share_pool.c 92.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* SPDX-License-Identifier: GPL-2.0 */
/*
 * Huawei Ascend Share Pool Memory
 *
 * Copyright (C) 2020 Huawei Limited
 * Author: Tang Yizhou <tangyizhou@huawei.com>
 *         Zefan Li <lizefan@huawei.com>
 *         Wu Peng <wupeng58@huawei.com>
 *         Ding Tianhong <dingtgianhong@huawei.com>
 *         Zhou Guanghui <zhouguanghui1@huawei.com>
 *         Li Ming <limingming.li@huawei.com>
 *
 * This code is based on the hisilicon ascend platform.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#define pr_fmt(fmt) "share pool: " fmt

#include <linux/share_pool.h>
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
#include <linux/sched.h>
#include <linux/sched/task.h>
#include <linux/sched/mm.h>
#include <linux/mm_types.h>
#include <linux/idr.h>
#include <linux/mutex.h>
#include <linux/rwsem.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/rbtree.h>
#include <linux/shmem_fs.h>
#include <linux/file.h>
#include <linux/printk.h>
#include <linux/hugetlb.h>
#include <linux/vmalloc.h>
#include <linux/pid.h>
#include <linux/pid_namespace.h>
#include <linux/atomic.h>
#include <linux/lockdep.h>
#include <linux/kernel.h>
#include <linux/falloc.h>
#include <linux/types.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/rmap.h>
#include <linux/compaction.h>
#include <linux/preempt.h>
#include <linux/swapops.h>
#include <linux/mmzone.h>
#include <linux/timekeeping.h>
#include <linux/time64.h>
54
#include <linux/pagewalk.h>
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
/* access control mode macros  */
#define AC_NONE			0
#define AC_SINGLE_OWNER		1

#define spg_valid(spg)		((spg)->is_alive == true)

#define byte2kb(size)		((size) >> 10)
#define byte2mb(size)		((size) >> 20)
#define page2kb(page_num)	((page_num) << (PAGE_SHIFT - 10))

#define SINGLE_GROUP_MODE	1
#define MULTI_GROUP_MODE	2

#define MAX_GROUP_FOR_SYSTEM	50000
#define MAX_GROUP_FOR_TASK	3000
#define MAX_PROC_PER_GROUP	1024

#define GROUP_NONE		0

#define SEC2US(sec)		((sec) * 1000000)
#define NS2US(ns)		((ns) / 1000)

#define PF_DOMAIN_CORE		0x10000000	/* AOS CORE processes in sched.h */

/* mdc scene hack */
static int __read_mostly enable_mdc_default_group;
static const int mdc_default_group_id = 1;

/* share the uva to the whole group */
static int __read_mostly enable_share_k2u_spg = 1;

87 88 89
/* debug mode */
int sysctl_sp_debug_mode;

90 91 92
int sysctl_share_pool_map_lock_enable;

int sysctl_sp_perf_k2u;
W
Wang Wensheng 已提交
93
int sysctl_sp_perf_alloc;
94

95 96
static int share_pool_group_mode = SINGLE_GROUP_MODE;

97 98
static int system_group_count;

99 100 101 102 103 104 105 106 107
static unsigned int sp_device_number;
static unsigned long sp_dev_va_start[MAX_DEVID];
static unsigned long sp_dev_va_size[MAX_DEVID];

static bool is_sp_dev_addr_enabled(int device_id)
{
	return sp_dev_va_size[device_id];
}

108 109 110 111 112
/* idr of all sp_groups */
static DEFINE_IDR(sp_group_idr);
/* rw semaphore for sp_group_idr and mm->sp_group_master */
static DECLARE_RWSEM(sp_group_sem);

113 114
static BLOCKING_NOTIFIER_HEAD(sp_notifier_chain);

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
static DEFINE_IDA(sp_group_id_ida);

/*** Statistical and maintenance tools ***/

/* idr of all sp_proc_stats */
static DEFINE_IDR(sp_proc_stat_idr);
/* rw semaphore for sp_proc_stat_idr */
static DECLARE_RWSEM(sp_proc_stat_sem);

/* idr of all sp_spg_stats */
static DEFINE_IDR(sp_spg_stat_idr);
/* rw semaphore for sp_spg_stat_idr */
static DECLARE_RWSEM(sp_spg_stat_sem);

/* for kthread buff_module_guard_work */
static struct sp_proc_stat kthread_stat;

/* The caller must hold sp_group_sem */
static struct sp_group_master *sp_init_group_master_locked(
	struct mm_struct *mm, bool *exist)
{
	struct sp_group_master *master = mm->sp_group_master;

	if (master) {
		*exist = true;
		return master;
	}

	master = kmalloc(sizeof(struct sp_group_master), GFP_KERNEL);
	if (master == NULL)
		return ERR_PTR(-ENOMEM);

	INIT_LIST_HEAD(&master->node_list);
	master->count = 0;
	master->stat = NULL;
	master->mm = mm;
	mm->sp_group_master = master;

	*exist = false;
	return master;
}

static struct sp_proc_stat *create_proc_stat(struct mm_struct *mm,
					     struct task_struct *tsk)
{
	struct sp_proc_stat *stat;

	stat = kmalloc(sizeof(*stat), GFP_KERNEL);
	if (stat == NULL)
		return ERR_PTR(-ENOMEM);

	atomic_set(&stat->use_count, 1);
	atomic64_set(&stat->alloc_size, 0);
	atomic64_set(&stat->k2u_size, 0);
	stat->tgid = tsk->tgid;
	stat->mm = mm;
	mutex_init(&stat->lock);
	hash_init(stat->hash);
	get_task_comm(stat->comm, tsk);

	return stat;
}

static struct sp_proc_stat *sp_init_proc_stat(struct sp_group_master *master,
	struct mm_struct *mm, struct task_struct *tsk)
{
	struct sp_proc_stat *stat;
	int alloc_id, tgid = tsk->tgid;

	down_write(&sp_proc_stat_sem);
	stat = master->stat;
	if (stat) {
		up_write(&sp_proc_stat_sem);
		return stat;
	}

	stat = create_proc_stat(mm, tsk);
	if (IS_ERR(stat)) {
		up_write(&sp_proc_stat_sem);
		return stat;
	}

	alloc_id = idr_alloc(&sp_proc_stat_idr, stat, tgid, tgid + 1, GFP_KERNEL);
	if (alloc_id < 0) {
		up_write(&sp_proc_stat_sem);
		pr_err_ratelimited("proc stat idr alloc failed %d\n", alloc_id);
		kfree(stat);
		return ERR_PTR(alloc_id);
	}

	master->stat = stat;
	up_write(&sp_proc_stat_sem);

	return stat;
}

static void update_spg_stat_alloc(unsigned long size, bool inc,
	bool huge, struct sp_spg_stat *stat)
{
	if (inc) {
		atomic_inc(&stat->spa_num);
		atomic64_add(size, &stat->size);
		atomic64_add(size, &stat->alloc_size);
		if (huge)
			atomic64_add(size, &stat->alloc_hsize);
		else
			atomic64_add(size, &stat->alloc_nsize);
	} else {
		atomic_dec(&stat->spa_num);
		atomic64_sub(size, &stat->size);
		atomic64_sub(size, &stat->alloc_size);
		if (huge)
			atomic64_sub(size, &stat->alloc_hsize);
		else
			atomic64_sub(size, &stat->alloc_nsize);
	}
}

static void update_spg_stat_k2u(unsigned long size, bool inc,
	struct sp_spg_stat *stat)
{
	if (inc) {
		atomic_inc(&stat->spa_num);
		atomic64_add(size, &stat->size);
		atomic64_add(size, &stat->k2u_size);
	} else {
		atomic_dec(&stat->spa_num);
		atomic64_sub(size, &stat->size);
		atomic64_sub(size, &stat->k2u_size);
	}
}

/* per process/sp-group memory usage statistics */
struct spg_proc_stat {
	int tgid;
	int spg_id;  /* 0 for non-group data, such as k2u_task */
	struct hlist_node pnode;  /* hlist node in sp_proc_stat->hash */
	struct hlist_node gnode;  /* hlist node in sp_spg_stat->hash */
	struct sp_proc_stat *proc_stat;
	struct sp_spg_stat *spg_stat;
	/*
	 * alloc amount minus free amount, may be negative when freed by
	 * another task in the same sp group.
	 */
	atomic64_t alloc_size;
	atomic64_t k2u_size;
};

static void update_spg_proc_stat_alloc(unsigned long size, bool inc,
	struct spg_proc_stat *stat)
{
	struct sp_proc_stat *proc_stat = stat->proc_stat;

	if (inc) {
		atomic64_add(size, &stat->alloc_size);
		atomic64_add(size, &proc_stat->alloc_size);
	} else {
		atomic64_sub(size, &stat->alloc_size);
		atomic64_sub(size, &proc_stat->alloc_size);
	}
}

static void update_spg_proc_stat_k2u(unsigned long size, bool inc,
	struct spg_proc_stat *stat)
{
	struct sp_proc_stat *proc_stat = stat->proc_stat;

	if (inc) {
		atomic64_add(size, &stat->k2u_size);
		atomic64_add(size, &proc_stat->k2u_size);
	} else {
		atomic64_sub(size, &stat->k2u_size);
		atomic64_sub(size, &proc_stat->k2u_size);
	}
}

static struct spg_proc_stat *find_spg_proc_stat(
	struct sp_proc_stat *proc_stat, int tgid, int spg_id)
{
	struct spg_proc_stat *stat = NULL;

	mutex_lock(&proc_stat->lock);
	hash_for_each_possible(proc_stat->hash, stat, pnode, spg_id) {
		if (stat->spg_id == spg_id)
			break;
	}
	mutex_unlock(&proc_stat->lock);

	return stat;
}

static struct spg_proc_stat *create_spg_proc_stat(int tgid, int spg_id)
{
	struct spg_proc_stat *stat;

	stat = kmalloc(sizeof(struct spg_proc_stat), GFP_KERNEL);
	if (stat == NULL)
		return ERR_PTR(-ENOMEM);

	stat->tgid = tgid;
	stat->spg_id = spg_id;
	atomic64_set(&stat->alloc_size, 0);
	atomic64_set(&stat->k2u_size, 0);

	return stat;
}

static struct spg_proc_stat *sp_init_spg_proc_stat(
	struct sp_proc_stat *proc_stat, int tgid, struct sp_group *spg)
{
	struct spg_proc_stat *stat;
	int spg_id = spg->id;  /* visit spg id locklessly */
	struct sp_spg_stat *spg_stat = spg->stat;

	stat = find_spg_proc_stat(proc_stat, tgid, spg_id);
	if (stat)
		return stat;

	stat = create_spg_proc_stat(tgid, spg_id);
	if (IS_ERR(stat))
		return stat;

	stat->proc_stat = proc_stat;
	stat->spg_stat = spg_stat;

	mutex_lock(&proc_stat->lock);
	hash_add(proc_stat->hash, &stat->pnode, stat->spg_id);
	mutex_unlock(&proc_stat->lock);

	mutex_lock(&spg_stat->lock);
	hash_add(spg_stat->hash, &stat->gnode, stat->tgid);
	mutex_unlock(&spg_stat->lock);
	return stat;
}

/*
 * The caller must
 * 1. ensure no concurrency problem for task_struct and mm_struct.
 * 2. hold sp_group_sem for sp_group_master (pay attention to ABBA deadlock)
 */
static struct spg_proc_stat *sp_init_process_stat(struct task_struct *tsk,
	struct mm_struct *mm, struct sp_group *spg)
{
	struct sp_group_master *master;
	bool exist;
	struct sp_proc_stat *proc_stat;
	struct spg_proc_stat *spg_proc_stat;

	master = sp_init_group_master_locked(mm, &exist);
	if (IS_ERR(master))
		return (struct spg_proc_stat *)master;

	proc_stat = sp_init_proc_stat(master, mm, tsk);
	if (IS_ERR(proc_stat))
		return (struct spg_proc_stat *)proc_stat;

	spg_proc_stat = sp_init_spg_proc_stat(proc_stat, tsk->tgid, spg);
	return spg_proc_stat;
}

static struct sp_spg_stat *create_spg_stat(int spg_id)
{
	struct sp_spg_stat *stat;

	stat = kmalloc(sizeof(*stat), GFP_KERNEL);
	if (stat == NULL)
		return ERR_PTR(-ENOMEM);

	stat->spg_id = spg_id;
	atomic_set(&stat->hugepage_failures, 0);
	atomic_set(&stat->spa_num, 0);
	atomic64_set(&stat->size, 0);
	atomic64_set(&stat->alloc_nsize, 0);
	atomic64_set(&stat->alloc_hsize, 0);
	atomic64_set(&stat->alloc_size, 0);
	mutex_init(&stat->lock);
	hash_init(stat->hash);

	return stat;
}

static int sp_init_spg_stat(struct sp_group *spg)
{
	struct sp_spg_stat *stat;
	int ret, spg_id = spg->id;

	stat = create_spg_stat(spg_id);
	if (IS_ERR(stat))
		return PTR_ERR(stat);

	down_write(&sp_spg_stat_sem);
	ret = idr_alloc(&sp_spg_stat_idr, stat, spg_id, spg_id + 1,
			GFP_KERNEL);
	up_write(&sp_spg_stat_sem);
	if (ret < 0) {
		pr_err_ratelimited("group %d idr alloc failed, ret %d\n",
				   spg_id, ret);
		kfree(stat);
	}

	spg->stat = stat;
	return ret;
}

static void free_spg_stat(int spg_id)
{
	struct sp_spg_stat *stat;

	down_write(&sp_spg_stat_sem);
	stat = idr_remove(&sp_spg_stat_idr, spg_id);
	up_write(&sp_spg_stat_sem);
	WARN_ON(!stat);
	kfree(stat);
}

430 431 432 433 434 435
/*
 * Group '0' for k2u_task and pass through. No process will be actually
 * added to.
 */
static struct sp_group *spg_none;

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
/* statistics of all sp area, protected by sp_area_lock */
struct sp_spa_stat {
	unsigned int total_num;
	unsigned int alloc_num;
	unsigned int k2u_task_num;
	unsigned int k2u_spg_num;
	unsigned long total_size;
	unsigned long alloc_size;
	unsigned long k2u_task_size;
	unsigned long k2u_spg_size;
	unsigned long dvpp_size;
	unsigned long dvpp_va_size;
};

static struct sp_spa_stat spa_stat;

/* statistics of all sp group born from sp_alloc and k2u(spg) */
struct sp_overall_stat {
	atomic_t spa_total_num;
	atomic64_t spa_total_size;
};

static struct sp_overall_stat sp_overall_stat;

/*** Global share pool VA allocator ***/

enum spa_type {
	SPA_TYPE_ALLOC = 1,
	SPA_TYPE_K2TASK,
	SPA_TYPE_K2SPG,
};

/*
 * We bump the reference when each mmap succeeds, and it will be dropped
 * when vma is about to release, so sp_area object will be automatically
 * freed when all tasks in the sp group has exited.
 */
struct sp_area {
	unsigned long va_start;
	unsigned long va_end;		/* va_end always align to hugepage */
	unsigned long real_size;	/* real size with alignment */
	unsigned long region_vstart;	/* belong to normal region or DVPP region */
	unsigned long flags;
	bool is_hugepage;
	bool is_dead;
	atomic_t use_count;		/* How many vmas use this VA region */
	struct rb_node rb_node;		/* address sorted rbtree */
	struct list_head link;		/* link to the spg->head */
	struct sp_group *spg;
	enum spa_type type;		/* where spa born from */
	struct mm_struct *mm;		/* owner of k2u(task) */
	unsigned long kva;		/* shared kva */
	pid_t applier;			/* the original applier process */
	int node_id;			/* memory node */
	int device_id;
};
static DEFINE_SPINLOCK(sp_area_lock);
static struct rb_root sp_area_root = RB_ROOT;

static unsigned long spa_size(struct sp_area *spa)
{
	return spa->real_size;
}

static struct file *spa_file(struct sp_area *spa)
{
	if (spa->is_hugepage)
		return spa->spg->file_hugetlb;
	else
		return spa->spg->file;
}

508 509
/* the caller should hold sp_area_lock */
static void spa_inc_usage(struct sp_area *spa)
510
{
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
	enum spa_type type = spa->type;
	unsigned long size = spa->real_size;
	bool is_dvpp = spa->flags & SP_DVPP;
	bool is_huge = spa->is_hugepage;

	switch (type) {
	case SPA_TYPE_ALLOC:
		spa_stat.alloc_num += 1;
		spa_stat.alloc_size += size;
		update_spg_stat_alloc(size, true, is_huge, spa->spg->stat);
		break;
	case SPA_TYPE_K2TASK:
		spa_stat.k2u_task_num += 1;
		spa_stat.k2u_task_size += size;
		update_spg_stat_k2u(size, true, spg_none->stat);
		break;
	case SPA_TYPE_K2SPG:
		spa_stat.k2u_spg_num += 1;
		spa_stat.k2u_spg_size += size;
		update_spg_stat_k2u(size, true, spa->spg->stat);
		break;
	default:
		WARN(1, "invalid spa type");
	}

	if (is_dvpp) {
		spa_stat.dvpp_size += size;
		spa_stat.dvpp_va_size += ALIGN(size, PMD_SIZE);
	}

	/*
	 * all the calculations won't overflow due to system limitation and
	 * parameter checking in sp_alloc_area()
	 */
	spa_stat.total_num += 1;
	spa_stat.total_size += size;

	if (spa->spg != spg_none) {
		atomic_inc(&sp_overall_stat.spa_total_num);
		atomic64_add(size, &sp_overall_stat.spa_total_size);
	}
552 553
}

554 555
/* the caller should hold sp_area_lock */
static void spa_dec_usage(struct sp_area *spa)
556
{
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
	enum spa_type type = spa->type;
	unsigned long size = spa->real_size;
	bool is_dvpp = spa->flags & SP_DVPP;
	bool is_huge = spa->is_hugepage;

	switch (type) {
	case SPA_TYPE_ALLOC:
		spa_stat.alloc_num -= 1;
		spa_stat.alloc_size -= size;
		update_spg_stat_alloc(size, false, is_huge, spa->spg->stat);
		break;
	case SPA_TYPE_K2TASK:
		spa_stat.k2u_task_num -= 1;
		spa_stat.k2u_task_size -= size;
		update_spg_stat_k2u(size, false, spg_none->stat);
		break;
	case SPA_TYPE_K2SPG:
		spa_stat.k2u_spg_num -= 1;
		spa_stat.k2u_spg_size -= size;
		update_spg_stat_k2u(size, false, spa->spg->stat);
		break;
	default:
		WARN(1, "invalid spa type");
	}

	if (is_dvpp) {
		spa_stat.dvpp_size -= size;
		spa_stat.dvpp_va_size -= ALIGN(size, PMD_SIZE);
	}

	spa_stat.total_num -= 1;
	spa_stat.total_size -= size;

	if (spa->spg != spg_none) {
		atomic_dec(&sp_overall_stat.spa_total_num);
		atomic64_sub(spa->real_size, &sp_overall_stat.spa_total_size);
	}
594 595
}

596 597
static void update_spg_proc_stat(unsigned long size, bool inc,
	struct spg_proc_stat *stat, enum spa_type type)
598
{
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	if (unlikely(!stat)) {
		sp_dump_stack();
		WARN(1, "null process stat\n");
		return;
	}

	switch (type) {
	case SPA_TYPE_ALLOC:
		update_spg_proc_stat_alloc(size, inc, stat);
		break;
	case SPA_TYPE_K2TASK:
	case SPA_TYPE_K2SPG:
		update_spg_proc_stat_k2u(size, inc, stat);
		break;
	default:
		WARN(1, "invalid stat type\n");
	}
616 617
}

618 619
static void sp_update_process_stat(struct task_struct *tsk, bool inc,
	struct sp_area *spa)
620
{
621 622 623
	struct spg_proc_stat *stat;
	unsigned long size = spa->real_size;
	enum spa_type type = spa->type;
624

625 626 627 628 629 630 631 632 633 634 635 636 637
	down_write(&sp_group_sem);
	stat = sp_init_process_stat(tsk, tsk->mm, spa->spg);
	up_write(&sp_group_sem);
	if (unlikely(IS_ERR(stat)))
		return;

	update_spg_proc_stat(size, inc, stat, type);
}

static inline void check_interrupt_context(void)
{
	if (unlikely(in_interrupt()))
		panic("function can't be used in interrupt context\n");
638 639
}

640 641 642 643 644 645 646
static unsigned long sp_mmap(struct mm_struct *mm, struct file *file,
			     struct sp_area *spa, unsigned long *populate,
			     unsigned long prot);
static void sp_munmap(struct mm_struct *mm, unsigned long addr, unsigned long size);
static unsigned long sp_remap_kva_to_vma(unsigned long kva, struct sp_area *spa,
					 struct mm_struct *mm, unsigned long prot);

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
static void free_sp_group_id(int spg_id)
{
	/* ida operation is protected by an internal spin_lock */
	if (spg_id >= SPG_ID_AUTO_MIN && spg_id <= SPG_ID_AUTO_MAX)
		ida_free(&sp_group_id_ida, spg_id);
}

static void free_sp_group(struct sp_group *spg)
{
	fput(spg->file);
	fput(spg->file_hugetlb);
	free_spg_stat(spg->id);
	down_write(&sp_group_sem);
	idr_remove(&sp_group_idr, spg->id);
	up_write(&sp_group_sem);
	free_sp_group_id((unsigned int)spg->id);
	kfree(spg);
	system_group_count--;
	WARN(system_group_count < 0, "unexpected group count\n");
}

static void sp_group_drop(struct sp_group *spg)
{
	if (atomic_dec_and_test(&spg->use_count))
		free_sp_group(spg);
}

/* use with put_task_struct(task) */
static int get_task(int pid, struct task_struct **task)
{
	struct task_struct *tsk;

	rcu_read_lock();
	tsk = find_task_by_vpid(pid);
	if (!tsk || (tsk->flags & PF_EXITING)) {
		rcu_read_unlock();
		return -ESRCH;
	}
	get_task_struct(tsk);
	rcu_read_unlock();

	*task = tsk;
	return 0;
}

static struct sp_group *get_first_group(struct mm_struct *mm)
{
	struct sp_group *spg = NULL;
	struct sp_group_master *master = mm->sp_group_master;

	if (master && master->count >= 1) {
		struct sp_group_node *spg_node = NULL;

		spg_node = list_first_entry(&master->node_list,
					struct sp_group_node, group_node);
		spg = spg_node->spg;

		/* don't revive a dead group */
		if (!spg || !atomic_inc_not_zero(&spg->use_count))
			spg = NULL;
	}

	return spg;
}

/*
 * the caller must:
 * 1. hold spg->rw_lock
 * 2. ensure no concurrency problem for mm_struct
 */
static struct sp_group_node *is_process_in_group(struct sp_group *spg,
						 struct mm_struct *mm)
{
	struct sp_group_node *spg_node;

	list_for_each_entry(spg_node, &spg->procs, proc_node)
		if (spg_node->master->mm == mm)
			return spg_node;

	return NULL;
}

/* user must call sp_group_drop() after use */
static struct sp_group *__sp_find_spg_locked(int pid, int spg_id)
{
	struct sp_group *spg = NULL;
	struct task_struct *tsk = NULL;
	int ret = 0;

	ret = get_task(pid, &tsk);
	if (ret)
		return NULL;

	if (spg_id == SPG_ID_DEFAULT) {
		/*
		 * Once we encounter a concurrency problem here.
		 * To fix it, we believe get_task_mm() and mmput() is too
		 * heavy because we just get the pointer of sp_group.
		 */
		task_lock(tsk);
		if (tsk->mm == NULL)
			spg = NULL;
		else
			spg = get_first_group(tsk->mm);
		task_unlock(tsk);
	} else {
		spg = idr_find(&sp_group_idr, spg_id);
		/* don't revive a dead group */
		if (!spg || !atomic_inc_not_zero(&spg->use_count))
			goto fail;
	}

	put_task_struct(tsk);
	return spg;

fail:
	put_task_struct(tsk);
	return NULL;
}

static struct sp_group *__sp_find_spg(int pid, int spg_id)
{
	struct sp_group *spg;

	down_read(&sp_group_sem);
	spg = __sp_find_spg_locked(pid, spg_id);
	up_read(&sp_group_sem);
	return spg;
}

777 778 779 780 781 782 783 784 785 786
/**
 * sp_group_id_by_pid() - Get the sp_group ID of a process.
 * @pid: pid of target process.
 *
 * Return:
 * 0		 the sp_group ID.
 * -ENODEV	 target process doesn't belong to any sp_group.
 */
int sp_group_id_by_pid(int pid)
{
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
	struct sp_group *spg;
	int spg_id = -ENODEV;

	check_interrupt_context();

	spg = __sp_find_spg(pid, SPG_ID_DEFAULT);
	if (!spg)
		return -ENODEV;

	down_read(&spg->rw_lock);
	if (spg_valid(spg))
		spg_id = spg->id;
	up_read(&spg->rw_lock);

	sp_group_drop(spg);
	return spg_id;
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
}
EXPORT_SYMBOL_GPL(sp_group_id_by_pid);

/**
 * mp_sp_group_id_by_pid() - Get the sp_group ID array of a process.
 * @pid: pid of target process.
 * @spg_ids: point to an array to save the group ids the process belongs to
 * @num: input the spg_ids array size; output the spg number of the process
 *
 * Return:
 * >0		- the sp_group ID.
 * -ENODEV	- target process doesn't belong to any sp_group.
 * -EINVAL	- spg_ids or num is NULL.
 * -E2BIG	- the num of groups process belongs to is larger than *num
 */
int mg_sp_group_id_by_pid(int pid, int *spg_ids, int *num)
{
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
	int ret = 0;
	struct sp_group_node *node;
	struct sp_group_master *master = NULL;
	struct task_struct *tsk;

	check_interrupt_context();

	if (!spg_ids || num <= 0)
		return -EINVAL;

	ret = get_task(pid, &tsk);
	if (ret)
		return ret;

	down_read(&sp_group_sem);
	task_lock(tsk);
	if (tsk->mm)
		master = tsk->mm->sp_group_master;
	task_unlock(tsk);

	if (!master) {
		ret = -ENODEV;
		goto out_up_read;
	}

	if (!master->count) {
		ret = -ENODEV;
		goto out_up_read;
	}
	if ((unsigned int)*num < master->count) {
		ret = -E2BIG;
		goto out_up_read;
	}
	*num = master->count;

	list_for_each_entry(node, &master->node_list, group_node)
		*(spg_ids++) = node->spg->id;

out_up_read:
	up_read(&sp_group_sem);
	put_task_struct(tsk);
	return ret;
862 863 864
}
EXPORT_SYMBOL_GPL(mg_sp_group_id_by_pid);

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
static bool is_online_node_id(int node_id)
{
	return node_id >= 0 && node_id < MAX_NUMNODES && node_online(node_id);
}

static bool is_device_addr(unsigned long addr)
{
	int i;

	for (i = 0; i < sp_device_number; i++) {
		if (addr >= sp_dev_va_start[i] &&
		    addr < sp_dev_va_start[i] + sp_dev_va_size[i])
			return true;
	}
	return false;
}

W
Wang Wensheng 已提交
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
static loff_t addr_offset(struct sp_area *spa)
{
	unsigned long addr;

	if (unlikely(!spa)) {
		WARN(1, "invalid spa when calculate addr offset\n");
		return 0;
	}
	addr = spa->va_start;

	if (!is_device_addr(addr))
		return (loff_t)(addr - MMAP_SHARE_POOL_START);

	return (loff_t)(addr - sp_dev_va_start[spa->device_id]);
}

898 899
static struct sp_group *create_spg(int spg_id)
{
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
	int ret;
	struct sp_group *spg;
	char name[20];
	struct user_struct *user = NULL;
	int hsize_log = MAP_HUGE_2MB >> MAP_HUGE_SHIFT;

	if (unlikely(system_group_count + 1 == MAX_GROUP_FOR_SYSTEM)) {
		pr_err_ratelimited("reach system max group num\n");
		return ERR_PTR(-ENOSPC);
	}

	spg = kzalloc(sizeof(*spg), GFP_KERNEL);
	if (spg == NULL)
		return ERR_PTR(-ENOMEM);

	ret = idr_alloc(&sp_group_idr, spg, spg_id, spg_id + 1, GFP_KERNEL);
	if (ret < 0) {
		pr_err_ratelimited("group %d idr alloc failed %d\n",
				   spg_id, ret);
		goto out_kfree;
	}

	spg->id = spg_id;
	spg->is_alive = true;
	spg->proc_num = 0;
	spg->owner = current->group_leader;
	atomic_set(&spg->use_count, 1);
	INIT_LIST_HEAD(&spg->procs);
	INIT_LIST_HEAD(&spg->spa_list);
	init_rwsem(&spg->rw_lock);

	sprintf(name, "sp_group_%d", spg_id);
	spg->file = shmem_kernel_file_setup(name, MAX_LFS_FILESIZE,
					    VM_NORESERVE);
	if (IS_ERR(spg->file)) {
		pr_err("spg file setup failed %ld\n", PTR_ERR(spg->file));
		ret = PTR_ERR(spg->file);
		goto out_idr;
	}

	spg->file_hugetlb = hugetlb_file_setup(name, MAX_LFS_FILESIZE,
					       VM_NORESERVE, &user, HUGETLB_ANONHUGE_INODE, hsize_log);
	if (IS_ERR(spg->file_hugetlb)) {
		pr_err("spg file_hugetlb setup failed %ld\n",
		       PTR_ERR(spg->file_hugetlb));
		ret = PTR_ERR(spg->file_hugetlb);
		goto out_fput;
	}

	ret = sp_init_spg_stat(spg);
	if (ret < 0)
		goto out_fput_all;

	system_group_count++;
	return spg;

out_fput_all:
	fput(spg->file_hugetlb);
out_fput:
	fput(spg->file);
out_idr:
	idr_remove(&sp_group_idr, spg_id);
out_kfree:
	kfree(spg);
	return ERR_PTR(ret);
965 966
}

967 968 969 970 971 972 973 974 975 976 977 978
int mg_sp_group_add_task(int pid, unsigned long prot, int spg_id)
{
	return 0;
}
EXPORT_SYMBOL_GPL(mg_sp_group_add_task);

int sp_group_add_task(int pid, int spg_id)
{
	return 0;
}
EXPORT_SYMBOL_GPL(sp_group_add_task);

979
static void __sp_area_drop_locked(struct sp_area *spa);
980

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
/**
 * mg_sp_group_del_task() - delete a process from a sp group.
 * @pid: the pid of the task to be deleted
 * @spg_id: sharepool group id
 *
 * the group's spa list must be empty, or deletion will fail.
 *
 * Return:
 * * if success, return 0.
 * * -EINVAL, spg_id invalid or spa_lsit not emtpy or spg dead
 * * -ESRCH, the task group of pid is not in group / process dead
 */
int mg_sp_group_del_task(int pid, int spg_id)
{
	return 0;
}
EXPORT_SYMBOL_GPL(mg_sp_group_del_task);

int sp_group_del_task(int pid, int spg_id)
{
	return mg_sp_group_del_task(pid, spg_id);
}
EXPORT_SYMBOL_GPL(sp_group_del_task);

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
/* the caller must hold sp_area_lock */
static void __insert_sp_area(struct sp_area *spa)
{
	struct rb_node **p = &sp_area_root.rb_node;
	struct rb_node *parent = NULL;

	while (*p) {
		struct sp_area *tmp;

		parent = *p;
		tmp = rb_entry(parent, struct sp_area, rb_node);
		if (spa->va_start < tmp->va_end)
			p = &(*p)->rb_left;
		else if (spa->va_end > tmp->va_start)
			p = &(*p)->rb_right;
		else
			BUG();
	}

	rb_link_node(&spa->rb_node, parent, p);
	rb_insert_color(&spa->rb_node, &sp_area_root);
}

/* The sp_area cache globals are protected by sp_area_lock */
static struct rb_node *free_sp_area_cache;
static unsigned long cached_hole_size;
static unsigned long cached_vstart;  /* affected by SP_DVPP and sp_config_dvpp_range() */

/**
 * sp_alloc_area() - Allocate a region of VA from the share pool.
 * @size: the size of VA to allocate.
 * @flags: how to allocate the memory.
 * @spg: the share group that the memory is allocated to.
 * @type: the type of the region.
 * @applier: the pid of the task which allocates the region.
 *
 * Return: a valid pointer for success, NULL on failure.
 */
static struct sp_area *sp_alloc_area(unsigned long size, unsigned long flags,
				     struct sp_group *spg, enum spa_type type,
				     pid_t applier)
{
	struct sp_area *spa, *first, *err;
	struct rb_node *n;
	unsigned long vstart = MMAP_SHARE_POOL_START;
	unsigned long vend = MMAP_SHARE_POOL_16G_START;
	unsigned long addr;
	unsigned long size_align = ALIGN(size, PMD_SIZE); /* va aligned to 2M */
	int device_id, node_id;

	device_id = sp_flags_device_id(flags);
	node_id = flags & SP_SPEC_NODE_ID ? sp_flags_node_id(flags) : device_id;

	if (!is_online_node_id(node_id)) {
		pr_err_ratelimited("invalid numa node id %d\n", node_id);
		return ERR_PTR(-EINVAL);
	}

	if ((flags & SP_DVPP)) {
		if (!is_sp_dev_addr_enabled(device_id)) {
			vstart = MMAP_SHARE_POOL_16G_START +
				device_id * MMAP_SHARE_POOL_16G_SIZE;
			vend = vstart + MMAP_SHARE_POOL_16G_SIZE;
		} else {
			vstart = sp_dev_va_start[device_id];
			vend = vstart + sp_dev_va_size[device_id];
		}
	}

	spa = __kmalloc_node(sizeof(struct sp_area), GFP_KERNEL, node_id);
	if (unlikely(!spa))
		return ERR_PTR(-ENOMEM);

	spin_lock(&sp_area_lock);

	/*
	 * Invalidate cache if we have more permissive parameters.
	 * cached_hole_size notes the largest hole noticed _below_
	 * the sp_area cached in free_sp_area_cache: if size fits
	 * into that hole, we want to scan from vstart to reuse
	 * the hole instead of allocating above free_sp_area_cache.
	 * Note that sp_free_area may update free_sp_area_cache
	 * without updating cached_hole_size.
	 */
	if (!free_sp_area_cache || size_align < cached_hole_size ||
	    vstart != cached_vstart) {
		cached_hole_size = 0;
		free_sp_area_cache = NULL;
	}

	/* record if we encounter less permissive parameters */
	cached_vstart = vstart;

	/* find starting point for our search */
	if (free_sp_area_cache) {
		first = rb_entry(free_sp_area_cache, struct sp_area, rb_node);
		addr = first->va_end;
		if (addr + size_align < addr) {
			err = ERR_PTR(-EOVERFLOW);
			goto error;
		}
	} else {
		addr = vstart;
		if (addr + size_align < addr) {
			err = ERR_PTR(-EOVERFLOW);
			goto error;
		}

		n = sp_area_root.rb_node;
		first = NULL;

		while (n) {
			struct sp_area *tmp;

			tmp = rb_entry(n, struct sp_area, rb_node);
			if (tmp->va_end >= addr) {
				first = tmp;
				if (tmp->va_start <= addr)
					break;
				n = n->rb_left;
			} else
				n = n->rb_right;
		}

		if (!first)
			goto found;
	}

	/* from the starting point, traverse areas until a suitable hole is found */
	while (addr + size_align > first->va_start && addr + size_align <= vend) {
		if (addr + cached_hole_size < first->va_start)
			cached_hole_size = first->va_start - addr;
		addr = first->va_end;
		if (addr + size_align < addr) {
			err = ERR_PTR(-EOVERFLOW);
			goto error;
		}

		n = rb_next(&first->rb_node);
		if (n)
			first = rb_entry(n, struct sp_area, rb_node);
		else
			goto found;
	}

found:
	if (addr + size_align > vend) {
		err = ERR_PTR(-EOVERFLOW);
		goto error;
	}

	spa->va_start = addr;
	spa->va_end = addr + size_align;
	spa->real_size = size;
	spa->region_vstart = vstart;
	spa->flags = flags;
	spa->is_hugepage = (flags & SP_HUGEPAGE);
	spa->is_dead = false;
	spa->spg = spg;
	atomic_set(&spa->use_count, 1);
	spa->type = type;
	spa->mm = NULL;
	spa->kva = 0;   /* NULL pointer */
	spa->applier = applier;
	spa->node_id = node_id;
	spa->device_id = device_id;

	spa_inc_usage(spa);
	__insert_sp_area(spa);
	free_sp_area_cache = &spa->rb_node;
	if (spa->spg != spg_none)
		list_add_tail(&spa->link, &spg->spa_list);

	spin_unlock(&sp_area_lock);

	return spa;

error:
	spin_unlock(&sp_area_lock);
	kfree(spa);
	return err;
}

/* the caller should hold sp_area_lock */
static struct sp_area *__find_sp_area_locked(unsigned long addr)
{
	struct rb_node *n = sp_area_root.rb_node;

	while (n) {
		struct sp_area *spa;

		spa = rb_entry(n, struct sp_area, rb_node);
		if (addr < spa->va_start) {
			n = n->rb_left;
		} else if (addr > spa->va_start) {
			n = n->rb_right;
		} else {
			return spa;
		}
	}

	return NULL;
}

static struct sp_area *__find_sp_area(unsigned long addr)
{
	struct sp_area *n;

	spin_lock(&sp_area_lock);
	n = __find_sp_area_locked(addr);
	if (n)
		atomic_inc(&n->use_count);
	spin_unlock(&sp_area_lock);
	return n;
}

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
static bool vmalloc_area_clr_flag(unsigned long kva, unsigned long flags)
{
	struct vm_struct *area;

	area = find_vm_area((void *)kva);
	if (area) {
		area->flags &= ~flags;
		return true;
	}

	return false;
}

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
/*
 * Free the VA region starting from addr to the share pool
 */
static void sp_free_area(struct sp_area *spa)
{
	lockdep_assert_held(&sp_area_lock);

	if (free_sp_area_cache) {
		struct sp_area *cache;

		cache = rb_entry(free_sp_area_cache, struct sp_area, rb_node);
		if (spa->va_start <= cache->va_start) {
			free_sp_area_cache = rb_prev(&spa->rb_node);
			/*
			 * the new cache node may be changed to another region,
			 * i.e. from DVPP region to normal region
			 */
			if (free_sp_area_cache) {
				cache = rb_entry(free_sp_area_cache,
						 struct sp_area, rb_node);
				cached_vstart = cache->region_vstart;
			}
			/*
			 * We don't try to update cached_hole_size,
			 * but it won't go very wrong.
			 */
		}
	}

1263 1264 1265
	if (spa->kva && !vmalloc_area_clr_flag(spa->kva, VM_SHAREPOOL))
		pr_debug("clear spa->kva %ld is not valid\n", spa->kva);

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	spa_dec_usage(spa);
	if (spa->spg != spg_none)
		list_del(&spa->link);

	rb_erase(&spa->rb_node, &sp_area_root);
	RB_CLEAR_NODE(&spa->rb_node);
	kfree(spa);
}

static void __sp_area_drop_locked(struct sp_area *spa)
{
	/*
	 * Considering a situation where task A and B are in the same spg.
	 * A is exiting and calling remove_vma(). Before A calls this func,
	 * B calls sp_free() to free the same spa. So spa maybe NULL when A
	 * calls this func later.
	 */
	if (!spa)
		return;

	if (atomic_dec_and_test(&spa->use_count))
		sp_free_area(spa);
}

static void __sp_area_drop(struct sp_area *spa)
{
	spin_lock(&sp_area_lock);
	__sp_area_drop_locked(spa);
	spin_unlock(&sp_area_lock);
}

void sp_area_drop(struct vm_area_struct *vma)
{
	struct sp_area *spa;

	if (!(vma->vm_flags & VM_SHARE_POOL))
		return;

	/*
	 * Considering a situation where task A and B are in the same spg.
	 * A is exiting and calling remove_vma() -> ... -> sp_area_drop().
	 * Concurrently, B is calling sp_free() to free the same spa.
	 * __find_sp_area_locked() and __sp_area_drop_locked() should be
	 * an atomic operation.
	 */
	spin_lock(&sp_area_lock);
	spa = __find_sp_area_locked(vma->vm_start);
	__sp_area_drop_locked(spa);
	spin_unlock(&sp_area_lock);
}

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
int sysctl_sp_compact_enable;
unsigned long sysctl_sp_compact_interval = 30UL;
unsigned long sysctl_sp_compact_interval_max = 1000UL;
static unsigned long compact_last_jiffies;
static unsigned long compact_daemon_status;
#define COMPACT_START	1
#define COMPACT_STOP	0

static void sp_compact_nodes(struct work_struct *work)
{
	sysctl_compaction_handler(NULL, 1, NULL, NULL, NULL);

	kfree(work);

	compact_last_jiffies = jiffies;
	cmpxchg(&compact_daemon_status, COMPACT_START, COMPACT_STOP);
}

static void sp_add_work_compact(void)
{
	struct work_struct *compact_work;

	if (!sysctl_sp_compact_enable)
		return;

	/* experimental compaction time: 4GB->1.7s, 8GB->3.4s */
	if (!time_after(jiffies,
		compact_last_jiffies + sysctl_sp_compact_interval * HZ))
		return;

	if (cmpxchg(&compact_daemon_status, COMPACT_STOP, COMPACT_START) ==
		    COMPACT_START)
		return;

	compact_work = kzalloc(sizeof(*compact_work), GFP_KERNEL);
	if (!compact_work)
		return;

	INIT_WORK(compact_work, sp_compact_nodes);
	schedule_work(compact_work);
}

static void sp_try_to_compact(void)
{
	unsigned long totalram;
	unsigned long freeram;

	totalram = totalram_pages();
	freeram = global_zone_page_state(NR_FREE_PAGES);

	/* free < total / 3 */
	if ((freeram + (freeram << 1)) > totalram)
		return;

	sp_add_work_compact();
}

W
Wang Wensheng 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
/*
 * The function calls of do_munmap() won't change any non-atomic member
 * of struct sp_group. Please review the following chain:
 * do_munmap -> remove_vma_list -> remove_vma -> sp_area_drop ->
 * __sp_area_drop_locked -> sp_free_area
 */
static void sp_munmap(struct mm_struct *mm, unsigned long addr,
			   unsigned long size)
{
	int err;

	down_write(&mm->mmap_lock);
	if (unlikely(mm->core_state)) {
		up_write(&mm->mmap_lock);
		pr_info("munmap: encoutered coredump\n");
		return;
	}

	err = do_munmap(mm, addr, size, NULL);
	/* we are not supposed to fail */
	if (err)
		pr_err("failed to unmap VA %pK when sp munmap\n", (void *)addr);

	up_write(&mm->mmap_lock);
}

static void __sp_free(struct sp_group *spg, unsigned long addr,
		      unsigned long size, struct mm_struct *stop)
{
	struct mm_struct *mm;
	struct sp_group_node *spg_node = NULL;

	list_for_each_entry(spg_node, &spg->procs, proc_node) {
		mm = spg_node->master->mm;
		if (mm == stop)
			break;
		sp_munmap(mm, addr, size);
	}
}

/* Free the memory of the backing shmem or hugetlbfs */
static void sp_fallocate(struct sp_area *spa)
{
	int ret;
	unsigned long mode = FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE;
	unsigned long offset = addr_offset(spa);

	ret = vfs_fallocate(spa_file(spa), mode, offset, spa_size(spa));
	if (ret)
		WARN(1, "sp fallocate failed %d\n", ret);
}

static void sp_free_unmap_fallocate(struct sp_area *spa)
{
	if (spa->spg != spg_none) {
		down_read(&spa->spg->rw_lock);
		__sp_free(spa->spg, spa->va_start, spa_size(spa), NULL);
		sp_fallocate(spa);
		up_read(&spa->spg->rw_lock);
	} else {
		sp_munmap(current->mm, spa->va_start, spa_size(spa));
		sp_fallocate(spa);
	}
}

static int sp_check_caller_permission(struct sp_group *spg, struct mm_struct *mm)
{
	int ret = 0;

	down_read(&spg->rw_lock);
	if (!is_process_in_group(spg, mm))
		ret = -EPERM;
	up_read(&spg->rw_lock);
	return ret;
}


#define FREE_CONT	1
#define FREE_END	2

struct sp_free_context {
	unsigned long addr;
	struct sp_area *spa;
	int state;
};

/* when success, __sp_area_drop(spa) should be used */
static int sp_free_get_spa(struct sp_free_context *fc)
{
	int ret = 0;
	unsigned long addr = fc->addr;
	struct sp_area *spa;

	fc->state = FREE_CONT;

	spa = __find_sp_area(addr);
	if (!spa) {
		pr_debug("sp free invalid input addr %lx\n", addr);
		return -EINVAL;
	}

	if (spa->type != SPA_TYPE_ALLOC) {
		ret = -EINVAL;
		pr_debug("sp free failed, %lx is not sp alloc addr\n", addr);
		goto drop_spa;
	}
	fc->spa = spa;

	if (spa->spg != spg_none) {
		/*
		 * Access control: an sp addr can only be freed by
		 * 1. another task in the same spg
		 * 2. a kthread
		 *
		 * a passthrough addr can only be freed by the applier process
		 */
		if (!current->mm)
			goto check_spa;

		ret = sp_check_caller_permission(spa->spg, current->mm);
		if (ret < 0)
			goto drop_spa;

check_spa:
		down_write(&spa->spg->rw_lock);
		if (!spg_valid(spa->spg)) {
			fc->state = FREE_END;
			up_write(&spa->spg->rw_lock);
			goto drop_spa;
			/* we must return success(0) in this situation */
		}
		/* the life cycle of spa has a direct relation with sp group */
		if (unlikely(spa->is_dead)) {
			up_write(&spa->spg->rw_lock);
			pr_err_ratelimited("unexpected double sp free\n");
			dump_stack();
			ret = -EINVAL;
			goto drop_spa;
		}
		spa->is_dead = true;
		up_write(&spa->spg->rw_lock);

	} else {
		if (current->tgid != spa->applier) {
			ret = -EPERM;
			goto drop_spa;
		}
	}
	return 0;

drop_spa:
	__sp_area_drop(spa);
	return ret;
}

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
/**
 * sp_free() - Free the memory allocated by sp_alloc().
 * @addr: the starting VA of the memory.
 *
 * Return:
 * * 0		- success.
 * * -EINVAL	- the memory can't be found or was not allocted by share pool.
 * * -EPERM	- the caller has no permision to free the memory.
 */
int sp_free(unsigned long addr)
{
W
Wang Wensheng 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
	int ret = 0;
	struct sp_free_context fc = {
		.addr = addr,
	};

	check_interrupt_context();

	ret = sp_free_get_spa(&fc);
	if (ret || fc.state == FREE_END)
		goto out;

	sp_free_unmap_fallocate(fc.spa);

	/* current->mm == NULL: allow kthread */
	if (current->mm == NULL)
		atomic64_sub(fc.spa->real_size, &kthread_stat.alloc_size);
	else
		sp_update_process_stat(current, false, fc.spa);

	__sp_area_drop(fc.spa);  /* match __find_sp_area in sp_free_get_spa */
out:
	sp_dump_stack();
	sp_try_to_compact();
	return ret;
1564 1565 1566 1567 1568 1569 1570 1571 1572
}
EXPORT_SYMBOL_GPL(sp_free);

int mg_sp_free(unsigned long addr)
{
	return sp_free(addr);
}
EXPORT_SYMBOL_GPL(mg_sp_free);

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
/* wrapper of __do_mmap() and the caller must hold down_write(&mm->mmap_lock). */
static unsigned long sp_mmap(struct mm_struct *mm, struct file *file,
			     struct sp_area *spa, unsigned long *populate,
			     unsigned long prot)
{
	unsigned long addr = spa->va_start;
	unsigned long size = spa_size(spa);
	unsigned long flags = MAP_FIXED | MAP_SHARED | MAP_POPULATE |
			      MAP_SHARE_POOL;
	unsigned long vm_flags = VM_NORESERVE | VM_SHARE_POOL | VM_DONTCOPY;
	unsigned long pgoff = addr_offset(spa) >> PAGE_SHIFT;

	/* Mark the mapped region to be locked. After the MAP_LOCKED is enable,
	 * multiple tasks will preempt resources, causing performance loss.
	 */
	if (sysctl_share_pool_map_lock_enable)
		flags |= MAP_LOCKED;

	atomic_inc(&spa->use_count);
	addr = __do_mmap_mm(mm, file, addr, size, prot, flags, vm_flags, pgoff,
			 populate, NULL);
	if (IS_ERR_VALUE(addr)) {
		atomic_dec(&spa->use_count);
		pr_err("do_mmap fails %ld\n", addr);
	} else {
		BUG_ON(addr != spa->va_start);
	}

	return addr;
}

W
Wang Wensheng 已提交
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
#define ALLOC_NORMAL	1
#define ALLOC_RETRY	2
#define ALLOC_NOMEM	3

struct sp_alloc_context {
	struct sp_group *spg;
	struct file *file;
	unsigned long size;
	unsigned long size_aligned;
	unsigned long sp_flags;
	unsigned long populate;
	int state;
	bool need_fallocate;
	struct timespec64 start;
	struct timespec64 end;
};

static void trace_sp_alloc_begin(struct sp_alloc_context *ac)
{
	if (!sysctl_sp_perf_alloc)
		return;

	ktime_get_ts64(&ac->start);
}

static void trace_sp_alloc_finish(struct sp_alloc_context *ac, unsigned long va)
{
	unsigned long cost;
	bool is_pass_through = ac->spg == spg_none ? true : false;

	if (!sysctl_sp_perf_alloc)
		return;

	ktime_get_ts64(&ac->end);

	cost = SEC2US(ac->end.tv_sec - ac->start.tv_sec) +
		NS2US(ac->end.tv_nsec - ac->start.tv_nsec);
	if (cost >= (unsigned long)sysctl_sp_perf_alloc) {
		pr_err("Task %s(%d/%d) sp_alloc returns 0x%lx consumes %luus, size is %luKB, size_aligned is %luKB, sp_flags is %lx, pass through is %d\n",
		       current->comm, current->tgid, current->pid,
		       va, cost, byte2kb(ac->size), byte2kb(ac->size_aligned), ac->sp_flags, is_pass_through);
	}
}

static int sp_alloc_prepare(unsigned long size, unsigned long sp_flags,
	int spg_id, struct sp_alloc_context *ac)
{
	struct sp_group *spg;

	check_interrupt_context();

	trace_sp_alloc_begin(ac);

	/* mdc scene hack */
	if (enable_mdc_default_group)
		spg_id = mdc_default_group_id;

	if (unlikely(!size || (size >> PAGE_SHIFT) > totalram_pages())) {
		pr_err_ratelimited("allocation failed, invalid size %lu\n", size);
		return -EINVAL;
	}

	if (spg_id != SPG_ID_DEFAULT && spg_id < SPG_ID_MIN) {
		pr_err_ratelimited("allocation failed, invalid group id %d\n", spg_id);
		return -EINVAL;
	}

	if (sp_flags & (~SP_FLAG_MASK)) {
		pr_err_ratelimited("allocation failed, invalid flag %lx\n", sp_flags);
		return -EINVAL;
	}

	if (sp_flags & SP_HUGEPAGE_ONLY)
		sp_flags |= SP_HUGEPAGE;

	if (share_pool_group_mode == SINGLE_GROUP_MODE) {
		spg = __sp_find_spg(current->pid, SPG_ID_DEFAULT);
		if (spg) {
			if (spg_id != SPG_ID_DEFAULT && spg->id != spg_id) {
				sp_group_drop(spg);
				return -ENODEV;
			}

			/* up_read will be at the end of sp_alloc */
			down_read(&spg->rw_lock);
			if (!spg_valid(spg)) {
				up_read(&spg->rw_lock);
				sp_group_drop(spg);
				pr_err_ratelimited("allocation failed, spg is dead\n");
				return -ENODEV;
			}
		} else {  /* alocation pass through scene */
			if (enable_mdc_default_group) {
				int ret = 0;

				ret = sp_group_add_task(current->tgid, spg_id);
				if (ret < 0) {
					pr_err_ratelimited("add group failed in pass through\n");
					return ret;
				}

				spg = __sp_find_spg(current->pid, SPG_ID_DEFAULT);

				/* up_read will be at the end of sp_alloc */
				down_read(&spg->rw_lock);
				if (!spg_valid(spg)) {
					up_read(&spg->rw_lock);
					sp_group_drop(spg);
					pr_err_ratelimited("pass through allocation failed, spg is dead\n");
					return -ENODEV;
				}
			} else {
				spg = spg_none;
			}
		}
	} else {
		if (spg_id != SPG_ID_DEFAULT) {
			spg = __sp_find_spg(current->pid, spg_id);
			if (!spg) {
				pr_err_ratelimited("allocation failed, can't find group\n");
				return -ENODEV;
			}

			/* up_read will be at the end of sp_alloc */
			down_read(&spg->rw_lock);
			if (!spg_valid(spg)) {
				up_read(&spg->rw_lock);
				sp_group_drop(spg);
				pr_err_ratelimited("allocation failed, spg is dead\n");
				return -ENODEV;
			}

			if (!is_process_in_group(spg, current->mm)) {
				up_read(&spg->rw_lock);
				sp_group_drop(spg);
				pr_err_ratelimited("allocation failed, task not in group\n");
				return -ENODEV;
			}
		} else {  /* alocation pass through scene */
			spg = spg_none;
		}
	}

	if (sp_flags & SP_HUGEPAGE) {
		ac->file = spg->file_hugetlb;
		ac->size_aligned = ALIGN(size, PMD_SIZE);
	} else {
		ac->file = spg->file;
		ac->size_aligned = ALIGN(size, PAGE_SIZE);
	}

	ac->spg = spg;
	ac->size = size;
	ac->sp_flags = sp_flags;
	ac->state = ALLOC_NORMAL;
	ac->need_fallocate = false;
	return 0;
}

static void sp_alloc_unmap(struct mm_struct *mm, struct sp_area *spa,
	struct sp_group_node *spg_node)
{
	if (spa->spg != spg_none)
		__sp_free(spa->spg, spa->va_start, spa->real_size, mm);
}

static int sp_alloc_mmap(struct mm_struct *mm, struct sp_area *spa,
	struct sp_group_node *spg_node, struct sp_alloc_context *ac)
{
	int ret = 0;
	unsigned long mmap_addr;
	/* pass through default permission */
	unsigned long prot = PROT_READ | PROT_WRITE;
	unsigned long sp_addr = spa->va_start;
	unsigned long populate = 0;
	struct vm_area_struct *vma;

	down_write(&mm->mmap_lock);
	if (unlikely(mm->core_state)) {
		up_write(&mm->mmap_lock);
		sp_alloc_unmap(mm, spa, spg_node);
		ac->state = ALLOC_NOMEM;
		pr_info("allocation encountered coredump\n");
		return -EFAULT;
	}

	if (spg_node)
		prot = spg_node->prot;

	/* when success, mmap_addr == spa->va_start */
	mmap_addr = sp_mmap(mm, spa_file(spa), spa, &populate, prot);
	if (IS_ERR_VALUE(mmap_addr)) {
		up_write(&mm->mmap_lock);
		sp_alloc_unmap(mm, spa, spg_node);
		pr_err("sp mmap in allocation failed %ld\n", mmap_addr);
		return PTR_ERR((void *)mmap_addr);
	}

	if (unlikely(populate == 0)) {
		up_write(&mm->mmap_lock);
		pr_err("allocation sp mmap populate failed\n");
		ret = -EFAULT;
		goto unmap;
	}
	ac->populate = populate;

	vma = find_vma(mm, sp_addr);
	if (unlikely(!vma)) {
		up_write(&mm->mmap_lock);
		WARN(1, "allocation failed, can't find %lx vma\n", sp_addr);
		ret = -EINVAL;
		goto unmap;
	}
	/* clean PTE_RDONLY flags or trigger SMMU event */
	if (prot & PROT_WRITE)
		vma->vm_page_prot = __pgprot(((~PTE_RDONLY) & vma->vm_page_prot.pgprot) | PTE_DIRTY);
	up_write(&mm->mmap_lock);

	return ret;

unmap:
	if (spa->spg != spg_none)
		sp_alloc_unmap(list_next_entry(spg_node, proc_node)->master->mm, spa, spg_node);
	else
		sp_munmap(mm, spa->va_start, spa->real_size);
	return ret;
}

static void sp_alloc_fallback(struct sp_area *spa, struct sp_alloc_context *ac)
{
	struct sp_spg_stat *stat = ac->spg->stat;

	if (ac->file == ac->spg->file) {
		ac->state = ALLOC_NOMEM;
		return;
	}

	atomic_inc(&stat->hugepage_failures);
	if (!(ac->sp_flags & SP_HUGEPAGE_ONLY)) {
		ac->file = ac->spg->file;
		ac->size_aligned = ALIGN(ac->size, PAGE_SIZE);
		ac->sp_flags &= ~SP_HUGEPAGE;
		ac->state = ALLOC_RETRY;
		__sp_area_drop(spa);
		return;
	}
	ac->state = ALLOC_NOMEM;
}

static int sp_alloc_populate(struct mm_struct *mm, struct sp_area *spa,
	struct sp_group_node *spg_node, struct sp_alloc_context *ac)
{
	int ret = 0;
	unsigned long sp_addr = spa->va_start;
	unsigned int noreclaim_flag = 0;

	/*
	 * The direct reclaim and compact may take a long
	 * time. As a result, sp mutex will be hold for too
	 * long time to casue the hung task problem. In this
	 * case, set the PF_MEMALLOC flag to prevent the
	 * direct reclaim and compact from being executed.
	 * Since direct reclaim and compact are not performed
	 * when the fragmentation is severe or the memory is
	 * insufficient, 2MB continuous physical pages fail
	 * to be allocated. This situation is allowed.
	 */
	if (spa->is_hugepage)
		noreclaim_flag = memalloc_noreclaim_save();

	/*
	 * We are not ignoring errors, so if we fail to allocate
	 * physical memory we just return failure, so we won't encounter
	 * page fault later on, and more importantly sp_make_share_u2k()
	 * depends on this feature (and MAP_LOCKED) to work correctly.
	 */
	ret = do_mm_populate(mm, sp_addr, ac->populate, 0);
	if (spa->is_hugepage) {
		memalloc_noreclaim_restore(noreclaim_flag);
		if (ret)
			sp_add_work_compact();
	}
	if (ret) {
		if (spa->spg != spg_none)
			sp_alloc_unmap(list_next_entry(spg_node, proc_node)->master->mm, spa, spg_node);
		else
			sp_munmap(mm, spa->va_start, spa->real_size);

		if (unlikely(fatal_signal_pending(current)))
			pr_warn_ratelimited("allocation failed, current thread is killed\n");
		else
			pr_warn_ratelimited("allocation failed due to mm populate failed(potential no enough memory when -12): %d\n",
					    ret);
		sp_fallocate(spa);  /* need this, otherwise memleak */
		sp_alloc_fallback(spa, ac);
	} else {
		ac->need_fallocate = true;
	}
	return ret;
}

static int __sp_alloc_mmap_populate(struct mm_struct *mm, struct sp_area *spa,
	struct sp_group_node *spg_node, struct sp_alloc_context *ac)
{
	int ret;

	ret = sp_alloc_mmap(mm, spa, spg_node, ac);
	if (ret < 0) {
		if (ac->need_fallocate) {
			/* e.g. second sp_mmap fail */
			sp_fallocate(spa);
			ac->need_fallocate = false;
		}
		return ret;
	}

	ret = sp_alloc_populate(mm, spa, spg_node, ac);
	return ret;
}

static int sp_alloc_mmap_populate(struct sp_area *spa,
				  struct sp_alloc_context *ac)
{
	int ret;
	struct mm_struct *mm;
	struct sp_group_node *spg_node;

	if (spa->spg == spg_none) {
		ret = __sp_alloc_mmap_populate(current->mm, spa, NULL, ac);
	} else {
		/* create mapping for each process in the group */
		list_for_each_entry(spg_node, &spa->spg->procs, proc_node) {
			mm = spg_node->master->mm;
			ret = __sp_alloc_mmap_populate(mm, spa, spg_node, ac);
			if (ret)
				return ret;
		}
	}
	return ret;
}

/* spa maybe an error pointer, so introduce variable spg */
static void sp_alloc_finish(int result, struct sp_area *spa,
	struct sp_alloc_context *ac)
{
	struct sp_group *spg = ac->spg;
	bool is_pass_through = spg == spg_none ? true : false;

	/* match sp_alloc_check_prepare */
	if (!is_pass_through)
		up_read(&spg->rw_lock);

	if (!result)
		sp_update_process_stat(current, true, spa);

	/* this will free spa if mmap failed */
	if (spa && !IS_ERR(spa))
		__sp_area_drop(spa);

	if (!is_pass_through)
		sp_group_drop(spg);

	trace_sp_alloc_finish(ac, spa->va_start);
	sp_dump_stack();
	sp_try_to_compact();
}

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
/**
 * sp_alloc() - Allocate shared memory for all the processes in a sp_group.
 * @size: the size of memory to allocate.
 * @sp_flags: how to allocate the memory.
 * @spg_id: the share group that the memory is allocated to.
 *
 * Use pass through allocation if spg_id == SPG_ID_DEFAULT in multi-group mode.
 *
 * Return:
 * * if succeed, return the starting address of the shared memory.
 * * if fail, return the pointer of -errno.
 */
void *sp_alloc(unsigned long size, unsigned long sp_flags, int spg_id)
{
W
Wang Wensheng 已提交
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	struct sp_area *spa = NULL;
	int ret = 0;
	struct sp_alloc_context ac;

	ret = sp_alloc_prepare(size, sp_flags, spg_id, &ac);
	if (ret)
		return ERR_PTR(ret);

try_again:
	spa = sp_alloc_area(ac.size_aligned, ac.sp_flags, ac.spg,
			    SPA_TYPE_ALLOC, current->tgid);
	if (IS_ERR(spa)) {
		pr_err_ratelimited("alloc spa failed in allocation(potential no enough virtual memory when -75): %ld\n",
			PTR_ERR(spa));
		ret = PTR_ERR(spa);
		goto out;
	}

	ret = sp_alloc_mmap_populate(spa, &ac);
	if (ret && ac.state == ALLOC_RETRY)
		goto try_again;

out:
	sp_alloc_finish(ret, spa, &ac);
	if (ret)
		return ERR_PTR(ret);
	else
		return (void *)(spa->va_start);
2013 2014 2015 2016 2017 2018 2019 2020 2021
}
EXPORT_SYMBOL_GPL(sp_alloc);

void *mg_sp_alloc(unsigned long size, unsigned long sp_flags, int spg_id)
{
	return sp_alloc(size, sp_flags, spg_id);
}
EXPORT_SYMBOL_GPL(mg_sp_alloc);

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
/**
 * is_vmap_hugepage() - Check if a kernel address belongs to vmalloc family.
 * @addr: the kernel space address to be checked.
 *
 * Return:
 * * >0		- a vmalloc hugepage addr.
 * * =0		- a normal vmalloc addr.
 * * -errno	- failure.
 */
static int is_vmap_hugepage(unsigned long addr)
{
	struct vm_struct *area;

	if (unlikely(!addr)) {
		pr_err_ratelimited("null vmap addr pointer\n");
		return -EINVAL;
	}

	area = find_vm_area((void *)addr);
	if (unlikely(!area)) {
		pr_debug("can't find vm area(%lx)\n", addr);
		return -EINVAL;
	}

	if (area->flags & VM_HUGE_PAGES)
		return 1;
	else
		return 0;
}

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
static unsigned long __sp_remap_get_pfn(unsigned long kva)
{
	unsigned long pfn;

	if (is_vmalloc_addr((void *)kva))
		pfn = vmalloc_to_pfn((void *)kva);
	else
		pfn = virt_to_pfn(kva);

	return pfn;
}

/* when called by k2u to group, always make sure rw_lock of spg is down */
static unsigned long sp_remap_kva_to_vma(unsigned long kva, struct sp_area *spa,
					 struct mm_struct *mm, unsigned long prot)
{
	struct vm_area_struct *vma;
	unsigned long ret_addr;
	unsigned long populate = 0;
	int ret = 0;
	unsigned long addr, buf, offset;

	down_write(&mm->mmap_lock);
	if (unlikely(mm->core_state)) {
		pr_err("k2u mmap: encountered coredump, abort\n");
		ret_addr = -EBUSY;
		goto put_mm;
	}

	ret_addr = sp_mmap(mm, spa_file(spa), spa, &populate, prot);
	if (IS_ERR_VALUE(ret_addr)) {
		pr_debug("k2u mmap failed %lx\n", ret_addr);
		goto put_mm;
	}
	BUG_ON(ret_addr != spa->va_start);

	vma = find_vma(mm, ret_addr);
	BUG_ON(vma == NULL);
	if (prot & PROT_WRITE)
		vma->vm_page_prot = __pgprot(((~PTE_RDONLY) & vma->vm_page_prot.pgprot) | PTE_DIRTY);

	if (is_vm_hugetlb_page(vma)) {
		ret = remap_vmalloc_hugepage_range(vma, (void *)kva, 0);
		if (ret) {
			do_munmap(mm, ret_addr, spa_size(spa), NULL);
			pr_debug("remap vmalloc hugepage failed, ret %d, kva is %lx\n",
				 ret, (unsigned long)kva);
			ret_addr = ret;
			goto put_mm;
		}
		vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
	} else {
		buf = ret_addr;
		addr = kva;
		offset = 0;
		do {
			ret = remap_pfn_range(vma, buf, __sp_remap_get_pfn(addr), PAGE_SIZE,
					__pgprot(vma->vm_page_prot.pgprot));
			if (ret) {
				do_munmap(mm, ret_addr, spa_size(spa), NULL);
				pr_err("remap_pfn_range failed %d\n", ret);
				ret_addr = ret;
				goto put_mm;
			}
			offset += PAGE_SIZE;
			buf += PAGE_SIZE;
			addr += PAGE_SIZE;
		} while (offset < spa_size(spa));
	}

put_mm:
	up_write(&mm->mmap_lock);

	return ret_addr;
}

/**
 * sp_make_share_kva_to_task() - Share kernel memory to current task.
 * @kva: the VA of shared kernel memory
 * @size: the size of area to share, should be aligned properly
 * @sp_flags: the flags for the opreation
 *
 * Return:
 * * if succeed, return the shared user address to start at.
 * * if fail, return the pointer of -errno.
 */
static void *sp_make_share_kva_to_task(unsigned long kva, unsigned long size, unsigned long sp_flags)
{
	void *uva;
	struct sp_area *spa;
	struct spg_proc_stat *stat;
	unsigned long prot = PROT_READ | PROT_WRITE;

	down_write(&sp_group_sem);
	stat = sp_init_process_stat(current, current->mm, spg_none);
	up_write(&sp_group_sem);
	if (IS_ERR(stat)) {
		pr_err_ratelimited("k2u_task init process stat failed %lx\n",
				PTR_ERR(stat));
		return stat;
	}

	spa = sp_alloc_area(size, sp_flags, spg_none, SPA_TYPE_K2TASK, current->tgid);
	if (IS_ERR(spa)) {
		pr_err_ratelimited("alloc spa failed in k2u_task (potential no enough virtual memory when -75): %ld\n",
				PTR_ERR(spa));
		return spa;
	}

	spa->kva = kva;

	uva = (void *)sp_remap_kva_to_vma(kva, spa, current->mm, prot);
	__sp_area_drop(spa);
	if (IS_ERR(uva))
		pr_err("remap k2u to task failed %ld\n", PTR_ERR(uva));
	else {
		update_spg_proc_stat(size, true, stat, SPA_TYPE_K2TASK);
		spa->mm = current->mm;
	}

	return uva;
}

/**
 * Share kernel memory to a spg, the current process must be in that group
 * @kva: the VA of shared kernel memory
 * @size: the size of area to share, should be aligned properly
 * @sp_flags: the flags for the opreation
 * @spg: the sp group to be shared with
 *
 * Return: the shared user address to start at
 */
static void *sp_make_share_kva_to_spg(unsigned long kva, unsigned long size,
				      unsigned long sp_flags, struct sp_group *spg)
{
	struct sp_area *spa;
	struct mm_struct *mm;
	struct sp_group_node *spg_node;
	void *uva = ERR_PTR(-ENODEV);

	down_read(&spg->rw_lock);
	spa = sp_alloc_area(size, sp_flags, spg, SPA_TYPE_K2SPG, current->tgid);
	if (IS_ERR(spa)) {
		up_read(&spg->rw_lock);
		pr_err_ratelimited("alloc spa failed in k2u_spg (potential no enough virtual memory when -75): %ld\n",
				PTR_ERR(spa));
		return spa;
	}

	spa->kva = kva;

	list_for_each_entry(spg_node, &spg->procs, proc_node) {
		mm = spg_node->master->mm;
		uva = (void *)sp_remap_kva_to_vma(kva, spa, mm, spg_node->prot);
		if (IS_ERR(uva)) {
			pr_err("remap k2u to spg failed %ld\n", PTR_ERR(uva));
			__sp_free(spg, spa->va_start, spa_size(spa), mm);
			goto out;
		}
	}

out:
	up_read(&spg->rw_lock);
	__sp_area_drop(spa);
	if (!IS_ERR(uva))
		sp_update_process_stat(current, true, spa);

	return uva;
}

static bool vmalloc_area_set_flag(unsigned long kva, unsigned long flags)
{
	struct vm_struct *area;

	area = find_vm_area((void *)kva);
	if (area) {
		area->flags |= flags;
		return true;
	}

	return false;
}

struct sp_k2u_context {
	unsigned long kva;
	unsigned long kva_aligned;
	unsigned long size;
	unsigned long size_aligned;
	unsigned long sp_flags;
	int spg_id;
	bool to_task;
	struct timespec64 start;
	struct timespec64 end;
};

static void trace_sp_k2u_begin(struct sp_k2u_context *kc)
{
	if (!sysctl_sp_perf_k2u)
		return;

	ktime_get_ts64(&kc->start);
}

static void trace_sp_k2u_finish(struct sp_k2u_context *kc, void *uva)
{
	unsigned long cost;

	if (!sysctl_sp_perf_k2u)
		return;

	ktime_get_ts64(&kc->end);

	cost = SEC2US(kc->end.tv_sec - kc->start.tv_sec) +
		NS2US(kc->end.tv_nsec - kc->start.tv_nsec);
	if (cost >= (unsigned long)sysctl_sp_perf_k2u) {
		pr_err("Task %s(%d/%d) sp_k2u returns 0x%lx consumes %luus, size is %luKB, size_aligned is %luKB, sp_flags is %lx, to_task is %d\n",
		       current->comm, current->tgid, current->pid,
		       (unsigned long)uva, cost, byte2kb(kc->size), byte2kb(kc->size_aligned),
		       kc->sp_flags, kc->to_task);
	}
}

static int sp_k2u_prepare(unsigned long kva, unsigned long size,
	unsigned long sp_flags, int spg_id, struct sp_k2u_context *kc)
{
	int is_hugepage;
	unsigned int page_size = PAGE_SIZE;
	unsigned long kva_aligned, size_aligned;

	trace_sp_k2u_begin(kc);

	if (sp_flags & ~SP_DVPP) {
		pr_err_ratelimited("k2u sp_flags %lx error\n", sp_flags);
		return -EINVAL;
	}

	if (!current->mm) {
		pr_err_ratelimited("k2u: kthread is not allowed\n");
		return -EPERM;
	}

	is_hugepage = is_vmap_hugepage(kva);
	if (is_hugepage > 0) {
		sp_flags |= SP_HUGEPAGE;
		page_size = PMD_SIZE;
	} else if (is_hugepage == 0) {
		/* do nothing */
	} else {
		pr_err_ratelimited("k2u kva is not vmalloc address\n");
		return is_hugepage;
	}

	/* aligned down kva is convenient for caller to start with any valid kva */
	kva_aligned = ALIGN_DOWN(kva, page_size);
	size_aligned = ALIGN(kva + size, page_size) - kva_aligned;

	if (!vmalloc_area_set_flag(kva_aligned, VM_SHAREPOOL)) {
		pr_debug("k2u_task kva %lx is not valid\n", kva_aligned);
		return -EINVAL;
	}

	kc->kva = kva;
	kc->kva_aligned = kva_aligned;
	kc->size = size;
	kc->size_aligned = size_aligned;
	kc->sp_flags = sp_flags;
	kc->spg_id = spg_id;
	kc->to_task = false;
	return 0;
}

static int sp_check_k2task(struct sp_k2u_context *kc)
{
	int ret = 0;
	int spg_id = kc->spg_id;

	if (share_pool_group_mode == SINGLE_GROUP_MODE) {
		struct sp_group *spg = get_first_group(current->mm);

		if (!spg) {
			if (spg_id != SPG_ID_NONE && spg_id != SPG_ID_DEFAULT)
				ret = -EINVAL;
			else
				kc->to_task = true;
		} else {
			if (spg_id != SPG_ID_DEFAULT && spg_id != spg->id)
				ret = -EINVAL;
			sp_group_drop(spg);
		}
	} else {
		if (spg_id == SPG_ID_DEFAULT || spg_id == SPG_ID_NONE)
			kc->to_task = true;
	}
	return ret;
}

static void *sp_k2u_finish(void *uva, struct sp_k2u_context *kc)
{
	if (IS_ERR(uva))
		vmalloc_area_clr_flag(kc->kva_aligned, VM_SHAREPOOL);
	else
		uva = uva + (kc->kva - kc->kva_aligned);

	trace_sp_k2u_finish(kc, uva);
	sp_dump_stack();
	return uva;
}

2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
/**
 * sp_make_share_k2u() - Share kernel memory to current process or an sp_group.
 * @kva: the VA of shared kernel memory.
 * @size: the size of shared kernel memory.
 * @sp_flags: how to allocate the memory. We only support SP_DVPP.
 * @pid:  the pid of the specified process (Not currently in use).
 * @spg_id: the share group that the memory is shared to.
 *
 * Return: the shared target user address to start at
 *
 * Share kernel memory to current task if spg_id == SPG_ID_NONE
 * or SPG_ID_DEFAULT in multi-group mode.
 *
 * Return:
 * * if succeed, return the shared user address to start at.
 * * if fail, return the pointer of -errno.
 */
void *sp_make_share_k2u(unsigned long kva, unsigned long size,
			unsigned long sp_flags, int pid, int spg_id)
{
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
	void *uva;
	int ret;
	struct sp_k2u_context kc;

	check_interrupt_context();

	ret = sp_k2u_prepare(kva, size, sp_flags, spg_id, &kc);
	if (ret)
		return ERR_PTR(ret);

	ret = sp_check_k2task(&kc);
	if (ret) {
		uva = ERR_PTR(ret);
		goto out;
	}

	if (kc.to_task)
		uva = sp_make_share_kva_to_task(kc.kva_aligned, kc.size_aligned, kc.sp_flags);
	else {
		struct sp_group *spg;

		spg = __sp_find_spg(current->pid, kc.spg_id);
		if (spg) {
			ret = sp_check_caller_permission(spg, current->mm);
			if (ret < 0) {
				sp_group_drop(spg);
				uva = ERR_PTR(ret);
				goto out;
			}
			uva = sp_make_share_kva_to_spg(kc.kva_aligned, kc.size_aligned, kc.sp_flags, spg);
			sp_group_drop(spg);
		} else
			uva = ERR_PTR(-ENODEV);
	}

out:
	return sp_k2u_finish(uva, &kc);
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
}
EXPORT_SYMBOL_GPL(sp_make_share_k2u);

void *mg_sp_make_share_k2u(unsigned long kva, unsigned long size,
	unsigned long sp_flags, int pid, int spg_id)
{
	return sp_make_share_k2u(kva, size, sp_flags, pid, spg_id);
}
EXPORT_SYMBOL_GPL(mg_sp_make_share_k2u);

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
static int sp_pmd_entry(pmd_t *pmd, unsigned long addr,
			unsigned long next, struct mm_walk *walk)
{
	struct sp_walk_data *sp_walk_data = walk->private;

	sp_walk_data->pmd = pmd;
	return 0;
}

static int sp_pte_entry(pte_t *pte, unsigned long addr,
			unsigned long next, struct mm_walk *walk)
{
	struct page *page;
	struct sp_walk_data *sp_walk_data = walk->private;
	pmd_t *pmd = sp_walk_data->pmd;

retry:
	if (unlikely(!pte_present(*pte))) {
		swp_entry_t entry;

		if (pte_none(*pte))
			goto no_page;
		entry = pte_to_swp_entry(*pte);
		if (!is_migration_entry(entry))
			goto no_page;
		migration_entry_wait(walk->mm, pmd, addr);
		goto retry;
	}

	page = pte_page(*pte);
	get_page(page);
	sp_walk_data->pages[sp_walk_data->page_count++] = page;
	return 0;

no_page:
	pr_debug("the page of addr %lx unexpectedly not in RAM\n",
		 (unsigned long)addr);
	return -EFAULT;
}

static int sp_test_walk(unsigned long addr, unsigned long next,
			struct mm_walk *walk)
{
	/*
	 * FIXME: The devmm driver uses remap_pfn_range() but actually there
	 * are associated struct pages, so they should use vm_map_pages() or
	 * similar APIs. Before the driver has been converted to correct APIs
	 * we use this test_walk() callback so we can treat VM_PFNMAP VMAs as
	 * normal VMAs.
	 */
	return 0;
}

static int sp_pte_hole(unsigned long start, unsigned long end,
		       int depth, struct mm_walk *walk)
{
	pr_debug("hole [%lx, %lx) appeared unexpectedly\n", (unsigned long)start, (unsigned long)end);
	return -EFAULT;
}

static int sp_hugetlb_entry(pte_t *ptep, unsigned long hmask,
			    unsigned long addr, unsigned long next,
			    struct mm_walk *walk)
{
	pte_t pte = huge_ptep_get(ptep);
	struct page *page = pte_page(pte);
	struct sp_walk_data *sp_walk_data;

	if (unlikely(!pte_present(pte))) {
		pr_debug("the page of addr %lx unexpectedly not in RAM\n", (unsigned long)addr);
		return -EFAULT;
	}

	sp_walk_data = walk->private;
	get_page(page);
	sp_walk_data->pages[sp_walk_data->page_count++] = page;
	return 0;
}

/*
 * __sp_walk_page_range() - Walk page table with caller specific callbacks.
 * @uva: the start VA of user memory.
 * @size: the size of user memory.
 * @mm: mm struct of the target task.
 * @sp_walk_data: a structure of a page pointer array.
 *
 * the caller must hold mm->mmap_lock
 *
 * Notes for parameter alignment:
 * When size == 0, let it be page_size, so that at least one page is walked.
 *
 * When size > 0, for convenience, usually the parameters of uva and
 * size are not page aligned. There are four different alignment scenarios and
 * we must handler all of them correctly.
 *
 * The basic idea is to align down uva and align up size so all the pages
 * in range [uva, uva + size) are walked. However, there are special cases.
 *
 * Considering a 2M-hugepage addr scenario. Assuming the caller wants to
 * traverse range [1001M, 1004.5M), so uva and size is 1001M and 3.5M
 * accordingly. The aligned-down uva is 1000M and the aligned-up size is 4M.
 * The traverse range will be [1000M, 1004M). Obviously, the final page for
 * [1004M, 1004.5M) is not covered.
 *
 * To fix this problem, we need to walk an additional page, size should be
 * ALIGN(uva+size) - uva_aligned
 */
static int __sp_walk_page_range(unsigned long uva, unsigned long size,
	struct mm_struct *mm, struct sp_walk_data *sp_walk_data)
{
	int ret = 0;
	struct vm_area_struct *vma;
	unsigned long page_nr;
	struct page **pages = NULL;
	bool is_hugepage = false;
	unsigned long uva_aligned;
	unsigned long size_aligned;
	unsigned int page_size = PAGE_SIZE;
	struct mm_walk_ops sp_walk = {};

	/*
	 * Here we also support non share pool memory in this interface
	 * because the caller can't distinguish whether a uva is from the
	 * share pool or not. It is not the best idea to do so, but currently
	 * it simplifies overall design.
	 *
	 * In this situation, the correctness of the parameters is mainly
	 * guaranteed by the caller.
	 */
	vma = find_vma(mm, uva);
	if (!vma) {
		pr_debug("u2k input uva %lx is invalid\n", (unsigned long)uva);
		return -EINVAL;
	}
	if (is_vm_hugetlb_page(vma))
		is_hugepage = true;

	sp_walk.pte_hole = sp_pte_hole;
	sp_walk.test_walk = sp_test_walk;
	if (is_hugepage) {
		sp_walk_data->is_hugepage = true;
		sp_walk.hugetlb_entry = sp_hugetlb_entry;
		page_size = PMD_SIZE;
	} else {
		sp_walk_data->is_hugepage = false;
		sp_walk.pte_entry = sp_pte_entry;
		sp_walk.pmd_entry = sp_pmd_entry;
	}

	sp_walk_data->page_size = page_size;
	uva_aligned = ALIGN_DOWN(uva, page_size);
	sp_walk_data->uva_aligned = uva_aligned;
	if (size == 0)
		size_aligned = page_size;
	else
		/* special alignment handling */
		size_aligned = ALIGN(uva + size, page_size) - uva_aligned;

	if (uva_aligned + size_aligned < uva_aligned) {
		pr_err_ratelimited("overflow happened in walk page range\n");
		return -EINVAL;
	}

	page_nr = size_aligned / page_size;
	pages = kvmalloc(page_nr * sizeof(struct page *), GFP_KERNEL);
	if (!pages) {
		pr_err_ratelimited("alloc page array failed in walk page range\n");
		return -ENOMEM;
	}
	sp_walk_data->pages = pages;

	ret = walk_page_range(mm, uva_aligned, uva_aligned + size_aligned,
			      &sp_walk, sp_walk_data);
	if (ret)
		kvfree(pages);

	return ret;
}

static void __sp_walk_page_free(struct sp_walk_data *data)
{
	int i = 0;
	struct page *page;

	while (i < data->page_count) {
		page = data->pages[i++];
		put_page(page);
	}

	kvfree(data->pages);
	/* prevent repeated release */
	data->page_count = 0;
	data->pages = NULL;
}

2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
/**
 * sp_make_share_u2k() - Share user memory of a specified process to kernel.
 * @uva: the VA of shared user memory
 * @size: the size of shared user memory
 * @pid: the pid of the specified process(Not currently in use)
 *
 * Return:
 * * if success, return the starting kernel address of the shared memory.
 * * if failed, return the pointer of -errno.
 */
void *sp_make_share_u2k(unsigned long uva, unsigned long size, int pid)
{
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
	int ret = 0;
	struct mm_struct *mm = current->mm;
	void *p = ERR_PTR(-ESRCH);
	struct sp_walk_data sp_walk_data = {
		.page_count = 0,
	};
	struct vm_struct *area;

	check_interrupt_context();

	if (mm == NULL) {
		pr_err("u2k: kthread is not allowed\n");
		return ERR_PTR(-EPERM);
	}

	down_write(&mm->mmap_lock);
	if (unlikely(mm->core_state)) {
		up_write(&mm->mmap_lock);
		pr_err("u2k: encountered coredump, abort\n");
		return p;
	}

	ret = __sp_walk_page_range(uva, size, mm, &sp_walk_data);
	if (ret) {
		pr_err_ratelimited("walk page range failed %d\n", ret);
		up_write(&mm->mmap_lock);
		return ERR_PTR(ret);
	}

	if (sp_walk_data.is_hugepage)
		p = vmap_hugepage(sp_walk_data.pages, sp_walk_data.page_count,
				  VM_MAP, PAGE_KERNEL);
	else
		p = vmap(sp_walk_data.pages, sp_walk_data.page_count, VM_MAP,
			 PAGE_KERNEL);
	up_write(&mm->mmap_lock);

	if (!p) {
		pr_err("vmap(huge) in u2k failed\n");
		__sp_walk_page_free(&sp_walk_data);
		return ERR_PTR(-ENOMEM);
	}

	p = p + (uva - sp_walk_data.uva_aligned);

	/*
	 * kva p may be used later in k2u. Since p comes from uva originally,
	 * it's reasonable to add flag VM_USERMAP so that p can be remapped
	 * into userspace again.
	 */
	area = find_vm_area(p);
	area->flags |= VM_USERMAP;

	kvfree(sp_walk_data.pages);
	return p;
2689 2690 2691 2692 2693 2694 2695 2696 2697
}
EXPORT_SYMBOL_GPL(sp_make_share_u2k);

void *mg_sp_make_share_u2k(unsigned long uva, unsigned long size, int pid)
{
	return sp_make_share_u2k(uva, size, pid);
}
EXPORT_SYMBOL_GPL(mg_sp_make_share_u2k);

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
/*
 * Input parameters uva, pid and spg_id are now useless. spg_id will be useful
 * when supporting a process in multiple sp groups.
 *
 * Procedure of unshare uva must be compatible with:
 *
 * 1. DVPP channel destroy procedure:
 * do_exit() -> exit_mm() (mm no longer in spg and current->mm == NULL) ->
 * exit_task_work() -> task_work_run() -> __fput() -> ... -> vdec_close() ->
 * sp_unshare(uva, SPG_ID_DEFAULT)
 *
 * 2. Process A once was the target of k2u(to group), then it exits.
 * Guard worker kthread tries to free this uva and it must succeed, otherwise
 * spa of this uva leaks.
 *
 * This also means we must trust DVPP channel destroy and guard worker code.
 */
2715 2716
static int sp_unshare_uva(unsigned long uva, unsigned long size)
{
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
	int ret = 0;
	struct mm_struct *mm;
	struct sp_area *spa;
	unsigned long uva_aligned;
	unsigned long size_aligned;
	unsigned int page_size;

	/*
	 * at first we guess it's a hugepage addr
	 * we can tolerate at most PMD_SIZE or PAGE_SIZE which is matched in k2u
	 */
	spa = __find_sp_area(ALIGN_DOWN(uva, PMD_SIZE));
	if (!spa) {
		spa = __find_sp_area(ALIGN_DOWN(uva, PAGE_SIZE));
		if (!spa) {
			ret = -EINVAL;
			pr_debug("invalid input uva %lx in unshare uva\n", (unsigned long)uva);
			goto out;
		}
	}

	if (spa->type != SPA_TYPE_K2TASK && spa->type != SPA_TYPE_K2SPG) {
		pr_err_ratelimited("unshare wrong type spa\n");
		ret = -EINVAL;
		goto out_drop_area;
	}
	/*
	 * 1. overflow actually won't happen due to an spa must be valid.
	 * 2. we must unshare [spa->va_start, spa->va_start + spa->real_size) completely
	 *    because an spa is one-to-one correspondence with an vma.
	 *    Thus input parameter size is not necessarily needed.
	 */
	page_size = (spa->is_hugepage ? PMD_SIZE : PAGE_SIZE);
	uva_aligned = spa->va_start;
	size_aligned = spa->real_size;

	if (size_aligned < ALIGN(size, page_size)) {
		ret = -EINVAL;
		pr_err_ratelimited("unshare uva failed, invalid parameter size %lu\n", size);
		goto out_drop_area;
	}

	if (spa->type == SPA_TYPE_K2TASK) {
		if (spa->applier != current->tgid) {
			pr_err_ratelimited("unshare uva(to task) no permission\n");
			ret = -EPERM;
			goto out_drop_area;
		}

		if (!spa->mm) {
			pr_err_ratelimited("unshare uva(to task) failed, none spa owner\n");
			ret = -EINVAL;
			goto out_drop_area;
		}

		/*
		 * current thread may be exiting in a multithread process
		 *
		 * 1. never need a kthread to make unshare when process has exited
		 * 2. in dvpp channel destroy procedure, exit_mm() has been called
		 *    and don't need to make unshare
		 */
		mm = get_task_mm(current->group_leader);
		if (!mm) {
			pr_info_ratelimited("no need to unshare uva(to task), target process mm is exiting\n");
			goto out_clr_flag;
		}

		if (spa->mm != mm) {
			pr_err_ratelimited("unshare uva(to task) failed, spa not belong to the task\n");
			ret = -EINVAL;
			mmput(mm);
			goto out_drop_area;
		}

		down_write(&mm->mmap_lock);
		if (unlikely(mm->core_state)) {
			ret = 0;
			up_write(&mm->mmap_lock);
			mmput(mm);
			goto out_drop_area;
		}

		ret = do_munmap(mm, uva_aligned, size_aligned, NULL);
		up_write(&mm->mmap_lock);
		mmput(mm);
		/* we are not supposed to fail */
		if (ret)
			pr_err("failed to unmap VA %pK when munmap in unshare uva\n",
			       (void *)uva_aligned);
		sp_update_process_stat(current, false, spa);

	} else if (spa->type == SPA_TYPE_K2SPG) {
		down_read(&spa->spg->rw_lock);
		/* always allow kthread and dvpp channel destroy procedure */
		if (current->mm) {
			if (!is_process_in_group(spa->spg, current->mm)) {
				up_read(&spa->spg->rw_lock);
				pr_err_ratelimited("unshare uva(to group) failed, caller process doesn't belong to target group\n");
				ret = -EPERM;
				goto out_drop_area;
			}
		}
		up_read(&spa->spg->rw_lock);

		down_write(&spa->spg->rw_lock);
		if (!spg_valid(spa->spg)) {
			up_write(&spa->spg->rw_lock);
			pr_info_ratelimited("share pool: no need to unshare uva(to group), sp group of spa is dead\n");
			goto out_clr_flag;
		}
		/* the life cycle of spa has a direct relation with sp group */
		if (unlikely(spa->is_dead)) {
			up_write(&spa->spg->rw_lock);
			pr_err_ratelimited("unexpected double sp unshare\n");
			dump_stack();
			ret = -EINVAL;
			goto out_drop_area;
		}
		spa->is_dead = true;
		up_write(&spa->spg->rw_lock);

		down_read(&spa->spg->rw_lock);
		__sp_free(spa->spg, uva_aligned, size_aligned, NULL);
		up_read(&spa->spg->rw_lock);

		if (current->mm == NULL)
			atomic64_sub(spa->real_size, &kthread_stat.k2u_size);
		else
			sp_update_process_stat(current, false, spa);
	} else {
		WARN(1, "unshare uva invalid spa type");
	}

	sp_dump_stack();

out_clr_flag:
	if (!vmalloc_area_clr_flag(spa->kva, VM_SHAREPOOL))
		pr_debug("clear spa->kva %ld is not valid\n", spa->kva);
	spa->kva = 0;

out_drop_area:
	__sp_area_drop(spa);
out:
	return ret;
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
}

/* No possible concurrent protection, take care when use */
static int sp_unshare_kva(unsigned long kva, unsigned long size)
{
	unsigned long addr, kva_aligned;
	struct page *page;
	unsigned long size_aligned;
	unsigned long step;
	bool is_hugepage = true;
	int ret;

	ret = is_vmap_hugepage(kva);
	if (ret > 0) {
		kva_aligned = ALIGN_DOWN(kva, PMD_SIZE);
		size_aligned = ALIGN(kva + size, PMD_SIZE) - kva_aligned;
		step = PMD_SIZE;
	} else if (ret == 0) {
		kva_aligned = ALIGN_DOWN(kva, PAGE_SIZE);
		size_aligned = ALIGN(kva + size, PAGE_SIZE) - kva_aligned;
		step = PAGE_SIZE;
		is_hugepage = false;
	} else {
		pr_err_ratelimited("check vmap hugepage failed %d\n", ret);
		return -EINVAL;
	}

	if (kva_aligned + size_aligned < kva_aligned) {
		pr_err_ratelimited("overflow happened in unshare kva\n");
		return -EINVAL;
	}

	for (addr = kva_aligned; addr < (kva_aligned + size_aligned); addr += step) {
		page = vmalloc_to_page((void *)addr);
		if (page)
			put_page(page);
		else
			WARN(1, "vmalloc %pK to page/hugepage failed\n",
			       (void *)addr);
	}

	vunmap((void *)kva_aligned);

	return 0;
}

2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
/**
 * sp_unshare() - Unshare the kernel or user memory which shared by calling
 *                sp_make_share_{k2u,u2k}().
 * @va: the specified virtual address of memory
 * @size: the size of unshared memory
 *
 * Use spg_id of current thread if spg_id == SPG_ID_DEFAULT.
 *
 * Return: 0 for success, -errno on failure.
 */
int sp_unshare(unsigned long va, unsigned long size, int pid, int spg_id)
{
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
	int ret = 0;

	check_interrupt_context();

	if (va < TASK_SIZE) {
		/* user address */
		ret = sp_unshare_uva(va, size);
	} else if (va >= PAGE_OFFSET) {
		/* kernel address */
		ret = sp_unshare_kva(va, size);
	} else {
		/* regard user and kernel address ranges as bad address */
		pr_debug("unshare addr %lx is not a user or kernel addr\n", (unsigned long)va);
		ret = -EFAULT;
	}

	return ret;
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
}
EXPORT_SYMBOL_GPL(sp_unshare);

int mg_sp_unshare(unsigned long va, unsigned long size)
{
	return sp_unshare(va, size, 0, 0);
}
EXPORT_SYMBOL_GPL(mg_sp_unshare);

/**
 * sp_walk_page_range() - Walk page table with caller specific callbacks.
 * @uva: the start VA of user memory.
 * @size: the size of user memory.
 * @tsk: task struct of the target task.
 * @sp_walk_data: a structure of a page pointer array.
 *
 * Return: 0 for success, -errno on failure.
 *
 * When return 0, sp_walk_data describing [uva, uva+size) can be used.
 * When return -errno, information in sp_walk_data is useless.
 */
int sp_walk_page_range(unsigned long uva, unsigned long size,
	struct task_struct *tsk, struct sp_walk_data *sp_walk_data)
{
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
	struct mm_struct *mm;
	int ret = 0;

	check_interrupt_context();

	if (unlikely(!sp_walk_data)) {
		pr_err_ratelimited("null pointer when walk page range\n");
		return -EINVAL;
	}
	if (!tsk || (tsk->flags & PF_EXITING))
		return -ESRCH;

	get_task_struct(tsk);
	mm = get_task_mm(tsk);
	if (!mm) {
		put_task_struct(tsk);
		return -ESRCH;
	}

	sp_walk_data->page_count = 0;
	down_write(&mm->mmap_lock);
	if (likely(!mm->core_state))
		ret = __sp_walk_page_range(uva, size, mm, sp_walk_data);
	else {
		pr_err("walk page range: encoutered coredump\n");
		ret = -ESRCH;
	}
	up_write(&mm->mmap_lock);

	mmput(mm);
	put_task_struct(tsk);

	return ret;
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
}
EXPORT_SYMBOL_GPL(sp_walk_page_range);

int mg_sp_walk_page_range(unsigned long uva, unsigned long size,
	struct task_struct *tsk, struct sp_walk_data *sp_walk_data)
{
	return sp_walk_page_range(uva, size, tsk, sp_walk_data);
}
EXPORT_SYMBOL_GPL(mg_sp_walk_page_range);

/**
 * sp_walk_page_free() - Free the sp_walk_data structure.
 * @sp_walk_data: a structure of a page pointer array to be freed.
 */
void sp_walk_page_free(struct sp_walk_data *sp_walk_data)
{
3010 3011 3012 3013 3014 3015
	check_interrupt_context();

	if (!sp_walk_data)
		return;

	__sp_walk_page_free(sp_walk_data);
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
}
EXPORT_SYMBOL_GPL(sp_walk_page_free);

void mg_sp_walk_page_free(struct sp_walk_data *sp_walk_data)
{
	sp_walk_page_free(sp_walk_data);
}
EXPORT_SYMBOL_GPL(mg_sp_walk_page_free);

int sp_register_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&sp_notifier_chain, nb);
}
EXPORT_SYMBOL_GPL(sp_register_notifier);

int sp_unregister_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&sp_notifier_chain, nb);
}
EXPORT_SYMBOL_GPL(sp_unregister_notifier);

/**
 * sp_config_dvpp_range() - User can config the share pool start address
 *                          of each Da-vinci device.
 * @start: the value of share pool start
 * @size: the value of share pool
 * @device_id: the num of Da-vinci device
 * @pid: the pid of device process
 *
 * Return true for success.
 * Return false if parameter invalid or has been set up.
 * This functuon has no concurrent problem.
 */
bool sp_config_dvpp_range(size_t start, size_t size, int device_id, int pid)
{
	if (pid < 0 ||
	    size <= 0 || size > MMAP_SHARE_POOL_16G_SIZE ||
	    device_id < 0 || device_id >= sp_device_number ||
	    !is_online_node_id(device_id) ||
	    is_sp_dev_addr_enabled(device_id))
		return false;

	sp_dev_va_start[device_id] = start;
	sp_dev_va_size[device_id] = size;
	return true;
}
EXPORT_SYMBOL_GPL(sp_config_dvpp_range);

bool mg_sp_config_dvpp_range(size_t start, size_t size, int device_id, int pid)
{
	return sp_config_dvpp_range(start, size, device_id, pid);
}
EXPORT_SYMBOL_GPL(mg_sp_config_dvpp_range);

static bool is_sp_normal_addr(unsigned long addr)
{
	return addr >= MMAP_SHARE_POOL_START &&
		addr < MMAP_SHARE_POOL_16G_START +
			sp_device_number * MMAP_SHARE_POOL_16G_SIZE;
}

/**
 * is_sharepool_addr() - Check if a user memory address belongs to share pool.
 * @addr: the userspace address to be checked.
 *
 * Return true if addr belongs to share pool, or false vice versa.
 */
bool is_sharepool_addr(unsigned long addr)
{
	return is_sp_normal_addr(addr) || is_device_addr(addr);
}
EXPORT_SYMBOL_GPL(is_sharepool_addr);

bool mg_is_sharepool_addr(unsigned long addr)
{
	return is_sharepool_addr(addr);
}
EXPORT_SYMBOL_GPL(mg_is_sharepool_addr);

static int __init mdc_default_group(char *s)
{
	enable_mdc_default_group = 1;
	return 1;
}
__setup("enable_mdc_default_group", mdc_default_group);

static int __init enable_share_k2u_to_group(char *s)
{
	enable_share_k2u_spg = 1;
	return 1;
}
__setup("enable_sp_share_k2u_spg", enable_share_k2u_to_group);

static int __init enable_sp_multi_group_mode(char *s)
{
	share_pool_group_mode = MULTI_GROUP_MODE;
	return 1;
}
__setup("enable_sp_multi_group_mode", enable_sp_multi_group_mode);

3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
/*** Statistical and maintenance functions ***/

static void free_process_spg_proc_stat(struct sp_proc_stat *proc_stat)
{
	int i;
	struct spg_proc_stat *stat;
	struct hlist_node *tmp;
	struct sp_spg_stat *spg_stat;

	/* traverse proc_stat->hash locklessly as process is exiting */
	hash_for_each_safe(proc_stat->hash, i, tmp, stat, pnode) {
		spg_stat = stat->spg_stat;
		mutex_lock(&spg_stat->lock);
		hash_del(&stat->gnode);
		mutex_unlock(&spg_stat->lock);

		hash_del(&stat->pnode);
		kfree(stat);
	}
}

static void free_sp_proc_stat(struct sp_proc_stat *stat)
{
	free_process_spg_proc_stat(stat);

	down_write(&sp_proc_stat_sem);
	stat->mm->sp_group_master->stat = NULL;
	idr_remove(&sp_proc_stat_idr, stat->tgid);
	up_write(&sp_proc_stat_sem);
	kfree(stat);
}

/* the caller make sure stat is not NULL */
void sp_proc_stat_drop(struct sp_proc_stat *stat)
{
	if (atomic_dec_and_test(&stat->use_count))
		free_sp_proc_stat(stat);
}

static void get_mm_rss_info(struct mm_struct *mm, unsigned long *anon,
	unsigned long *file, unsigned long *shmem, unsigned long *total_rss)
{
	*anon = get_mm_counter(mm, MM_ANONPAGES);
	*file = get_mm_counter(mm, MM_FILEPAGES);
	*shmem = get_mm_counter(mm, MM_SHMEMPAGES);
	*total_rss = *anon + *file + *shmem;
}

static long get_proc_alloc(struct sp_proc_stat *stat)
{
	return byte2kb(atomic64_read(&stat->alloc_size));
}

static long get_proc_k2u(struct sp_proc_stat *stat)
{
	return byte2kb(atomic64_read(&stat->k2u_size));
}

static long get_spg_alloc(struct sp_spg_stat *stat)
{
	return byte2kb(atomic64_read(&stat->alloc_size));
}

static long get_spg_alloc_nsize(struct sp_spg_stat *stat)
{
	return byte2kb(atomic64_read(&stat->alloc_nsize));
}

static long get_spg_proc_alloc(struct spg_proc_stat *stat)
{
	return byte2kb(atomic64_read(&stat->alloc_size));
}

static long get_spg_proc_k2u(struct spg_proc_stat *stat)
{
	return byte2kb(atomic64_read(&stat->k2u_size));
}

static void get_process_sp_res(struct sp_proc_stat *stat,
	long *sp_res_out, long *sp_res_nsize_out)
{
	int i;
	struct spg_proc_stat *spg_proc_stat;
	struct sp_spg_stat *spg_stat;
	long sp_res = 0, sp_res_nsize = 0;

	mutex_lock(&stat->lock);
	hash_for_each(stat->hash, i, spg_proc_stat, pnode) {
		spg_stat = spg_proc_stat->spg_stat;
		sp_res += get_spg_alloc(spg_stat);
		sp_res_nsize += get_spg_alloc_nsize(spg_stat);
	}
	mutex_unlock(&stat->lock);

	*sp_res_out = sp_res;
	*sp_res_nsize_out = sp_res_nsize;
}

/*
 *  Statistics of RSS has a maximum 64 pages deviation (256KB).
 *  Please check_sync_rss_stat().
 */
static void get_process_non_sp_res(unsigned long total_rss, unsigned long shmem,
	long sp_res_nsize, long *non_sp_res_out, long *non_sp_shm_out)
{
	long non_sp_res, non_sp_shm;

	non_sp_res = page2kb(total_rss) - sp_res_nsize;
	non_sp_res = non_sp_res < 0 ? 0 : non_sp_res;
	non_sp_shm = page2kb(shmem) - sp_res_nsize;
	non_sp_shm = non_sp_shm < 0 ? 0 : non_sp_shm;

	*non_sp_res_out = non_sp_res;
	*non_sp_shm_out = non_sp_shm;
}

static long get_sp_res_by_spg_proc(struct spg_proc_stat *stat)
{
	return byte2kb(atomic64_read(&stat->spg_stat->alloc_size));
}

static unsigned long get_process_prot_locked(int spg_id, struct mm_struct *mm)
{
	unsigned long prot = 0;
	struct sp_group_node *spg_node;
	struct sp_group_master *master = mm->sp_group_master;

	list_for_each_entry(spg_node, &master->node_list, group_node) {
		if (spg_node->spg->id == spg_id) {
			prot = spg_node->prot;
			break;
		}
	}
	return prot;
}

static void print_process_prot(struct seq_file *seq, unsigned long prot)
{
	if (prot == PROT_READ)
		seq_puts(seq, "R");
	else if (prot == (PROT_READ | PROT_WRITE))
		seq_puts(seq, "RW");
	else  /* e.g. spg_none */
		seq_puts(seq, "-");
}

int proc_sp_group_state(struct seq_file *m, struct pid_namespace *ns,
			struct pid *pid, struct task_struct *task)
{
	struct mm_struct *mm = task->mm;
	struct sp_group_master *master;
	struct sp_proc_stat *proc_stat;
	struct spg_proc_stat *spg_proc_stat;
	int i;
	unsigned long anon, file, shmem, total_rss, prot;
	long sp_res, sp_res_nsize, non_sp_res, non_sp_shm;

	if (!mm)
		return 0;

	master = mm->sp_group_master;
	if (!master)
		return 0;

	get_mm_rss_info(mm, &anon, &file, &shmem, &total_rss);
	proc_stat = master->stat;
	get_process_sp_res(proc_stat, &sp_res, &sp_res_nsize);
	get_process_non_sp_res(total_rss, shmem, sp_res_nsize,
			       &non_sp_res, &non_sp_shm);

	seq_puts(m, "Share Pool Aggregate Data of This Process\n\n");
	seq_printf(m, "%-8s %-16s %-9s %-9s %-9s %-10s %-10s %-8s\n",
		   "PID", "COMM", "SP_ALLOC", "SP_K2U", "SP_RES", "Non-SP_RES",
		   "Non-SP_Shm", "VIRT");
	seq_printf(m, "%-8d %-16s %-9ld %-9ld %-9ld %-10ld %-10ld %-8ld\n",
		   proc_stat->tgid, proc_stat->comm,
		   get_proc_alloc(proc_stat),
		   get_proc_k2u(proc_stat),
		   sp_res, non_sp_res, non_sp_shm,
		   page2kb(mm->total_vm));

	seq_puts(m, "\n\nProcess in Each SP Group\n\n");
	seq_printf(m, "%-8s %-9s %-9s %-9s %-4s\n",
		   "Group_ID", "SP_ALLOC", "SP_K2U", "SP_RES", "PROT");

	/* to prevent ABBA deadlock, first hold sp_group_sem */
	down_read(&sp_group_sem);
	mutex_lock(&proc_stat->lock);
	hash_for_each(proc_stat->hash, i, spg_proc_stat, pnode) {
		prot = get_process_prot_locked(spg_proc_stat->spg_id, mm);
		seq_printf(m, "%-8d %-9ld %-9ld %-9ld ",
			spg_proc_stat->spg_id,
			get_spg_proc_alloc(spg_proc_stat),
			get_spg_proc_k2u(spg_proc_stat),
			get_sp_res_by_spg_proc(spg_proc_stat));
		print_process_prot(m, prot);
		seq_putc(m, '\n');
	}
	mutex_unlock(&proc_stat->lock);
	up_read(&sp_group_sem);

	return 0;
}

static void rb_spa_stat_show(struct seq_file *seq)
{
	struct rb_node *node;
	struct sp_area *spa, *prev = NULL;

	spin_lock(&sp_area_lock);

	for (node = rb_first(&sp_area_root); node; node = rb_next(node)) {
		__sp_area_drop_locked(prev);

		spa = rb_entry(node, struct sp_area, rb_node);
		prev = spa;
		atomic_inc(&spa->use_count);
		spin_unlock(&sp_area_lock);

		if (spa->spg == spg_none)  /* k2u to task */
			seq_printf(seq, "%-10s ", "None");
		else {
			down_read(&spa->spg->rw_lock);
			if (spg_valid(spa->spg))  /* k2u to group */
				seq_printf(seq, "%-10d ", spa->spg->id);
			else  /* spg is dead */
				seq_printf(seq, "%-10s ", "Dead");
			up_read(&spa->spg->rw_lock);
		}

		seq_printf(seq, "%2s%-14lx %2s%-14lx %-10ld ",
			   "0x", spa->va_start,
			   "0x", spa->va_end,
			   byte2kb(spa->real_size));

		switch (spa->type) {
		case SPA_TYPE_ALLOC:
			seq_printf(seq, "%-7s ", "ALLOC");
			break;
		case SPA_TYPE_K2TASK:
			seq_printf(seq, "%-7s ", "TASK");
			break;
		case SPA_TYPE_K2SPG:
			seq_printf(seq, "%-7s ", "SPG");
			break;
		default:
			/* usually impossible, perhaps a developer's mistake */
			break;
		}

		if (spa->is_hugepage)
			seq_printf(seq, "%-5s ", "Y");
		else
			seq_printf(seq, "%-5s ", "N");

		seq_printf(seq, "%-8d ",  spa->applier);
		seq_printf(seq, "%-8d\n", atomic_read(&spa->use_count));

		spin_lock(&sp_area_lock);
	}
	__sp_area_drop_locked(prev);
	spin_unlock(&sp_area_lock);
}

void spa_overview_show(struct seq_file *seq)
{
	unsigned int total_num, alloc_num, k2u_task_num, k2u_spg_num;
	unsigned long total_size, alloc_size, k2u_task_size, k2u_spg_size;
	unsigned long dvpp_size, dvpp_va_size;

	if (!sp_is_enabled())
		return;

	spin_lock(&sp_area_lock);
	total_num     = spa_stat.total_num;
	alloc_num     = spa_stat.alloc_num;
	k2u_task_num  = spa_stat.k2u_task_num;
	k2u_spg_num   = spa_stat.k2u_spg_num;
	total_size    = spa_stat.total_size;
	alloc_size    = spa_stat.alloc_size;
	k2u_task_size = spa_stat.k2u_task_size;
	k2u_spg_size  = spa_stat.k2u_spg_size;
	dvpp_size     = spa_stat.dvpp_size;
	dvpp_va_size  = spa_stat.dvpp_va_size;
	spin_unlock(&sp_area_lock);

	if (seq != NULL) {
		seq_printf(seq, "Spa total num %u.\n", total_num);
		seq_printf(seq, "Spa alloc num %u, k2u(task) num %u, k2u(spg) num %u.\n",
			   alloc_num, k2u_task_num, k2u_spg_num);
		seq_printf(seq, "Spa total size:     %13lu KB\n", byte2kb(total_size));
		seq_printf(seq, "Spa alloc size:     %13lu KB\n", byte2kb(alloc_size));
		seq_printf(seq, "Spa k2u(task) size: %13lu KB\n", byte2kb(k2u_task_size));
		seq_printf(seq, "Spa k2u(spg) size:  %13lu KB\n", byte2kb(k2u_spg_size));
		seq_printf(seq, "Spa dvpp size:      %13lu KB\n", byte2kb(dvpp_size));
		seq_printf(seq, "Spa dvpp va size:   %13lu MB\n", byte2mb(dvpp_va_size));
		seq_puts(seq, "\n");
	} else {
		pr_info("Spa total num %u.\n", total_num);
		pr_info("Spa alloc num %u, k2u(task) num %u, k2u(spg) num %u.\n",
			alloc_num, k2u_task_num, k2u_spg_num);
		pr_info("Spa total size:     %13lu KB\n", byte2kb(total_size));
		pr_info("Spa alloc size:     %13lu KB\n", byte2kb(alloc_size));
		pr_info("Spa k2u(task) size: %13lu KB\n", byte2kb(k2u_task_size));
		pr_info("Spa k2u(spg) size:  %13lu KB\n", byte2kb(k2u_spg_size));
		pr_info("Spa dvpp size:      %13lu KB\n", byte2kb(dvpp_size));
		pr_info("Spa dvpp va size:   %13lu MB\n", byte2mb(dvpp_va_size));
		pr_info("\n");
	}
}

/* the caller must hold sp_group_sem */
static int idr_spg_stat_cb(int id, void *p, void *data)
{
	struct sp_spg_stat *s = p;
	struct seq_file *seq = data;

	if (seq != NULL) {
		if (id == 0)
			seq_puts(seq, "Non Group ");
		else
			seq_printf(seq, "Group %6d ", id);

		seq_printf(seq, "size: %lld KB, spa num: %d, total alloc: %lld KB, normal alloc: %lld KB, huge alloc: %lld KB\n",
			   byte2kb(atomic64_read(&s->size)),
			   atomic_read(&s->spa_num),
			   byte2kb(atomic64_read(&s->alloc_size)),
			   byte2kb(atomic64_read(&s->alloc_nsize)),
			   byte2kb(atomic64_read(&s->alloc_hsize)));
	} else {
		if (id == 0)
			pr_info("Non Group ");
		else
			pr_info("Group %6d ", id);

		pr_info("size: %lld KB, spa num: %d, total alloc: %lld KB, normal alloc: %lld KB, huge alloc: %lld KB\n",
			byte2kb(atomic64_read(&s->size)),
			atomic_read(&s->spa_num),
			byte2kb(atomic64_read(&s->alloc_size)),
			byte2kb(atomic64_read(&s->alloc_nsize)),
			byte2kb(atomic64_read(&s->alloc_hsize)));
	}

	return 0;
}

void spg_overview_show(struct seq_file *seq)
{
	if (!sp_is_enabled())
		return;

	if (seq != NULL) {
		seq_printf(seq, "Share pool total size: %lld KB, spa total num: %d.\n",
			   byte2kb(atomic64_read(&sp_overall_stat.spa_total_size)),
			   atomic_read(&sp_overall_stat.spa_total_num));
	} else {
		pr_info("Share pool total size: %lld KB, spa total num: %d.\n",
			byte2kb(atomic64_read(&sp_overall_stat.spa_total_size)),
			atomic_read(&sp_overall_stat.spa_total_num));
	}

	down_read(&sp_group_sem);
	idr_for_each(&sp_spg_stat_idr, idr_spg_stat_cb, seq);
	up_read(&sp_group_sem);

	if (seq != NULL)
		seq_puts(seq, "\n");
	else
		pr_info("\n");
}

static int spa_stat_show(struct seq_file *seq, void *offset)
{
	spg_overview_show(seq);
	spa_overview_show(seq);
	/* print the file header */
	seq_printf(seq, "%-10s %-16s %-16s %-10s %-7s %-5s %-8s %-8s\n",
		   "Group ID", "va_start", "va_end", "Size(KB)", "Type", "Huge", "PID", "Ref");
	rb_spa_stat_show(seq);
	return 0;
}

static int idr_proc_stat_cb(int id, void *p, void *data)
{
	struct sp_spg_stat *spg_stat = p;
	struct seq_file *seq = data;
	int i, tgid;
	struct sp_proc_stat *proc_stat;
	struct spg_proc_stat *spg_proc_stat;

	struct mm_struct *mm;
	unsigned long anon, file, shmem, total_rss, prot;
	/*
	 * non_sp_res: resident memory size excluding share pool memory
	 * sp_res:     resident memory size of share pool, including normal
	 *             page and hugepage memory
	 * non_sp_shm: resident shared memory size excluding share pool
	 *             memory
	 */
	long sp_res, sp_res_nsize, non_sp_res, non_sp_shm;

	/* to prevent ABBA deadlock, first hold sp_group_sem */
	down_read(&sp_group_sem);
	mutex_lock(&spg_stat->lock);
	hash_for_each(spg_stat->hash, i, spg_proc_stat, gnode) {
		proc_stat = spg_proc_stat->proc_stat;
		tgid = proc_stat->tgid;
		mm = proc_stat->mm;

		get_mm_rss_info(mm, &anon, &file, &shmem, &total_rss);
		get_process_sp_res(proc_stat, &sp_res, &sp_res_nsize);
		get_process_non_sp_res(total_rss, shmem, sp_res_nsize,
				       &non_sp_res, &non_sp_shm);
		prot = get_process_prot_locked(id, mm);

		seq_printf(seq, "%-8d ", tgid);
		if (id == 0)
			seq_printf(seq, "%-8c ", '-');
		else
			seq_printf(seq, "%-8d ", id);
		seq_printf(seq, "%-9ld %-9ld %-9ld %-10ld %-10ld %-8ld %-7ld %-7ld %-10ld ",
			   get_spg_proc_alloc(spg_proc_stat),
			   get_spg_proc_k2u(spg_proc_stat),
			   get_sp_res_by_spg_proc(spg_proc_stat),
			   sp_res, non_sp_res,
			   page2kb(mm->total_vm), page2kb(total_rss),
			   page2kb(shmem), non_sp_shm);
		print_process_prot(seq, prot);
		seq_putc(seq, '\n');
	}
	mutex_unlock(&spg_stat->lock);
	up_read(&sp_group_sem);
	return 0;
}

static int proc_stat_show(struct seq_file *seq, void *offset)
{
	spg_overview_show(seq);
	spa_overview_show(seq);
	/* print the file header */
	seq_printf(seq, "%-8s %-8s %-9s %-9s %-9s %-10s %-10s %-8s %-7s %-7s %-10s %-4s\n",
		   "PID", "Group_ID", "SP_ALLOC", "SP_K2U", "SP_RES", "SP_RES_T",
		   "Non-SP_RES", "VIRT", "RES", "Shm", "Non-SP_Shm", "PROT");
	/* print kthread buff_module_guard_work */
	seq_printf(seq, "%-8s %-8s %-9lld %-9lld\n",
		   "guard", "-",
		   byte2kb(atomic64_read(&kthread_stat.alloc_size)),
		   byte2kb(atomic64_read(&kthread_stat.k2u_size)));

	/* pay attention to potential ABBA deadlock */
	down_read(&sp_spg_stat_sem);
	idr_for_each(&sp_spg_stat_idr, idr_proc_stat_cb, seq);
	up_read(&sp_spg_stat_sem);
	return 0;
}

static int idr_proc_overview_cb(int id, void *p, void *data)
{
	struct sp_proc_stat *proc_stat = p;
	struct seq_file *seq = data;
	struct mm_struct *mm = proc_stat->mm;
	unsigned long anon, file, shmem, total_rss;
	long sp_res, sp_res_nsize, non_sp_res, non_sp_shm;

	get_mm_rss_info(mm, &anon, &file, &shmem, &total_rss);
	get_process_sp_res(proc_stat, &sp_res, &sp_res_nsize);
	get_process_non_sp_res(total_rss, shmem, sp_res_nsize,
			       &non_sp_res, &non_sp_shm);

	seq_printf(seq, "%-8d %-16s %-9ld %-9ld %-9ld %-10ld %-10ld %-8ld\n",
		   id, proc_stat->comm,
		   get_proc_alloc(proc_stat),
		   get_proc_k2u(proc_stat),
		   sp_res, non_sp_res, non_sp_shm,
		   page2kb(mm->total_vm));
	return 0;
}

static int proc_overview_show(struct seq_file *seq, void *offset)
{
	seq_printf(seq, "%-8s %-16s %-9s %-9s %-9s %-10s %-10s %-8s\n",
		   "PID", "COMM", "SP_ALLOC", "SP_K2U", "SP_RES", "Non-SP_RES",
		   "Non-SP_Shm", "VIRT");

	down_read(&sp_proc_stat_sem);
	idr_for_each(&sp_proc_stat_idr, idr_proc_overview_cb, seq);
	up_read(&sp_proc_stat_sem);
	return 0;
}

static void __init proc_sharepool_init(void)
{
	if (!proc_mkdir("sharepool", NULL))
		return;

	proc_create_single_data("sharepool/proc_stat", 0400, NULL, proc_stat_show, NULL);
	proc_create_single_data("sharepool/spa_stat", 0400, NULL, spa_stat_show, NULL);
	proc_create_single_data("sharepool/proc_overview", 0400, NULL, proc_overview_show, NULL);
}

/*** End of tatistical and maintenance functions ***/

3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
DEFINE_STATIC_KEY_FALSE(share_pool_enabled_key);

static int __init enable_share_pool(char *s)
{
	static_branch_enable(&share_pool_enabled_key);
	pr_info("Ascend enable share pool features via bootargs\n");

	return 1;
}
__setup("enable_ascend_share_pool", enable_share_pool);
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649

static void __init sp_device_number_detect(void)
{
	/* NOTE: TO BE COMPLETED */
	sp_device_number = 4;

	if (sp_device_number > MAX_DEVID) {
		pr_warn("sp_device_number %d exceed, truncate it to %d\n",
				sp_device_number, MAX_DEVID);
		sp_device_number = MAX_DEVID;
	}
}

static int __init share_pool_init(void)
{
	/* lockless, as init kthread has no sp operation else */
	spg_none = create_spg(GROUP_NONE);
	/* without free spg_none, not a serious problem */
	if (IS_ERR(spg_none) || !spg_none)
		goto fail;

	sp_device_number_detect();
3650
	proc_sharepool_init();
3651 3652 3653 3654 3655 3656 3657 3658

	return 0;
fail:
	pr_err("Ascend share pool initialization failed\n");
	static_branch_disable(&share_pool_enabled_key);
	return 1;
}
late_initcall(share_pool_init);