_lock);

	return ret;

unmap:
2392
	sp_alloc_unmap(list_next_entry(spg_node, proc_node)->master->mm, spa, spg_node);
W
Wang Wensheng 已提交
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
	return ret;
}

static void sp_alloc_fallback(struct sp_area *spa, struct sp_alloc_context *ac)
{
	if (ac->file == ac->spg->file) {
		ac->state = ALLOC_NOMEM;
		return;
	}

2403
	atomic_inc(&ac->spg->instat.hugepage_failures);
W
Wang Wensheng 已提交
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
	if (!(ac->sp_flags & SP_HUGEPAGE_ONLY)) {
		ac->file = ac->spg->file;
		ac->size_aligned = ALIGN(ac->size, PAGE_SIZE);
		ac->sp_flags &= ~SP_HUGEPAGE;
		ac->state = ALLOC_RETRY;
		__sp_area_drop(spa);
		return;
	}
	ac->state = ALLOC_NOMEM;
}

static int sp_alloc_populate(struct mm_struct *mm, struct sp_area *spa,
2416
			     struct sp_alloc_context *ac)
W
Wang Wensheng 已提交
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
{
	int ret = 0;
	unsigned long sp_addr = spa->va_start;
	unsigned int noreclaim_flag = 0;

	/*
	 * The direct reclaim and compact may take a long
	 * time. As a result, sp mutex will be hold for too
	 * long time to casue the hung task problem. In this
	 * case, set the PF_MEMALLOC flag to prevent the
	 * direct reclaim and compact from being executed.
	 * Since direct reclaim and compact are not performed
	 * when the fragmentation is severe or the memory is
	 * insufficient, 2MB continuous physical pages fail
	 * to be allocated. This situation is allowed.
	 */
	if (spa->is_hugepage)
		noreclaim_flag = memalloc_noreclaim_save();

	/*
	 * We are not ignoring errors, so if we fail to allocate
	 * physical memory we just return failure, so we won't encounter
	 * page fault later on, and more importantly sp_make_share_u2k()
	 * depends on this feature (and MAP_LOCKED) to work correctly.
	 */
	ret = do_mm_populate(mm, sp_addr, ac->populate, 0);
2443
	if (spa->is_hugepage)
W
Wang Wensheng 已提交
2444
		memalloc_noreclaim_restore(noreclaim_flag);
2445

W
Wang Wensheng 已提交
2446 2447 2448
	return ret;
}

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
static long sp_mbind(struct mm_struct *mm, unsigned long start, unsigned long len,
		unsigned long node)
{
	nodemask_t nmask;

	nodes_clear(nmask);
	node_set(node, nmask);
	return __do_mbind(start, len, MPOL_BIND, MPOL_F_STATIC_NODES,
			&nmask, MPOL_MF_STRICT, mm);
}

W
Wang Wensheng 已提交
2460 2461 2462 2463 2464 2465
static int __sp_alloc_mmap_populate(struct mm_struct *mm, struct sp_area *spa,
	struct sp_group_node *spg_node, struct sp_alloc_context *ac)
{
	int ret;

	ret = sp_alloc_mmap(mm, spa, spg_node, ac);
2466
	if (ret < 0)
W
Wang Wensheng 已提交
2467 2468
		return ret;

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
	if (!ac->have_mbind) {
		ret = sp_mbind(mm, spa->va_start, spa->real_size, spa->node_id);
		if (ret < 0) {
			pr_err("cannot bind the memory range to specified node:%d, err:%d\n",
				spa->node_id, ret);
			goto err;
		}
		ac->have_mbind = true;
	}

	ret = sp_alloc_populate(mm, spa, ac);
	if (ret) {
err:
		if (unlikely(fatal_signal_pending(current)))
			pr_warn_ratelimited("allocation failed, current thread is killed\n");
		else
			pr_warn_ratelimited("allocation failed due to mm populate failed(potential no enough memory when -12): %d\n",
2486
					ret);
2487 2488
	} else
		ac->need_fallocate = true;
W
Wang Wensheng 已提交
2489 2490 2491 2492 2493 2494
	return ret;
}

static int sp_alloc_mmap_populate(struct sp_area *spa,
				  struct sp_alloc_context *ac)
{
2495 2496
	int ret = -EINVAL;
	int mmap_ret = 0;
2497
	struct mm_struct *mm, *end_mm = NULL;
W
Wang Wensheng 已提交
2498 2499
	struct sp_group_node *spg_node;

2500 2501 2502 2503 2504 2505
	/* create mapping for each process in the group */
	list_for_each_entry(spg_node, &spa->spg->procs, proc_node) {
		mm = spg_node->master->mm;
		mmap_ret = __sp_alloc_mmap_populate(mm, spa, spg_node, ac);
		if (mmap_ret) {
			if (ac->state != ALLOC_COREDUMP)
2506
				goto unmap;
2507 2508
			ac->state = ALLOC_NORMAL;
			continue;
W
Wang Wensheng 已提交
2509
		}
2510
		ret = mmap_ret;
W
Wang Wensheng 已提交
2511
	}
2512

W
Wang Wensheng 已提交
2513
	return ret;
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532

unmap:
	/* use the next mm in proc list as end mark */
	if (!list_is_last(&spg_node->proc_node, &spa->spg->procs))
		end_mm = list_next_entry(spg_node, proc_node)->master->mm;
	sp_alloc_unmap(end_mm, spa, spg_node);

	/* only fallocate spa if physical memory had been allocated */
	if (ac->need_fallocate) {
		sp_fallocate(spa);
		ac->need_fallocate = false;
	}

	/* if hugepage allocation fails, this will transfer to normal page
	 * and try again. (only if SP_HUGEPAGE_ONLY is not flagged
	 */
	sp_alloc_fallback(spa, ac);

	return mmap_ret;
W
Wang Wensheng 已提交
2533 2534 2535 2536
}

/* spa maybe an error pointer, so introduce variable spg */
static void sp_alloc_finish(int result, struct sp_area *spa,
2537
		struct sp_alloc_context *ac)
W
Wang Wensheng 已提交
2538 2539 2540
{
	struct sp_group *spg = ac->spg;

2541
	/* match sp_alloc_prepare */
2542
	up_read(&spg->rw_lock);
W
Wang Wensheng 已提交
2543 2544 2545 2546 2547

	if (!result)
		sp_update_process_stat(current, true, spa);

	/* this will free spa if mmap failed */
2548
	if (spa && !IS_ERR(spa))
W
Wang Wensheng 已提交
2549 2550
		__sp_area_drop(spa);

2551
	sp_group_drop(spg);
W
Wang Wensheng 已提交
2552 2553
}

2554
/**
2555
 * mg_sp_alloc() - Allocate shared memory for all the processes in a sp_group.
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
 * @size: the size of memory to allocate.
 * @sp_flags: how to allocate the memory.
 * @spg_id: the share group that the memory is allocated to.
 *
 * Use pass through allocation if spg_id == SPG_ID_DEFAULT in multi-group mode.
 *
 * Return:
 * * if succeed, return the starting address of the shared memory.
 * * if fail, return the pointer of -errno.
 */
2566
void *mg_sp_alloc(unsigned long size, unsigned long sp_flags, int spg_id)
2567
{
W
Wang Wensheng 已提交
2568 2569 2570 2571
	struct sp_area *spa = NULL;
	int ret = 0;
	struct sp_alloc_context ac;

2572 2573 2574
	if (!sp_is_enabled())
		return ERR_PTR(-EOPNOTSUPP);

W
Wang Wensheng 已提交
2575 2576 2577 2578 2579 2580
	ret = sp_alloc_prepare(size, sp_flags, spg_id, &ac);
	if (ret)
		return ERR_PTR(ret);

try_again:
	spa = sp_alloc_area(ac.size_aligned, ac.sp_flags, ac.spg,
2581
			    ac.type, current->tgid);
W
Wang Wensheng 已提交
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
	if (IS_ERR(spa)) {
		pr_err_ratelimited("alloc spa failed in allocation(potential no enough virtual memory when -75): %ld\n",
			PTR_ERR(spa));
		ret = PTR_ERR(spa);
		goto out;
	}

	ret = sp_alloc_mmap_populate(spa, &ac);
	if (ret && ac.state == ALLOC_RETRY)
		goto try_again;

out:
	sp_alloc_finish(ret, spa, &ac);
	if (ret)
		return ERR_PTR(ret);
	else
		return (void *)(spa->va_start);
2599 2600 2601
}
EXPORT_SYMBOL_GPL(mg_sp_alloc);

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
/**
 * is_vmap_hugepage() - Check if a kernel address belongs to vmalloc family.
 * @addr: the kernel space address to be checked.
 *
 * Return:
 * * >0		- a vmalloc hugepage addr.
 * * =0		- a normal vmalloc addr.
 * * -errno	- failure.
 */
static int is_vmap_hugepage(unsigned long addr)
{
	struct vm_struct *area;

	if (unlikely(!addr)) {
		pr_err_ratelimited("null vmap addr pointer\n");
		return -EINVAL;
	}

	area = find_vm_area((void *)addr);
	if (unlikely(!area)) {
		pr_debug("can't find vm area(%lx)\n", addr);
		return -EINVAL;
	}

	if (area->flags & VM_HUGE_PAGES)
		return 1;
	else
		return 0;
}

2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
static unsigned long __sp_remap_get_pfn(unsigned long kva)
{
	unsigned long pfn;

	if (is_vmalloc_addr((void *)kva))
		pfn = vmalloc_to_pfn((void *)kva);
	else
		pfn = virt_to_pfn(kva);

	return pfn;
}

/* when called by k2u to group, always make sure rw_lock of spg is down */
static unsigned long sp_remap_kva_to_vma(unsigned long kva, struct sp_area *spa,
2646
					 struct mm_struct *mm, unsigned long prot, struct sp_k2u_context *kc)
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
{
	struct vm_area_struct *vma;
	unsigned long ret_addr;
	unsigned long populate = 0;
	int ret = 0;
	unsigned long addr, buf, offset;

	down_write(&mm->mmap_lock);
	if (unlikely(mm->core_state)) {
		pr_err("k2u mmap: encountered coredump, abort\n");
		ret_addr = -EBUSY;
2658 2659
		if (kc)
			kc->state = K2U_COREDUMP;
2660 2661 2662
		goto put_mm;
	}

2663 2664 2665
	if (kc && kc->sp_flags & SP_PROT_RO)
		prot = PROT_READ;

2666
	ret_addr = sp_mmap(mm, spa_file(spa), spa, &populate, prot, &vma);
2667 2668 2669 2670 2671 2672 2673 2674
	if (IS_ERR_VALUE(ret_addr)) {
		pr_debug("k2u mmap failed %lx\n", ret_addr);
		goto put_mm;
	}

	if (prot & PROT_WRITE)
		vma->vm_page_prot = __pgprot(((~PTE_RDONLY) & vma->vm_page_prot.pgprot) | PTE_DIRTY);

2675 2676 2677
	if (kc && kc->sp_flags & SP_PROT_RO)
		vma->vm_flags &= ~VM_MAYWRITE;

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
	if (is_vm_hugetlb_page(vma)) {
		ret = remap_vmalloc_hugepage_range(vma, (void *)kva, 0);
		if (ret) {
			do_munmap(mm, ret_addr, spa_size(spa), NULL);
			pr_debug("remap vmalloc hugepage failed, ret %d, kva is %lx\n",
				 ret, (unsigned long)kva);
			ret_addr = ret;
			goto put_mm;
		}
		vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
	} else {
		buf = ret_addr;
		addr = kva;
		offset = 0;
		do {
			ret = remap_pfn_range(vma, buf, __sp_remap_get_pfn(addr), PAGE_SIZE,
					__pgprot(vma->vm_page_prot.pgprot));
			if (ret) {
				do_munmap(mm, ret_addr, spa_size(spa), NULL);
				pr_err("remap_pfn_range failed %d\n", ret);
				ret_addr = ret;
				goto put_mm;
			}
			offset += PAGE_SIZE;
			buf += PAGE_SIZE;
			addr += PAGE_SIZE;
		} while (offset < spa_size(spa));
	}

put_mm:
	up_write(&mm->mmap_lock);

	return ret_addr;
}

/**
 * sp_make_share_kva_to_task() - Share kernel memory to current task.
 * @kva: the VA of shared kernel memory
 * @size: the size of area to share, should be aligned properly
 * @sp_flags: the flags for the opreation
 *
 * Return:
 * * if succeed, return the shared user address to start at.
 * * if fail, return the pointer of -errno.
 */
static void *sp_make_share_kva_to_task(unsigned long kva, unsigned long size, unsigned long sp_flags)
{
2725
	int ret;
2726 2727
	void *uva;
	struct sp_area *spa;
2728
	struct sp_group_node *spg_node;
2729
	unsigned long prot = PROT_READ | PROT_WRITE;
2730
	struct sp_k2u_context kc;
2731
	struct sp_group *spg;
2732 2733

	down_write(&sp_group_sem);
2734
	ret = sp_init_group_master_locked(current, current->mm);
2735 2736 2737 2738 2739 2740 2741 2742
	if (ret) {
		up_write(&sp_group_sem);
		pr_err_ratelimited("k2u_task init local mapping failed %d\n", ret);
		return ERR_PTR(ret);
	}

	spg = current->mm->sp_group_master->local;
	up_write(&sp_group_sem);
2743

2744
	spa = sp_alloc_area(size, sp_flags, spg, SPA_TYPE_K2TASK, current->tgid);
2745 2746 2747 2748 2749 2750 2751
	if (IS_ERR(spa)) {
		pr_err_ratelimited("alloc spa failed in k2u_task (potential no enough virtual memory when -75): %ld\n",
				PTR_ERR(spa));
		return spa;
	}

	spa->kva = kva;
2752 2753
	kc.sp_flags = sp_flags;
	uva = (void *)sp_remap_kva_to_vma(kva, spa, current->mm, prot, &kc);
2754 2755 2756 2757
	__sp_area_drop(spa);
	if (IS_ERR(uva))
		pr_err("remap k2u to task failed %ld\n", PTR_ERR(uva));
	else {
2758 2759 2760 2761 2762
		spg_node = find_spg_node_by_spg(current->mm, spa->spg);
		if (!spg_node)
			pr_err("spg_node is null\n");
		else
			update_mem_usage(size, true, spa->is_hugepage, spg_node, SPA_TYPE_K2TASK);
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
		spa->mm = current->mm;
	}

	return uva;
}

/**
 * Share kernel memory to a spg, the current process must be in that group
 * @kva: the VA of shared kernel memory
 * @size: the size of area to share, should be aligned properly
 * @sp_flags: the flags for the opreation
 * @spg: the sp group to be shared with
 *
 * Return: the shared user address to start at
 */
static void *sp_make_share_kva_to_spg(unsigned long kva, unsigned long size,
				      unsigned long sp_flags, struct sp_group *spg)
{
	struct sp_area *spa;
	struct mm_struct *mm;
	struct sp_group_node *spg_node;
	void *uva = ERR_PTR(-ENODEV);
2785 2786
	struct sp_k2u_context kc;
	unsigned long ret_addr = -ENODEV;
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797

	down_read(&spg->rw_lock);
	spa = sp_alloc_area(size, sp_flags, spg, SPA_TYPE_K2SPG, current->tgid);
	if (IS_ERR(spa)) {
		up_read(&spg->rw_lock);
		pr_err_ratelimited("alloc spa failed in k2u_spg (potential no enough virtual memory when -75): %ld\n",
				PTR_ERR(spa));
		return spa;
	}

	spa->kva = kva;
2798
	kc.sp_flags = sp_flags;
2799 2800
	list_for_each_entry(spg_node, &spg->procs, proc_node) {
		mm = spg_node->master->mm;
2801 2802 2803 2804 2805 2806
		kc.state = K2U_NORMAL;
		ret_addr = sp_remap_kva_to_vma(kva, spa, mm, spg_node->prot, &kc);
		if (IS_ERR_VALUE(ret_addr)) {
			if (kc.state == K2U_COREDUMP)
				continue;
			uva = (void *)ret_addr;
2807 2808 2809 2810
			pr_err("remap k2u to spg failed %ld\n", PTR_ERR(uva));
			__sp_free(spg, spa->va_start, spa_size(spa), mm);
			goto out;
		}
2811
		uva = (void *)ret_addr;
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
	}

out:
	up_read(&spg->rw_lock);
	__sp_area_drop(spa);
	if (!IS_ERR(uva))
		sp_update_process_stat(current, true, spa);

	return uva;
}

static bool vmalloc_area_set_flag(unsigned long kva, unsigned long flags)
{
	struct vm_struct *area;

	area = find_vm_area((void *)kva);
	if (area) {
		area->flags |= flags;
		return true;
	}

	return false;
}

static int sp_k2u_prepare(unsigned long kva, unsigned long size,
	unsigned long sp_flags, int spg_id, struct sp_k2u_context *kc)
{
	int is_hugepage;
	unsigned int page_size = PAGE_SIZE;
	unsigned long kva_aligned, size_aligned;

2843
	if (sp_flags & ~SP_FLAG_MASK) {
2844 2845 2846
		pr_err_ratelimited("k2u sp_flags %lx error\n", sp_flags);
		return -EINVAL;
	}
2847
	sp_flags &= ~SP_HUGEPAGE;
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

	if (!current->mm) {
		pr_err_ratelimited("k2u: kthread is not allowed\n");
		return -EPERM;
	}

	is_hugepage = is_vmap_hugepage(kva);
	if (is_hugepage > 0) {
		sp_flags |= SP_HUGEPAGE;
		page_size = PMD_SIZE;
	} else if (is_hugepage == 0) {
		/* do nothing */
	} else {
		pr_err_ratelimited("k2u kva is not vmalloc address\n");
		return is_hugepage;
	}

	/* aligned down kva is convenient for caller to start with any valid kva */
	kva_aligned = ALIGN_DOWN(kva, page_size);
	size_aligned = ALIGN(kva + size, page_size) - kva_aligned;

	if (!vmalloc_area_set_flag(kva_aligned, VM_SHAREPOOL)) {
		pr_debug("k2u_task kva %lx is not valid\n", kva_aligned);
		return -EINVAL;
	}

	kc->kva = kva;
	kc->kva_aligned = kva_aligned;
	kc->size = size;
	kc->size_aligned = size_aligned;
	kc->sp_flags = sp_flags;
	kc->spg_id = spg_id;
2880 2881 2882 2883
	if (spg_id == SPG_ID_DEFAULT || spg_id == SPG_ID_NONE)
		kc->to_task = true;
	else
		kc->to_task = false;
2884

2885
	return 0;
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
}

static void *sp_k2u_finish(void *uva, struct sp_k2u_context *kc)
{
	if (IS_ERR(uva))
		vmalloc_area_clr_flag(kc->kva_aligned, VM_SHAREPOOL);
	else
		uva = uva + (kc->kva - kc->kva_aligned);

	return uva;
}

2898
/**
2899
 * mg_sp_make_share_k2u() - Share kernel memory to current process or an sp_group.
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
 * @kva: the VA of shared kernel memory.
 * @size: the size of shared kernel memory.
 * @sp_flags: how to allocate the memory. We only support SP_DVPP.
 * @pid:  the pid of the specified process (Not currently in use).
 * @spg_id: the share group that the memory is shared to.
 *
 * Return: the shared target user address to start at
 *
 * Share kernel memory to current task if spg_id == SPG_ID_NONE
 * or SPG_ID_DEFAULT in multi-group mode.
 *
 * Return:
 * * if succeed, return the shared user address to start at.
 * * if fail, return the pointer of -errno.
 */
2915
void *mg_sp_make_share_k2u(unsigned long kva, unsigned long size,
2916 2917
			unsigned long sp_flags, int pid, int spg_id)
{
2918 2919 2920 2921
	void *uva;
	int ret;
	struct sp_k2u_context kc;

2922 2923 2924
	if (!sp_is_enabled())
		return ERR_PTR(-EOPNOTSUPP);

2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
	check_interrupt_context();

	ret = sp_k2u_prepare(kva, size, sp_flags, spg_id, &kc);
	if (ret)
		return ERR_PTR(ret);

	if (kc.to_task)
		uva = sp_make_share_kva_to_task(kc.kva_aligned, kc.size_aligned, kc.sp_flags);
	else {
		struct sp_group *spg;

		spg = __sp_find_spg(current->pid, kc.spg_id);
		if (spg) {
			ret = sp_check_caller_permission(spg, current->mm);
			if (ret < 0) {
				sp_group_drop(spg);
				uva = ERR_PTR(ret);
				goto out;
			}
			uva = sp_make_share_kva_to_spg(kc.kva_aligned, kc.size_aligned, kc.sp_flags, spg);
			sp_group_drop(spg);
		} else
			uva = ERR_PTR(-ENODEV);
	}

out:
	return sp_k2u_finish(uva, &kc);
2952 2953 2954
}
EXPORT_SYMBOL_GPL(mg_sp_make_share_k2u);

2955 2956 2957
static int sp_pmd_entry(pmd_t *pmd, unsigned long addr,
			unsigned long next, struct mm_walk *walk)
{
2958
	struct page *page;
2959 2960
	struct sp_walk_data *sp_walk_data = walk->private;

2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
	/*
	 * There exist a scene in DVPP where the pagetable is huge page but its
	 * vma doesn't record it, something like THP.
	 * So we cannot make out whether it is a hugepage map until we access the
	 * pmd here. If mixed size of pages appear, just return an error.
	 */
	if (pmd_huge(*pmd)) {
		if (!sp_walk_data->is_page_type_set) {
			sp_walk_data->is_page_type_set = true;
			sp_walk_data->is_hugepage = true;
		} else if (!sp_walk_data->is_hugepage)
			return -EFAULT;

		/* To skip pte level walk */
		walk->action = ACTION_CONTINUE;

		page = pmd_page(*pmd);
		get_page(page);
		sp_walk_data->pages[sp_walk_data->page_count++] = page;

		return 0;
	}

	if (!sp_walk_data->is_page_type_set) {
		sp_walk_data->is_page_type_set = true;
		sp_walk_data->is_hugepage = false;
	} else if (sp_walk_data->is_hugepage)
		return -EFAULT;

2990
	sp_walk_data->pmd = pmd;
2991

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
	return 0;
}

static int sp_pte_entry(pte_t *pte, unsigned long addr,
			unsigned long next, struct mm_walk *walk)
{
	struct page *page;
	struct sp_walk_data *sp_walk_data = walk->private;
	pmd_t *pmd = sp_walk_data->pmd;

retry:
	if (unlikely(!pte_present(*pte))) {
		swp_entry_t entry;

		if (pte_none(*pte))
			goto no_page;
		entry = pte_to_swp_entry(*pte);
		if (!is_migration_entry(entry))
			goto no_page;
		migration_entry_wait(walk->mm, pmd, addr);
		goto retry;
	}

	page = pte_page(*pte);
	get_page(page);
	sp_walk_data->pages[sp_walk_data->page_count++] = page;
	return 0;

no_page:
	pr_debug("the page of addr %lx unexpectedly not in RAM\n",
		 (unsigned long)addr);
	return -EFAULT;
}

static int sp_test_walk(unsigned long addr, unsigned long next,
			struct mm_walk *walk)
{
	/*
	 * FIXME: The devmm driver uses remap_pfn_range() but actually there
	 * are associated struct pages, so they should use vm_map_pages() or
	 * similar APIs. Before the driver has been converted to correct APIs
	 * we use this test_walk() callback so we can treat VM_PFNMAP VMAs as
	 * normal VMAs.
	 */
	return 0;
}

static int sp_pte_hole(unsigned long start, unsigned long end,
		       int depth, struct mm_walk *walk)
{
	pr_debug("hole [%lx, %lx) appeared unexpectedly\n", (unsigned long)start, (unsigned long)end);
	return -EFAULT;
}

static int sp_hugetlb_entry(pte_t *ptep, unsigned long hmask,
			    unsigned long addr, unsigned long next,
			    struct mm_walk *walk)
{
	pte_t pte = huge_ptep_get(ptep);
	struct page *page = pte_page(pte);
	struct sp_walk_data *sp_walk_data;

	if (unlikely(!pte_present(pte))) {
		pr_debug("the page of addr %lx unexpectedly not in RAM\n", (unsigned long)addr);
		return -EFAULT;
	}

	sp_walk_data = walk->private;
	get_page(page);
	sp_walk_data->pages[sp_walk_data->page_count++] = page;
	return 0;
}

/*
 * __sp_walk_page_range() - Walk page table with caller specific callbacks.
 * @uva: the start VA of user memory.
 * @size: the size of user memory.
 * @mm: mm struct of the target task.
 * @sp_walk_data: a structure of a page pointer array.
 *
 * the caller must hold mm->mmap_lock
 *
 * Notes for parameter alignment:
 * When size == 0, let it be page_size, so that at least one page is walked.
 *
 * When size > 0, for convenience, usually the parameters of uva and
 * size are not page aligned. There are four different alignment scenarios and
 * we must handler all of them correctly.
 *
 * The basic idea is to align down uva and align up size so all the pages
 * in range [uva, uva + size) are walked. However, there are special cases.
 *
 * Considering a 2M-hugepage addr scenario. Assuming the caller wants to
 * traverse range [1001M, 1004.5M), so uva and size is 1001M and 3.5M
 * accordingly. The aligned-down uva is 1000M and the aligned-up size is 4M.
 * The traverse range will be [1000M, 1004M). Obviously, the final page for
 * [1004M, 1004.5M) is not covered.
 *
 * To fix this problem, we need to walk an additional page, size should be
 * ALIGN(uva+size) - uva_aligned
 */
static int __sp_walk_page_range(unsigned long uva, unsigned long size,
	struct mm_struct *mm, struct sp_walk_data *sp_walk_data)
{
	int ret = 0;
	struct vm_area_struct *vma;
	unsigned long page_nr;
	struct page **pages = NULL;
	bool is_hugepage = false;
	unsigned long uva_aligned;
	unsigned long size_aligned;
	unsigned int page_size = PAGE_SIZE;
	struct mm_walk_ops sp_walk = {};

	/*
	 * Here we also support non share pool memory in this interface
	 * because the caller can't distinguish whether a uva is from the
	 * share pool or not. It is not the best idea to do so, but currently
	 * it simplifies overall design.
	 *
	 * In this situation, the correctness of the parameters is mainly
	 * guaranteed by the caller.
	 */
	vma = find_vma(mm, uva);
	if (!vma) {
		pr_debug("u2k input uva %lx is invalid\n", (unsigned long)uva);
		return -EINVAL;
	}
	if (is_vm_hugetlb_page(vma))
		is_hugepage = true;

	sp_walk.pte_hole = sp_pte_hole;
	sp_walk.test_walk = sp_test_walk;
	if (is_hugepage) {
		sp_walk_data->is_hugepage = true;
		sp_walk.hugetlb_entry = sp_hugetlb_entry;
		page_size = PMD_SIZE;
	} else {
		sp_walk_data->is_hugepage = false;
		sp_walk.pte_entry = sp_pte_entry;
		sp_walk.pmd_entry = sp_pmd_entry;
	}

3135 3136
	sp_walk_data->is_page_type_set = false;
	sp_walk_data->page_count = 0;
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
	sp_walk_data->page_size = page_size;
	uva_aligned = ALIGN_DOWN(uva, page_size);
	sp_walk_data->uva_aligned = uva_aligned;
	if (size == 0)
		size_aligned = page_size;
	else
		/* special alignment handling */
		size_aligned = ALIGN(uva + size, page_size) - uva_aligned;

	if (uva_aligned + size_aligned < uva_aligned) {
		pr_err_ratelimited("overflow happened in walk page range\n");
		return -EINVAL;
	}

	page_nr = size_aligned / page_size;
	pages = kvmalloc(page_nr * sizeof(struct page *), GFP_KERNEL);
	if (!pages) {
		pr_err_ratelimited("alloc page array failed in walk page range\n");
		return -ENOMEM;
	}
	sp_walk_data->pages = pages;

	ret = walk_page_range(mm, uva_aligned, uva_aligned + size_aligned,
			      &sp_walk, sp_walk_data);
3161 3162 3163
	if (ret) {
		while (sp_walk_data->page_count--)
			put_page(pages[sp_walk_data->page_count]);
3164
		kvfree(pages);
3165 3166
		sp_walk_data->pages = NULL;
	}
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186

	return ret;
}

static void __sp_walk_page_free(struct sp_walk_data *data)
{
	int i = 0;
	struct page *page;

	while (i < data->page_count) {
		page = data->pages[i++];
		put_page(page);
	}

	kvfree(data->pages);
	/* prevent repeated release */
	data->page_count = 0;
	data->pages = NULL;
}

3187
/**
3188
 * mg_sp_make_share_u2k() - Share user memory of a specified process to kernel.
3189 3190 3191 3192 3193 3194 3195 3196
 * @uva: the VA of shared user memory
 * @size: the size of shared user memory
 * @pid: the pid of the specified process(Not currently in use)
 *
 * Return:
 * * if success, return the starting kernel address of the shared memory.
 * * if failed, return the pointer of -errno.
 */
3197
void *mg_sp_make_share_u2k(unsigned long uva, unsigned long size, int pid)
3198
{
3199 3200 3201
	int ret = 0;
	struct mm_struct *mm = current->mm;
	void *p = ERR_PTR(-ESRCH);
3202
	struct sp_walk_data sp_walk_data;
3203 3204
	struct vm_struct *area;

3205 3206 3207
	if (!sp_is_enabled())
		return ERR_PTR(-EOPNOTSUPP);

3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
	check_interrupt_context();

	if (mm == NULL) {
		pr_err("u2k: kthread is not allowed\n");
		return ERR_PTR(-EPERM);
	}

	down_write(&mm->mmap_lock);
	if (unlikely(mm->core_state)) {
		up_write(&mm->mmap_lock);
		pr_err("u2k: encountered coredump, abort\n");
		return p;
	}

	ret = __sp_walk_page_range(uva, size, mm, &sp_walk_data);
	if (ret) {
		pr_err_ratelimited("walk page range failed %d\n", ret);
		up_write(&mm->mmap_lock);
		return ERR_PTR(ret);
	}

	if (sp_walk_data.is_hugepage)
		p = vmap_hugepage(sp_walk_data.pages, sp_walk_data.page_count,
				  VM_MAP, PAGE_KERNEL);
	else
		p = vmap(sp_walk_data.pages, sp_walk_data.page_count, VM_MAP,
			 PAGE_KERNEL);
	up_write(&mm->mmap_lock);

	if (!p) {
		pr_err("vmap(huge) in u2k failed\n");
		__sp_walk_page_free(&sp_walk_data);
		return ERR_PTR(-ENOMEM);
	}

	p = p + (uva - sp_walk_data.uva_aligned);

	/*
	 * kva p may be used later in k2u. Since p comes from uva originally,
	 * it's reasonable to add flag VM_USERMAP so that p can be remapped
	 * into userspace again.
	 */
	area = find_vm_area(p);
	area->flags |= VM_USERMAP;

	kvfree(sp_walk_data.pages);
	return p;
3255 3256 3257
}
EXPORT_SYMBOL_GPL(mg_sp_make_share_u2k);

3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
/*
 * Input parameters uva, pid and spg_id are now useless. spg_id will be useful
 * when supporting a process in multiple sp groups.
 *
 * Procedure of unshare uva must be compatible with:
 *
 * 1. DVPP channel destroy procedure:
 * do_exit() -> exit_mm() (mm no longer in spg and current->mm == NULL) ->
 * exit_task_work() -> task_work_run() -> __fput() -> ... -> vdec_close() ->
 * sp_unshare(uva, SPG_ID_DEFAULT)
 *
 * 2. Process A once was the target of k2u(to group), then it exits.
 * Guard worker kthread tries to free this uva and it must succeed, otherwise
 * spa of this uva leaks.
 *
 * This also means we must trust DVPP channel destroy and guard worker code.
 */
3275
static int sp_unshare_uva(unsigned long uva, unsigned long size, int group_id)
3276
{
3277 3278 3279 3280 3281 3282
	int ret = 0;
	struct mm_struct *mm;
	struct sp_area *spa;
	unsigned long uva_aligned;
	unsigned long size_aligned;
	unsigned int page_size;
3283 3284 3285 3286 3287 3288 3289
	struct sp_group *spg;

	spg = __sp_find_spg(current->tgid, group_id);
	if (!spg) {
		pr_debug("sp unshare find group failed %d\n", group_id);
		return -EINVAL;
	}
3290 3291 3292 3293 3294

	/*
	 * at first we guess it's a hugepage addr
	 * we can tolerate at most PMD_SIZE or PAGE_SIZE which is matched in k2u
	 */
3295
	spa = __find_sp_area(spg, ALIGN_DOWN(uva, PMD_SIZE));
3296
	if (!spa) {
3297
		spa = __find_sp_area(spg, ALIGN_DOWN(uva, PAGE_SIZE));
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
		if (!spa) {
			ret = -EINVAL;
			pr_debug("invalid input uva %lx in unshare uva\n", (unsigned long)uva);
			goto out;
		}
	}

	if (spa->type != SPA_TYPE_K2TASK && spa->type != SPA_TYPE_K2SPG) {
		pr_err_ratelimited("unshare wrong type spa\n");
		ret = -EINVAL;
		goto out_drop_area;
	}
	/*
	 * 1. overflow actually won't happen due to an spa must be valid.
	 * 2. we must unshare [spa->va_start, spa->va_start + spa->real_size) completely
	 *    because an spa is one-to-one correspondence with an vma.
	 *    Thus input parameter size is not necessarily needed.
	 */
	page_size = (spa->is_hugepage ? PMD_SIZE : PAGE_SIZE);
	uva_aligned = spa->va_start;
	size_aligned = spa->real_size;

	if (size_aligned < ALIGN(size, page_size)) {
		ret = -EINVAL;
		pr_err_ratelimited("unshare uva failed, invalid parameter size %lu\n", size);
		goto out_drop_area;
	}

	if (spa->type == SPA_TYPE_K2TASK) {
		if (spa->applier != current->tgid) {
			pr_err_ratelimited("unshare uva(to task) no permission\n");
			ret = -EPERM;
			goto out_drop_area;
		}

		if (!spa->mm) {
			pr_err_ratelimited("unshare uva(to task) failed, none spa owner\n");
			ret = -EINVAL;
			goto out_drop_area;
		}

		/*
		 * current thread may be exiting in a multithread process
		 *
		 * 1. never need a kthread to make unshare when process has exited
		 * 2. in dvpp channel destroy procedure, exit_mm() has been called
		 *    and don't need to make unshare
		 */
		mm = get_task_mm(current->group_leader);
		if (!mm) {
			pr_info_ratelimited("no need to unshare uva(to task), target process mm is exiting\n");
			goto out_clr_flag;
		}

		if (spa->mm != mm) {
			pr_err_ratelimited("unshare uva(to task) failed, spa not belong to the task\n");
			ret = -EINVAL;
			mmput(mm);
			goto out_drop_area;
		}

		down_write(&mm->mmap_lock);
		if (unlikely(mm->core_state)) {
			ret = 0;
			up_write(&mm->mmap_lock);
			mmput(mm);
			goto out_drop_area;
		}

		ret = do_munmap(mm, uva_aligned, size_aligned, NULL);
		up_write(&mm->mmap_lock);
		mmput(mm);
		/* we are not supposed to fail */
		if (ret)
			pr_err("failed to unmap VA %pK when munmap in unshare uva\n",
			       (void *)uva_aligned);
		sp_update_process_stat(current, false, spa);

	} else if (spa->type == SPA_TYPE_K2SPG) {
		down_read(&spa->spg->rw_lock);
		/* always allow kthread and dvpp channel destroy procedure */
		if (current->mm) {
			if (!is_process_in_group(spa->spg, current->mm)) {
				up_read(&spa->spg->rw_lock);
				pr_err_ratelimited("unshare uva(to group) failed, caller process doesn't belong to target group\n");
				ret = -EPERM;
				goto out_drop_area;
			}
		}
		up_read(&spa->spg->rw_lock);

		down_write(&spa->spg->rw_lock);
		if (!spg_valid(spa->spg)) {
			up_write(&spa->spg->rw_lock);
			pr_info_ratelimited("share pool: no need to unshare uva(to group), sp group of spa is dead\n");
			goto out_clr_flag;
		}
		/* the life cycle of spa has a direct relation with sp group */
		if (unlikely(spa->is_dead)) {
			up_write(&spa->spg->rw_lock);
			pr_err_ratelimited("unexpected double sp unshare\n");
			dump_stack();
			ret = -EINVAL;
			goto out_drop_area;
		}
		spa->is_dead = true;
		up_write(&spa->spg->rw_lock);

		down_read(&spa->spg->rw_lock);
		__sp_free(spa->spg, uva_aligned, size_aligned, NULL);
		up_read(&spa->spg->rw_lock);

		if (current->mm == NULL)
			atomic64_sub(spa->real_size, &kthread_stat.k2u_size);
		else
			sp_update_process_stat(current, false, spa);
	} else {
		WARN(1, "unshare uva invalid spa type");
	}

out_clr_flag:
	if (!vmalloc_area_clr_flag(spa->kva, VM_SHAREPOOL))
		pr_debug("clear spa->kva %ld is not valid\n", spa->kva);
	spa->kva = 0;

out_drop_area:
	__sp_area_drop(spa);
out:
3426
	sp_group_drop(spg);
3427
	return ret;
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
}

/* No possible concurrent protection, take care when use */
static int sp_unshare_kva(unsigned long kva, unsigned long size)
{
	unsigned long addr, kva_aligned;
	struct page *page;
	unsigned long size_aligned;
	unsigned long step;
	bool is_hugepage = true;
	int ret;

	ret = is_vmap_hugepage(kva);
	if (ret > 0) {
		kva_aligned = ALIGN_DOWN(kva, PMD_SIZE);
		size_aligned = ALIGN(kva + size, PMD_SIZE) - kva_aligned;
		step = PMD_SIZE;
	} else if (ret == 0) {
		kva_aligned = ALIGN_DOWN(kva, PAGE_SIZE);
		size_aligned = ALIGN(kva + size, PAGE_SIZE) - kva_aligned;
		step = PAGE_SIZE;
		is_hugepage = false;
	} else {
		pr_err_ratelimited("check vmap hugepage failed %d\n", ret);
		return -EINVAL;
	}

	if (kva_aligned + size_aligned < kva_aligned) {
		pr_err_ratelimited("overflow happened in unshare kva\n");
		return -EINVAL;
	}

	for (addr = kva_aligned; addr < (kva_aligned + size_aligned); addr += step) {
		page = vmalloc_to_page((void *)addr);
		if (page)
			put_page(page);
		else
			WARN(1, "vmalloc %pK to page/hugepage failed\n",
			       (void *)addr);
	}

	vunmap((void *)kva_aligned);

	return 0;
}

3474
/**
3475
 * mg_sp_unshare() - Unshare the kernel or user memory which shared by calling
3476 3477 3478 3479 3480 3481 3482 3483
 *                sp_make_share_{k2u,u2k}().
 * @va: the specified virtual address of memory
 * @size: the size of unshared memory
 *
 * Use spg_id of current thread if spg_id == SPG_ID_DEFAULT.
 *
 * Return: 0 for success, -errno on failure.
 */
3484
int mg_sp_unshare(unsigned long va, unsigned long size, int spg_id)
3485
{
3486 3487
	int ret = 0;

3488 3489 3490
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

3491 3492
	check_interrupt_context();

3493 3494 3495
	if (current->flags & PF_KTHREAD)
		return -EINVAL;

3496 3497
	if (va < TASK_SIZE) {
		/* user address */
3498
		ret = sp_unshare_uva(va, size, spg_id);
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
	} else if (va >= PAGE_OFFSET) {
		/* kernel address */
		ret = sp_unshare_kva(va, size);
	} else {
		/* regard user and kernel address ranges as bad address */
		pr_debug("unshare addr %lx is not a user or kernel addr\n", (unsigned long)va);
		ret = -EFAULT;
	}

	return ret;
3509 3510 3511 3512
}
EXPORT_SYMBOL_GPL(mg_sp_unshare);

/**
3513
 * mg_sp_walk_page_range() - Walk page table with caller specific callbacks.
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
 * @uva: the start VA of user memory.
 * @size: the size of user memory.
 * @tsk: task struct of the target task.
 * @sp_walk_data: a structure of a page pointer array.
 *
 * Return: 0 for success, -errno on failure.
 *
 * When return 0, sp_walk_data describing [uva, uva+size) can be used.
 * When return -errno, information in sp_walk_data is useless.
 */
3524
int mg_sp_walk_page_range(unsigned long uva, unsigned long size,
3525 3526
	struct task_struct *tsk, struct sp_walk_data *sp_walk_data)
{
3527 3528 3529
	struct mm_struct *mm;
	int ret = 0;

3530 3531 3532
	if (!sp_is_enabled())
		return -EOPNOTSUPP;

3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
	check_interrupt_context();

	if (unlikely(!sp_walk_data)) {
		pr_err_ratelimited("null pointer when walk page range\n");
		return -EINVAL;
	}
	if (!tsk || (tsk->flags & PF_EXITING))
		return -ESRCH;

	get_task_struct(tsk);
	mm = get_task_mm(tsk);
	if (!mm) {
		put_task_struct(tsk);
		return -ESRCH;
	}

	down_write(&mm->mmap_lock);
	if (likely(!mm->core_state))
		ret = __sp_walk_page_range(uva, size, mm, sp_walk_data);
	else {
		pr_err("walk page range: encoutered coredump\n");
		ret = -ESRCH;
	}
	up_write(&mm->mmap_lock);

	mmput(mm);
	put_task_struct(tsk);

	return ret;
3562 3563 3564 3565
}
EXPORT_SYMBOL_GPL(mg_sp_walk_page_range);

/**
3566
 * mg_sp_walk_page_free() - Free the sp_walk_data structure.
3567 3568
 * @sp_walk_data: a structure of a page pointer array to be freed.
 */
3569
void mg_sp_walk_page_free(struct sp_walk_data *sp_walk_data)
3570
{
3571 3572 3573
	if (!sp_is_enabled())
		return;

3574 3575 3576 3577 3578 3579
	check_interrupt_context();

	if (!sp_walk_data)
		return;

	__sp_walk_page_free(sp_walk_data);
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
}
EXPORT_SYMBOL_GPL(mg_sp_walk_page_free);

int sp_register_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&sp_notifier_chain, nb);
}
EXPORT_SYMBOL_GPL(sp_register_notifier);

int sp_unregister_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&sp_notifier_chain, nb);
}
EXPORT_SYMBOL_GPL(sp_unregister_notifier);

/**
3596
 * mg_sp_config_dvpp_range() - User can config the share pool start address
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
 *                          of each Da-vinci device.
 * @start: the value of share pool start
 * @size: the value of share pool
 * @device_id: the num of Da-vinci device
 * @pid: the pid of device process
 *
 * Return true for success.
 * Return false if parameter invalid or has been set up.
 * This functuon has no concurrent problem.
 */
3607
bool mg_sp_config_dvpp_range(size_t start, size_t size, int device_id, int pid)
3608
{
3609 3610 3611 3612 3613 3614 3615 3616
	int ret;
	bool err = false;
	struct task_struct *tsk;
	struct mm_struct *mm;
	struct sp_group *spg;
	struct sp_mapping *spm;
	unsigned long default_start;

3617 3618 3619
	if (!sp_is_enabled())
		return false;

3620 3621 3622
	/* NOTE: check the start address */
	if (pid < 0 || size <= 0 || size > MMAP_SHARE_POOL_16G_SIZE ||
	    device_id < 0 || device_id >= sp_device_number || !is_online_node_id(device_id))
3623 3624
		return false;

3625 3626 3627 3628 3629 3630 3631 3632
	ret = get_task(pid, &tsk);
	if (ret)
		return false;

	mm = get_task_mm(tsk->group_leader);
	if (!mm)
		goto put_task;

3633
	spg = sp_get_local_group(tsk, mm);
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
	if (IS_ERR(spg))
		goto put_mm;

	spm = spg->dvpp;
	default_start = MMAP_SHARE_POOL_16G_START + device_id * MMAP_SHARE_POOL_16G_SIZE;
	/* The dvpp range of each group can be configured only once */
	if (spm->start[device_id] != default_start)
		goto put_spg;

	spm->start[device_id] = start;
	spm->end[device_id] = start + size;

	err = true;

put_spg:
	sp_group_drop(spg);
put_mm:
	mmput(mm);
put_task:
	put_task_struct(tsk);

	return err;
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
}
EXPORT_SYMBOL_GPL(mg_sp_config_dvpp_range);

static bool is_sp_normal_addr(unsigned long addr)
{
	return addr >= MMAP_SHARE_POOL_START &&
		addr < MMAP_SHARE_POOL_16G_START +
			sp_device_number * MMAP_SHARE_POOL_16G_SIZE;
}

3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
static bool is_sp_dvpp_addr(unsigned long addr)
{
	int i;
	struct mm_struct *mm;
	struct sp_group_master *master;
	struct sp_mapping *spm_dvpp;

	mm = current->mm;
	if (!mm)
		return false;

	down_read(&sp_group_sem);
	master = mm->sp_group_master;
	if (!master) {
		up_read(&sp_group_sem);
		return false;
	}

	/* master->local and master->local->dvpp won't be NULL*/
	spm_dvpp = master->local->dvpp;
	for (i = 0; i < MAX_DEVID; i++) {
		if (addr >= spm_dvpp->start[i] && addr < spm_dvpp->end[i]) {
			up_read(&sp_group_sem);
			return true;
		}
	}
	up_read(&sp_group_sem);
	return false;
}

3696
/**
3697
 * mg_is_sharepool_addr() - Check if a user memory address belongs to share pool.
3698 3699 3700 3701
 * @addr: the userspace address to be checked.
 *
 * Return true if addr belongs to share pool, or false vice versa.
 */
3702
bool mg_is_sharepool_addr(unsigned long addr)
3703
{
3704
	return sp_is_enabled() &&
3705
		((is_sp_normal_addr(addr) || is_sp_dvpp_addr(addr)));
3706 3707 3708
}
EXPORT_SYMBOL_GPL(mg_is_sharepool_addr);

3709 3710 3711 3712 3713 3714 3715 3716
int sp_node_id(struct vm_area_struct *vma)
{
	struct sp_area *spa;
	int node_id = numa_node_id();

	if (!sp_is_enabled())
		return node_id;

3717 3718 3719
	if (vma && vma->vm_flags & VM_SHARE_POOL && vma->vm_private_data) {
		spa = vma->vm_private_data;
		node_id = spa->node_id;
3720 3721 3722 3723 3724
	}

	return node_id;
}

3725 3726 3727 3728 3729 3730 3731
static int __init mdc_default_group(char *s)
{
	enable_mdc_default_group = 1;
	return 1;
}
__setup("enable_mdc_default_group", mdc_default_group);

3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
/*** Statistical and maintenance functions ***/

static void get_mm_rss_info(struct mm_struct *mm, unsigned long *anon,
	unsigned long *file, unsigned long *shmem, unsigned long *total_rss)
{
	*anon = get_mm_counter(mm, MM_ANONPAGES);
	*file = get_mm_counter(mm, MM_FILEPAGES);
	*shmem = get_mm_counter(mm, MM_SHMEMPAGES);
	*total_rss = *anon + *file + *shmem;
}

static long get_proc_k2u(struct sp_proc_stat *stat)
{
	return byte2kb(atomic64_read(&stat->k2u_size));
}

3748
static long get_proc_alloc(struct sp_proc_stat *stat)
3749
{
3750 3751
	return byte2kb(atomic64_read(&stat->alloc_nsize) +
			atomic64_read(&stat->alloc_hsize));
3752 3753
}

3754 3755
static void get_process_sp_res(struct sp_proc_stat *stat,
		long *sp_res_out, long *sp_res_nsize_out)
3756
{
3757 3758 3759
	*sp_res_out = byte2kb(atomic64_read(&stat->alloc_nsize) +
			atomic64_read(&stat->alloc_hsize));
	*sp_res_nsize_out = byte2kb(atomic64_read(&stat->alloc_nsize));
3760 3761
}

3762
static long get_sp_res_by_spg_proc(struct sp_group_node *spg_node)
3763
{
3764 3765
	return byte2kb(atomic64_read(&spg_node->instat.alloc_nsize) +
			atomic64_read(&spg_node->instat.alloc_hsize));
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
}

/*
 *  Statistics of RSS has a maximum 64 pages deviation (256KB).
 *  Please check_sync_rss_stat().
 */
static void get_process_non_sp_res(unsigned long total_rss, unsigned long shmem,
	long sp_res_nsize, long *non_sp_res_out, long *non_sp_shm_out)
{
	long non_sp_res, non_sp_shm;

	non_sp_res = page2kb(total_rss) - sp_res_nsize;
	non_sp_res = non_sp_res < 0 ? 0 : non_sp_res;
	non_sp_shm = page2kb(shmem) - sp_res_nsize;
	non_sp_shm = non_sp_shm < 0 ? 0 : non_sp_shm;

	*non_sp_res_out = non_sp_res;
	*non_sp_shm_out = non_sp_shm;
}

3786
static long get_spg_proc_alloc(struct sp_group_node *spg_node)
3787
{
3788 3789
	return byte2kb(atomic64_read(&spg_node->instat.alloc_nsize) +
				atomic64_read(&spg_node->instat.alloc_hsize));
3790 3791
}

3792
static long get_spg_proc_k2u(struct sp_group_node *spg_node)
3793
{
3794
	return byte2kb(atomic64_read(&spg_node->instat.k2u_size));
3795 3796 3797 3798 3799 3800 3801 3802
}

static void print_process_prot(struct seq_file *seq, unsigned long prot)
{
	if (prot == PROT_READ)
		seq_puts(seq, "R");
	else if (prot == (PROT_READ | PROT_WRITE))
		seq_puts(seq, "RW");
3803
	else
3804 3805 3806 3807 3808 3809 3810 3811 3812
		seq_puts(seq, "-");
}

int proc_sp_group_state(struct seq_file *m, struct pid_namespace *ns,
			struct pid *pid, struct task_struct *task)
{
	struct mm_struct *mm = task->mm;
	struct sp_group_master *master;
	struct sp_proc_stat *proc_stat;
3813 3814
	struct sp_group_node *spg_node;
	unsigned long anon, file, shmem, total_rss;
3815 3816
	long sp_res, sp_res_nsize, non_sp_res, non_sp_shm;

3817 3818 3819
	if (!sp_is_enabled())
		return 0;

3820 3821 3822
	if (!mm)
		return 0;

3823
	down_read(&mm->mmap_lock);
3824 3825 3826 3827 3828
	master = mm->sp_group_master;
	if (!master)
		return 0;

	get_mm_rss_info(mm, &anon, &file, &shmem, &total_rss);
3829
	proc_stat = &master->instat;
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
	get_process_sp_res(proc_stat, &sp_res, &sp_res_nsize);
	get_process_non_sp_res(total_rss, shmem, sp_res_nsize,
			       &non_sp_res, &non_sp_shm);

	seq_puts(m, "Share Pool Aggregate Data of This Process\n\n");
	seq_printf(m, "%-8s %-16s %-9s %-9s %-9s %-10s %-10s %-8s\n",
		   "PID", "COMM", "SP_ALLOC", "SP_K2U", "SP_RES", "Non-SP_RES",
		   "Non-SP_Shm", "VIRT");
	seq_printf(m, "%-8d %-16s %-9ld %-9ld %-9ld %-10ld %-10ld %-8ld\n",
		   proc_stat->tgid, proc_stat->comm,
		   get_proc_alloc(proc_stat),
		   get_proc_k2u(proc_stat),
		   sp_res, non_sp_res, non_sp_shm,
		   page2kb(mm->total_vm));

	seq_puts(m, "\n\nProcess in Each SP Group\n\n");
	seq_printf(m, "%-8s %-9s %-9s %-9s %-4s\n",
3847
			"Group_ID", "SP_ALLOC", "SP_K2U", "SP_RES", "PROT");
3848

3849
	list_for_each_entry(spg_node, &master->node_list, group_node) {
3850
		seq_printf(m, "%-8d %-9ld %-9ld %-9ld ",
3851 3852 3853 3854 3855
				spg_node->spg->id,
				get_spg_proc_alloc(spg_node),
				get_spg_proc_k2u(spg_node),
				get_sp_res_by_spg_proc(spg_node));
		print_process_prot(m, spg_node->prot);
3856 3857
		seq_putc(m, '\n');
	}
3858
	up_read(&mm->mmap_lock);
3859 3860 3861
	return 0;
}

3862
static void spa_stat_of_mapping_show(struct seq_file *seq, struct sp_mapping *spm)
3863 3864 3865 3866 3867
{
	struct rb_node *node;
	struct sp_area *spa, *prev = NULL;

	spin_lock(&sp_area_lock);
3868
	for (node = rb_first(&spm->area_root); node; node = rb_next(node)) {
3869 3870 3871 3872 3873 3874 3875
		__sp_area_drop_locked(prev);

		spa = rb_entry(node, struct sp_area, rb_node);
		prev = spa;
		atomic_inc(&spa->use_count);
		spin_unlock(&sp_area_lock);

3876 3877 3878 3879 3880 3881
		down_read(&spa->spg->rw_lock);
		if (spg_valid(spa->spg))  /* k2u to group */
			seq_printf(seq, "%-10d ", spa->spg->id);
		else  /* spg is dead */
			seq_printf(seq, "%-10s ", "Dead");
		up_read(&spa->spg->rw_lock);
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916

		seq_printf(seq, "%2s%-14lx %2s%-14lx %-10ld ",
			   "0x", spa->va_start,
			   "0x", spa->va_end,
			   byte2kb(spa->real_size));

		switch (spa->type) {
		case SPA_TYPE_ALLOC:
			seq_printf(seq, "%-7s ", "ALLOC");
			break;
		case SPA_TYPE_K2TASK:
			seq_printf(seq, "%-7s ", "TASK");
			break;
		case SPA_TYPE_K2SPG:
			seq_printf(seq, "%-7s ", "SPG");
			break;
		default:
			/* usually impossible, perhaps a developer's mistake */
			break;
		}

		if (spa->is_hugepage)
			seq_printf(seq, "%-5s ", "Y");
		else
			seq_printf(seq, "%-5s ", "N");

		seq_printf(seq, "%-8d ",  spa->applier);
		seq_printf(seq, "%-8d\n", atomic_read(&spa->use_count));

		spin_lock(&sp_area_lock);
	}
	__sp_area_drop_locked(prev);
	spin_unlock(&sp_area_lock);
}

3917 3918 3919 3920 3921 3922 3923
static void spa_normal_stat_show(struct seq_file *seq)
{
	spa_stat_of_mapping_show(seq, sp_mapping_normal);
}

static void spa_dvpp_stat_show(struct seq_file *seq)
{
3924 3925 3926 3927 3928 3929
	struct sp_mapping *spm;

	mutex_lock(&spm_list_lock);
	list_for_each_entry(spm, &spm_dvpp_list, spm_node)
		spa_stat_of_mapping_show(seq, spm);
	mutex_unlock(&spm_list_lock);
3930 3931 3932
}


3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
void spa_overview_show(struct seq_file *seq)
{
	unsigned int total_num, alloc_num, k2u_task_num, k2u_spg_num;
	unsigned long total_size, alloc_size, k2u_task_size, k2u_spg_size;
	unsigned long dvpp_size, dvpp_va_size;

	if (!sp_is_enabled())
		return;

	spin_lock(&sp_area_lock);
	total_num     = spa_stat.total_num;
	alloc_num     = spa_stat.alloc_num;
	k2u_task_num  = spa_stat.k2u_task_num;
	k2u_spg_num   = spa_stat.k2u_spg_num;
	total_size    = spa_stat.total_size;
	alloc_size    = spa_stat.alloc_size;
	k2u_task_size = spa_stat.k2u_task_size;
	k2u_spg_size  = spa_stat.k2u_spg_size;
	dvpp_size     = spa_stat.dvpp_size;
	dvpp_va_size  = spa_stat.dvpp_va_size;
	spin_unlock(&sp_area_lock);

	if (seq != NULL) {
		seq_printf(seq, "Spa total num %u.\n", total_num);
		seq_printf(seq, "Spa alloc num %u, k2u(task) num %u, k2u(spg) num %u.\n",
			   alloc_num, k2u_task_num, k2u_spg_num);
		seq_printf(seq, "Spa total size:     %13lu KB\n", byte2kb(total_size));
		seq_printf(seq, "Spa alloc size:     %13lu KB\n", byte2kb(alloc_size));
		seq_printf(seq, "Spa k2u(task) size: %13lu KB\n", byte2kb(k2u_task_size));
		seq_printf(seq, "Spa k2u(spg) size:  %13lu KB\n", byte2kb(k2u_spg_size));
		seq_printf(seq, "Spa dvpp size:      %13lu KB\n", byte2kb(dvpp_size));
		seq_printf(seq, "Spa dvpp va size:   %13lu MB\n", byte2mb(dvpp_va_size));
		seq_puts(seq, "\n");
	} else {
		pr_info("Spa total num %u.\n", total_num);
		pr_info("Spa alloc num %u, k2u(task) num %u, k2u(spg) num %u.\n",
			alloc_num, k2u_task_num, k2u_spg_num);
		pr_info("Spa total size:     %13lu KB\n", byte2kb(total_size));
		pr_info("Spa alloc size:     %13lu KB\n", byte2kb(alloc_size));
		pr_info("Spa k2u(task) size: %13lu KB\n", byte2kb(k2u_task_size));
		pr_info("Spa k2u(spg) size:  %13lu KB\n", byte2kb(k2u_spg_size));
		pr_info("Spa dvpp size:      %13lu KB\n", byte2kb(dvpp_size));
		pr_info("Spa dvpp va size:   %13lu MB\n", byte2mb(dvpp_va_size));
		pr_info("\n");
	}
}

3980
static int spg_info_show(int id, void *p, void *data)
3981
{
3982
	struct sp_group *spg = p;
3983 3984
	struct seq_file *seq = data;

3985
	if (id >= SPG_ID_LOCAL_MIN && id <= SPG_ID_LOCAL_MAX)
3986
		return 0;
3987

3988
	if (seq != NULL) {
3989 3990 3991 3992 3993 3994
		if (id == 0)
			seq_puts(seq, "Non Group ");
		else
			seq_printf(seq, "Group %6d ", id);

		down_read(&spg->rw_lock);
3995
		seq_printf(seq, "size: %lld KB, spa num: %d, total alloc: %lld KB, normal alloc: %lld KB, huge alloc: %lld KB\n",
3996 3997 3998 3999 4000 4001
				byte2kb(atomic64_read(&spg->instat.size)),
				atomic_read(&spg->instat.spa_num),
				byte2kb(atomic64_read(&spg->instat.alloc_size)),
				byte2kb(atomic64_read(&spg->instat.alloc_nsize)),
				byte2kb(atomic64_read(&spg->instat.alloc_hsize)));
		up_read(&spg->rw_lock);
4002
	} else {
4003 4004 4005 4006 4007 4008
		if (id == 0)
			pr_info("Non Group ");
		else
			pr_info("Group %6d ", id);

		down_read(&spg->rw_lock);
4009
		pr_info("size: %lld KB, spa num: %d, total alloc: %lld KB, normal alloc: %lld KB, huge alloc: %lld KB\n",
4010 4011 4012 4013 4014 4015
				byte2kb(atomic64_read(&spg->instat.size)),
				atomic_read(&spg->instat.spa_num),
				byte2kb(atomic64_read(&spg->instat.alloc_size)),
				byte2kb(atomic64_read(&spg->instat.alloc_nsize)),
				byte2kb(atomic64_read(&spg->instat.alloc_hsize)));
		up_read(&spg->rw_lock);
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
	}

	return 0;
}

void spg_overview_show(struct seq_file *seq)
{
	if (!sp_is_enabled())
		return;

	if (seq != NULL) {
		seq_printf(seq, "Share pool total size: %lld KB, spa total num: %d.\n",
4028 4029
				byte2kb(atomic64_read(&sp_overall_stat.spa_total_size)),
				atomic_read(&sp_overall_stat.spa_total_num));
4030 4031
	} else {
		pr_info("Share pool total size: %lld KB, spa total num: %d.\n",
4032 4033
				byte2kb(atomic64_read(&sp_overall_stat.spa_total_size)),
				atomic_read(&sp_overall_stat.spa_total_num));
4034 4035
	}

4036 4037 4038
	down_read(&sp_group_sem);
	idr_for_each(&sp_group_idr, spg_info_show, seq);
	up_read(&sp_group_sem);
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051

	if (seq != NULL)
		seq_puts(seq, "\n");
	else
		pr_info("\n");
}

static int spa_stat_show(struct seq_file *seq, void *offset)
{
	spg_overview_show(seq);
	spa_overview_show(seq);
	/* print the file header */
	seq_printf(seq, "%-10s %-16s %-16s %-10s %-7s %-5s %-8s %-8s\n",
4052
			"Group ID", "va_start", "va_end", "Size(KB)", "Type", "Huge", "PID", "Ref");
4053 4054
	spa_normal_stat_show(seq);
	spa_dvpp_stat_show(seq);
4055 4056 4057
	return 0;
}

4058
static int proc_usage_by_group(int id, void *p, void *data)
4059
{
4060
	struct sp_group *spg = p;
4061
	struct seq_file *seq = data;
4062
	struct sp_group_node *spg_node;
4063
	struct mm_struct *mm;
4064 4065 4066
	struct sp_group_master *master;
	int tgid;
	unsigned long anon, file, shmem, total_rss;
4067 4068
	long sp_res, sp_res_nsize, non_sp_res, non_sp_shm;

4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
	down_read(&spg->rw_lock);
	list_for_each_entry(spg_node, &spg->procs, proc_node) {

		master = spg_node->master;
		if (!master) {
			pr_info("master is NULL! process %d, group %d\n",
					spg_node->instat.tgid, id);
			continue;
		}
		mm = master->mm;
		tgid = master->instat.tgid;
4080 4081

		get_mm_rss_info(mm, &anon, &file, &shmem, &total_rss);
4082
		get_process_sp_res(&master->instat, &sp_res, &sp_res_nsize);
4083
		get_process_non_sp_res(total_rss, shmem, sp_res_nsize,
4084
				&non_sp_res, &non_sp_shm);
4085 4086

		seq_printf(seq, "%-8d ", tgid);
4087 4088 4089 4090
		if (id == 0)
			seq_printf(seq, "%-8c ", '-');
		else
			seq_printf(seq, "%-8d ", id);
4091
		seq_printf(seq, "%-9ld %-9ld %-9ld %-10ld %-10ld %-8ld %-7ld %-7ld %-10ld ",
4092 4093 4094 4095 4096 4097 4098
				get_spg_proc_alloc(spg_node),
				get_spg_proc_k2u(spg_node),
				get_sp_res_by_spg_proc(spg_node),
				sp_res, non_sp_res,
				page2kb(mm->total_vm), page2kb(total_rss),
				page2kb(shmem), non_sp_shm);
		print_process_prot(seq, spg_node->prot);
4099 4100
		seq_putc(seq, '\n');
	}
4101 4102
	up_read(&spg->rw_lock);

4103 4104 4105
	return 0;
}

4106
static int proc_group_usage_show(struct seq_file *seq, void *offset)
4107 4108 4109
{
	spg_overview_show(seq);
	spa_overview_show(seq);
4110

4111 4112
	/* print the file header */
	seq_printf(seq, "%-8s %-8s %-9s %-9s %-9s %-10s %-10s %-8s %-7s %-7s %-10s %-4s\n",
4113 4114
			"PID", "Group_ID", "SP_ALLOC", "SP_K2U", "SP_RES", "SP_RES_T",
			"Non-SP_RES", "VIRT", "RES", "Shm", "Non-SP_Shm", "PROT");
4115 4116
	/* print kthread buff_module_guard_work */
	seq_printf(seq, "%-8s %-8s %-9lld %-9lld\n",
4117 4118 4119
			"guard", "-",
			byte2kb(atomic64_read(&kthread_stat.alloc_size)),
			byte2kb(atomic64_read(&kthread_stat.k2u_size)));
4120

W
Wang Wensheng 已提交
4121
	down_read(&sp_group_sem);
4122
	idr_for_each(&sp_group_idr, proc_usage_by_group, seq);
W
Wang Wensheng 已提交
4123 4124
	up_read(&sp_group_sem);

4125 4126 4127
	return 0;
}

4128
static int proc_usage_show(struct seq_file *seq, void *offset)
4129
{
4130
	struct sp_group_master *master = NULL;
4131 4132
	unsigned long anon, file, shmem, total_rss;
	long sp_res, sp_res_nsize, non_sp_res, non_sp_shm;
4133
	struct sp_proc_stat *proc_stat;
4134 4135

	seq_printf(seq, "%-8s %-16s %-9s %-9s %-9s %-10s %-10s %-8s\n",
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
			"PID", "COMM", "SP_ALLOC", "SP_K2U", "SP_RES", "Non-SP_RES",
			"Non-SP_Shm", "VIRT");

	mutex_lock(&master_list_lock);
	list_for_each_entry(master, &master_list, list_node) {
		proc_stat = &master->instat;
		get_mm_rss_info(master->mm, &anon, &file, &shmem, &total_rss);
		get_process_sp_res(&master->instat, &sp_res, &sp_res_nsize);
		get_process_non_sp_res(total_rss, shmem, sp_res_nsize,
				&non_sp_res, &non_sp_shm);
		seq_printf(seq, "%-8d %-16s %-9ld %-9ld %-9ld %-10ld %-10ld %-8ld\n",
				proc_stat->tgid, proc_stat->comm,
				get_proc_alloc(proc_stat),
				get_proc_k2u(proc_stat),
				sp_res, non_sp_res, non_sp_shm,
				page2kb(master->mm->total_vm));
	}
	mutex_unlock(&master_list_lock);
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163

	return 0;
}

static void __init proc_sharepool_init(void)
{
	if (!proc_mkdir("sharepool", NULL))
		return;

	proc_create_single_data("sharepool/spa_stat", 0400, NULL, spa_stat_show, NULL);
4164 4165
	proc_create_single_data("sharepool/proc_stat", 0400, NULL, proc_group_usage_show, NULL);
	proc_create_single_data("sharepool/proc_overview", 0400, NULL, proc_usage_show, NULL);
4166 4167 4168 4169
}

/*** End of tatistical and maintenance functions ***/

4170 4171
bool sp_check_addr(unsigned long addr)
{
4172
	if (sp_is_enabled() && mg_is_sharepool_addr(addr) &&
4173
	    !check_aoscore_process(current))
4174
		return true;
4175
	else
4176 4177 4178 4179 4180
		return false;
}

bool sp_check_mmap_addr(unsigned long addr, unsigned long flags)
{
4181
	if (sp_is_enabled() && mg_is_sharepool_addr(addr) &&
4182
	    !check_aoscore_process(current) && !(flags & MAP_SHARE_POOL))
4183
		return true;
4184
	else
4185 4186 4187
		return false;
}

4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
vm_fault_t sharepool_no_page(struct mm_struct *mm,
			struct vm_area_struct *vma,
			struct address_space *mapping, pgoff_t idx,
			unsigned long address, pte_t *ptep, unsigned int flags)
{
	struct hstate *h = hstate_vma(vma);
	vm_fault_t ret = VM_FAULT_SIGBUS;
	unsigned long size;
	struct page *page;
	pte_t new_pte;
	spinlock_t *ptl;
	unsigned long haddr = address & huge_page_mask(h);
	bool new_page = false;
	int err;
	int node_id;
	struct sp_area *spa;

4205
	spa = vma->vm_private_data;
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
	if (!spa) {
		pr_err("share pool: vma is invalid, not from sp mmap\n");
		return ret;
	}
	node_id = spa->node_id;

retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
		size = i_size_read(mapping->host) >> huge_page_shift(h);
		if (idx >= size)
			goto out;

		page = alloc_huge_page(vma, haddr, 0);
		if (IS_ERR(page)) {
			page = alloc_huge_page_nodemask(hstate_file(vma->vm_file),
						    node_id, NULL, GFP_KERNEL);
			if (!page)
				page = ERR_PTR(-ENOMEM);
		}
		if (IS_ERR(page)) {
			ptl = huge_pte_lock(h, mm, ptep);
			if (!huge_pte_none(huge_ptep_get(ptep))) {
				ret = 0;
				spin_unlock(ptl);
				goto out;
			}
			spin_unlock(ptl);
			ret = vmf_error(PTR_ERR(page));
			goto out;
		}
		__SetPageUptodate(page);
		new_page = true;

		/* sharepool pages are all shared */
		err = huge_add_to_page_cache(page, mapping, idx);
		if (err) {
			put_page(page);
			if (err == -EEXIST)
				goto retry;
			goto out;
		}
	}


	ptl = huge_pte_lock(h, mm, ptep);
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	if (idx >= size)
		goto backout;

	ret = 0;
	if (!huge_pte_none(huge_ptep_get(ptep)))
		goto backout;

	page_dup_rmap(page, true);
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, haddr, ptep, new_pte);

	hugetlb_count_add(pages_per_huge_page(h), mm);

	spin_unlock(ptl);

	if (new_page) {
		SetPagePrivate(&page[1]);
	}

	unlock_page(page);
out:
	return ret;

backout:
	spin_unlock(ptl);
	unlock_page(page);
	put_page(page);
	goto out;
}

4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
#define MM_WOULD_FREE	1

/*
 * Recall we add mm->users by 1 deliberately in sp_group_add_task().
 * If the mm_users == sp_group_master->count + 1, it means that the mm is ready
 * to be freed because the last owner of this mm is in exiting procedure:
 * do_exit() -> exit_mm() -> mmput() -> sp_group_exit -> THIS function.
 */
static bool need_free_sp_group(struct mm_struct *mm,
			      struct sp_group_master *master)
{
	/* thread exits but process is still alive */
	if ((unsigned int)atomic_read(&mm->mm_users) != master->count + MM_WOULD_FREE) {
		if (atomic_dec_and_test(&mm->mm_users))
			WARN(1, "Invalid user counting\n");
		return false;
	}

	return true;
}

/*
 * Return:
 * 1	- let mmput() return immediately
 * 0	- let mmput() decrease mm_users and try __mmput()
 */
int sp_group_exit(struct mm_struct *mm)
{
	struct sp_group *spg;
	struct sp_group_master *master;
	struct sp_group_node *spg_node, *tmp;
	bool is_alive = true;

	if (!sp_is_enabled())
		return 0;

	down_write(&sp_group_sem);

	master = mm->sp_group_master;
	if (!master) {
		up_write(&sp_group_sem);
		return 0;
	}

	if (!need_free_sp_group(mm, master)) {
		up_write(&sp_group_sem);
		return 1;
	}

	list_for_each_entry_safe(spg_node, tmp, &master->node_list, group_node) {
		spg = spg_node->spg;

		down_write(&spg->rw_lock);
		/* a dead group should NOT be reactive again */
		if (spg_valid(spg) && list_is_singular(&spg->procs))
			is_alive = spg->is_alive = false;
		spg->proc_num--;
		list_del(&spg_node->proc_node);
		up_write(&spg->rw_lock);

		if (!is_alive)
			blocking_notifier_call_chain(&sp_notifier_chain, 0,
						     spg);
	}

	/* match with get_task_mm() in sp_group_add_task() */
	if (atomic_sub_and_test(master->count, &mm->mm_users)) {
		up_write(&sp_group_sem);
		WARN(1, "Invalid user counting\n");
		return 1;
	}

	up_write(&sp_group_sem);
	return 0;
}

void sp_group_post_exit(struct mm_struct *mm)
{
	struct sp_proc_stat *stat;
	long alloc_size, k2u_size;
	/* lockless visit */
	struct sp_group_master *master = mm->sp_group_master;
	struct sp_group_node *spg_node, *tmp;
	struct sp_group *spg;

	if (!sp_is_enabled() || !master)
		return;

	/*
	 * There are two basic scenarios when a process in the share pool is
	 * exiting but its share pool memory usage is not 0.
	 * 1. Process A called sp_alloc(), but it terminates without calling
	 *    sp_free(). Then its share pool memory usage is a positive number.
	 * 2. Process A never called sp_alloc(), and process B in the same spg
	 *    called sp_alloc() to get an addr u. Then A gets u somehow and
	 *    called sp_free(u). Now A's share pool memory usage is a negative
	 *    number. Notice B's memory usage will be a positive number.
	 *
	 * We decide to print an info when seeing both of the scenarios.
	 *
	 * A process not in an sp group doesn't need to print because there
	 * wont't be any memory which is not freed.
	 */
4387
	stat = &master->instat;
4388
	if (stat) {
4389
		alloc_size = atomic64_read(&stat->alloc_nsize) + atomic64_read(&stat->alloc_hsize);
4390 4391 4392 4393 4394 4395 4396 4397
		k2u_size = atomic64_read(&stat->k2u_size);

		if (alloc_size != 0 || k2u_size != 0)
			pr_info("process %s(%d) exits. It applied %ld aligned KB, k2u shared %ld aligned KB\n",
				stat->comm, stat->tgid,
				byte2kb(alloc_size), byte2kb(k2u_size));
	}

4398
	down_write(&sp_group_sem);
4399 4400 4401
	list_for_each_entry_safe(spg_node, tmp, &master->node_list, group_node) {
		spg = spg_node->spg;
		/* match with refcount inc in sp_group_add_task */
4402 4403
		if (atomic_dec_and_test(&spg->use_count))
			free_sp_group_locked(spg);
4404 4405
		kfree(spg_node);
	}
4406
	up_write(&sp_group_sem);
4407

4408 4409 4410 4411
	mutex_lock(&master_list_lock);
	list_del(&master->list_node);
	mutex_unlock(&master_list_lock);

4412 4413 4414
	kfree(master);
}

4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
DEFINE_STATIC_KEY_FALSE(share_pool_enabled_key);

static int __init enable_share_pool(char *s)
{
	static_branch_enable(&share_pool_enabled_key);
	pr_info("Ascend enable share pool features via bootargs\n");

	return 1;
}
__setup("enable_ascend_share_pool", enable_share_pool);
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439

static void __init sp_device_number_detect(void)
{
	/* NOTE: TO BE COMPLETED */
	sp_device_number = 4;

	if (sp_device_number > MAX_DEVID) {
		pr_warn("sp_device_number %d exceed, truncate it to %d\n",
				sp_device_number, MAX_DEVID);
		sp_device_number = MAX_DEVID;
	}
}

static int __init share_pool_init(void)
{
4440 4441 4442 4443
	if (!sp_is_enabled())
		return 0;

	sp_mapping_normal = sp_mapping_create(SP_MAPPING_NORMAL);
4444
	if (IS_ERR(sp_mapping_normal))
4445 4446 4447
		goto fail;
	atomic_inc(&sp_mapping_normal->user);

4448
	sp_device_number_detect();
4449
	proc_sharepool_init();
4450 4451 4452 4453 4454 4455 4456 4457

	return 0;
fail:
	pr_err("Ascend share pool initialization failed\n");
	static_branch_disable(&share_pool_enabled_key);
	return 1;
}
late_initcall(share_pool_init);