blk-throttle.c 29.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
#include "blk-cgroup.h"
13
#include "blk.h"
14 15 16 17 18 19 20 21 22 23

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

/* Throttling is performed over 100ms slice and after that slice is renewed */
static unsigned long throtl_slice = HZ/10;	/* 100 ms */

24 25
static struct blkio_policy_type blkio_policy_throtl;

26 27 28 29 30
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;
static void throtl_schedule_delayed_work(struct throtl_data *td,
				unsigned long delay);

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
struct throtl_rb_root {
	struct rb_root rb;
	struct rb_node *left;
	unsigned int count;
	unsigned long min_disptime;
};

#define THROTL_RB_ROOT	(struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
			.count = 0, .min_disptime = 0}

#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

struct throtl_grp {
	/* active throtl group service_tree member */
	struct rb_node rb_node;

	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

	/* Two lists for READ and WRITE */
	struct bio_list bio_lists[2];

	/* Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/* bytes per second rate limits */
	uint64_t bps[2];

65 66 67
	/* IOPS limits */
	unsigned int iops[2];

68 69
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
70 71
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
72 73 74 75

	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
76 77

	/* Some throttle limits got updated for the group */
78
	int limits_changed;
79 80 81 82 83 84 85
};

struct throtl_data
{
	/* service tree for active throtl groups */
	struct throtl_rb_root tg_service_tree;

86
	struct throtl_grp *root_tg;
87 88 89 90 91 92
	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/*
V
Vivek Goyal 已提交
93
	 * number of total undestroyed groups
94 95 96 97 98
	 */
	unsigned int nr_undestroyed_grps;

	/* Work for dispatching throttled bios */
	struct delayed_work throtl_work;
99

100
	int limits_changed;
101 102
};

103 104 105 106 107 108 109
static inline struct throtl_grp *blkg_to_tg(struct blkio_group *blkg)
{
	return blkg_to_pdata(blkg, &blkio_policy_throtl);
}

static inline struct blkio_group *tg_to_blkg(struct throtl_grp *tg)
{
110
	return pdata_to_blkg(tg);
111 112
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
enum tg_state_flags {
	THROTL_TG_FLAG_on_rr = 0,	/* on round-robin busy list */
};

#define THROTL_TG_FNS(name)						\
static inline void throtl_mark_tg_##name(struct throtl_grp *tg)		\
{									\
	(tg)->flags |= (1 << THROTL_TG_FLAG_##name);			\
}									\
static inline void throtl_clear_tg_##name(struct throtl_grp *tg)	\
{									\
	(tg)->flags &= ~(1 << THROTL_TG_FLAG_##name);			\
}									\
static inline int throtl_tg_##name(const struct throtl_grp *tg)		\
{									\
	return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0;	\
}

THROTL_TG_FNS(on_rr);

#define throtl_log_tg(td, tg, fmt, args...)				\
	blk_add_trace_msg((td)->queue, "throtl %s " fmt,		\
135
			  blkg_path(tg_to_blkg(tg)), ##args);		\
136 137 138 139

#define throtl_log(td, fmt, args...)	\
	blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)

140
static inline unsigned int total_nr_queued(struct throtl_data *td)
141
{
142
	return td->nr_queued[0] + td->nr_queued[1];
143 144
}

145
static void throtl_init_blkio_group(struct blkio_group *blkg)
146
{
147
	struct throtl_grp *tg = blkg_to_tg(blkg);
148

149 150 151 152 153
	RB_CLEAR_NODE(&tg->rb_node);
	bio_list_init(&tg->bio_lists[0]);
	bio_list_init(&tg->bio_lists[1]);
	tg->limits_changed = false;

154 155 156 157
	tg->bps[READ] = -1;
	tg->bps[WRITE] = -1;
	tg->iops[READ] = -1;
	tg->iops[WRITE] = -1;
158 159
}

160
static struct
161
throtl_grp *throtl_lookup_tg(struct throtl_data *td, struct blkio_cgroup *blkcg)
162
{
163 164
	/*
	 * This is the common case when there are no blkio cgroups.
165 166
	 * Avoid lookup in this case
	 */
167
	if (blkcg == &blkio_root_cgroup)
168
		return td->root_tg;
169

170
	return blkg_to_tg(blkg_lookup(blkcg, td->queue));
171 172
}

173 174
static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
						  struct blkio_cgroup *blkcg)
175
{
176
	struct request_queue *q = td->queue;
177
	struct throtl_grp *tg = NULL;
178

179
	/*
180 181
	 * This is the common case when there are no blkio cgroups.
	 * Avoid lookup in this case
182
	 */
183 184 185 186
	if (blkcg == &blkio_root_cgroup) {
		tg = td->root_tg;
	} else {
		struct blkio_group *blkg;
187

188
		blkg = blkg_lookup_create(blkcg, q, false);
189

190 191
		/* if %NULL and @q is alive, fall back to root_tg */
		if (!IS_ERR(blkg))
192
			tg = blkg_to_tg(blkg);
193 194
		else if (!blk_queue_dead(q))
			tg = td->root_tg;
195 196
	}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
	return tg;
}

static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
{
	/* Service tree is empty */
	if (!root->count)
		return NULL;

	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_tg(root->left);

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
	rb_erase_init(n, &root->rb);
	--root->count;
}

static void update_min_dispatch_time(struct throtl_rb_root *st)
{
	struct throtl_grp *tg;

	tg = throtl_rb_first(st);
	if (!tg)
		return;

	st->min_disptime = tg->disptime;
}

static void
tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &tg->rb_node;

	rb_link_node(&tg->rb_node, parent, node);
	rb_insert_color(&tg->rb_node, &st->rb);
}

static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	struct throtl_rb_root *st = &td->tg_service_tree;

	tg_service_tree_add(st, tg);
	throtl_mark_tg_on_rr(tg);
	st->count++;
}

static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	if (!throtl_tg_on_rr(tg))
		__throtl_enqueue_tg(td, tg);
}

static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
	throtl_clear_tg_on_rr(tg);
}

static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	if (throtl_tg_on_rr(tg))
		__throtl_dequeue_tg(td, tg);
}

static void throtl_schedule_next_dispatch(struct throtl_data *td)
{
	struct throtl_rb_root *st = &td->tg_service_tree;

	/*
	 * If there are more bios pending, schedule more work.
	 */
	if (!total_nr_queued(td))
		return;

	BUG_ON(!st->count);

	update_min_dispatch_time(st);

	if (time_before_eq(st->min_disptime, jiffies))
310
		throtl_schedule_delayed_work(td, 0);
311
	else
312
		throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
313 314 315 316 317 318
}

static inline void
throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
	tg->bytes_disp[rw] = 0;
319
	tg->io_disp[rw] = 0;
320 321 322 323 324 325 326
	tg->slice_start[rw] = jiffies;
	tg->slice_end[rw] = jiffies + throtl_slice;
	throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
			rw == READ ? 'R' : 'W', tg->slice_start[rw],
			tg->slice_end[rw], jiffies);
}

327 328 329 330 331 332
static inline void throtl_set_slice_end(struct throtl_data *td,
		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
static inline void throtl_extend_slice(struct throtl_data *td,
		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
	throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
			rw == READ ? 'R' : 'W', tg->slice_start[rw],
			tg->slice_end[rw], jiffies);
}

/* Determine if previously allocated or extended slice is complete or not */
static bool
throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
		return 0;

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
static inline void
throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
356 357
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
358 359 360 361 362 363 364 365 366 367 368

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
	if (throtl_slice_used(td, tg, rw))
		return;

369 370 371 372 373 374 375 376 377 378
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

	throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);

379 380 381 382 383 384
	time_elapsed = jiffies - tg->slice_start[rw];

	nr_slices = time_elapsed / throtl_slice;

	if (!nr_slices)
		return;
385 386 387
	tmp = tg->bps[rw] * throtl_slice * nr_slices;
	do_div(tmp, HZ);
	bytes_trim = tmp;
388

389
	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
390

391
	if (!bytes_trim && !io_trim)
392 393 394 395 396 397 398
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

399 400 401 402 403
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

404 405
	tg->slice_start[rw] += nr_slices * throtl_slice;

406
	throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
407
			" start=%lu end=%lu jiffies=%lu",
408
			rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
409 410 411
			tg->slice_start[rw], tg->slice_end[rw], jiffies);
}

412 413
static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
		struct bio *bio, unsigned long *wait)
414 415
{
	bool rw = bio_data_dir(bio);
416
	unsigned int io_allowed;
417
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
418
	u64 tmp;
419

420
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
421

422 423 424 425 426 427
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

428 429 430 431 432 433 434 435 436 437 438 439 440 441
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
442 443

	if (tg->io_disp[rw] + 1 <= io_allowed) {
444 445 446 447 448
		if (wait)
			*wait = 0;
		return 1;
	}

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
	/* Calc approx time to dispatch */
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
		struct bio *bio, unsigned long *wait)
{
	bool rw = bio_data_dir(bio);
466
	u64 bytes_allowed, extra_bytes, tmp;
467
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
468 469 470 471 472 473 474 475 476

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

477 478
	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);
479
	bytes_allowed = tmp;
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500

	if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
		if (wait)
			*wait = 0;
		return 1;
	}

	/* Calc approx time to dispatch */
	extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
501 502 503
	return 0;
}

504 505 506 507 508 509
static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
		return 1;
	return 0;
}

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
				struct bio *bio, unsigned long *wait)
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
	BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
527

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	/* If tg->bps = -1, then BW is unlimited */
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
		if (wait)
			*wait = 0;
		return 1;
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
	 * long since now.
	 */
	if (throtl_slice_used(td, tg, rw))
		throtl_start_new_slice(td, tg, rw);
	else {
		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
			throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
	}

	if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
	    && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
		throtl_extend_slice(td, tg, rw, jiffies + max_wait);
561 562 563 564

	return 0;
}

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
static void throtl_update_dispatch_stats(struct blkio_group *blkg, u64 bytes,
					 int rw)
{
	struct blkg_policy_data *pd = blkg->pd[BLKIO_POLICY_THROTL];
	struct blkio_group_stats_cpu *stats_cpu;
	unsigned long flags;

	/* If per cpu stats are not allocated yet, don't do any accounting. */
	if (pd->stats_cpu == NULL)
		return;

	/*
	 * Disabling interrupts to provide mutual exclusion between two
	 * writes on same cpu. It probably is not needed for 64bit. Not
	 * optimizing that case yet.
	 */
	local_irq_save(flags);

	stats_cpu = this_cpu_ptr(pd->stats_cpu);

	blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
	blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);

	local_irq_restore(flags);
}

591 592 593 594 595 596
static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	/* Charge the bio to the group */
	tg->bytes_disp[rw] += bio->bi_size;
597
	tg->io_disp[rw]++;
598

599
	throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size, bio->bi_rw);
600 601 602 603 604 605 606 607 608
}

static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
			struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	bio_list_add(&tg->bio_lists[rw], bio);
	/* Take a bio reference on tg */
T
Tejun Heo 已提交
609
	blkg_get(tg_to_blkg(tg));
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
	tg->nr_queued[rw]++;
	td->nr_queued[rw]++;
	throtl_enqueue_tg(td, tg);
}

static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
{
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

	if ((bio = bio_list_peek(&tg->bio_lists[READ])))
		tg_may_dispatch(td, tg, bio, &read_wait);

	if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
		tg_may_dispatch(td, tg, bio, &write_wait);

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
	throtl_dequeue_tg(td, tg);
	tg->disptime = disptime;
	throtl_enqueue_tg(td, tg);
}

static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
				bool rw, struct bio_list *bl)
{
	struct bio *bio;

	bio = bio_list_pop(&tg->bio_lists[rw]);
	tg->nr_queued[rw]--;
T
Tejun Heo 已提交
642 643
	/* Drop bio reference on blkg */
	blkg_put(tg_to_blkg(tg));
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

	BUG_ON(td->nr_queued[rw] <= 0);
	td->nr_queued[rw]--;

	throtl_charge_bio(tg, bio);
	bio_list_add(bl, bio);
	bio->bi_rw |= REQ_THROTTLED;

	throtl_trim_slice(td, tg, rw);
}

static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
				struct bio_list *bl)
{
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
660
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

	while ((bio = bio_list_peek(&tg->bio_lists[READ]))
		&& tg_may_dispatch(td, tg, bio, NULL)) {

		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

	while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
		&& tg_may_dispatch(td, tg, bio, NULL)) {

		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
{
	unsigned int nr_disp = 0;
	struct throtl_grp *tg;
	struct throtl_rb_root *st = &td->tg_service_tree;

	while (1) {
		tg = throtl_rb_first(st);

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

		throtl_dequeue_tg(td, tg);

		nr_disp += throtl_dispatch_tg(td, tg, bl);

		if (tg->nr_queued[0] || tg->nr_queued[1]) {
			tg_update_disptime(td, tg);
			throtl_enqueue_tg(td, tg);
		}

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

719 720
static void throtl_process_limit_change(struct throtl_data *td)
{
721 722
	struct request_queue *q = td->queue;
	struct blkio_group *blkg, *n;
723

724
	if (!td->limits_changed)
725 726
		return;

727
	xchg(&td->limits_changed, false);
728

729
	throtl_log(td, "limits changed");
730

731
	list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
732 733
		struct throtl_grp *tg = blkg_to_tg(blkg);

734 735 736 737 738 739 740 741 742 743
		if (!tg->limits_changed)
			continue;

		if (!xchg(&tg->limits_changed, false))
			continue;

		throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
			" riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE],
			tg->iops[READ], tg->iops[WRITE]);

744 745 746 747 748 749 750 751 752
		/*
		 * Restart the slices for both READ and WRITES. It
		 * might happen that a group's limit are dropped
		 * suddenly and we don't want to account recently
		 * dispatched IO with new low rate
		 */
		throtl_start_new_slice(td, tg, 0);
		throtl_start_new_slice(td, tg, 1);

753
		if (throtl_tg_on_rr(tg))
754 755 756 757
			tg_update_disptime(td, tg);
	}
}

758 759 760 761 762 763 764
/* Dispatch throttled bios. Should be called without queue lock held. */
static int throtl_dispatch(struct request_queue *q)
{
	struct throtl_data *td = q->td;
	unsigned int nr_disp = 0;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
765
	struct blk_plug plug;
766 767 768

	spin_lock_irq(q->queue_lock);

769 770
	throtl_process_limit_change(td);

771 772 773 774 775
	if (!total_nr_queued(td))
		goto out;

	bio_list_init(&bio_list_on_stack);

776
	throtl_log(td, "dispatch nr_queued=%u read=%u write=%u",
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
			total_nr_queued(td), td->nr_queued[READ],
			td->nr_queued[WRITE]);

	nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);

	if (nr_disp)
		throtl_log(td, "bios disp=%u", nr_disp);

	throtl_schedule_next_dispatch(td);
out:
	spin_unlock_irq(q->queue_lock);

	/*
	 * If we dispatched some requests, unplug the queue to make sure
	 * immediate dispatch
	 */
	if (nr_disp) {
794
		blk_start_plug(&plug);
795 796
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
797
		blk_finish_plug(&plug);
798 799 800 801 802 803 804 805 806 807 808 809 810 811
	}
	return nr_disp;
}

void blk_throtl_work(struct work_struct *work)
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					throtl_work.work);
	struct request_queue *q = td->queue;

	throtl_dispatch(q);
}

/* Call with queue lock held */
812 813
static void
throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
814 815 816 817
{

	struct delayed_work *dwork = &td->throtl_work;

818
	/* schedule work if limits changed even if no bio is queued */
819
	if (total_nr_queued(td) || td->limits_changed) {
820 821 822 823 824
		/*
		 * We might have a work scheduled to be executed in future.
		 * Cancel that and schedule a new one.
		 */
		__cancel_delayed_work(dwork);
825
		queue_delayed_work(kthrotld_workqueue, dwork, delay);
826 827 828 829 830
		throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
				delay, jiffies);
	}
}

831 832 833 834 835
/*
 * Can not take queue lock in update functions as queue lock under
 * blkcg_lock is not allowed. Under other paths we take blkcg_lock under
 * queue_lock.
 */
836 837 838 839 840 841 842 843 844
static void throtl_update_blkio_group_common(struct throtl_data *td,
				struct throtl_grp *tg)
{
	xchg(&tg->limits_changed, true);
	xchg(&td->limits_changed, true);
	/* Schedule a work now to process the limit change */
	throtl_schedule_delayed_work(td, 0);
}

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
static u64 blkg_prfill_cpu_rwstat(struct seq_file *sf,
				  struct blkg_policy_data *pd, int off)
{
	struct blkg_rwstat rwstat = { }, tmp;
	int i, cpu;

	for_each_possible_cpu(cpu) {
		struct blkio_group_stats_cpu *sc =
			per_cpu_ptr(pd->stats_cpu, cpu);

		tmp = blkg_rwstat_read((void *)sc + off);
		for (i = 0; i < BLKG_RWSTAT_NR; i++)
			rwstat.cnt[i] += tmp.cnt[i];
	}

	return __blkg_prfill_rwstat(sf, pd, &rwstat);
}

/* print per-cpu blkg_rwstat specified by BLKCG_STAT_PRIV() */
static int blkcg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft,
				  struct seq_file *sf)
{
	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);

	blkcg_print_blkgs(sf, blkcg, blkg_prfill_cpu_rwstat,
			  BLKCG_STAT_POL(cft->private),
			  BLKCG_STAT_OFF(cft->private), true);
	return 0;
}

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
static u64 blkg_prfill_conf_u64(struct seq_file *sf,
				struct blkg_policy_data *pd, int off)
{
	u64 v = *(u64 *)((void *)&pd->conf + off);

	if (!v)
		return 0;
	return __blkg_prfill_u64(sf, pd, v);
}

static int blkcg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft,
				struct seq_file *sf)
{
	blkcg_print_blkgs(sf, cgroup_to_blkio_cgroup(cgrp),
			  blkg_prfill_conf_u64, BLKIO_POLICY_THROTL,
			  cft->private, false);
	return 0;
}

static void throtl_update_blkio_group_read_bps(struct blkio_group *blkg,
					       u64 read_bps)
896
{
897
	struct throtl_grp *tg = blkg_to_tg(blkg);
898

899
	tg->bps[READ] = read_bps;
900
	throtl_update_blkio_group_common(blkg->q->td, tg);
901 902
}

903 904
static void throtl_update_blkio_group_write_bps(struct blkio_group *blkg,
						u64 write_bps)
905
{
906
	struct throtl_grp *tg = blkg_to_tg(blkg);
907

908
	tg->bps[WRITE] = write_bps;
909
	throtl_update_blkio_group_common(blkg->q->td, tg);
910 911
}

912 913
static void throtl_update_blkio_group_read_iops(struct blkio_group *blkg,
						u64 read_iops)
914
{
915
	struct throtl_grp *tg = blkg_to_tg(blkg);
916

917
	tg->iops[READ] = read_iops;
918
	throtl_update_blkio_group_common(blkg->q->td, tg);
919 920
}

921 922
static void throtl_update_blkio_group_write_iops(struct blkio_group *blkg,
						 u64 write_iops)
923
{
924
	struct throtl_grp *tg = blkg_to_tg(blkg);
925

926
	tg->iops[WRITE] = write_iops;
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	throtl_update_blkio_group_common(blkg->q->td, tg);
}

static int blkcg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft,
			      const char *buf,
			      void (*update)(struct blkio_group *, u64))
{
	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
	struct blkg_policy_data *pd;
	struct blkg_conf_ctx ctx;
	int ret;

	ret = blkg_conf_prep(blkcg, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	pd = ctx.blkg->pd[BLKIO_POLICY_THROTL];
	if (pd) {
		*(u64 *)((void *)&pd->conf + cft->private) = ctx.v;
		update(ctx.blkg, ctx.v ?: -1);
		ret = 0;
	}

	blkg_conf_finish(&ctx);
	return ret;
953 954
}

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
static int blkcg_set_conf_bps_r(struct cgroup *cgrp, struct cftype *cft,
				const char *buf)
{
	return blkcg_set_conf_u64(cgrp, cft, buf,
				  throtl_update_blkio_group_read_bps);
}

static int blkcg_set_conf_bps_w(struct cgroup *cgrp, struct cftype *cft,
				const char *buf)
{
	return blkcg_set_conf_u64(cgrp, cft, buf,
				  throtl_update_blkio_group_write_bps);
}

static int blkcg_set_conf_iops_r(struct cgroup *cgrp, struct cftype *cft,
				 const char *buf)
{
	return blkcg_set_conf_u64(cgrp, cft, buf,
				  throtl_update_blkio_group_read_iops);
}

static int blkcg_set_conf_iops_w(struct cgroup *cgrp, struct cftype *cft,
				 const char *buf)
{
	return blkcg_set_conf_u64(cgrp, cft, buf,
				  throtl_update_blkio_group_write_iops);
}

static struct cftype throtl_files[] = {
	{
		.name = "throttle.read_bps_device",
		.private = offsetof(struct blkio_group_conf, bps[READ]),
		.read_seq_string = blkcg_print_conf_u64,
		.write_string = blkcg_set_conf_bps_r,
		.max_write_len = 256,
	},
	{
		.name = "throttle.write_bps_device",
		.private = offsetof(struct blkio_group_conf, bps[WRITE]),
		.read_seq_string = blkcg_print_conf_u64,
		.write_string = blkcg_set_conf_bps_w,
		.max_write_len = 256,
	},
	{
		.name = "throttle.read_iops_device",
		.private = offsetof(struct blkio_group_conf, iops[READ]),
		.read_seq_string = blkcg_print_conf_u64,
		.write_string = blkcg_set_conf_iops_r,
		.max_write_len = 256,
	},
	{
		.name = "throttle.write_iops_device",
		.private = offsetof(struct blkio_group_conf, iops[WRITE]),
		.read_seq_string = blkcg_print_conf_u64,
		.write_string = blkcg_set_conf_iops_w,
		.max_write_len = 256,
	},
	{
		.name = "throttle.io_service_bytes",
		.private = BLKCG_STAT_PRIV(BLKIO_POLICY_THROTL,
				offsetof(struct blkio_group_stats_cpu, service_bytes)),
		.read_seq_string = blkcg_print_cpu_rwstat,
	},
	{
		.name = "throttle.io_serviced",
		.private = BLKCG_STAT_PRIV(BLKIO_POLICY_THROTL,
				offsetof(struct blkio_group_stats_cpu, serviced)),
		.read_seq_string = blkcg_print_cpu_rwstat,
	},
	{ }	/* terminate */
};

1027
static void throtl_shutdown_wq(struct request_queue *q)
1028 1029 1030 1031 1032 1033 1034 1035
{
	struct throtl_data *td = q->td;

	cancel_delayed_work_sync(&td->throtl_work);
}

static struct blkio_policy_type blkio_policy_throtl = {
	.ops = {
1036
		.blkio_init_group_fn = throtl_init_blkio_group,
1037
	},
1038
	.plid = BLKIO_POLICY_THROTL,
1039
	.pdata_size = sizeof(struct throtl_grp),
1040
	.cftypes = throtl_files,
1041 1042
};

1043
bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1044 1045 1046 1047
{
	struct throtl_data *td = q->td;
	struct throtl_grp *tg;
	bool rw = bio_data_dir(bio), update_disptime = true;
1048
	struct blkio_cgroup *blkcg;
1049
	bool throttled = false;
1050 1051 1052

	if (bio->bi_rw & REQ_THROTTLED) {
		bio->bi_rw &= ~REQ_THROTTLED;
1053
		goto out;
1054 1055
	}

1056 1057 1058
	/* bio_associate_current() needs ioc, try creating */
	create_io_context(GFP_ATOMIC, q->node);

1059 1060 1061 1062 1063 1064
	/*
	 * A throtl_grp pointer retrieved under rcu can be used to access
	 * basic fields like stats and io rates. If a group has no rules,
	 * just update the dispatch stats in lockless manner and return.
	 */
	rcu_read_lock();
1065
	blkcg = bio_blkio_cgroup(bio);
1066
	tg = throtl_lookup_tg(td, blkcg);
1067 1068
	if (tg) {
		if (tg_no_rule_group(tg, rw)) {
1069 1070
			throtl_update_dispatch_stats(tg_to_blkg(tg),
						     bio->bi_size, bio->bi_rw);
1071
			goto out_unlock_rcu;
1072 1073 1074 1075 1076 1077 1078
		}
	}

	/*
	 * Either group has not been allocated yet or it is not an unlimited
	 * IO group
	 */
1079
	spin_lock_irq(q->queue_lock);
1080
	tg = throtl_lookup_create_tg(td, blkcg);
1081 1082
	if (unlikely(!tg))
		goto out_unlock;
1083

1084 1085 1086 1087 1088
	if (tg->nr_queued[rw]) {
		/*
		 * There is already another bio queued in same dir. No
		 * need to update dispatch time.
		 */
1089
		update_disptime = false;
1090
		goto queue_bio;
1091

1092 1093 1094 1095 1096
	}

	/* Bio is with-in rate limit of group */
	if (tg_may_dispatch(td, tg, bio, NULL)) {
		throtl_charge_bio(tg, bio);
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
		throtl_trim_slice(td, tg, rw);
1110
		goto out_unlock;
1111 1112 1113
	}

queue_bio:
1114
	throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
1115 1116
			" iodisp=%u iops=%u queued=%d/%d",
			rw == READ ? 'R' : 'W',
1117
			tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1118
			tg->io_disp[rw], tg->iops[rw],
1119 1120
			tg->nr_queued[READ], tg->nr_queued[WRITE]);

1121
	bio_associate_current(bio);
1122
	throtl_add_bio_tg(q->td, tg, bio);
1123
	throttled = true;
1124 1125 1126 1127 1128 1129

	if (update_disptime) {
		tg_update_disptime(td, tg);
		throtl_schedule_next_dispatch(td);
	}

1130
out_unlock:
1131
	spin_unlock_irq(q->queue_lock);
1132 1133
out_unlock_rcu:
	rcu_read_unlock();
1134 1135
out:
	return throttled;
1136 1137
}

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
	struct throtl_rb_root *st = &td->tg_service_tree;
	struct throtl_grp *tg;
	struct bio_list bl;
	struct bio *bio;

1153
	WARN_ON_ONCE(!queue_is_locked(q));
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

	bio_list_init(&bl);

	while ((tg = throtl_rb_first(st))) {
		throtl_dequeue_tg(td, tg);

		while ((bio = bio_list_peek(&tg->bio_lists[READ])))
			tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
		while ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
			tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
	}
	spin_unlock_irq(q->queue_lock);

	while ((bio = bio_list_pop(&bl)))
		generic_make_request(bio);

	spin_lock_irq(q->queue_lock);
}

1173 1174 1175
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
1176
	struct blkio_group *blkg;
1177 1178 1179 1180 1181 1182

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;

	td->tg_service_tree = THROTL_RB_ROOT;
1183
	td->limits_changed = false;
1184
	INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1185

1186
	q->td = td;
1187
	td->queue = q;
V
Vivek Goyal 已提交
1188

1189
	/* alloc and init root group. */
1190 1191
	rcu_read_lock();
	spin_lock_irq(q->queue_lock);
1192

1193
	blkg = blkg_lookup_create(&blkio_root_cgroup, q, true);
1194
	if (!IS_ERR(blkg))
1195
		td->root_tg = blkg_to_tg(blkg);
1196

1197
	spin_unlock_irq(q->queue_lock);
1198 1199
	rcu_read_unlock();

1200 1201 1202 1203
	if (!td->root_tg) {
		kfree(td);
		return -ENOMEM;
	}
1204 1205 1206 1207 1208
	return 0;
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
1209
	BUG_ON(!q->td);
1210
	throtl_shutdown_wq(q);
1211
	kfree(q->td);
1212 1213 1214 1215
}

static int __init throtl_init(void)
{
1216 1217 1218 1219
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

1220 1221 1222 1223 1224
	blkio_policy_register(&blkio_policy_throtl);
	return 0;
}

module_init(throtl_init);