blk-throttle.c 31.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
#include "blk-cgroup.h"
13
#include "blk.h"
14 15 16 17 18 19 20 21 22 23

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

/* Throttling is performed over 100ms slice and after that slice is renewed */
static unsigned long throtl_slice = HZ/10;	/* 100 ms */

24 25
static struct blkio_policy_type blkio_policy_throtl;

26 27 28 29 30
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;
static void throtl_schedule_delayed_work(struct throtl_data *td,
				unsigned long delay);

31 32 33 34 35 36 37 38 39 40 41 42
struct throtl_rb_root {
	struct rb_root rb;
	struct rb_node *left;
	unsigned int count;
	unsigned long min_disptime;
};

#define THROTL_RB_ROOT	(struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
			.count = 0, .min_disptime = 0}

#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

43 44 45 46 47 48 49 50
/* Per-cpu group stats */
struct tg_stats_cpu {
	/* total bytes transferred */
	struct blkg_rwstat		service_bytes;
	/* total IOs serviced, post merge */
	struct blkg_rwstat		serviced;
};

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
struct throtl_grp {
	/* active throtl group service_tree member */
	struct rb_node rb_node;

	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

	/* Two lists for READ and WRITE */
	struct bio_list bio_lists[2];

	/* Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/* bytes per second rate limits */
	uint64_t bps[2];

73 74 75
	/* IOPS limits */
	unsigned int iops[2];

76 77
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
78 79
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
80 81 82 83

	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
84 85

	/* Some throttle limits got updated for the group */
86
	int limits_changed;
87 88 89 90 91 92

	/* Per cpu stats pointer */
	struct tg_stats_cpu __percpu *stats_cpu;

	/* List of tgs waiting for per cpu stats memory to be allocated */
	struct list_head stats_alloc_node;
93 94 95 96 97 98 99
};

struct throtl_data
{
	/* service tree for active throtl groups */
	struct throtl_rb_root tg_service_tree;

100
	struct throtl_grp *root_tg;
101 102 103 104 105 106
	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/*
V
Vivek Goyal 已提交
107
	 * number of total undestroyed groups
108 109 110 111 112
	 */
	unsigned int nr_undestroyed_grps;

	/* Work for dispatching throttled bios */
	struct delayed_work throtl_work;
113

114
	int limits_changed;
115 116
};

117 118 119 120 121 122 123
/* list and work item to allocate percpu group stats */
static DEFINE_SPINLOCK(tg_stats_alloc_lock);
static LIST_HEAD(tg_stats_alloc_list);

static void tg_stats_alloc_fn(struct work_struct *);
static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);

124 125 126 127 128 129 130
static inline struct throtl_grp *blkg_to_tg(struct blkio_group *blkg)
{
	return blkg_to_pdata(blkg, &blkio_policy_throtl);
}

static inline struct blkio_group *tg_to_blkg(struct throtl_grp *tg)
{
131
	return pdata_to_blkg(tg);
132 133
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
enum tg_state_flags {
	THROTL_TG_FLAG_on_rr = 0,	/* on round-robin busy list */
};

#define THROTL_TG_FNS(name)						\
static inline void throtl_mark_tg_##name(struct throtl_grp *tg)		\
{									\
	(tg)->flags |= (1 << THROTL_TG_FLAG_##name);			\
}									\
static inline void throtl_clear_tg_##name(struct throtl_grp *tg)	\
{									\
	(tg)->flags &= ~(1 << THROTL_TG_FLAG_##name);			\
}									\
static inline int throtl_tg_##name(const struct throtl_grp *tg)		\
{									\
	return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0;	\
}

THROTL_TG_FNS(on_rr);

#define throtl_log_tg(td, tg, fmt, args...)				\
	blk_add_trace_msg((td)->queue, "throtl %s " fmt,		\
156
			  blkg_path(tg_to_blkg(tg)), ##args);		\
157 158 159 160

#define throtl_log(td, fmt, args...)	\
	blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)

161
static inline unsigned int total_nr_queued(struct throtl_data *td)
162
{
163
	return td->nr_queued[0] + td->nr_queued[1];
164 165
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/*
 * Worker for allocating per cpu stat for tgs. This is scheduled on the
 * system_nrt_wq once there are some groups on the alloc_list waiting for
 * allocation.
 */
static void tg_stats_alloc_fn(struct work_struct *work)
{
	static struct tg_stats_cpu *stats_cpu;	/* this fn is non-reentrant */
	struct delayed_work *dwork = to_delayed_work(work);
	bool empty = false;

alloc_stats:
	if (!stats_cpu) {
		stats_cpu = alloc_percpu(struct tg_stats_cpu);
		if (!stats_cpu) {
			/* allocation failed, try again after some time */
			queue_delayed_work(system_nrt_wq, dwork,
					   msecs_to_jiffies(10));
			return;
		}
	}

	spin_lock_irq(&tg_stats_alloc_lock);

	if (!list_empty(&tg_stats_alloc_list)) {
		struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
							 struct throtl_grp,
							 stats_alloc_node);
		swap(tg->stats_cpu, stats_cpu);
		list_del_init(&tg->stats_alloc_node);
	}

	empty = list_empty(&tg_stats_alloc_list);
	spin_unlock_irq(&tg_stats_alloc_lock);
	if (!empty)
		goto alloc_stats;
}

204
static void throtl_init_blkio_group(struct blkio_group *blkg)
205
{
206
	struct throtl_grp *tg = blkg_to_tg(blkg);
207

208 209 210 211 212
	RB_CLEAR_NODE(&tg->rb_node);
	bio_list_init(&tg->bio_lists[0]);
	bio_list_init(&tg->bio_lists[1]);
	tg->limits_changed = false;

213 214 215 216
	tg->bps[READ] = -1;
	tg->bps[WRITE] = -1;
	tg->iops[READ] = -1;
	tg->iops[WRITE] = -1;
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

	/*
	 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
	 * but percpu allocator can't be called from IO path.  Queue tg on
	 * tg_stats_alloc_list and allocate from work item.
	 */
	spin_lock(&tg_stats_alloc_lock);
	list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
	queue_delayed_work(system_nrt_wq, &tg_stats_alloc_work, 0);
	spin_unlock(&tg_stats_alloc_lock);
}

static void throtl_exit_blkio_group(struct blkio_group *blkg)
{
	struct throtl_grp *tg = blkg_to_tg(blkg);

	spin_lock(&tg_stats_alloc_lock);
	list_del_init(&tg->stats_alloc_node);
	spin_unlock(&tg_stats_alloc_lock);

	free_percpu(tg->stats_cpu);
}

static void throtl_reset_group_stats(struct blkio_group *blkg)
{
	struct throtl_grp *tg = blkg_to_tg(blkg);
	int cpu;

	if (tg->stats_cpu == NULL)
		return;

	for_each_possible_cpu(cpu) {
		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);

		blkg_rwstat_reset(&sc->service_bytes);
		blkg_rwstat_reset(&sc->serviced);
	}
254 255
}

256
static struct
257
throtl_grp *throtl_lookup_tg(struct throtl_data *td, struct blkio_cgroup *blkcg)
258
{
259 260
	/*
	 * This is the common case when there are no blkio cgroups.
261 262
	 * Avoid lookup in this case
	 */
263
	if (blkcg == &blkio_root_cgroup)
264
		return td->root_tg;
265

266
	return blkg_to_tg(blkg_lookup(blkcg, td->queue));
267 268
}

269 270
static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
						  struct blkio_cgroup *blkcg)
271
{
272
	struct request_queue *q = td->queue;
273
	struct throtl_grp *tg = NULL;
274

275
	/*
276 277
	 * This is the common case when there are no blkio cgroups.
	 * Avoid lookup in this case
278
	 */
279 280 281 282
	if (blkcg == &blkio_root_cgroup) {
		tg = td->root_tg;
	} else {
		struct blkio_group *blkg;
283

284
		blkg = blkg_lookup_create(blkcg, q, false);
285

286 287
		/* if %NULL and @q is alive, fall back to root_tg */
		if (!IS_ERR(blkg))
288
			tg = blkg_to_tg(blkg);
289 290
		else if (!blk_queue_dead(q))
			tg = td->root_tg;
291 292
	}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
	return tg;
}

static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
{
	/* Service tree is empty */
	if (!root->count)
		return NULL;

	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_tg(root->left);

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
	rb_erase_init(n, &root->rb);
	--root->count;
}

static void update_min_dispatch_time(struct throtl_rb_root *st)
{
	struct throtl_grp *tg;

	tg = throtl_rb_first(st);
	if (!tg)
		return;

	st->min_disptime = tg->disptime;
}

static void
tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &tg->rb_node;

	rb_link_node(&tg->rb_node, parent, node);
	rb_insert_color(&tg->rb_node, &st->rb);
}

static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	struct throtl_rb_root *st = &td->tg_service_tree;

	tg_service_tree_add(st, tg);
	throtl_mark_tg_on_rr(tg);
	st->count++;
}

static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	if (!throtl_tg_on_rr(tg))
		__throtl_enqueue_tg(td, tg);
}

static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
	throtl_clear_tg_on_rr(tg);
}

static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	if (throtl_tg_on_rr(tg))
		__throtl_dequeue_tg(td, tg);
}

static void throtl_schedule_next_dispatch(struct throtl_data *td)
{
	struct throtl_rb_root *st = &td->tg_service_tree;

	/*
	 * If there are more bios pending, schedule more work.
	 */
	if (!total_nr_queued(td))
		return;

	BUG_ON(!st->count);

	update_min_dispatch_time(st);

	if (time_before_eq(st->min_disptime, jiffies))
406
		throtl_schedule_delayed_work(td, 0);
407
	else
408
		throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
409 410 411 412 413 414
}

static inline void
throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
	tg->bytes_disp[rw] = 0;
415
	tg->io_disp[rw] = 0;
416 417 418 419 420 421 422
	tg->slice_start[rw] = jiffies;
	tg->slice_end[rw] = jiffies + throtl_slice;
	throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
			rw == READ ? 'R' : 'W', tg->slice_start[rw],
			tg->slice_end[rw], jiffies);
}

423 424 425 426 427 428
static inline void throtl_set_slice_end(struct throtl_data *td,
		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
}

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
static inline void throtl_extend_slice(struct throtl_data *td,
		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
	throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
			rw == READ ? 'R' : 'W', tg->slice_start[rw],
			tg->slice_end[rw], jiffies);
}

/* Determine if previously allocated or extended slice is complete or not */
static bool
throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
		return 0;

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
static inline void
throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
452 453
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
454 455 456 457 458 459 460 461 462 463 464

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
	if (throtl_slice_used(td, tg, rw))
		return;

465 466 467 468 469 470 471 472 473 474
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

	throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);

475 476 477 478 479 480
	time_elapsed = jiffies - tg->slice_start[rw];

	nr_slices = time_elapsed / throtl_slice;

	if (!nr_slices)
		return;
481 482 483
	tmp = tg->bps[rw] * throtl_slice * nr_slices;
	do_div(tmp, HZ);
	bytes_trim = tmp;
484

485
	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
486

487
	if (!bytes_trim && !io_trim)
488 489 490 491 492 493 494
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

495 496 497 498 499
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

500 501
	tg->slice_start[rw] += nr_slices * throtl_slice;

502
	throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
503
			" start=%lu end=%lu jiffies=%lu",
504
			rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
505 506 507
			tg->slice_start[rw], tg->slice_end[rw], jiffies);
}

508 509
static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
		struct bio *bio, unsigned long *wait)
510 511
{
	bool rw = bio_data_dir(bio);
512
	unsigned int io_allowed;
513
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
514
	u64 tmp;
515

516
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
517

518 519 520 521 522 523
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

524 525 526 527 528 529 530 531 532 533 534 535 536 537
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
538 539

	if (tg->io_disp[rw] + 1 <= io_allowed) {
540 541 542 543 544
		if (wait)
			*wait = 0;
		return 1;
	}

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
	/* Calc approx time to dispatch */
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
		struct bio *bio, unsigned long *wait)
{
	bool rw = bio_data_dir(bio);
562
	u64 bytes_allowed, extra_bytes, tmp;
563
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
564 565 566 567 568 569 570 571 572

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

573 574
	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);
575
	bytes_allowed = tmp;
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596

	if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
		if (wait)
			*wait = 0;
		return 1;
	}

	/* Calc approx time to dispatch */
	extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
597 598 599
	return 0;
}

600 601 602 603 604 605
static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
		return 1;
	return 0;
}

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
				struct bio *bio, unsigned long *wait)
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
	BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
623

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
	/* If tg->bps = -1, then BW is unlimited */
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
		if (wait)
			*wait = 0;
		return 1;
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
	 * long since now.
	 */
	if (throtl_slice_used(td, tg, rw))
		throtl_start_new_slice(td, tg, rw);
	else {
		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
			throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
	}

	if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
	    && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
		throtl_extend_slice(td, tg, rw, jiffies + max_wait);
657 658 659 660

	return 0;
}

661 662 663
static void throtl_update_dispatch_stats(struct blkio_group *blkg, u64 bytes,
					 int rw)
{
664 665
	struct throtl_grp *tg = blkg_to_tg(blkg);
	struct tg_stats_cpu *stats_cpu;
666 667 668
	unsigned long flags;

	/* If per cpu stats are not allocated yet, don't do any accounting. */
669
	if (tg->stats_cpu == NULL)
670 671 672 673 674 675 676 677 678
		return;

	/*
	 * Disabling interrupts to provide mutual exclusion between two
	 * writes on same cpu. It probably is not needed for 64bit. Not
	 * optimizing that case yet.
	 */
	local_irq_save(flags);

679
	stats_cpu = this_cpu_ptr(tg->stats_cpu);
680 681 682 683 684 685 686

	blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
	blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);

	local_irq_restore(flags);
}

687 688 689 690 691 692
static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	/* Charge the bio to the group */
	tg->bytes_disp[rw] += bio->bi_size;
693
	tg->io_disp[rw]++;
694

695
	throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size, bio->bi_rw);
696 697 698 699 700 701 702 703 704
}

static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
			struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	bio_list_add(&tg->bio_lists[rw], bio);
	/* Take a bio reference on tg */
T
Tejun Heo 已提交
705
	blkg_get(tg_to_blkg(tg));
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
	tg->nr_queued[rw]++;
	td->nr_queued[rw]++;
	throtl_enqueue_tg(td, tg);
}

static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
{
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

	if ((bio = bio_list_peek(&tg->bio_lists[READ])))
		tg_may_dispatch(td, tg, bio, &read_wait);

	if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
		tg_may_dispatch(td, tg, bio, &write_wait);

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
	throtl_dequeue_tg(td, tg);
	tg->disptime = disptime;
	throtl_enqueue_tg(td, tg);
}

static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
				bool rw, struct bio_list *bl)
{
	struct bio *bio;

	bio = bio_list_pop(&tg->bio_lists[rw]);
	tg->nr_queued[rw]--;
T
Tejun Heo 已提交
738 739
	/* Drop bio reference on blkg */
	blkg_put(tg_to_blkg(tg));
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755

	BUG_ON(td->nr_queued[rw] <= 0);
	td->nr_queued[rw]--;

	throtl_charge_bio(tg, bio);
	bio_list_add(bl, bio);
	bio->bi_rw |= REQ_THROTTLED;

	throtl_trim_slice(td, tg, rw);
}

static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
				struct bio_list *bl)
{
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
756
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

	while ((bio = bio_list_peek(&tg->bio_lists[READ]))
		&& tg_may_dispatch(td, tg, bio, NULL)) {

		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

	while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
		&& tg_may_dispatch(td, tg, bio, NULL)) {

		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
{
	unsigned int nr_disp = 0;
	struct throtl_grp *tg;
	struct throtl_rb_root *st = &td->tg_service_tree;

	while (1) {
		tg = throtl_rb_first(st);

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

		throtl_dequeue_tg(td, tg);

		nr_disp += throtl_dispatch_tg(td, tg, bl);

		if (tg->nr_queued[0] || tg->nr_queued[1]) {
			tg_update_disptime(td, tg);
			throtl_enqueue_tg(td, tg);
		}

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

815 816
static void throtl_process_limit_change(struct throtl_data *td)
{
817 818
	struct request_queue *q = td->queue;
	struct blkio_group *blkg, *n;
819

820
	if (!td->limits_changed)
821 822
		return;

823
	xchg(&td->limits_changed, false);
824

825
	throtl_log(td, "limits changed");
826

827
	list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
828 829
		struct throtl_grp *tg = blkg_to_tg(blkg);

830 831 832 833 834 835 836 837 838 839
		if (!tg->limits_changed)
			continue;

		if (!xchg(&tg->limits_changed, false))
			continue;

		throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
			" riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE],
			tg->iops[READ], tg->iops[WRITE]);

840 841 842 843 844 845 846 847 848
		/*
		 * Restart the slices for both READ and WRITES. It
		 * might happen that a group's limit are dropped
		 * suddenly and we don't want to account recently
		 * dispatched IO with new low rate
		 */
		throtl_start_new_slice(td, tg, 0);
		throtl_start_new_slice(td, tg, 1);

849
		if (throtl_tg_on_rr(tg))
850 851 852 853
			tg_update_disptime(td, tg);
	}
}

854 855 856 857 858 859 860
/* Dispatch throttled bios. Should be called without queue lock held. */
static int throtl_dispatch(struct request_queue *q)
{
	struct throtl_data *td = q->td;
	unsigned int nr_disp = 0;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
861
	struct blk_plug plug;
862 863 864

	spin_lock_irq(q->queue_lock);

865 866
	throtl_process_limit_change(td);

867 868 869 870 871
	if (!total_nr_queued(td))
		goto out;

	bio_list_init(&bio_list_on_stack);

872
	throtl_log(td, "dispatch nr_queued=%u read=%u write=%u",
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
			total_nr_queued(td), td->nr_queued[READ],
			td->nr_queued[WRITE]);

	nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);

	if (nr_disp)
		throtl_log(td, "bios disp=%u", nr_disp);

	throtl_schedule_next_dispatch(td);
out:
	spin_unlock_irq(q->queue_lock);

	/*
	 * If we dispatched some requests, unplug the queue to make sure
	 * immediate dispatch
	 */
	if (nr_disp) {
890
		blk_start_plug(&plug);
891 892
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
893
		blk_finish_plug(&plug);
894 895 896 897 898 899 900 901 902 903 904 905 906 907
	}
	return nr_disp;
}

void blk_throtl_work(struct work_struct *work)
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					throtl_work.work);
	struct request_queue *q = td->queue;

	throtl_dispatch(q);
}

/* Call with queue lock held */
908 909
static void
throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
910 911 912 913
{

	struct delayed_work *dwork = &td->throtl_work;

914
	/* schedule work if limits changed even if no bio is queued */
915
	if (total_nr_queued(td) || td->limits_changed) {
916 917 918 919 920
		/*
		 * We might have a work scheduled to be executed in future.
		 * Cancel that and schedule a new one.
		 */
		__cancel_delayed_work(dwork);
921
		queue_delayed_work(kthrotld_workqueue, dwork, delay);
922 923 924 925 926
		throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
				delay, jiffies);
	}
}

927
static u64 tg_prfill_cpu_rwstat(struct seq_file *sf, void *pdata, int off)
928
{
929
	struct throtl_grp *tg = pdata;
930 931 932 933
	struct blkg_rwstat rwstat = { }, tmp;
	int i, cpu;

	for_each_possible_cpu(cpu) {
934
		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
935 936 937 938 939 940

		tmp = blkg_rwstat_read((void *)sc + off);
		for (i = 0; i < BLKG_RWSTAT_NR; i++)
			rwstat.cnt[i] += tmp.cnt[i];
	}

941
	return __blkg_prfill_rwstat(sf, pdata, &rwstat);
942 943 944
}

/* print per-cpu blkg_rwstat specified by BLKCG_STAT_PRIV() */
945 946
static int tg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft,
			       struct seq_file *sf)
947 948 949
{
	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);

950
	blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat,
951 952 953 954 955
			  BLKCG_STAT_POL(cft->private),
			  BLKCG_STAT_OFF(cft->private), true);
	return 0;
}

956
static u64 tg_prfill_conf_u64(struct seq_file *sf, void *pdata, int off)
957
{
958
	u64 v = *(u64 *)(pdata + off);
959

960
	if (v == -1)
961
		return 0;
962
	return __blkg_prfill_u64(sf, pdata, v);
963 964
}

965
static u64 tg_prfill_conf_uint(struct seq_file *sf, void *pdata, int off)
966
{
967
	unsigned int v = *(unsigned int *)(pdata + off);
968

969 970
	if (v == -1)
		return 0;
971
	return __blkg_prfill_u64(sf, pdata, v);
972 973
}

974 975
static int tg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft,
			     struct seq_file *sf)
976
{
977 978 979
	blkcg_print_blkgs(sf, cgroup_to_blkio_cgroup(cgrp), tg_prfill_conf_u64,
			  BLKIO_POLICY_THROTL, cft->private, false);
	return 0;
980 981
}

982 983
static int tg_print_conf_uint(struct cgroup *cgrp, struct cftype *cft,
			      struct seq_file *sf)
984
{
985 986 987
	blkcg_print_blkgs(sf, cgroup_to_blkio_cgroup(cgrp), tg_prfill_conf_uint,
			  BLKIO_POLICY_THROTL, cft->private, false);
	return 0;
988 989
}

990 991
static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf,
		       bool is_u64)
992 993 994
{
	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
	struct blkg_conf_ctx ctx;
995
	struct throtl_grp *tg;
996 997 998 999 1000 1001 1002
	int ret;

	ret = blkg_conf_prep(blkcg, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	tg = blkg_to_tg(ctx.blkg);
	if (tg) {
		struct throtl_data *td = ctx.blkg->q->td;

		if (!ctx.v)
			ctx.v = -1;

		if (is_u64)
			*(u64 *)((void *)tg + cft->private) = ctx.v;
		else
			*(unsigned int *)((void *)tg + cft->private) = ctx.v;

		/* XXX: we don't need the following deferred processing */
		xchg(&tg->limits_changed, true);
		xchg(&td->limits_changed, true);
		throtl_schedule_delayed_work(td, 0);

1020 1021 1022 1023 1024
		ret = 0;
	}

	blkg_conf_finish(&ctx);
	return ret;
1025 1026
}

1027 1028
static int tg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft,
			   const char *buf)
1029
{
1030
	return tg_set_conf(cgrp, cft, buf, true);
1031 1032
}

1033 1034
static int tg_set_conf_uint(struct cgroup *cgrp, struct cftype *cft,
			    const char *buf)
1035
{
1036
	return tg_set_conf(cgrp, cft, buf, false);
1037 1038 1039 1040 1041
}

static struct cftype throtl_files[] = {
	{
		.name = "throttle.read_bps_device",
1042 1043 1044
		.private = offsetof(struct throtl_grp, bps[READ]),
		.read_seq_string = tg_print_conf_u64,
		.write_string = tg_set_conf_u64,
1045 1046 1047 1048
		.max_write_len = 256,
	},
	{
		.name = "throttle.write_bps_device",
1049 1050 1051
		.private = offsetof(struct throtl_grp, bps[WRITE]),
		.read_seq_string = tg_print_conf_u64,
		.write_string = tg_set_conf_u64,
1052 1053 1054 1055
		.max_write_len = 256,
	},
	{
		.name = "throttle.read_iops_device",
1056 1057 1058
		.private = offsetof(struct throtl_grp, iops[READ]),
		.read_seq_string = tg_print_conf_uint,
		.write_string = tg_set_conf_uint,
1059 1060 1061 1062
		.max_write_len = 256,
	},
	{
		.name = "throttle.write_iops_device",
1063 1064 1065
		.private = offsetof(struct throtl_grp, iops[WRITE]),
		.read_seq_string = tg_print_conf_uint,
		.write_string = tg_set_conf_uint,
1066 1067 1068 1069 1070
		.max_write_len = 256,
	},
	{
		.name = "throttle.io_service_bytes",
		.private = BLKCG_STAT_PRIV(BLKIO_POLICY_THROTL,
1071 1072
				offsetof(struct tg_stats_cpu, service_bytes)),
		.read_seq_string = tg_print_cpu_rwstat,
1073 1074 1075 1076
	},
	{
		.name = "throttle.io_serviced",
		.private = BLKCG_STAT_PRIV(BLKIO_POLICY_THROTL,
1077 1078
				offsetof(struct tg_stats_cpu, serviced)),
		.read_seq_string = tg_print_cpu_rwstat,
1079 1080 1081 1082
	},
	{ }	/* terminate */
};

1083
static void throtl_shutdown_wq(struct request_queue *q)
1084 1085 1086 1087 1088 1089 1090 1091
{
	struct throtl_data *td = q->td;

	cancel_delayed_work_sync(&td->throtl_work);
}

static struct blkio_policy_type blkio_policy_throtl = {
	.ops = {
1092
		.blkio_init_group_fn = throtl_init_blkio_group,
1093 1094
		.blkio_exit_group_fn = throtl_exit_blkio_group,
		.blkio_reset_group_stats_fn = throtl_reset_group_stats,
1095
	},
1096
	.plid = BLKIO_POLICY_THROTL,
1097
	.pdata_size = sizeof(struct throtl_grp),
1098
	.cftypes = throtl_files,
1099 1100
};

1101
bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1102 1103 1104 1105
{
	struct throtl_data *td = q->td;
	struct throtl_grp *tg;
	bool rw = bio_data_dir(bio), update_disptime = true;
1106
	struct blkio_cgroup *blkcg;
1107
	bool throttled = false;
1108 1109 1110

	if (bio->bi_rw & REQ_THROTTLED) {
		bio->bi_rw &= ~REQ_THROTTLED;
1111
		goto out;
1112 1113
	}

1114 1115 1116
	/* bio_associate_current() needs ioc, try creating */
	create_io_context(GFP_ATOMIC, q->node);

1117 1118 1119 1120 1121 1122
	/*
	 * A throtl_grp pointer retrieved under rcu can be used to access
	 * basic fields like stats and io rates. If a group has no rules,
	 * just update the dispatch stats in lockless manner and return.
	 */
	rcu_read_lock();
1123
	blkcg = bio_blkio_cgroup(bio);
1124
	tg = throtl_lookup_tg(td, blkcg);
1125 1126
	if (tg) {
		if (tg_no_rule_group(tg, rw)) {
1127 1128
			throtl_update_dispatch_stats(tg_to_blkg(tg),
						     bio->bi_size, bio->bi_rw);
1129
			goto out_unlock_rcu;
1130 1131 1132 1133 1134 1135 1136
		}
	}

	/*
	 * Either group has not been allocated yet or it is not an unlimited
	 * IO group
	 */
1137
	spin_lock_irq(q->queue_lock);
1138
	tg = throtl_lookup_create_tg(td, blkcg);
1139 1140
	if (unlikely(!tg))
		goto out_unlock;
1141

1142 1143 1144 1145 1146
	if (tg->nr_queued[rw]) {
		/*
		 * There is already another bio queued in same dir. No
		 * need to update dispatch time.
		 */
1147
		update_disptime = false;
1148
		goto queue_bio;
1149

1150 1151 1152 1153 1154
	}

	/* Bio is with-in rate limit of group */
	if (tg_may_dispatch(td, tg, bio, NULL)) {
		throtl_charge_bio(tg, bio);
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
		throtl_trim_slice(td, tg, rw);
1168
		goto out_unlock;
1169 1170 1171
	}

queue_bio:
1172
	throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
1173 1174
			" iodisp=%u iops=%u queued=%d/%d",
			rw == READ ? 'R' : 'W',
1175
			tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1176
			tg->io_disp[rw], tg->iops[rw],
1177 1178
			tg->nr_queued[READ], tg->nr_queued[WRITE]);

1179
	bio_associate_current(bio);
1180
	throtl_add_bio_tg(q->td, tg, bio);
1181
	throttled = true;
1182 1183 1184 1185 1186 1187

	if (update_disptime) {
		tg_update_disptime(td, tg);
		throtl_schedule_next_dispatch(td);
	}

1188
out_unlock:
1189
	spin_unlock_irq(q->queue_lock);
1190 1191
out_unlock_rcu:
	rcu_read_unlock();
1192 1193
out:
	return throttled;
1194 1195
}

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
	struct throtl_rb_root *st = &td->tg_service_tree;
	struct throtl_grp *tg;
	struct bio_list bl;
	struct bio *bio;

1211
	WARN_ON_ONCE(!queue_is_locked(q));
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

	bio_list_init(&bl);

	while ((tg = throtl_rb_first(st))) {
		throtl_dequeue_tg(td, tg);

		while ((bio = bio_list_peek(&tg->bio_lists[READ])))
			tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
		while ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
			tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
	}
	spin_unlock_irq(q->queue_lock);

	while ((bio = bio_list_pop(&bl)))
		generic_make_request(bio);

	spin_lock_irq(q->queue_lock);
}

1231 1232 1233
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
1234
	struct blkio_group *blkg;
1235 1236 1237 1238 1239 1240

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;

	td->tg_service_tree = THROTL_RB_ROOT;
1241
	td->limits_changed = false;
1242
	INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1243

1244
	q->td = td;
1245
	td->queue = q;
V
Vivek Goyal 已提交
1246

1247
	/* alloc and init root group. */
1248 1249
	rcu_read_lock();
	spin_lock_irq(q->queue_lock);
1250

1251
	blkg = blkg_lookup_create(&blkio_root_cgroup, q, true);
1252
	if (!IS_ERR(blkg))
1253
		td->root_tg = blkg_to_tg(blkg);
1254

1255
	spin_unlock_irq(q->queue_lock);
1256 1257
	rcu_read_unlock();

1258 1259 1260 1261
	if (!td->root_tg) {
		kfree(td);
		return -ENOMEM;
	}
1262 1263 1264 1265 1266
	return 0;
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
1267
	BUG_ON(!q->td);
1268
	throtl_shutdown_wq(q);
1269
	kfree(q->td);
1270 1271 1272 1273
}

static int __init throtl_init(void)
{
1274 1275 1276 1277
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

1278 1279 1280 1281 1282
	blkio_policy_register(&blkio_policy_throtl);
	return 0;
}

module_init(throtl_init);