cpsw.c 84.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Texas Instruments Ethernet Switch Driver
 *
 * Copyright (C) 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/irqreturn.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <linux/netdevice.h>
27
#include <linux/net_tstamp.h>
28 29 30
#include <linux/phy.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
31
#include <linux/pm_runtime.h>
32
#include <linux/gpio.h>
33
#include <linux/of.h>
34
#include <linux/of_mdio.h>
35 36
#include <linux/of_net.h>
#include <linux/of_device.h>
37
#include <linux/if_vlan.h>
38

39
#include <linux/pinctrl/consumer.h>
40

41
#include "cpsw.h"
42
#include "cpsw_ale.h"
43
#include "cpts.h"
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
#include "davinci_cpdma.h"

#define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
			 NETIF_MSG_RX_STATUS)

#define cpsw_info(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_info(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_err(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_err(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_dbg(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_notice(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

79 80
#define ALE_ALL_PORTS		0x7

81 82 83 84
#define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
#define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
#define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)

85 86
#define CPSW_VERSION_1		0x19010a
#define CPSW_VERSION_2		0x19010c
87
#define CPSW_VERSION_3		0x19010f
88
#define CPSW_VERSION_4		0x190112
89 90 91 92 93 94 95 96 97

#define HOST_PORT_NUM		0
#define SLIVER_SIZE		0x40

#define CPSW1_HOST_PORT_OFFSET	0x028
#define CPSW1_SLAVE_OFFSET	0x050
#define CPSW1_SLAVE_SIZE	0x040
#define CPSW1_CPDMA_OFFSET	0x100
#define CPSW1_STATERAM_OFFSET	0x200
98
#define CPSW1_HW_STATS		0x400
99 100 101 102 103 104 105 106
#define CPSW1_CPTS_OFFSET	0x500
#define CPSW1_ALE_OFFSET	0x600
#define CPSW1_SLIVER_OFFSET	0x700

#define CPSW2_HOST_PORT_OFFSET	0x108
#define CPSW2_SLAVE_OFFSET	0x200
#define CPSW2_SLAVE_SIZE	0x100
#define CPSW2_CPDMA_OFFSET	0x800
107
#define CPSW2_HW_STATS		0x900
108 109 110 111 112 113
#define CPSW2_STATERAM_OFFSET	0xa00
#define CPSW2_CPTS_OFFSET	0xc00
#define CPSW2_ALE_OFFSET	0xd00
#define CPSW2_SLIVER_OFFSET	0xd80
#define CPSW2_BD_OFFSET		0x2000

114 115 116 117 118 119 120 121 122 123 124 125 126
#define CPDMA_RXTHRESH		0x0c0
#define CPDMA_RXFREE		0x0e0
#define CPDMA_TXHDP		0x00
#define CPDMA_RXHDP		0x20
#define CPDMA_TXCP		0x40
#define CPDMA_RXCP		0x60

#define CPSW_POLL_WEIGHT	64
#define CPSW_MIN_PACKET_SIZE	60
#define CPSW_MAX_PACKET_SIZE	(1500 + 14 + 4 + 4)

#define RX_PRIORITY_MAPPING	0x76543210
#define TX_PRIORITY_MAPPING	0x33221100
127
#define CPDMA_TX_PRIORITY_MAP	0x01234567
128

129 130 131
#define CPSW_VLAN_AWARE		BIT(1)
#define CPSW_ALE_VLAN_AWARE	1

132 133 134
#define CPSW_FIFO_NORMAL_MODE		(0 << 16)
#define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
#define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
135

136 137 138 139 140 141 142
#define CPSW_INTPACEEN		(0x3f << 16)
#define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
#define CPSW_CMINTMAX_CNT	63
#define CPSW_CMINTMIN_CNT	2
#define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
#define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)

143 144 145
#define cpsw_slave_index(cpsw, priv)				\
		((cpsw->data.dual_emac) ? priv->emac_port :	\
		cpsw->data.active_slave)
146
#define IRQ_NUM			2
147
#define CPSW_MAX_QUEUES		8
148
#define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
149

150 151 152 153 154 155 156 157 158 159 160 161
static int debug_level;
module_param(debug_level, int, 0);
MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");

static int ale_ageout = 10;
module_param(ale_ageout, int, 0);
MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");

static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
module_param(rx_packet_max, int, 0);
MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");

162 163 164 165
static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
module_param(descs_pool_size, int, 0444);
MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");

166
struct cpsw_wr_regs {
167 168 169 170 171 172 173 174
	u32	id_ver;
	u32	soft_reset;
	u32	control;
	u32	int_control;
	u32	rx_thresh_en;
	u32	rx_en;
	u32	tx_en;
	u32	misc_en;
175 176 177 178 179 180 181 182 183
	u32	mem_allign1[8];
	u32	rx_thresh_stat;
	u32	rx_stat;
	u32	tx_stat;
	u32	misc_stat;
	u32	mem_allign2[8];
	u32	rx_imax;
	u32	tx_imax;

184 185
};

186
struct cpsw_ss_regs {
187 188 189 190 191
	u32	id_ver;
	u32	control;
	u32	soft_reset;
	u32	stat_port_en;
	u32	ptype;
192 193 194 195 196 197 198 199
	u32	soft_idle;
	u32	thru_rate;
	u32	gap_thresh;
	u32	tx_start_wds;
	u32	flow_control;
	u32	vlan_ltype;
	u32	ts_ltype;
	u32	dlr_ltype;
200 201
};

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
/* CPSW_PORT_V1 */
#define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
#define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
#define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
#define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
#define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW1_TS_CTL        0x14 /* Time Sync Control */
#define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
#define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */

/* CPSW_PORT_V2 */
#define CPSW2_CONTROL       0x00 /* Control Register */
#define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
#define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
#define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
#define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
#define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */

/* CPSW_PORT_V1 and V2 */
#define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
#define SA_HI               0x24 /* CPGMAC_SL Source Address High */
#define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */

/* CPSW_PORT_V2 only */
#define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */

/* Bit definitions for the CPSW2_CONTROL register */
#define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
#define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
#define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
#define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
#define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
#define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
#define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
#define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
#define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
#define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
247 248
#define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
#define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
249 250 251 252 253 254
#define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
#define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
#define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
#define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
#define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */

255 256 257
#define CTRL_V2_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
258

259 260 261 262 263 264 265 266 267 268 269 270 271
#define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
#define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)


#define CTRL_V3_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
	 TS_LTYPE1_EN)

#define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
#define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
272 273 274 275 276 277 278 279 280

/* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
#define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
#define TS_SEQ_ID_OFFSET_MASK    (0x3f)
#define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
#define TS_MSG_TYPE_EN_MASK      (0xffff)

/* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
#define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
281

282 283 284 285 286 287 288 289
/* Bit definitions for the CPSW1_TS_CTL register */
#define CPSW_V1_TS_RX_EN		BIT(0)
#define CPSW_V1_TS_TX_EN		BIT(4)
#define CPSW_V1_MSG_TYPE_OFS		16

/* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
#define CPSW_V1_SEQ_ID_OFS_SHIFT	16

290 291 292
struct cpsw_host_regs {
	u32	max_blks;
	u32	blk_cnt;
293
	u32	tx_in_ctl;
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	u32	port_vlan;
	u32	tx_pri_map;
	u32	cpdma_tx_pri_map;
	u32	cpdma_rx_chan_map;
};

struct cpsw_sliver_regs {
	u32	id_ver;
	u32	mac_control;
	u32	mac_status;
	u32	soft_reset;
	u32	rx_maxlen;
	u32	__reserved_0;
	u32	rx_pause;
	u32	tx_pause;
	u32	__reserved_1;
	u32	rx_pri_map;
};

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
struct cpsw_hw_stats {
	u32	rxgoodframes;
	u32	rxbroadcastframes;
	u32	rxmulticastframes;
	u32	rxpauseframes;
	u32	rxcrcerrors;
	u32	rxaligncodeerrors;
	u32	rxoversizedframes;
	u32	rxjabberframes;
	u32	rxundersizedframes;
	u32	rxfragments;
	u32	__pad_0[2];
	u32	rxoctets;
	u32	txgoodframes;
	u32	txbroadcastframes;
	u32	txmulticastframes;
	u32	txpauseframes;
	u32	txdeferredframes;
	u32	txcollisionframes;
	u32	txsinglecollframes;
	u32	txmultcollframes;
	u32	txexcessivecollisions;
	u32	txlatecollisions;
	u32	txunderrun;
	u32	txcarriersenseerrors;
	u32	txoctets;
	u32	octetframes64;
	u32	octetframes65t127;
	u32	octetframes128t255;
	u32	octetframes256t511;
	u32	octetframes512t1023;
	u32	octetframes1024tup;
	u32	netoctets;
	u32	rxsofoverruns;
	u32	rxmofoverruns;
	u32	rxdmaoverruns;
};

351
struct cpsw_slave {
352
	void __iomem			*regs;
353 354 355 356 357
	struct cpsw_sliver_regs __iomem	*sliver;
	int				slave_num;
	u32				mac_control;
	struct cpsw_slave_data		*data;
	struct phy_device		*phy;
358 359
	struct net_device		*ndev;
	u32				port_vlan;
360 361
};

362 363 364 365 366 367 368 369 370 371
static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
{
	return __raw_readl(slave->regs + offset);
}

static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
{
	__raw_writel(val, slave->regs + offset);
}

372 373 374 375 376
struct cpsw_vector {
	struct cpdma_chan *ch;
	int budget;
};

377
struct cpsw_common {
378
	struct device			*dev;
379
	struct cpsw_platform_data	data;
380 381
	struct napi_struct		napi_rx;
	struct napi_struct		napi_tx;
382 383 384 385
	struct cpsw_ss_regs __iomem	*regs;
	struct cpsw_wr_regs __iomem	*wr_regs;
	u8 __iomem			*hw_stats;
	struct cpsw_host_regs __iomem	*host_port_regs;
386 387 388 389
	u32				version;
	u32				coal_intvl;
	u32				bus_freq_mhz;
	int				rx_packet_max;
390
	struct cpsw_slave		*slaves;
391
	struct cpdma_ctlr		*dma;
392 393
	struct cpsw_vector		txv[CPSW_MAX_QUEUES];
	struct cpsw_vector		rxv[CPSW_MAX_QUEUES];
394
	struct cpsw_ale			*ale;
395 396 397 398
	bool				quirk_irq;
	bool				rx_irq_disabled;
	bool				tx_irq_disabled;
	u32 irqs_table[IRQ_NUM];
399
	struct cpts			*cpts;
400
	int				rx_ch_num, tx_ch_num;
401
	int				speed;
402
	int				usage_count;
403 404 405
};

struct cpsw_priv {
406 407 408 409
	struct net_device		*ndev;
	struct device			*dev;
	u32				msg_enable;
	u8				mac_addr[ETH_ALEN];
410 411
	bool				rx_pause;
	bool				tx_pause;
412
	u32 emac_port;
413
	struct cpsw_common *cpsw;
414 415
};

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
struct cpsw_stats {
	char stat_string[ETH_GSTRING_LEN];
	int type;
	int sizeof_stat;
	int stat_offset;
};

enum {
	CPSW_STATS,
	CPDMA_RX_STATS,
	CPDMA_TX_STATS,
};

#define CPSW_STAT(m)		CPSW_STATS,				\
				sizeof(((struct cpsw_hw_stats *)0)->m), \
				offsetof(struct cpsw_hw_stats, m)
#define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)
#define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)

static const struct cpsw_stats cpsw_gstrings_stats[] = {
	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
	{ "Rx Fragments", CPSW_STAT(rxfragments) },
	{ "Rx Octets", CPSW_STAT(rxoctets) },
	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
	{ "Collisions", CPSW_STAT(txcollisionframes) },
	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
	{ "Tx Underrun", CPSW_STAT(txunderrun) },
	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
	{ "Tx Octets", CPSW_STAT(txoctets) },
	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
	{ "Net Octets", CPSW_STAT(netoctets) },
	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
};

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
	{ "misqueued", CPDMA_RX_STAT(misqueued) },
	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
	{ "requeue", CPDMA_RX_STAT(requeue) },
	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
};

#define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
#define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
494

495
#define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
496
#define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
497 498
#define for_each_slave(priv, func, arg...)				\
	do {								\
499
		struct cpsw_slave *slave;				\
500
		struct cpsw_common *cpsw = (priv)->cpsw;		\
501
		int n;							\
502 503
		if (cpsw->data.dual_emac)				\
			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
504
		else							\
505 506
			for (n = cpsw->data.slaves,			\
					slave = cpsw->slaves;		\
507 508
					n; n--)				\
				(func)(slave++, ##arg);			\
509 510
	} while (0)

511
#define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)		\
512
	do {								\
513
		if (!cpsw->data.dual_emac)				\
514 515
			break;						\
		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
516
			ndev = cpsw->slaves[0].ndev;			\
517 518
			skb->dev = ndev;				\
		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
519
			ndev = cpsw->slaves[1].ndev;			\
520 521
			skb->dev = ndev;				\
		}							\
522
	} while (0)
523
#define cpsw_add_mcast(cpsw, priv, addr)				\
524
	do {								\
525 526
		if (cpsw->data.dual_emac) {				\
			struct cpsw_slave *slave = cpsw->slaves +	\
527
						priv->emac_port;	\
528
			int slave_port = cpsw_get_slave_port(		\
529
						slave->slave_num);	\
530
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
531
				1 << slave_port | ALE_PORT_HOST,	\
532 533
				ALE_VLAN, slave->port_vlan, 0);		\
		} else {						\
534
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
535
				ALE_ALL_PORTS,				\
536 537 538 539
				0, 0, 0);				\
		}							\
	} while (0)

540
static inline int cpsw_get_slave_port(u32 slave_num)
541
{
542
	return slave_num + 1;
543
}
544

545 546
static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
{
547 548
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_ale *ale = cpsw->ale;
549 550
	int i;

551
	if (cpsw->data.dual_emac) {
552 553 554 555 556 557
		bool flag = false;

		/* Enabling promiscuous mode for one interface will be
		 * common for both the interface as the interface shares
		 * the same hardware resource.
		 */
558 559
		for (i = 0; i < cpsw->data.slaves; i++)
			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
				flag = true;

		if (!enable && flag) {
			enable = true;
			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
		}

		if (enable) {
			/* Enable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);

			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
			/* Disable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	} else {
		if (enable) {
			unsigned long timeout = jiffies + HZ;

581
			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
582
			for (i = 0; i <= cpsw->data.slaves; i++) {
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 1);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 1);
			}

			/* Clear All Untouched entries */
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
			do {
				cpu_relax();
				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
					break;
			} while (time_after(timeout, jiffies));
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);

			/* Clear all mcast from ALE */
599
			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
600 601 602 603 604

			/* Flood All Unicast Packets to Host port */
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
605
			/* Don't Flood All Unicast Packets to Host port */
606 607
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);

608
			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
609
			for (i = 0; i <= cpsw->data.slaves; i++) {
610 611 612 613 614 615 616 617 618 619
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 0);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 0);
			}
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	}
}

620 621 622
static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
623
	struct cpsw_common *cpsw = priv->cpsw;
624 625
	int vid;

626 627
	if (cpsw->data.dual_emac)
		vid = cpsw->slaves[priv->emac_port].port_vlan;
628
	else
629
		vid = cpsw->data.default_vlan;
630 631 632

	if (ndev->flags & IFF_PROMISC) {
		/* Enable promiscuous mode */
633
		cpsw_set_promiscious(ndev, true);
634
		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
635
		return;
636 637 638
	} else {
		/* Disable promiscuous mode */
		cpsw_set_promiscious(ndev, false);
639 640
	}

641
	/* Restore allmulti on vlans if necessary */
642
	cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
643

644
	/* Clear all mcast from ALE */
645
	cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
646 647 648 649 650 651

	if (!netdev_mc_empty(ndev)) {
		struct netdev_hw_addr *ha;

		/* program multicast address list into ALE register */
		netdev_for_each_mc_addr(ha, ndev) {
652
			cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
653 654 655 656
		}
	}
}

657
static void cpsw_intr_enable(struct cpsw_common *cpsw)
658
{
659 660
	__raw_writel(0xFF, &cpsw->wr_regs->tx_en);
	__raw_writel(0xFF, &cpsw->wr_regs->rx_en);
661

662
	cpdma_ctlr_int_ctrl(cpsw->dma, true);
663 664 665
	return;
}

666
static void cpsw_intr_disable(struct cpsw_common *cpsw)
667
{
668 669
	__raw_writel(0, &cpsw->wr_regs->tx_en);
	__raw_writel(0, &cpsw->wr_regs->rx_en);
670

671
	cpdma_ctlr_int_ctrl(cpsw->dma, false);
672 673 674
	return;
}

675
static void cpsw_tx_handler(void *token, int len, int status)
676
{
677
	struct netdev_queue	*txq;
678 679
	struct sk_buff		*skb = token;
	struct net_device	*ndev = skb->dev;
680
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
681

682 683 684
	/* Check whether the queue is stopped due to stalled tx dma, if the
	 * queue is stopped then start the queue as we have free desc for tx
	 */
685 686 687 688
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	if (unlikely(netif_tx_queue_stopped(txq)))
		netif_tx_wake_queue(txq);

689
	cpts_tx_timestamp(cpsw->cpts, skb);
690 691
	ndev->stats.tx_packets++;
	ndev->stats.tx_bytes += len;
692 693 694
	dev_kfree_skb_any(skb);
}

695
static void cpsw_rx_handler(void *token, int len, int status)
696
{
697
	struct cpdma_chan	*ch;
698
	struct sk_buff		*skb = token;
699
	struct sk_buff		*new_skb;
700 701
	struct net_device	*ndev = skb->dev;
	int			ret = 0;
702
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
703

704
	cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
705

706
	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
707
		/* In dual emac mode check for all interfaces */
708
		if (cpsw->data.dual_emac && cpsw->usage_count &&
709
		    (status >= 0)) {
710 711
			/* The packet received is for the interface which
			 * is already down and the other interface is up
712
			 * and running, instead of freeing which results
713 714 715 716 717 718 719
			 * in reducing of the number of rx descriptor in
			 * DMA engine, requeue skb back to cpdma.
			 */
			new_skb = skb;
			goto requeue;
		}

720
		/* the interface is going down, skbs are purged */
721 722 723
		dev_kfree_skb_any(skb);
		return;
	}
724

725
	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
726
	if (new_skb) {
727
		skb_copy_queue_mapping(new_skb, skb);
728
		skb_put(skb, len);
729
		cpts_rx_timestamp(cpsw->cpts, skb);
730 731
		skb->protocol = eth_type_trans(skb, ndev);
		netif_receive_skb(skb);
732 733
		ndev->stats.rx_bytes += len;
		ndev->stats.rx_packets++;
734
		kmemleak_not_leak(new_skb);
735
	} else {
736
		ndev->stats.rx_dropped++;
737
		new_skb = skb;
738 739
	}

740
requeue:
741 742 743 744 745
	if (netif_dormant(ndev)) {
		dev_kfree_skb_any(new_skb);
		return;
	}

746
	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
747
	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
748
				skb_tailroom(new_skb), 0);
749 750
	if (WARN_ON(ret < 0))
		dev_kfree_skb_any(new_skb);
751 752
}

753
static void cpsw_split_res(struct net_device *ndev)
754 755
{
	struct cpsw_priv *priv = netdev_priv(ndev);
756
	u32 consumed_rate = 0, bigest_rate = 0;
757 758
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_vector *txv = cpsw->txv;
759
	int i, ch_weight, rlim_ch_num = 0;
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
	int budget, bigest_rate_ch = 0;
	u32 ch_rate, max_rate;
	int ch_budget = 0;

	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (!ch_rate)
			continue;

		rlim_ch_num++;
		consumed_rate += ch_rate;
	}

	if (cpsw->tx_ch_num == rlim_ch_num) {
		max_rate = consumed_rate;
775 776 777 778
	} else if (!rlim_ch_num) {
		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
		bigest_rate = 0;
		max_rate = consumed_rate;
779
	} else {
780 781 782 783 784 785 786 787 788 789
		max_rate = cpsw->speed * 1000;

		/* if max_rate is less then expected due to reduced link speed,
		 * split proportionally according next potential max speed
		 */
		if (max_rate < consumed_rate)
			max_rate *= 10;

		if (max_rate < consumed_rate)
			max_rate *= 10;
790

791 792 793 794 795 796 797
		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
			    (cpsw->tx_ch_num - rlim_ch_num);
		bigest_rate = (max_rate - consumed_rate) /
			      (cpsw->tx_ch_num - rlim_ch_num);
	}

798
	/* split tx weight/budget */
799 800 801 802 803 804
	budget = CPSW_POLL_WEIGHT;
	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (ch_rate) {
			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
			if (!txv[i].budget)
805
				txv[i].budget++;
806 807 808 809
			if (ch_rate > bigest_rate) {
				bigest_rate_ch = i;
				bigest_rate = ch_rate;
			}
810 811 812 813 814

			ch_weight = (ch_rate * 100) / max_rate;
			if (!ch_weight)
				ch_weight++;
			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
815 816 817 818
		} else {
			txv[i].budget = ch_budget;
			if (!bigest_rate_ch)
				bigest_rate_ch = i;
819
			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
		}

		budget -= txv[i].budget;
	}

	if (budget)
		txv[bigest_rate_ch].budget += budget;

	/* split rx budget */
	budget = CPSW_POLL_WEIGHT;
	ch_budget = budget / cpsw->rx_ch_num;
	for (i = 0; i < cpsw->rx_ch_num; i++) {
		cpsw->rxv[i].budget = ch_budget;
		budget -= ch_budget;
	}

	if (budget)
		cpsw->rxv[0].budget += budget;
}

840
static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
841
{
842
	struct cpsw_common *cpsw = dev_id;
843

844
	writel(0, &cpsw->wr_regs->tx_en);
845
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
846

847 848 849
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[1]);
		cpsw->tx_irq_disabled = true;
850 851
	}

852
	napi_schedule(&cpsw->napi_tx);
853 854 855 856 857
	return IRQ_HANDLED;
}

static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
{
858
	struct cpsw_common *cpsw = dev_id;
859

860
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
861
	writel(0, &cpsw->wr_regs->rx_en);
862

863 864 865
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[0]);
		cpsw->rx_irq_disabled = true;
866 867
	}

868
	napi_schedule(&cpsw->napi_rx);
869
	return IRQ_HANDLED;
870 871
}

872 873
static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
{
874
	u32			ch_map;
875
	int			num_tx, cur_budget, ch;
876
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
877
	struct cpsw_vector	*txv;
878

879 880
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
881
	for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
882 883 884
		if (!(ch_map & 0x01))
			continue;

885 886 887 888 889 890 891
		txv = &cpsw->txv[ch];
		if (unlikely(txv->budget > budget - num_tx))
			cur_budget = budget - num_tx;
		else
			cur_budget = txv->budget;

		num_tx += cpdma_chan_process(txv->ch, cur_budget);
892 893
		if (num_tx >= budget)
			break;
894 895
	}

896 897
	if (num_tx < budget) {
		napi_complete(napi_tx);
898
		writel(0xff, &cpsw->wr_regs->tx_en);
899 900 901
		if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
902
		}
903 904 905 906 907 908
	}

	return num_tx;
}

static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
909
{
910
	u32			ch_map;
911
	int			num_rx, cur_budget, ch;
912
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
913
	struct cpsw_vector	*rxv;
914

915 916
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
917
	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
918 919 920
		if (!(ch_map & 0x01))
			continue;

921 922 923 924 925 926 927
		rxv = &cpsw->rxv[ch];
		if (unlikely(rxv->budget > budget - num_rx))
			cur_budget = budget - num_rx;
		else
			cur_budget = rxv->budget;

		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
928 929
		if (num_rx >= budget)
			break;
930 931
	}

932
	if (num_rx < budget) {
933
		napi_complete_done(napi_rx, num_rx);
934
		writel(0xff, &cpsw->wr_regs->rx_en);
935 936 937
		if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
938
		}
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
	}

	return num_rx;
}

static inline void soft_reset(const char *module, void __iomem *reg)
{
	unsigned long timeout = jiffies + HZ;

	__raw_writel(1, reg);
	do {
		cpu_relax();
	} while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));

	WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
}

#define mac_hi(mac)	(((mac)[0] << 0) | ((mac)[1] << 8) |	\
			 ((mac)[2] << 16) | ((mac)[3] << 24))
#define mac_lo(mac)	(((mac)[4] << 0) | ((mac)[5] << 8))

static void cpsw_set_slave_mac(struct cpsw_slave *slave,
			       struct cpsw_priv *priv)
{
963 964
	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
965 966 967 968 969 970 971 972
}

static void _cpsw_adjust_link(struct cpsw_slave *slave,
			      struct cpsw_priv *priv, bool *link)
{
	struct phy_device	*phy = slave->phy;
	u32			mac_control = 0;
	u32			slave_port;
973
	struct cpsw_common *cpsw = priv->cpsw;
974 975 976 977

	if (!phy)
		return;

978
	slave_port = cpsw_get_slave_port(slave->slave_num);
979 980

	if (phy->link) {
981
		mac_control = cpsw->data.mac_control;
982 983

		/* enable forwarding */
984
		cpsw_ale_control_set(cpsw->ale, slave_port,
985 986 987 988 989 990
				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

		if (phy->speed == 1000)
			mac_control |= BIT(7);	/* GIGABITEN	*/
		if (phy->duplex)
			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
991 992 993 994

		/* set speed_in input in case RMII mode is used in 100Mbps */
		if (phy->speed == 100)
			mac_control |= BIT(15);
995 996
		else if (phy->speed == 10)
			mac_control |= BIT(18); /* In Band mode */
997

998 999 1000 1001 1002 1003
		if (priv->rx_pause)
			mac_control |= BIT(3);

		if (priv->tx_pause)
			mac_control |= BIT(4);

1004 1005 1006 1007
		*link = true;
	} else {
		mac_control = 0;
		/* disable forwarding */
1008
		cpsw_ale_control_set(cpsw->ale, slave_port,
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
	}

	if (mac_control != slave->mac_control) {
		phy_print_status(phy);
		__raw_writel(mac_control, &slave->sliver->mac_control);
	}

	slave->mac_control = mac_control;
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
static int cpsw_get_common_speed(struct cpsw_common *cpsw)
{
	int i, speed;

	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
			speed += cpsw->slaves[i].phy->speed;

	return speed;
}

static int cpsw_need_resplit(struct cpsw_common *cpsw)
{
	int i, rlim_ch_num;
	int speed, ch_rate;

	/* re-split resources only in case speed was changed */
	speed = cpsw_get_common_speed(cpsw);
	if (speed == cpsw->speed || !speed)
		return 0;

	cpsw->speed = speed;

	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
		if (!ch_rate)
			break;

		rlim_ch_num++;
	}

	/* cases not dependent on speed */
	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
		return 0;

	return 1;
}

1058 1059 1060
static void cpsw_adjust_link(struct net_device *ndev)
{
	struct cpsw_priv	*priv = netdev_priv(ndev);
1061
	struct cpsw_common	*cpsw = priv->cpsw;
1062 1063 1064 1065 1066
	bool			link = false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);

	if (link) {
1067 1068 1069
		if (cpsw_need_resplit(cpsw))
			cpsw_split_res(ndev);

1070 1071
		netif_carrier_on(ndev);
		if (netif_running(ndev))
1072
			netif_tx_wake_all_queues(ndev);
1073 1074
	} else {
		netif_carrier_off(ndev);
1075
		netif_tx_stop_all_queues(ndev);
1076 1077 1078
	}
}

1079 1080 1081
static int cpsw_get_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
1082
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1083

1084
	coal->rx_coalesce_usecs = cpsw->coal_intvl;
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	return 0;
}

static int cpsw_set_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	u32 int_ctrl;
	u32 num_interrupts = 0;
	u32 prescale = 0;
	u32 addnl_dvdr = 1;
	u32 coal_intvl = 0;
1097
	struct cpsw_common *cpsw = priv->cpsw;
1098 1099 1100

	coal_intvl = coal->rx_coalesce_usecs;

1101
	int_ctrl =  readl(&cpsw->wr_regs->int_control);
1102
	prescale = cpsw->bus_freq_mhz * 4;
1103

1104 1105 1106 1107 1108
	if (!coal->rx_coalesce_usecs) {
		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
		goto update_return;
	}

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	if (coal_intvl < CPSW_CMINTMIN_INTVL)
		coal_intvl = CPSW_CMINTMIN_INTVL;

	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
		/* Interrupt pacer works with 4us Pulse, we can
		 * throttle further by dilating the 4us pulse.
		 */
		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;

		if (addnl_dvdr > 1) {
			prescale *= addnl_dvdr;
			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
				coal_intvl = (CPSW_CMINTMAX_INTVL
						* addnl_dvdr);
		} else {
			addnl_dvdr = 1;
			coal_intvl = CPSW_CMINTMAX_INTVL;
		}
	}

	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1130 1131
	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1132 1133 1134 1135

	int_ctrl |= CPSW_INTPACEEN;
	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1136 1137

update_return:
1138
	writel(int_ctrl, &cpsw->wr_regs->int_control);
1139 1140

	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1141
	cpsw->coal_intvl = coal_intvl;
1142 1143 1144 1145

	return 0;
}

1146 1147
static int cpsw_get_sset_count(struct net_device *ndev, int sset)
{
1148 1149
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

1150 1151
	switch (sset) {
	case ETH_SS_STATS:
1152 1153 1154
		return (CPSW_STATS_COMMON_LEN +
		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
		       CPSW_STATS_CH_LEN);
1155 1156 1157 1158 1159
	default:
		return -EOPNOTSUPP;
	}
}

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
{
	int ch_stats_len;
	int line;
	int i;

	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
	for (i = 0; i < ch_stats_len; i++) {
		line = i % CPSW_STATS_CH_LEN;
		snprintf(*p, ETH_GSTRING_LEN,
			 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
			 i / CPSW_STATS_CH_LEN,
			 cpsw_gstrings_ch_stats[line].stat_string);
		*p += ETH_GSTRING_LEN;
	}
}

1177 1178
static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
{
1179
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1180 1181 1182 1183 1184
	u8 *p = data;
	int i;

	switch (stringset) {
	case ETH_SS_STATS:
1185
		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1186 1187 1188 1189
			memcpy(p, cpsw_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
1190 1191 1192

		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1193 1194 1195 1196 1197 1198 1199 1200
		break;
	}
}

static void cpsw_get_ethtool_stats(struct net_device *ndev,
				    struct ethtool_stats *stats, u64 *data)
{
	u8 *p;
1201
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1202 1203
	struct cpdma_chan_stats ch_stats;
	int i, l, ch;
1204 1205

	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1206 1207 1208 1209 1210
	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
		data[l] = readl(cpsw->hw_stats +
				cpsw_gstrings_stats[l].stat_offset);

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1211
		cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1212 1213 1214 1215 1216 1217
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
		}
	}
1218

1219
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1220
		cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1221 1222 1223 1224
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
1225 1226 1227 1228
		}
	}
}

1229
static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1230 1231
					struct sk_buff *skb,
					struct cpdma_chan *txch)
1232
{
1233 1234
	struct cpsw_common *cpsw = priv->cpsw;

1235
	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1236
				 priv->emac_port + cpsw->data.dual_emac);
1237 1238 1239 1240 1241 1242
}

static inline void cpsw_add_dual_emac_def_ale_entries(
		struct cpsw_priv *priv, struct cpsw_slave *slave,
		u32 slave_port)
{
1243
	struct cpsw_common *cpsw = priv->cpsw;
1244
	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1245

1246
	if (cpsw->version == CPSW_VERSION_1)
1247 1248 1249
		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
	else
		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1250
	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1251
			  port_mask, port_mask, 0);
1252
	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1253
			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1254 1255 1256
	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
			   HOST_PORT_NUM, ALE_VLAN |
			   ALE_SECURE, slave->port_vlan);
1257 1258
}

1259
static void soft_reset_slave(struct cpsw_slave *slave)
1260 1261 1262
{
	char name[32];

1263
	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1264
	soft_reset(name, &slave->sliver->soft_reset);
1265 1266 1267 1268 1269
}

static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	u32 slave_port;
1270
	struct cpsw_common *cpsw = priv->cpsw;
1271 1272

	soft_reset_slave(slave);
1273 1274 1275

	/* setup priority mapping */
	__raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1276

1277
	switch (cpsw->version) {
1278 1279 1280 1281
	case CPSW_VERSION_1:
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
		break;
	case CPSW_VERSION_2:
1282
	case CPSW_VERSION_3:
1283
	case CPSW_VERSION_4:
1284 1285 1286
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
		break;
	}
1287 1288

	/* setup max packet size, and mac address */
1289
	__raw_writel(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1290 1291 1292 1293
	cpsw_set_slave_mac(slave, priv);

	slave->mac_control = 0;	/* no link yet */

1294
	slave_port = cpsw_get_slave_port(slave->slave_num);
1295

1296
	if (cpsw->data.dual_emac)
1297 1298
		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
	else
1299
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1300
				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1301

1302
	if (slave->data->phy_node) {
1303
		slave->phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1304
				 &cpsw_adjust_link, 0, slave->data->phy_if);
1305 1306 1307 1308 1309 1310 1311
		if (!slave->phy) {
			dev_err(priv->dev, "phy \"%s\" not found on slave %d\n",
				slave->data->phy_node->full_name,
				slave->slave_num);
			return;
		}
	} else {
1312
		slave->phy = phy_connect(priv->ndev, slave->data->phy_id,
1313
				 &cpsw_adjust_link, slave->data->phy_if);
1314 1315 1316 1317 1318 1319 1320 1321 1322
		if (IS_ERR(slave->phy)) {
			dev_err(priv->dev,
				"phy \"%s\" not found on slave %d, err %ld\n",
				slave->data->phy_id, slave->slave_num,
				PTR_ERR(slave->phy));
			slave->phy = NULL;
			return;
		}
	}
1323

1324
	phy_attached_info(slave->phy);
1325

1326 1327 1328
	phy_start(slave->phy);

	/* Configure GMII_SEL register */
1329
	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1330 1331
}

1332 1333
static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
{
1334 1335
	struct cpsw_common *cpsw = priv->cpsw;
	const int vlan = cpsw->data.default_vlan;
1336 1337
	u32 reg;
	int i;
1338
	int unreg_mcast_mask;
1339

1340
	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1341 1342
	       CPSW2_PORT_VLAN;

1343
	writel(vlan, &cpsw->host_port_regs->port_vlan);
1344

1345 1346
	for (i = 0; i < cpsw->data.slaves; i++)
		slave_write(cpsw->slaves + i, vlan, reg);
1347

1348 1349 1350 1351 1352
	if (priv->ndev->flags & IFF_ALLMULTI)
		unreg_mcast_mask = ALE_ALL_PORTS;
	else
		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;

1353
	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1354 1355
			  ALE_ALL_PORTS, ALE_ALL_PORTS,
			  unreg_mcast_mask);
1356 1357
}

1358 1359
static void cpsw_init_host_port(struct cpsw_priv *priv)
{
1360
	u32 fifo_mode;
1361 1362
	u32 control_reg;
	struct cpsw_common *cpsw = priv->cpsw;
1363

1364
	/* soft reset the controller and initialize ale */
1365
	soft_reset("cpsw", &cpsw->regs->soft_reset);
1366
	cpsw_ale_start(cpsw->ale);
1367 1368

	/* switch to vlan unaware mode */
1369
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1370
			     CPSW_ALE_VLAN_AWARE);
1371
	control_reg = readl(&cpsw->regs->control);
1372
	control_reg |= CPSW_VLAN_AWARE;
1373
	writel(control_reg, &cpsw->regs->control);
1374
	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1375
		     CPSW_FIFO_NORMAL_MODE;
1376
	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1377 1378 1379

	/* setup host port priority mapping */
	__raw_writel(CPDMA_TX_PRIORITY_MAP,
1380 1381
		     &cpsw->host_port_regs->cpdma_tx_pri_map);
	__raw_writel(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1382

1383
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1384 1385
			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

1386
	if (!cpsw->data.dual_emac) {
1387
		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1388
				   0, 0);
1389
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1390
				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1391
	}
1392 1393
}

1394 1395 1396 1397 1398
static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct sk_buff *skb;
	int ch_buf_num;
1399 1400 1401
	int ch, i, ret;

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1402
		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1403 1404 1405 1406 1407 1408 1409 1410
		for (i = 0; i < ch_buf_num; i++) {
			skb = __netdev_alloc_skb_ip_align(priv->ndev,
							  cpsw->rx_packet_max,
							  GFP_KERNEL);
			if (!skb) {
				cpsw_err(priv, ifup, "cannot allocate skb\n");
				return -ENOMEM;
			}
1411

1412
			skb_set_queue_mapping(skb, ch);
1413 1414 1415
			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
						skb->data, skb_tailroom(skb),
						0);
1416 1417 1418 1419 1420 1421 1422 1423
			if (ret < 0) {
				cpsw_err(priv, ifup,
					 "cannot submit skb to channel %d rx, error %d\n",
					 ch, ret);
				kfree_skb(skb);
				return ret;
			}
			kmemleak_not_leak(skb);
1424 1425
		}

1426 1427 1428
		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
			  ch, ch_buf_num);
	}
1429

1430
	return 0;
1431 1432
}

1433
static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1434
{
1435 1436
	u32 slave_port;

1437
	slave_port = cpsw_get_slave_port(slave->slave_num);
1438

1439 1440 1441 1442 1443
	if (!slave->phy)
		return;
	phy_stop(slave->phy);
	phy_disconnect(slave->phy);
	slave->phy = NULL;
1444
	cpsw_ale_control_set(cpsw->ale, slave_port,
1445
			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1446
	soft_reset_slave(slave);
1447 1448
}

1449 1450 1451
static int cpsw_ndo_open(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1452
	struct cpsw_common *cpsw = priv->cpsw;
1453
	int ret;
1454 1455
	u32 reg;

1456
	ret = pm_runtime_get_sync(cpsw->dev);
1457
	if (ret < 0) {
1458
		pm_runtime_put_noidle(cpsw->dev);
1459 1460
		return ret;
	}
1461

1462 1463
	netif_carrier_off(ndev);

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	/* Notify the stack of the actual queue counts. */
	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of tx queues\n");
		goto err_cleanup;
	}

	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of rx queues\n");
		goto err_cleanup;
	}

1477
	reg = cpsw->version;
1478 1479 1480 1481 1482

	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
		 CPSW_RTL_VERSION(reg));

1483 1484
	/* Initialize host and slave ports */
	if (!cpsw->usage_count)
1485
		cpsw_init_host_port(priv);
1486 1487
	for_each_slave(priv, cpsw_slave_open, priv);

1488
	/* Add default VLAN */
1489
	if (!cpsw->data.dual_emac)
1490 1491
		cpsw_add_default_vlan(priv);
	else
1492
		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1493
				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1494

1495 1496
	/* initialize shared resources for every ndev */
	if (!cpsw->usage_count) {
1497
		/* disable priority elevation */
1498
		__raw_writel(0, &cpsw->regs->ptype);
1499

1500
		/* enable statistics collection only on all ports */
1501
		__raw_writel(0x7, &cpsw->regs->stat_port_en);
1502

1503
		/* Enable internal fifo flow control */
1504
		writel(0x7, &cpsw->regs->flow_control);
1505

1506 1507
		napi_enable(&cpsw->napi_rx);
		napi_enable(&cpsw->napi_tx);
1508

1509 1510 1511
		if (cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
1512 1513
		}

1514 1515 1516
		if (cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
1517 1518
		}

1519 1520 1521
		ret = cpsw_fill_rx_channels(priv);
		if (ret < 0)
			goto err_cleanup;
1522

1523
		if (cpts_register(cpsw->cpts))
1524 1525
			dev_err(priv->dev, "error registering cpts device\n");

1526 1527
	}

1528
	/* Enable Interrupt pacing if configured */
1529
	if (cpsw->coal_intvl != 0) {
1530 1531
		struct ethtool_coalesce coal;

1532
		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1533 1534 1535
		cpsw_set_coalesce(ndev, &coal);
	}

1536 1537
	cpdma_ctlr_start(cpsw->dma);
	cpsw_intr_enable(cpsw);
1538
	cpsw->usage_count++;
1539

1540 1541
	return 0;

1542
err_cleanup:
1543
	cpdma_ctlr_stop(cpsw->dma);
1544
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1545
	pm_runtime_put_sync(cpsw->dev);
1546 1547
	netif_carrier_off(priv->ndev);
	return ret;
1548 1549 1550 1551 1552
}

static int cpsw_ndo_stop(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1553
	struct cpsw_common *cpsw = priv->cpsw;
1554 1555

	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1556
	netif_tx_stop_all_queues(priv->ndev);
1557
	netif_carrier_off(priv->ndev);
1558

1559
	if (cpsw->usage_count <= 1) {
1560 1561
		napi_disable(&cpsw->napi_rx);
		napi_disable(&cpsw->napi_tx);
1562
		cpts_unregister(cpsw->cpts);
1563 1564
		cpsw_intr_disable(cpsw);
		cpdma_ctlr_stop(cpsw->dma);
1565
		cpsw_ale_stop(cpsw->ale);
1566
	}
1567
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1568 1569 1570 1571

	if (cpsw_need_resplit(cpsw))
		cpsw_split_res(ndev);

1572
	cpsw->usage_count--;
1573
	pm_runtime_put_sync(cpsw->dev);
1574 1575 1576 1577 1578 1579 1580
	return 0;
}

static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
				       struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1581
	struct cpsw_common *cpsw = priv->cpsw;
1582 1583 1584
	struct netdev_queue *txq;
	struct cpdma_chan *txch;
	int ret, q_idx;
1585 1586 1587

	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
		cpsw_err(priv, tx_err, "packet pad failed\n");
1588
		ndev->stats.tx_dropped++;
1589
		return NET_XMIT_DROP;
1590 1591
	}

1592
	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1593
	    cpts_is_tx_enabled(cpsw->cpts))
1594 1595 1596 1597
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;

	skb_tx_timestamp(skb);

1598 1599 1600 1601
	q_idx = skb_get_queue_mapping(skb);
	if (q_idx >= cpsw->tx_ch_num)
		q_idx = q_idx % cpsw->tx_ch_num;

1602
	txch = cpsw->txv[q_idx].ch;
1603
	ret = cpsw_tx_packet_submit(priv, skb, txch);
1604 1605 1606 1607 1608
	if (unlikely(ret != 0)) {
		cpsw_err(priv, tx_err, "desc submit failed\n");
		goto fail;
	}

1609 1610 1611
	/* If there is no more tx desc left free then we need to
	 * tell the kernel to stop sending us tx frames.
	 */
1612 1613 1614 1615
	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
		txq = netdev_get_tx_queue(ndev, q_idx);
		netif_tx_stop_queue(txq);
	}
1616

1617 1618
	return NETDEV_TX_OK;
fail:
1619
	ndev->stats.tx_dropped++;
1620 1621
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	netif_tx_stop_queue(txq);
1622 1623 1624
	return NETDEV_TX_BUSY;
}

1625
#if IS_ENABLED(CONFIG_TI_CPTS)
1626

1627
static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1628
{
1629
	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1630 1631
	u32 ts_en, seq_id;

1632 1633
	if (!cpts_is_tx_enabled(cpsw->cpts) &&
	    !cpts_is_rx_enabled(cpsw->cpts)) {
1634 1635 1636 1637 1638 1639 1640
		slave_write(slave, 0, CPSW1_TS_CTL);
		return;
	}

	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;

1641
	if (cpts_is_tx_enabled(cpsw->cpts))
1642 1643
		ts_en |= CPSW_V1_TS_TX_EN;

1644
	if (cpts_is_rx_enabled(cpsw->cpts))
1645 1646 1647 1648 1649 1650 1651 1652
		ts_en |= CPSW_V1_TS_RX_EN;

	slave_write(slave, ts_en, CPSW1_TS_CTL);
	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
}

static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
{
1653
	struct cpsw_slave *slave;
1654
	struct cpsw_common *cpsw = priv->cpsw;
1655 1656
	u32 ctrl, mtype;

1657
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1658

1659
	ctrl = slave_read(slave, CPSW2_CONTROL);
1660
	switch (cpsw->version) {
1661 1662
	case CPSW_VERSION_2:
		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1663

1664
		if (cpts_is_tx_enabled(cpsw->cpts))
1665
			ctrl |= CTRL_V2_TX_TS_BITS;
1666

1667
		if (cpts_is_rx_enabled(cpsw->cpts))
1668
			ctrl |= CTRL_V2_RX_TS_BITS;
1669
		break;
1670 1671 1672 1673
	case CPSW_VERSION_3:
	default:
		ctrl &= ~CTRL_V3_ALL_TS_MASK;

1674
		if (cpts_is_tx_enabled(cpsw->cpts))
1675 1676
			ctrl |= CTRL_V3_TX_TS_BITS;

1677
		if (cpts_is_rx_enabled(cpsw->cpts))
1678
			ctrl |= CTRL_V3_RX_TS_BITS;
1679
		break;
1680
	}
1681 1682 1683 1684 1685

	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;

	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
	slave_write(slave, ctrl, CPSW2_CONTROL);
1686
	__raw_writel(ETH_P_1588, &cpsw->regs->ts_ltype);
1687 1688
}

1689
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1690
{
1691
	struct cpsw_priv *priv = netdev_priv(dev);
1692
	struct hwtstamp_config cfg;
1693 1694
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpts *cpts = cpsw->cpts;
1695

1696 1697 1698
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1699 1700
		return -EOPNOTSUPP;

1701 1702 1703 1704 1705 1706 1707
	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
		return -EFAULT;

	/* reserved for future extensions */
	if (cfg.flags)
		return -EINVAL;

1708
	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1709 1710 1711 1712
		return -ERANGE;

	switch (cfg.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
1713
		cpts_rx_enable(cpts, 0);
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
		break;
	case HWTSTAMP_FILTER_ALL:
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		return -ERANGE;
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1729
		cpts_rx_enable(cpts, 1);
1730 1731 1732 1733 1734 1735
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		break;
	default:
		return -ERANGE;
	}

1736
	cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1737

1738
	switch (cpsw->version) {
1739
	case CPSW_VERSION_1:
1740
		cpsw_hwtstamp_v1(cpsw);
1741 1742
		break;
	case CPSW_VERSION_2:
1743
	case CPSW_VERSION_3:
1744 1745 1746
		cpsw_hwtstamp_v2(priv);
		break;
	default:
1747
		WARN_ON(1);
1748 1749 1750 1751 1752
	}

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}

1753 1754
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
1755 1756
	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
	struct cpts *cpts = cpsw->cpts;
1757 1758
	struct hwtstamp_config cfg;

1759 1760 1761
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1762 1763 1764
		return -EOPNOTSUPP;

	cfg.flags = 0;
1765 1766 1767
	cfg.tx_type = cpts_is_tx_enabled(cpts) ?
		      HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
	cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1768 1769 1770 1771
			 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
1772 1773 1774 1775 1776
#else
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
1777

1778 1779 1780 1781
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
1782 1783 1784 1785
#endif /*CONFIG_TI_CPTS*/

static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
1786
	struct cpsw_priv *priv = netdev_priv(dev);
1787 1788
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
1789

1790 1791 1792
	if (!netif_running(dev))
		return -EINVAL;

1793 1794
	switch (cmd) {
	case SIOCSHWTSTAMP:
1795 1796 1797
		return cpsw_hwtstamp_set(dev, req);
	case SIOCGHWTSTAMP:
		return cpsw_hwtstamp_get(dev, req);
1798 1799
	}

1800
	if (!cpsw->slaves[slave_no].phy)
1801
		return -EOPNOTSUPP;
1802
	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1803 1804
}

1805 1806 1807
static void cpsw_ndo_tx_timeout(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1808
	struct cpsw_common *cpsw = priv->cpsw;
1809
	int ch;
1810 1811

	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1812
	ndev->stats.tx_errors++;
1813
	cpsw_intr_disable(cpsw);
1814
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1815 1816
		cpdma_chan_stop(cpsw->txv[ch].ch);
		cpdma_chan_start(cpsw->txv[ch].ch);
1817 1818
	}

1819
	cpsw_intr_enable(cpsw);
1820 1821
}

1822 1823 1824 1825
static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct sockaddr *addr = (struct sockaddr *)p;
1826
	struct cpsw_common *cpsw = priv->cpsw;
1827 1828
	int flags = 0;
	u16 vid = 0;
1829
	int ret;
1830 1831 1832 1833

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

1834
	ret = pm_runtime_get_sync(cpsw->dev);
1835
	if (ret < 0) {
1836
		pm_runtime_put_noidle(cpsw->dev);
1837 1838 1839
		return ret;
	}

1840 1841
	if (cpsw->data.dual_emac) {
		vid = cpsw->slaves[priv->emac_port].port_vlan;
1842 1843 1844
		flags = ALE_VLAN;
	}

1845
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1846
			   flags, vid);
1847
	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1848 1849 1850 1851 1852 1853
			   flags, vid);

	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
	for_each_slave(priv, cpsw_set_slave_mac, priv);

1854
	pm_runtime_put(cpsw->dev);
1855

1856 1857 1858
	return 0;
}

1859 1860 1861
#ifdef CONFIG_NET_POLL_CONTROLLER
static void cpsw_ndo_poll_controller(struct net_device *ndev)
{
1862
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1863

1864 1865 1866 1867
	cpsw_intr_disable(cpsw);
	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
	cpsw_intr_enable(cpsw);
1868 1869 1870
}
#endif

1871 1872 1873 1874
static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
				unsigned short vid)
{
	int ret;
1875 1876
	int unreg_mcast_mask = 0;
	u32 port_mask;
1877
	struct cpsw_common *cpsw = priv->cpsw;
1878

1879
	if (cpsw->data.dual_emac) {
1880
		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1881

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = port_mask;
	} else {
		port_mask = ALE_ALL_PORTS;

		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = ALE_ALL_PORTS;
		else
			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
	}
1892

1893
	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1894
				unreg_mcast_mask);
1895 1896 1897
	if (ret != 0)
		return ret;

1898
	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1899
				 HOST_PORT_NUM, ALE_VLAN, vid);
1900 1901 1902
	if (ret != 0)
		goto clean_vid;

1903
	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1904
				 port_mask, ALE_VLAN, vid, 0);
1905 1906 1907 1908 1909
	if (ret != 0)
		goto clean_vlan_ucast;
	return 0;

clean_vlan_ucast:
1910
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1911
			   HOST_PORT_NUM, ALE_VLAN, vid);
1912
clean_vid:
1913
	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1914 1915 1916 1917
	return ret;
}

static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1918
				    __be16 proto, u16 vid)
1919 1920
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1921
	struct cpsw_common *cpsw = priv->cpsw;
1922
	int ret;
1923

1924
	if (vid == cpsw->data.default_vlan)
1925 1926
		return 0;

1927
	ret = pm_runtime_get_sync(cpsw->dev);
1928
	if (ret < 0) {
1929
		pm_runtime_put_noidle(cpsw->dev);
1930 1931 1932
		return ret;
	}

1933
	if (cpsw->data.dual_emac) {
1934 1935 1936 1937 1938 1939
		/* In dual EMAC, reserved VLAN id should not be used for
		 * creating VLAN interfaces as this can break the dual
		 * EMAC port separation
		 */
		int i;

1940 1941
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
1942 1943 1944 1945
				return -EINVAL;
		}
	}

1946
	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1947 1948
	ret = cpsw_add_vlan_ale_entry(priv, vid);

1949
	pm_runtime_put(cpsw->dev);
1950
	return ret;
1951 1952 1953
}

static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1954
				     __be16 proto, u16 vid)
1955 1956
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1957
	struct cpsw_common *cpsw = priv->cpsw;
1958 1959
	int ret;

1960
	if (vid == cpsw->data.default_vlan)
1961 1962
		return 0;

1963
	ret = pm_runtime_get_sync(cpsw->dev);
1964
	if (ret < 0) {
1965
		pm_runtime_put_noidle(cpsw->dev);
1966 1967 1968
		return ret;
	}

1969
	if (cpsw->data.dual_emac) {
1970 1971
		int i;

1972 1973
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
1974 1975 1976 1977
				return -EINVAL;
		}
	}

1978
	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1979
	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1980 1981 1982
	if (ret != 0)
		return ret;

1983
	ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1984
				 HOST_PORT_NUM, ALE_VLAN, vid);
1985 1986 1987
	if (ret != 0)
		return ret;

1988
	ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
1989
				 0, ALE_VLAN, vid);
1990
	pm_runtime_put(cpsw->dev);
1991
	return ret;
1992 1993
}

1994 1995 1996 1997
static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
1998
	struct cpsw_slave *slave;
1999
	u32 min_rate;
2000
	u32 ch_rate;
2001
	int i, ret;
2002 2003 2004 2005 2006

	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
	if (ch_rate == rate)
		return 0;

2007 2008 2009 2010 2011
	ch_rate = rate * 1000;
	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
	if ((ch_rate < min_rate && ch_rate)) {
		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
			min_rate);
2012 2013 2014
		return -EINVAL;
	}

2015
	if (rate > cpsw->speed) {
2016
		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2017 2018 2019 2020 2021 2022 2023 2024 2025
		return -EINVAL;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

2026 2027
	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
	pm_runtime_put(cpsw->dev);
2028

2029 2030
	if (ret)
		return ret;
2031

2032 2033 2034 2035 2036 2037 2038 2039 2040
	/* update rates for slaves tx queues */
	for (i = 0; i < cpsw->data.slaves; i++) {
		slave = &cpsw->slaves[i];
		if (!slave->ndev)
			continue;

		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
	}

2041
	cpsw_split_res(ndev);
2042 2043 2044
	return ret;
}

2045 2046 2047 2048
static const struct net_device_ops cpsw_netdev_ops = {
	.ndo_open		= cpsw_ndo_open,
	.ndo_stop		= cpsw_ndo_stop,
	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2049
	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2050
	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2051 2052
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2053
	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2054
	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2055 2056 2057
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= cpsw_ndo_poll_controller,
#endif
2058 2059
	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2060 2061
};

2062 2063
static int cpsw_get_regs_len(struct net_device *ndev)
{
2064
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2065

2066
	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2067 2068 2069 2070 2071 2072
}

static void cpsw_get_regs(struct net_device *ndev,
			  struct ethtool_regs *regs, void *p)
{
	u32 *reg = p;
2073
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2074 2075

	/* update CPSW IP version */
2076
	regs->version = cpsw->version;
2077

2078
	cpsw_ale_dump(cpsw->ale, reg);
2079 2080
}

2081 2082 2083
static void cpsw_get_drvinfo(struct net_device *ndev,
			     struct ethtool_drvinfo *info)
{
2084
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2085
	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2086

2087
	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2088
	strlcpy(info->version, "1.0", sizeof(info->version));
2089
	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
}

static u32 cpsw_get_msglevel(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	return priv->msg_enable;
}

static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	priv->msg_enable = value;
}

2104
#if IS_ENABLED(CONFIG_TI_CPTS)
2105 2106 2107
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2108
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2109 2110 2111 2112 2113 2114 2115 2116

	info->so_timestamping =
		SOF_TIMESTAMPING_TX_HARDWARE |
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_HARDWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE |
		SOF_TIMESTAMPING_RAW_HARDWARE;
2117
	info->phc_index = cpsw->cpts->phc_index;
2118 2119 2120 2121 2122 2123
	info->tx_types =
		(1 << HWTSTAMP_TX_OFF) |
		(1 << HWTSTAMP_TX_ON);
	info->rx_filters =
		(1 << HWTSTAMP_FILTER_NONE) |
		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2124 2125
	return 0;
}
2126
#else
2127 2128 2129
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2130 2131 2132 2133 2134 2135 2136 2137 2138
	info->so_timestamping =
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE;
	info->phc_index = -1;
	info->tx_types = 0;
	info->rx_filters = 0;
	return 0;
}
2139
#endif
2140

2141 2142
static int cpsw_get_link_ksettings(struct net_device *ndev,
				   struct ethtool_link_ksettings *ecmd)
2143 2144
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2145 2146
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2147

2148
	if (cpsw->slaves[slave_no].phy)
2149 2150
		return phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy,
						 ecmd);
2151 2152 2153 2154
	else
		return -EOPNOTSUPP;
}

2155 2156
static int cpsw_set_link_ksettings(struct net_device *ndev,
				   const struct ethtool_link_ksettings *ecmd)
2157 2158
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2159 2160
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2161

2162
	if (cpsw->slaves[slave_no].phy)
2163 2164
		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
						 ecmd);
2165 2166 2167 2168
	else
		return -EOPNOTSUPP;
}

2169 2170 2171
static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2172 2173
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2174 2175 2176 2177

	wol->supported = 0;
	wol->wolopts = 0;

2178 2179
	if (cpsw->slaves[slave_no].phy)
		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2180 2181 2182 2183 2184
}

static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2185 2186
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2187

2188 2189
	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2190 2191 2192 2193
	else
		return -EOPNOTSUPP;
}

2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
static void cpsw_get_pauseparam(struct net_device *ndev,
				struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);

	pause->autoneg = AUTONEG_DISABLE;
	pause->rx_pause = priv->rx_pause ? true : false;
	pause->tx_pause = priv->tx_pause ? true : false;
}

static int cpsw_set_pauseparam(struct net_device *ndev,
			       struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	bool link;

	priv->rx_pause = pause->rx_pause ? true : false;
	priv->tx_pause = pause->tx_pause ? true : false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
	return 0;
}

2217 2218 2219
static int cpsw_ethtool_op_begin(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2220
	struct cpsw_common *cpsw = priv->cpsw;
2221 2222
	int ret;

2223
	ret = pm_runtime_get_sync(cpsw->dev);
2224 2225
	if (ret < 0) {
		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2226
		pm_runtime_put_noidle(cpsw->dev);
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
	}

	return ret;
}

static void cpsw_ethtool_op_complete(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	int ret;

2237
	ret = pm_runtime_put(priv->cpsw->dev);
2238 2239 2240 2241
	if (ret < 0)
		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
}

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
static void cpsw_get_channels(struct net_device *ndev,
			      struct ethtool_channels *ch)
{
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

	ch->max_combined = 0;
	ch->max_rx = CPSW_MAX_QUEUES;
	ch->max_tx = CPSW_MAX_QUEUES;
	ch->max_other = 0;
	ch->other_count = 0;
	ch->rx_count = cpsw->rx_ch_num;
	ch->tx_count = cpsw->tx_ch_num;
	ch->combined_count = 0;
}

static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
				  struct ethtool_channels *ch)
{
	if (ch->combined_count)
		return -EINVAL;

	/* verify we have at least one channel in each direction */
	if (!ch->rx_count || !ch->tx_count)
		return -EINVAL;

	if (ch->rx_count > cpsw->data.channels ||
	    ch->tx_count > cpsw->data.channels)
		return -EINVAL;

	return 0;
}

static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
{
	int (*poll)(struct napi_struct *, int);
	struct cpsw_common *cpsw = priv->cpsw;
	void (*handler)(void *, int, int);
2279
	struct netdev_queue *queue;
2280
	struct cpsw_vector *vec;
2281 2282 2283 2284
	int ret, *ch;

	if (rx) {
		ch = &cpsw->rx_ch_num;
2285
		vec = cpsw->rxv;
2286 2287 2288 2289
		handler = cpsw_rx_handler;
		poll = cpsw_rx_poll;
	} else {
		ch = &cpsw->tx_ch_num;
2290
		vec = cpsw->txv;
2291 2292 2293 2294 2295
		handler = cpsw_tx_handler;
		poll = cpsw_tx_poll;
	}

	while (*ch < ch_num) {
2296
		vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2297 2298
		queue = netdev_get_tx_queue(priv->ndev, *ch);
		queue->tx_maxrate = 0;
2299

2300 2301
		if (IS_ERR(vec[*ch].ch))
			return PTR_ERR(vec[*ch].ch);
2302

2303
		if (!vec[*ch].ch)
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
			return -EINVAL;

		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
		(*ch)++;
	}

	while (*ch > ch_num) {
		(*ch)--;

2314
		ret = cpdma_chan_destroy(vec[*ch].ch);
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
		if (ret)
			return ret;

		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
	}

	return 0;
}

static int cpsw_update_channels(struct cpsw_priv *priv,
				struct ethtool_channels *ch)
{
	int ret;

	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
	if (ret)
		return ret;

	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
	if (ret)
		return ret;

	return 0;
}

2341
static void cpsw_suspend_data_pass(struct net_device *ndev)
2342
{
2343
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2344
	struct cpsw_slave *slave;
2345
	int i;
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362

	/* Disable NAPI scheduling */
	cpsw_intr_disable(cpsw);

	/* Stop all transmit queues for every network device.
	 * Disable re-using rx descriptors with dormant_on.
	 */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		netif_tx_stop_all_queues(slave->ndev);
		netif_dormant_on(slave->ndev);
	}

	/* Handle rest of tx packets and stop cpdma channels */
	cpdma_ctlr_stop(cpsw->dma);
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
}

static int cpsw_resume_data_pass(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	/* Allow rx packets handling */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
		if (slave->ndev && netif_running(slave->ndev))
			netif_dormant_off(slave->ndev);

	/* After this receive is started */
2378
	if (cpsw->usage_count) {
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
		ret = cpsw_fill_rx_channels(priv);
		if (ret)
			return ret;

		cpdma_ctlr_start(cpsw->dma);
		cpsw_intr_enable(cpsw);
	}

	/* Resume transmit for every affected interface */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
		if (slave->ndev && netif_running(slave->ndev))
			netif_tx_start_all_queues(slave->ndev);

	return 0;
}

static int cpsw_set_channels(struct net_device *ndev,
			     struct ethtool_channels *chs)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	ret = cpsw_check_ch_settings(cpsw, chs);
	if (ret < 0)
		return ret;

	cpsw_suspend_data_pass(ndev);
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	ret = cpsw_update_channels(priv, chs);
	if (ret)
		goto err;

	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		/* Inform stack about new count of queues */
		ret = netif_set_real_num_tx_queues(slave->ndev,
						   cpsw->tx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of tx queues\n");
			goto err;
		}

		ret = netif_set_real_num_rx_queues(slave->ndev,
						   cpsw->rx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of rx queues\n");
			goto err;
		}
	}

2432
	if (cpsw->usage_count)
2433
		cpsw_split_res(ndev);
2434

2435 2436 2437
	ret = cpsw_resume_data_pass(ndev);
	if (!ret)
		return 0;
2438 2439 2440 2441 2442 2443
err:
	dev_err(priv->dev, "cannot update channels number, closing device\n");
	dev_close(ndev);
	return ret;
}

2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
static int cpsw_nway_reset(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
	else
		return -EOPNOTSUPP;
}

2480 2481 2482 2483 2484 2485 2486 2487 2488
static void cpsw_get_ringparam(struct net_device *ndev,
			       struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;

	/* not supported */
	ering->tx_max_pending = 0;
	ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2489
	ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2490 2491 2492 2493 2494 2495 2496 2497
	ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
}

static int cpsw_set_ringparam(struct net_device *ndev,
			      struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
2498
	int ret;
2499 2500 2501 2502

	/* ignore ering->tx_pending - only rx_pending adjustment is supported */

	if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2503 2504
	    ering->rx_pending < CPSW_MAX_QUEUES ||
	    ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2505 2506 2507 2508 2509
		return -EINVAL;

	if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
		return 0;

2510
	cpsw_suspend_data_pass(ndev);
2511 2512 2513

	cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);

2514
	if (cpsw->usage_count)
2515 2516
		cpdma_chan_split_pool(cpsw->dma);

2517 2518 2519
	ret = cpsw_resume_data_pass(ndev);
	if (!ret)
		return 0;
2520

2521
	dev_err(&ndev->dev, "cannot set ring params, closing device\n");
2522 2523 2524 2525
	dev_close(ndev);
	return ret;
}

2526 2527 2528 2529 2530
static const struct ethtool_ops cpsw_ethtool_ops = {
	.get_drvinfo	= cpsw_get_drvinfo,
	.get_msglevel	= cpsw_get_msglevel,
	.set_msglevel	= cpsw_set_msglevel,
	.get_link	= ethtool_op_get_link,
2531
	.get_ts_info	= cpsw_get_ts_info,
2532 2533
	.get_coalesce	= cpsw_get_coalesce,
	.set_coalesce	= cpsw_set_coalesce,
2534 2535 2536
	.get_sset_count		= cpsw_get_sset_count,
	.get_strings		= cpsw_get_strings,
	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2537 2538
	.get_pauseparam		= cpsw_get_pauseparam,
	.set_pauseparam		= cpsw_set_pauseparam,
2539 2540
	.get_wol	= cpsw_get_wol,
	.set_wol	= cpsw_set_wol,
2541 2542
	.get_regs_len	= cpsw_get_regs_len,
	.get_regs	= cpsw_get_regs,
2543 2544
	.begin		= cpsw_ethtool_op_begin,
	.complete	= cpsw_ethtool_op_complete,
2545 2546
	.get_channels	= cpsw_get_channels,
	.set_channels	= cpsw_set_channels,
2547 2548
	.get_link_ksettings	= cpsw_get_link_ksettings,
	.set_link_ksettings	= cpsw_set_link_ksettings,
2549 2550
	.get_eee	= cpsw_get_eee,
	.set_eee	= cpsw_set_eee,
2551
	.nway_reset	= cpsw_nway_reset,
2552 2553
	.get_ringparam = cpsw_get_ringparam,
	.set_ringparam = cpsw_set_ringparam,
2554 2555
};

2556
static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2557
			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
2558
{
2559
	void __iomem		*regs = cpsw->regs;
2560
	int			slave_num = slave->slave_num;
2561
	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
2562 2563

	slave->data	= data;
2564 2565
	slave->regs	= regs + slave_reg_ofs;
	slave->sliver	= regs + sliver_reg_ofs;
2566
	slave->port_vlan = data->dual_emac_res_vlan;
2567 2568
}

2569
static int cpsw_probe_dt(struct cpsw_platform_data *data,
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
			 struct platform_device *pdev)
{
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0, ret;
	u32 prop;

	if (!node)
		return -EINVAL;

	if (of_property_read_u32(node, "slaves", &prop)) {
2581
		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2582 2583 2584 2585
		return -EINVAL;
	}
	data->slaves = prop;

2586
	if (of_property_read_u32(node, "active_slave", &prop)) {
2587
		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2588
		return -EINVAL;
2589
	}
2590
	data->active_slave = prop;
2591

2592 2593 2594
	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
					* sizeof(struct cpsw_slave_data),
					GFP_KERNEL);
2595
	if (!data->slave_data)
2596
		return -ENOMEM;
2597 2598

	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2599
		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2600
		return -EINVAL;
2601 2602 2603 2604
	}
	data->channels = prop;

	if (of_property_read_u32(node, "ale_entries", &prop)) {
2605
		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2606
		return -EINVAL;
2607 2608 2609 2610
	}
	data->ale_entries = prop;

	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2611
		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2612
		return -EINVAL;
2613 2614 2615 2616
	}
	data->bd_ram_size = prop;

	if (of_property_read_u32(node, "mac_control", &prop)) {
2617
		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2618
		return -EINVAL;
2619 2620 2621
	}
	data->mac_control = prop;

2622 2623
	if (of_property_read_bool(node, "dual_emac"))
		data->dual_emac = 1;
2624

2625 2626 2627 2628 2629 2630
	/*
	 * Populate all the child nodes here...
	 */
	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
	/* We do not want to force this, as in some cases may not have child */
	if (ret)
2631
		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2632

2633
	for_each_available_child_of_node(node, slave_node) {
2634 2635
		struct cpsw_slave_data *slave_data = data->slave_data + i;
		const void *mac_addr = NULL;
2636 2637 2638
		int lenp;
		const __be32 *parp;

2639 2640 2641 2642
		/* This is no slave child node, continue */
		if (strcmp(slave_node->name, "slave"))
			continue;

2643 2644
		slave_data->phy_node = of_parse_phandle(slave_node,
							"phy-handle", 0);
2645
		parp = of_get_property(slave_node, "phy_id", &lenp);
2646 2647 2648 2649 2650
		if (slave_data->phy_node) {
			dev_dbg(&pdev->dev,
				"slave[%d] using phy-handle=\"%s\"\n",
				i, slave_data->phy_node->full_name);
		} else if (of_phy_is_fixed_link(slave_node)) {
2651 2652 2653
			/* In the case of a fixed PHY, the DT node associated
			 * to the PHY is the Ethernet MAC DT node.
			 */
2654
			ret = of_phy_register_fixed_link(slave_node);
2655 2656 2657
			if (ret) {
				if (ret != -EPROBE_DEFER)
					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2658
				return ret;
2659
			}
2660
			slave_data->phy_node = of_node_get(slave_node);
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
		} else if (parp) {
			u32 phyid;
			struct device_node *mdio_node;
			struct platform_device *mdio;

			if (lenp != (sizeof(__be32) * 2)) {
				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
				goto no_phy_slave;
			}
			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
			phyid = be32_to_cpup(parp+1);
			mdio = of_find_device_by_node(mdio_node);
			of_node_put(mdio_node);
			if (!mdio) {
				dev_err(&pdev->dev, "Missing mdio platform device\n");
				return -EINVAL;
			}
			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
				 PHY_ID_FMT, mdio->name, phyid);
2680
			put_device(&mdio->dev);
2681
		} else {
2682 2683 2684
			dev_err(&pdev->dev,
				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
				i);
2685
			goto no_phy_slave;
2686
		}
2687 2688 2689 2690 2691 2692 2693 2694
		slave_data->phy_if = of_get_phy_mode(slave_node);
		if (slave_data->phy_if < 0) {
			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
				i);
			return slave_data->phy_if;
		}

no_phy_slave:
2695
		mac_addr = of_get_mac_address(slave_node);
2696
		if (mac_addr) {
2697
			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2698
		} else {
2699 2700 2701 2702
			ret = ti_cm_get_macid(&pdev->dev, i,
					      slave_data->mac_addr);
			if (ret)
				return ret;
2703
		}
2704
		if (data->dual_emac) {
2705
			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2706
						 &prop)) {
2707
				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2708
				slave_data->dual_emac_res_vlan = i+1;
2709 2710
				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
					slave_data->dual_emac_res_vlan, i);
2711 2712 2713 2714 2715
			} else {
				slave_data->dual_emac_res_vlan = prop;
			}
		}

2716
		i++;
2717 2718
		if (i == data->slaves)
			break;
2719 2720 2721 2722 2723
	}

	return 0;
}

2724 2725
static void cpsw_remove_dt(struct platform_device *pdev)
{
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_platform_data *data = &cpsw->data;
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0;

	for_each_available_child_of_node(node, slave_node) {
		struct cpsw_slave_data *slave_data = &data->slave_data[i];

		if (strcmp(slave_node->name, "slave"))
			continue;

2739 2740
		if (of_phy_is_fixed_link(slave_node))
			of_phy_deregister_fixed_link(slave_node);
2741 2742 2743 2744 2745 2746 2747 2748

		of_node_put(slave_data->phy_node);

		i++;
		if (i == data->slaves)
			break;
	}

2749 2750 2751
	of_platform_depopulate(&pdev->dev);
}

2752
static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2753
{
2754 2755
	struct cpsw_common		*cpsw = priv->cpsw;
	struct cpsw_platform_data	*data = &cpsw->data;
2756 2757
	struct net_device		*ndev;
	struct cpsw_priv		*priv_sl2;
2758
	int ret = 0;
2759

2760
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2761
	if (!ndev) {
2762
		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2763 2764 2765 2766
		return -ENOMEM;
	}

	priv_sl2 = netdev_priv(ndev);
2767
	priv_sl2->cpsw = cpsw;
2768 2769 2770 2771 2772 2773 2774
	priv_sl2->ndev = ndev;
	priv_sl2->dev  = &ndev->dev;
	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);

	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
			ETH_ALEN);
2775 2776
		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
			 priv_sl2->mac_addr);
2777 2778
	} else {
		random_ether_addr(priv_sl2->mac_addr);
2779 2780
		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
			 priv_sl2->mac_addr);
2781 2782 2783 2784
	}
	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);

	priv_sl2->emac_port = 1;
2785
	cpsw->slaves[1].ndev = ndev;
2786
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2787 2788

	ndev->netdev_ops = &cpsw_netdev_ops;
2789
	ndev->ethtool_ops = &cpsw_ethtool_ops;
2790 2791

	/* register the network device */
2792
	SET_NETDEV_DEV(ndev, cpsw->dev);
2793 2794
	ret = register_netdev(ndev);
	if (ret) {
2795
		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2796 2797 2798 2799 2800 2801 2802
		free_netdev(ndev);
		ret = -ENODEV;
	}

	return ret;
}

2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
#define CPSW_QUIRK_IRQ		BIT(0)

static struct platform_device_id cpsw_devtype[] = {
	{
		/* keep it for existing comaptibles */
		.name = "cpsw",
		.driver_data = CPSW_QUIRK_IRQ,
	}, {
		.name = "am335x-cpsw",
		.driver_data = CPSW_QUIRK_IRQ,
	}, {
		.name = "am4372-cpsw",
		.driver_data = 0,
	}, {
		.name = "dra7-cpsw",
		.driver_data = 0,
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(platform, cpsw_devtype);

enum ti_cpsw_type {
	CPSW = 0,
	AM335X_CPSW,
	AM4372_CPSW,
	DRA7_CPSW,
};

static const struct of_device_id cpsw_of_mtable[] = {
	{ .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
	{ .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
	{ .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
	{ .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, cpsw_of_mtable);

B
Bill Pemberton 已提交
2841
static int cpsw_probe(struct platform_device *pdev)
2842
{
2843
	struct clk			*clk;
2844
	struct cpsw_platform_data	*data;
2845 2846 2847 2848
	struct net_device		*ndev;
	struct cpsw_priv		*priv;
	struct cpdma_params		dma_params;
	struct cpsw_ale_params		ale_params;
2849
	void __iomem			*ss_regs;
2850
	void __iomem			*cpts_regs;
2851
	struct resource			*res, *ss_res;
2852
	const struct of_device_id	*of_id;
2853
	struct gpio_descs		*mode;
2854
	u32 slave_offset, sliver_offset, slave_size;
2855
	struct cpsw_common		*cpsw;
2856 2857
	int ret = 0, i;
	int irq;
2858

2859
	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2860 2861 2862
	if (!cpsw)
		return -ENOMEM;

2863
	cpsw->dev = &pdev->dev;
2864

2865
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2866
	if (!ndev) {
2867
		dev_err(&pdev->dev, "error allocating net_device\n");
2868 2869 2870 2871 2872
		return -ENOMEM;
	}

	platform_set_drvdata(pdev, ndev);
	priv = netdev_priv(ndev);
2873
	priv->cpsw = cpsw;
2874 2875 2876
	priv->ndev = ndev;
	priv->dev  = &ndev->dev;
	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2877
	cpsw->rx_packet_max = max(rx_packet_max, 128);
2878

2879 2880 2881 2882 2883 2884 2885
	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
	if (IS_ERR(mode)) {
		ret = PTR_ERR(mode);
		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
		goto clean_ndev_ret;
	}

2886 2887 2888 2889 2890
	/*
	 * This may be required here for child devices.
	 */
	pm_runtime_enable(&pdev->dev);

2891 2892 2893
	/* Select default pin state */
	pinctrl_pm_select_default_state(&pdev->dev);

2894 2895 2896 2897 2898 2899
	/* Need to enable clocks with runtime PM api to access module
	 * registers
	 */
	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
2900
		goto clean_runtime_disable_ret;
2901
	}
2902

2903 2904
	ret = cpsw_probe_dt(&cpsw->data, pdev);
	if (ret)
2905
		goto clean_dt_ret;
2906

2907
	data = &cpsw->data;
2908 2909
	cpsw->rx_ch_num = 1;
	cpsw->tx_ch_num = 1;
2910

2911 2912
	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2913
		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2914
	} else {
J
Joe Perches 已提交
2915
		eth_random_addr(priv->mac_addr);
2916
		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2917 2918 2919 2920
	}

	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);

2921
	cpsw->slaves = devm_kzalloc(&pdev->dev,
2922 2923
				    sizeof(struct cpsw_slave) * data->slaves,
				    GFP_KERNEL);
2924
	if (!cpsw->slaves) {
2925
		ret = -ENOMEM;
2926
		goto clean_dt_ret;
2927 2928
	}
	for (i = 0; i < data->slaves; i++)
2929
		cpsw->slaves[i].slave_num = i;
2930

2931
	cpsw->slaves[0].ndev = ndev;
2932 2933
	priv->emac_port = 0;

2934 2935
	clk = devm_clk_get(&pdev->dev, "fck");
	if (IS_ERR(clk)) {
2936
		dev_err(priv->dev, "fck is not found\n");
2937
		ret = -ENODEV;
2938
		goto clean_dt_ret;
2939
	}
2940
	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2941

2942 2943 2944 2945
	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
	if (IS_ERR(ss_regs)) {
		ret = PTR_ERR(ss_regs);
2946
		goto clean_dt_ret;
2947
	}
2948
	cpsw->regs = ss_regs;
2949

2950
	cpsw->version = readl(&cpsw->regs->id_ver);
2951

2952
	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2953 2954 2955
	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(cpsw->wr_regs)) {
		ret = PTR_ERR(cpsw->wr_regs);
2956
		goto clean_dt_ret;
2957 2958 2959
	}

	memset(&dma_params, 0, sizeof(dma_params));
2960 2961
	memset(&ale_params, 0, sizeof(ale_params));

2962
	switch (cpsw->version) {
2963
	case CPSW_VERSION_1:
2964
		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2965
		cpts_regs		= ss_regs + CPSW1_CPTS_OFFSET;
2966
		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
2967 2968 2969 2970 2971 2972 2973 2974 2975
		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
		slave_offset         = CPSW1_SLAVE_OFFSET;
		slave_size           = CPSW1_SLAVE_SIZE;
		sliver_offset        = CPSW1_SLIVER_OFFSET;
		dma_params.desc_mem_phys = 0;
		break;
	case CPSW_VERSION_2:
2976
	case CPSW_VERSION_3:
2977
	case CPSW_VERSION_4:
2978
		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
2979
		cpts_regs		= ss_regs + CPSW2_CPTS_OFFSET;
2980
		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
2981 2982 2983 2984 2985 2986 2987
		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
		slave_offset         = CPSW2_SLAVE_OFFSET;
		slave_size           = CPSW2_SLAVE_SIZE;
		sliver_offset        = CPSW2_SLIVER_OFFSET;
		dma_params.desc_mem_phys =
2988
			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
2989 2990
		break;
	default:
2991
		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
2992
		ret = -ENODEV;
2993
		goto clean_dt_ret;
2994
	}
2995 2996 2997 2998
	for (i = 0; i < cpsw->data.slaves; i++) {
		struct cpsw_slave *slave = &cpsw->slaves[i];

		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
2999 3000 3001 3002
		slave_offset  += slave_size;
		sliver_offset += SLIVER_SIZE;
	}

3003
	dma_params.dev		= &pdev->dev;
3004 3005 3006 3007 3008
	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
3009 3010 3011 3012 3013 3014 3015

	dma_params.num_chan		= data->channels;
	dma_params.has_soft_reset	= true;
	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
	dma_params.desc_mem_size	= data->bd_ram_size;
	dma_params.desc_align		= 16;
	dma_params.has_ext_regs		= true;
3016
	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3017
	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
3018
	dma_params.descs_pool_size	= descs_pool_size;
3019

3020 3021
	cpsw->dma = cpdma_ctlr_create(&dma_params);
	if (!cpsw->dma) {
3022 3023
		dev_err(priv->dev, "error initializing dma\n");
		ret = -ENOMEM;
3024
		goto clean_dt_ret;
3025 3026
	}

3027 3028 3029
	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
	if (WARN_ON(!cpsw->rxv[0].ch || !cpsw->txv[0].ch)) {
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
		dev_err(priv->dev, "error initializing dma channels\n");
		ret = -ENOMEM;
		goto clean_dma_ret;
	}

	ale_params.dev			= &ndev->dev;
	ale_params.ale_ageout		= ale_ageout;
	ale_params.ale_entries		= data->ale_entries;
	ale_params.ale_ports		= data->slaves;

3040 3041
	cpsw->ale = cpsw_ale_create(&ale_params);
	if (!cpsw->ale) {
3042 3043 3044 3045 3046
		dev_err(priv->dev, "error initializing ale engine\n");
		ret = -ENODEV;
		goto clean_dma_ret;
	}

3047
	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3048 3049 3050 3051 3052
	if (IS_ERR(cpsw->cpts)) {
		ret = PTR_ERR(cpsw->cpts);
		goto clean_ale_ret;
	}

3053
	ndev->irq = platform_get_irq(pdev, 1);
3054 3055
	if (ndev->irq < 0) {
		dev_err(priv->dev, "error getting irq resource\n");
3056
		ret = ndev->irq;
3057 3058 3059
		goto clean_ale_ret;
	}

3060 3061 3062 3063
	of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
	if (of_id) {
		pdev->id_entry = of_id->data;
		if (pdev->id_entry->driver_data)
3064
			cpsw->quirk_irq = true;
3065 3066
	}

3067 3068 3069 3070 3071 3072 3073
	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
	 * MISC IRQs which are always kept disabled with this driver so
	 * we will not request them.
	 *
	 * If anyone wants to implement support for those, make sure to
	 * first request and append them to irqs_table array.
	 */
3074

3075
	/* RX IRQ */
3076
	irq = platform_get_irq(pdev, 1);
3077 3078
	if (irq < 0) {
		ret = irq;
3079
		goto clean_ale_ret;
3080
	}
3081

3082
	cpsw->irqs_table[0] = irq;
3083
	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3084
			       0, dev_name(&pdev->dev), cpsw);
3085 3086 3087 3088 3089
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
		goto clean_ale_ret;
	}

3090
	/* TX IRQ */
3091
	irq = platform_get_irq(pdev, 2);
3092 3093
	if (irq < 0) {
		ret = irq;
3094
		goto clean_ale_ret;
3095
	}
3096

3097
	cpsw->irqs_table[1] = irq;
3098
	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3099
			       0, dev_name(&pdev->dev), cpsw);
3100 3101 3102
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
		goto clean_ale_ret;
3103
	}
3104

3105
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3106 3107

	ndev->netdev_ops = &cpsw_netdev_ops;
3108
	ndev->ethtool_ops = &cpsw_ethtool_ops;
3109 3110
	netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
	netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
3111
	cpsw_split_res(ndev);
3112 3113 3114 3115 3116 3117 3118

	/* register the network device */
	SET_NETDEV_DEV(ndev, &pdev->dev);
	ret = register_netdev(ndev);
	if (ret) {
		dev_err(priv->dev, "error registering net device\n");
		ret = -ENODEV;
3119
		goto clean_ale_ret;
3120 3121
	}

3122 3123 3124
	cpsw_notice(priv, probe,
		    "initialized device (regs %pa, irq %d, pool size %d)\n",
		    &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3125
	if (cpsw->data.dual_emac) {
3126
		ret = cpsw_probe_dual_emac(priv);
3127 3128
		if (ret) {
			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3129
			goto clean_unregister_netdev_ret;
3130 3131 3132
		}
	}

3133 3134
	pm_runtime_put(&pdev->dev);

3135 3136
	return 0;

3137 3138
clean_unregister_netdev_ret:
	unregister_netdev(ndev);
3139
clean_ale_ret:
3140
	cpsw_ale_destroy(cpsw->ale);
3141
clean_dma_ret:
3142
	cpdma_ctlr_destroy(cpsw->dma);
3143 3144
clean_dt_ret:
	cpsw_remove_dt(pdev);
3145
	pm_runtime_put_sync(&pdev->dev);
3146
clean_runtime_disable_ret:
3147
	pm_runtime_disable(&pdev->dev);
3148
clean_ndev_ret:
3149
	free_netdev(priv->ndev);
3150 3151 3152
	return ret;
}

B
Bill Pemberton 已提交
3153
static int cpsw_remove(struct platform_device *pdev)
3154 3155
{
	struct net_device *ndev = platform_get_drvdata(pdev);
3156
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3157 3158 3159 3160 3161 3162 3163
	int ret;

	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
		return ret;
	}
3164

3165 3166
	if (cpsw->data.dual_emac)
		unregister_netdev(cpsw->slaves[1].ndev);
3167
	unregister_netdev(ndev);
3168

3169
	cpts_release(cpsw->cpts);
3170
	cpsw_ale_destroy(cpsw->ale);
3171
	cpdma_ctlr_destroy(cpsw->dma);
3172
	cpsw_remove_dt(pdev);
3173 3174
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
3175 3176
	if (cpsw->data.dual_emac)
		free_netdev(cpsw->slaves[1].ndev);
3177 3178 3179 3180
	free_netdev(ndev);
	return 0;
}

3181
#ifdef CONFIG_PM_SLEEP
3182 3183 3184 3185
static int cpsw_suspend(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
3186
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3187

3188
	if (cpsw->data.dual_emac) {
3189
		int i;
3190

3191 3192 3193
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_stop(cpsw->slaves[i].ndev);
3194 3195 3196 3197 3198
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_stop(ndev);
	}
3199

3200
	/* Select sleep pin state */
3201
	pinctrl_pm_select_sleep_state(dev);
3202

3203 3204 3205 3206 3207 3208 3209
	return 0;
}

static int cpsw_resume(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
3210
	struct cpsw_common	*cpsw = netdev_priv(ndev);
3211

3212
	/* Select default pin state */
3213
	pinctrl_pm_select_default_state(dev);
3214

3215 3216
	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
	rtnl_lock();
3217
	if (cpsw->data.dual_emac) {
3218 3219
		int i;

3220 3221 3222
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_open(cpsw->slaves[i].ndev);
3223 3224 3225 3226 3227
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_open(ndev);
	}
3228 3229
	rtnl_unlock();

3230 3231
	return 0;
}
3232
#endif
3233

3234
static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3235 3236 3237 3238 3239

static struct platform_driver cpsw_driver = {
	.driver = {
		.name	 = "cpsw",
		.pm	 = &cpsw_pm_ops,
3240
		.of_match_table = cpsw_of_mtable,
3241 3242
	},
	.probe = cpsw_probe,
B
Bill Pemberton 已提交
3243
	.remove = cpsw_remove,
3244 3245
};

3246
module_platform_driver(cpsw_driver);
3247 3248 3249 3250 3251

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
MODULE_DESCRIPTION("TI CPSW Ethernet driver");