blk-throttle.c 33.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
#include "blk-cgroup.h"
13
#include "blk.h"
14 15 16 17 18 19 20 21 22 23

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

/* Throttling is performed over 100ms slice and after that slice is renewed */
static unsigned long throtl_slice = HZ/10;	/* 100 ms */

24 25 26 27 28
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;
static void throtl_schedule_delayed_work(struct throtl_data *td,
				unsigned long delay);

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
struct throtl_rb_root {
	struct rb_root rb;
	struct rb_node *left;
	unsigned int count;
	unsigned long min_disptime;
};

#define THROTL_RB_ROOT	(struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
			.count = 0, .min_disptime = 0}

#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

struct throtl_grp {
	/* List of throtl groups on the request queue*/
	struct hlist_node tg_node;

	/* active throtl group service_tree member */
	struct rb_node rb_node;

	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	struct blkio_group blkg;
	atomic_t ref;
	unsigned int flags;

	/* Two lists for READ and WRITE */
	struct bio_list bio_lists[2];

	/* Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/* bytes per second rate limits */
	uint64_t bps[2];

68 69 70
	/* IOPS limits */
	unsigned int iops[2];

71 72
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
73 74
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
75 76 77 78

	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
79 80

	/* Some throttle limits got updated for the group */
81
	int limits_changed;
82 83

	struct rcu_head rcu_head;
84 85 86 87 88 89 90 91 92 93
};

struct throtl_data
{
	/* List of throtl groups */
	struct hlist_head tg_list;

	/* service tree for active throtl groups */
	struct throtl_rb_root tg_service_tree;

94
	struct throtl_grp *root_tg;
95 96 97 98 99 100
	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/*
V
Vivek Goyal 已提交
101
	 * number of total undestroyed groups
102 103 104 105 106
	 */
	unsigned int nr_undestroyed_grps;

	/* Work for dispatching throttled bios */
	struct delayed_work throtl_work;
107

108
	int limits_changed;
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
};

enum tg_state_flags {
	THROTL_TG_FLAG_on_rr = 0,	/* on round-robin busy list */
};

#define THROTL_TG_FNS(name)						\
static inline void throtl_mark_tg_##name(struct throtl_grp *tg)		\
{									\
	(tg)->flags |= (1 << THROTL_TG_FLAG_##name);			\
}									\
static inline void throtl_clear_tg_##name(struct throtl_grp *tg)	\
{									\
	(tg)->flags &= ~(1 << THROTL_TG_FLAG_##name);			\
}									\
static inline int throtl_tg_##name(const struct throtl_grp *tg)		\
{									\
	return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0;	\
}

THROTL_TG_FNS(on_rr);

#define throtl_log_tg(td, tg, fmt, args...)				\
	blk_add_trace_msg((td)->queue, "throtl %s " fmt,		\
				blkg_path(&(tg)->blkg), ##args);      	\

#define throtl_log(td, fmt, args...)	\
	blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)

static inline struct throtl_grp *tg_of_blkg(struct blkio_group *blkg)
{
	if (blkg)
		return container_of(blkg, struct throtl_grp, blkg);

	return NULL;
}

146
static inline unsigned int total_nr_queued(struct throtl_data *td)
147
{
148
	return td->nr_queued[0] + td->nr_queued[1];
149 150 151 152 153 154 155 156
}

static inline struct throtl_grp *throtl_ref_get_tg(struct throtl_grp *tg)
{
	atomic_inc(&tg->ref);
	return tg;
}

157 158 159 160 161
static void throtl_free_tg(struct rcu_head *head)
{
	struct throtl_grp *tg;

	tg = container_of(head, struct throtl_grp, rcu_head);
162
	free_percpu(tg->blkg.stats_cpu);
163 164 165
	kfree(tg);
}

166 167 168 169 170
static void throtl_put_tg(struct throtl_grp *tg)
{
	BUG_ON(atomic_read(&tg->ref) <= 0);
	if (!atomic_dec_and_test(&tg->ref))
		return;
171 172 173 174 175 176 177 178 179 180 181

	/*
	 * A group is freed in rcu manner. But having an rcu lock does not
	 * mean that one can access all the fields of blkg and assume these
	 * are valid. For example, don't try to follow throtl_data and
	 * request queue links.
	 *
	 * Having a reference to blkg under an rcu allows acess to only
	 * values local to groups like group stats and group rate limits
	 */
	call_rcu(&tg->rcu_head, throtl_free_tg);
182 183
}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
static void throtl_init_group(struct throtl_grp *tg)
{
	INIT_HLIST_NODE(&tg->tg_node);
	RB_CLEAR_NODE(&tg->rb_node);
	bio_list_init(&tg->bio_lists[0]);
	bio_list_init(&tg->bio_lists[1]);
	tg->limits_changed = false;

	/* Practically unlimited BW */
	tg->bps[0] = tg->bps[1] = -1;
	tg->iops[0] = tg->iops[1] = -1;

	/*
	 * Take the initial reference that will be released on destroy
	 * This can be thought of a joint reference by cgroup and
	 * request queue which will be dropped by either request queue
	 * exit or cgroup deletion path depending on who is exiting first.
	 */
	atomic_set(&tg->ref, 1);
}

/* Should be called with rcu read lock held (needed for blkcg) */
static void
throtl_add_group_to_td_list(struct throtl_data *td, struct throtl_grp *tg)
{
	hlist_add_head(&tg->tg_node, &td->tg_list);
	td->nr_undestroyed_grps++;
}

213 214
static void
__throtl_tg_fill_dev_details(struct throtl_data *td, struct throtl_grp *tg)
215 216 217 218
{
	struct backing_dev_info *bdi = &td->queue->backing_dev_info;
	unsigned int major, minor;

219 220 221 222 223 224 225 226 227 228 229 230 231 232
	if (!tg || tg->blkg.dev)
		return;

	/*
	 * Fill in device details for a group which might not have been
	 * filled at group creation time as queue was being instantiated
	 * and driver had not attached a device yet
	 */
	if (bdi->dev && dev_name(bdi->dev)) {
		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
		tg->blkg.dev = MKDEV(major, minor);
	}
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
/*
 * Should be called with without queue lock held. Here queue lock will be
 * taken rarely. It will be taken only once during life time of a group
 * if need be
 */
static void
throtl_tg_fill_dev_details(struct throtl_data *td, struct throtl_grp *tg)
{
	if (!tg || tg->blkg.dev)
		return;

	spin_lock_irq(td->queue->queue_lock);
	__throtl_tg_fill_dev_details(td, tg);
	spin_unlock_irq(td->queue->queue_lock);
}

249 250 251 252 253
static void throtl_init_add_tg_lists(struct throtl_data *td,
			struct throtl_grp *tg, struct blkio_cgroup *blkcg)
{
	__throtl_tg_fill_dev_details(td, tg);

254 255
	/* Add group onto cgroup list */
	blkiocg_add_blkio_group(blkcg, &tg->blkg, (void *)td,
256
				tg->blkg.dev, BLKIO_POLICY_THROTL);
257 258 259 260 261 262 263 264 265 266 267 268 269

	tg->bps[READ] = blkcg_get_read_bps(blkcg, tg->blkg.dev);
	tg->bps[WRITE] = blkcg_get_write_bps(blkcg, tg->blkg.dev);
	tg->iops[READ] = blkcg_get_read_iops(blkcg, tg->blkg.dev);
	tg->iops[WRITE] = blkcg_get_write_iops(blkcg, tg->blkg.dev);

	throtl_add_group_to_td_list(td, tg);
}

/* Should be called without queue lock and outside of rcu period */
static struct throtl_grp *throtl_alloc_tg(struct throtl_data *td)
{
	struct throtl_grp *tg = NULL;
270
	int ret;
271 272 273 274 275

	tg = kzalloc_node(sizeof(*tg), GFP_ATOMIC, td->queue->node);
	if (!tg)
		return NULL;

276 277 278 279 280 281 282
	ret = blkio_alloc_blkg_stats(&tg->blkg);

	if (ret) {
		kfree(tg);
		return NULL;
	}

283 284 285 286 287 288
	throtl_init_group(tg);
	return tg;
}

static struct
throtl_grp *throtl_find_tg(struct throtl_data *td, struct blkio_cgroup *blkcg)
289 290 291 292
{
	struct throtl_grp *tg = NULL;
	void *key = td;

293 294 295 296 297
	/*
	 * This is the common case when there are no blkio cgroups.
 	 * Avoid lookup in this case
 	 */
	if (blkcg == &blkio_root_cgroup)
298
		tg = td->root_tg;
299 300
	else
		tg = tg_of_blkg(blkiocg_lookup_group(blkcg, key));
301

302
	__throtl_tg_fill_dev_details(td, tg);
303 304 305 306 307
	return tg;
}

static struct throtl_grp * throtl_get_tg(struct throtl_data *td)
{
308
	struct throtl_grp *tg = NULL, *__tg = NULL;
309
	struct blkio_cgroup *blkcg;
310
	struct request_queue *q = td->queue;
311

312
	/* no throttling for dead queue */
313
	if (unlikely(blk_queue_bypass(q)))
314 315
		return NULL;

316
	rcu_read_lock();
317
	blkcg = task_blkio_cgroup(current);
318 319 320 321 322 323 324 325 326
	tg = throtl_find_tg(td, blkcg);
	if (tg) {
		rcu_read_unlock();
		return tg;
	}

	/*
	 * Need to allocate a group. Allocation of group also needs allocation
	 * of per cpu stats which in-turn takes a mutex() and can block. Hence
327
	 * we need to drop rcu lock and queue_lock before we call alloc.
328 329 330 331 332 333 334 335 336
	 */
	rcu_read_unlock();
	spin_unlock_irq(q->queue_lock);

	tg = throtl_alloc_tg(td);

	/* Group allocated and queue is still alive. take the lock */
	spin_lock_irq(q->queue_lock);

337
	/* Make sure @q is still alive */
338
	if (unlikely(blk_queue_bypass(q))) {
339 340 341 342
		kfree(tg);
		return NULL;
	}

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
	/*
	 * Initialize the new group. After sleeping, read the blkcg again.
	 */
	rcu_read_lock();
	blkcg = task_blkio_cgroup(current);

	/*
	 * If some other thread already allocated the group while we were
	 * not holding queue lock, free up the group
	 */
	__tg = throtl_find_tg(td, blkcg);

	if (__tg) {
		kfree(tg);
		rcu_read_unlock();
		return __tg;
	}

	/* Group allocation failed. Account the IO to root group */
	if (!tg) {
363
		tg = td->root_tg;
364 365 366 367
		return tg;
	}

	throtl_init_add_tg_lists(td, tg, blkcg);
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
	rcu_read_unlock();
	return tg;
}

static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
{
	/* Service tree is empty */
	if (!root->count)
		return NULL;

	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_tg(root->left);

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
	rb_erase_init(n, &root->rb);
	--root->count;
}

static void update_min_dispatch_time(struct throtl_rb_root *st)
{
	struct throtl_grp *tg;

	tg = throtl_rb_first(st);
	if (!tg)
		return;

	st->min_disptime = tg->disptime;
}

static void
tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &tg->rb_node;

	rb_link_node(&tg->rb_node, parent, node);
	rb_insert_color(&tg->rb_node, &st->rb);
}

static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	struct throtl_rb_root *st = &td->tg_service_tree;

	tg_service_tree_add(st, tg);
	throtl_mark_tg_on_rr(tg);
	st->count++;
}

static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	if (!throtl_tg_on_rr(tg))
		__throtl_enqueue_tg(td, tg);
}

static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
	throtl_clear_tg_on_rr(tg);
}

static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	if (throtl_tg_on_rr(tg))
		__throtl_dequeue_tg(td, tg);
}

static void throtl_schedule_next_dispatch(struct throtl_data *td)
{
	struct throtl_rb_root *st = &td->tg_service_tree;

	/*
	 * If there are more bios pending, schedule more work.
	 */
	if (!total_nr_queued(td))
		return;

	BUG_ON(!st->count);

	update_min_dispatch_time(st);

	if (time_before_eq(st->min_disptime, jiffies))
482
		throtl_schedule_delayed_work(td, 0);
483
	else
484
		throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
485 486 487 488 489 490
}

static inline void
throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
	tg->bytes_disp[rw] = 0;
491
	tg->io_disp[rw] = 0;
492 493 494 495 496 497 498
	tg->slice_start[rw] = jiffies;
	tg->slice_end[rw] = jiffies + throtl_slice;
	throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
			rw == READ ? 'R' : 'W', tg->slice_start[rw],
			tg->slice_end[rw], jiffies);
}

499 500 501 502 503 504
static inline void throtl_set_slice_end(struct throtl_data *td,
		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
}

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
static inline void throtl_extend_slice(struct throtl_data *td,
		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
	throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
			rw == READ ? 'R' : 'W', tg->slice_start[rw],
			tg->slice_end[rw], jiffies);
}

/* Determine if previously allocated or extended slice is complete or not */
static bool
throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
		return 0;

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
static inline void
throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
528 529
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
530 531 532 533 534 535 536 537 538 539 540

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
	if (throtl_slice_used(td, tg, rw))
		return;

541 542 543 544 545 546 547 548 549 550
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

	throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);

551 552 553 554 555 556
	time_elapsed = jiffies - tg->slice_start[rw];

	nr_slices = time_elapsed / throtl_slice;

	if (!nr_slices)
		return;
557 558 559
	tmp = tg->bps[rw] * throtl_slice * nr_slices;
	do_div(tmp, HZ);
	bytes_trim = tmp;
560

561
	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
562

563
	if (!bytes_trim && !io_trim)
564 565 566 567 568 569 570
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

571 572 573 574 575
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

576 577
	tg->slice_start[rw] += nr_slices * throtl_slice;

578
	throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
579
			" start=%lu end=%lu jiffies=%lu",
580
			rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
581 582 583
			tg->slice_start[rw], tg->slice_end[rw], jiffies);
}

584 585
static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
		struct bio *bio, unsigned long *wait)
586 587
{
	bool rw = bio_data_dir(bio);
588
	unsigned int io_allowed;
589
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
590
	u64 tmp;
591

592
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
593

594 595 596 597 598 599
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

600 601 602 603 604 605 606 607 608 609 610 611 612 613
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
614 615

	if (tg->io_disp[rw] + 1 <= io_allowed) {
616 617 618 619 620
		if (wait)
			*wait = 0;
		return 1;
	}

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
	/* Calc approx time to dispatch */
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
		struct bio *bio, unsigned long *wait)
{
	bool rw = bio_data_dir(bio);
638
	u64 bytes_allowed, extra_bytes, tmp;
639
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
640 641 642 643 644 645 646 647 648

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

649 650
	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);
651
	bytes_allowed = tmp;
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672

	if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
		if (wait)
			*wait = 0;
		return 1;
	}

	/* Calc approx time to dispatch */
	extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
673 674 675
	return 0;
}

676 677 678 679 680 681
static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
		return 1;
	return 0;
}

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
				struct bio *bio, unsigned long *wait)
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
	BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
699

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
	/* If tg->bps = -1, then BW is unlimited */
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
		if (wait)
			*wait = 0;
		return 1;
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
	 * long since now.
	 */
	if (throtl_slice_used(td, tg, rw))
		throtl_start_new_slice(td, tg, rw);
	else {
		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
			throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
	}

	if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
	    && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
		throtl_extend_slice(td, tg, rw, jiffies + max_wait);
733 734 735 736 737 738 739

	return 0;
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);
740
	bool sync = rw_is_sync(bio->bi_rw);
741 742 743

	/* Charge the bio to the group */
	tg->bytes_disp[rw] += bio->bi_size;
744
	tg->io_disp[rw]++;
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806

	blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size, rw, sync);
}

static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
			struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	bio_list_add(&tg->bio_lists[rw], bio);
	/* Take a bio reference on tg */
	throtl_ref_get_tg(tg);
	tg->nr_queued[rw]++;
	td->nr_queued[rw]++;
	throtl_enqueue_tg(td, tg);
}

static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
{
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

	if ((bio = bio_list_peek(&tg->bio_lists[READ])))
		tg_may_dispatch(td, tg, bio, &read_wait);

	if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
		tg_may_dispatch(td, tg, bio, &write_wait);

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
	throtl_dequeue_tg(td, tg);
	tg->disptime = disptime;
	throtl_enqueue_tg(td, tg);
}

static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
				bool rw, struct bio_list *bl)
{
	struct bio *bio;

	bio = bio_list_pop(&tg->bio_lists[rw]);
	tg->nr_queued[rw]--;
	/* Drop bio reference on tg */
	throtl_put_tg(tg);

	BUG_ON(td->nr_queued[rw] <= 0);
	td->nr_queued[rw]--;

	throtl_charge_bio(tg, bio);
	bio_list_add(bl, bio);
	bio->bi_rw |= REQ_THROTTLED;

	throtl_trim_slice(td, tg, rw);
}

static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
				struct bio_list *bl)
{
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
807
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

	while ((bio = bio_list_peek(&tg->bio_lists[READ]))
		&& tg_may_dispatch(td, tg, bio, NULL)) {

		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

	while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
		&& tg_may_dispatch(td, tg, bio, NULL)) {

		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
{
	unsigned int nr_disp = 0;
	struct throtl_grp *tg;
	struct throtl_rb_root *st = &td->tg_service_tree;

	while (1) {
		tg = throtl_rb_first(st);

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

		throtl_dequeue_tg(td, tg);

		nr_disp += throtl_dispatch_tg(td, tg, bl);

		if (tg->nr_queued[0] || tg->nr_queued[1]) {
			tg_update_disptime(td, tg);
			throtl_enqueue_tg(td, tg);
		}

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

866 867 868 869 870
static void throtl_process_limit_change(struct throtl_data *td)
{
	struct throtl_grp *tg;
	struct hlist_node *pos, *n;

871
	if (!td->limits_changed)
872 873
		return;

874
	xchg(&td->limits_changed, false);
875

876
	throtl_log(td, "limits changed");
877

878
	hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
879 880 881 882 883 884 885 886 887 888
		if (!tg->limits_changed)
			continue;

		if (!xchg(&tg->limits_changed, false))
			continue;

		throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
			" riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE],
			tg->iops[READ], tg->iops[WRITE]);

889 890 891 892 893 894 895 896 897
		/*
		 * Restart the slices for both READ and WRITES. It
		 * might happen that a group's limit are dropped
		 * suddenly and we don't want to account recently
		 * dispatched IO with new low rate
		 */
		throtl_start_new_slice(td, tg, 0);
		throtl_start_new_slice(td, tg, 1);

898
		if (throtl_tg_on_rr(tg))
899 900 901 902
			tg_update_disptime(td, tg);
	}
}

903 904 905 906 907 908 909
/* Dispatch throttled bios. Should be called without queue lock held. */
static int throtl_dispatch(struct request_queue *q)
{
	struct throtl_data *td = q->td;
	unsigned int nr_disp = 0;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
910
	struct blk_plug plug;
911 912 913

	spin_lock_irq(q->queue_lock);

914 915
	throtl_process_limit_change(td);

916 917 918 919 920
	if (!total_nr_queued(td))
		goto out;

	bio_list_init(&bio_list_on_stack);

921
	throtl_log(td, "dispatch nr_queued=%u read=%u write=%u",
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
			total_nr_queued(td), td->nr_queued[READ],
			td->nr_queued[WRITE]);

	nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);

	if (nr_disp)
		throtl_log(td, "bios disp=%u", nr_disp);

	throtl_schedule_next_dispatch(td);
out:
	spin_unlock_irq(q->queue_lock);

	/*
	 * If we dispatched some requests, unplug the queue to make sure
	 * immediate dispatch
	 */
	if (nr_disp) {
939
		blk_start_plug(&plug);
940 941
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
942
		blk_finish_plug(&plug);
943 944 945 946 947 948 949 950 951 952 953 954 955 956
	}
	return nr_disp;
}

void blk_throtl_work(struct work_struct *work)
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					throtl_work.work);
	struct request_queue *q = td->queue;

	throtl_dispatch(q);
}

/* Call with queue lock held */
957 958
static void
throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
959 960 961 962
{

	struct delayed_work *dwork = &td->throtl_work;

963
	/* schedule work if limits changed even if no bio is queued */
964
	if (total_nr_queued(td) || td->limits_changed) {
965 966 967 968 969
		/*
		 * We might have a work scheduled to be executed in future.
		 * Cancel that and schedule a new one.
		 */
		__cancel_delayed_work(dwork);
970
		queue_delayed_work(kthrotld_workqueue, dwork, delay);
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
		throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
				delay, jiffies);
	}
}

static void
throtl_destroy_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	/* Something wrong if we are trying to remove same group twice */
	BUG_ON(hlist_unhashed(&tg->tg_node));

	hlist_del_init(&tg->tg_node);

	/*
	 * Put the reference taken at the time of creation so that when all
	 * queues are gone, group can be destroyed.
	 */
	throtl_put_tg(tg);
	td->nr_undestroyed_grps--;
}

992
static bool throtl_release_tgs(struct throtl_data *td, bool release_root)
993 994 995
{
	struct hlist_node *pos, *n;
	struct throtl_grp *tg;
996
	bool empty = true;
997 998

	hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
999 1000 1001 1002
		/* skip root? */
		if (!release_root && tg == td->root_tg)
			continue;

1003 1004 1005 1006 1007 1008 1009
		/*
		 * If cgroup removal path got to blk_group first and removed
		 * it from cgroup list, then it will take care of destroying
		 * cfqg also.
		 */
		if (!blkiocg_del_blkio_group(&tg->blkg))
			throtl_destroy_tg(td, tg);
1010 1011
		else
			empty = false;
1012
	}
1013
	return empty;
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
}

/*
 * Blk cgroup controller notification saying that blkio_group object is being
 * delinked as associated cgroup object is going away. That also means that
 * no new IO will come in this group. So get rid of this group as soon as
 * any pending IO in the group is finished.
 *
 * This function is called under rcu_read_lock(). key is the rcu protected
 * pointer. That means "key" is a valid throtl_data pointer as long as we are
 * rcu read lock.
 *
 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
 * it should not be NULL as even if queue was going away, cgroup deltion
 * path got to it first.
 */
void throtl_unlink_blkio_group(void *key, struct blkio_group *blkg)
{
	unsigned long flags;
	struct throtl_data *td = key;

	spin_lock_irqsave(td->queue->queue_lock, flags);
	throtl_destroy_tg(td, tg_of_blkg(blkg));
	spin_unlock_irqrestore(td->queue->queue_lock, flags);
}

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
static bool throtl_clear_queue(struct request_queue *q)
{
	lockdep_assert_held(q->queue_lock);

	/*
	 * Clear tgs but leave the root one alone.  This is necessary
	 * because root_tg is expected to be persistent and safe because
	 * blk-throtl can never be disabled while @q is alive.  This is a
	 * kludge to prepare for unified blkg.  This whole function will be
	 * removed soon.
	 */
	return throtl_release_tgs(q->td, false);
}

1054 1055 1056 1057 1058 1059 1060 1061 1062
static void throtl_update_blkio_group_common(struct throtl_data *td,
				struct throtl_grp *tg)
{
	xchg(&tg->limits_changed, true);
	xchg(&td->limits_changed, true);
	/* Schedule a work now to process the limit change */
	throtl_schedule_delayed_work(td, 0);
}

1063 1064 1065
/*
 * For all update functions, key should be a valid pointer because these
 * update functions are called under blkcg_lock, that means, blkg is
L
Lucas De Marchi 已提交
1066
 * valid and in turn key is valid. queue exit path can not race because
1067 1068 1069 1070 1071 1072 1073
 * of blkcg_lock
 *
 * Can not take queue lock in update functions as queue lock under blkcg_lock
 * is not allowed. Under other paths we take blkcg_lock under queue_lock.
 */
static void throtl_update_blkio_group_read_bps(void *key,
				struct blkio_group *blkg, u64 read_bps)
1074
{
1075
	struct throtl_data *td = key;
1076
	struct throtl_grp *tg = tg_of_blkg(blkg);
1077

1078 1079
	tg->bps[READ] = read_bps;
	throtl_update_blkio_group_common(td, tg);
1080 1081
}

1082 1083
static void throtl_update_blkio_group_write_bps(void *key,
				struct blkio_group *blkg, u64 write_bps)
1084
{
1085
	struct throtl_data *td = key;
1086
	struct throtl_grp *tg = tg_of_blkg(blkg);
1087

1088 1089
	tg->bps[WRITE] = write_bps;
	throtl_update_blkio_group_common(td, tg);
1090 1091
}

1092 1093
static void throtl_update_blkio_group_read_iops(void *key,
			struct blkio_group *blkg, unsigned int read_iops)
1094
{
1095
	struct throtl_data *td = key;
1096
	struct throtl_grp *tg = tg_of_blkg(blkg);
1097

1098 1099
	tg->iops[READ] = read_iops;
	throtl_update_blkio_group_common(td, tg);
1100 1101
}

1102 1103
static void throtl_update_blkio_group_write_iops(void *key,
			struct blkio_group *blkg, unsigned int write_iops)
1104
{
1105
	struct throtl_data *td = key;
1106
	struct throtl_grp *tg = tg_of_blkg(blkg);
1107

1108 1109
	tg->iops[WRITE] = write_iops;
	throtl_update_blkio_group_common(td, tg);
1110 1111
}

1112
static void throtl_shutdown_wq(struct request_queue *q)
1113 1114 1115 1116 1117 1118 1119 1120 1121
{
	struct throtl_data *td = q->td;

	cancel_delayed_work_sync(&td->throtl_work);
}

static struct blkio_policy_type blkio_policy_throtl = {
	.ops = {
		.blkio_unlink_group_fn = throtl_unlink_blkio_group,
1122
		.blkio_clear_queue_fn = throtl_clear_queue,
1123 1124 1125 1126
		.blkio_update_group_read_bps_fn =
					throtl_update_blkio_group_read_bps,
		.blkio_update_group_write_bps_fn =
					throtl_update_blkio_group_write_bps,
1127 1128 1129 1130
		.blkio_update_group_read_iops_fn =
					throtl_update_blkio_group_read_iops,
		.blkio_update_group_write_iops_fn =
					throtl_update_blkio_group_write_iops,
1131
	},
1132
	.plid = BLKIO_POLICY_THROTL,
1133 1134
};

1135
bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1136 1137 1138 1139
{
	struct throtl_data *td = q->td;
	struct throtl_grp *tg;
	bool rw = bio_data_dir(bio), update_disptime = true;
1140
	struct blkio_cgroup *blkcg;
1141
	bool throttled = false;
1142 1143 1144

	if (bio->bi_rw & REQ_THROTTLED) {
		bio->bi_rw &= ~REQ_THROTTLED;
1145
		goto out;
1146 1147
	}

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	/*
	 * A throtl_grp pointer retrieved under rcu can be used to access
	 * basic fields like stats and io rates. If a group has no rules,
	 * just update the dispatch stats in lockless manner and return.
	 */

	rcu_read_lock();
	blkcg = task_blkio_cgroup(current);
	tg = throtl_find_tg(td, blkcg);
	if (tg) {
		throtl_tg_fill_dev_details(td, tg);

		if (tg_no_rule_group(tg, rw)) {
			blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size,
1162
					rw, rw_is_sync(bio->bi_rw));
1163
			rcu_read_unlock();
1164
			goto out;
1165 1166 1167 1168 1169 1170 1171 1172
		}
	}
	rcu_read_unlock();

	/*
	 * Either group has not been allocated yet or it is not an unlimited
	 * IO group
	 */
1173 1174
	spin_lock_irq(q->queue_lock);
	tg = throtl_get_tg(td);
1175 1176
	if (unlikely(!tg))
		goto out_unlock;
1177

1178 1179 1180 1181 1182
	if (tg->nr_queued[rw]) {
		/*
		 * There is already another bio queued in same dir. No
		 * need to update dispatch time.
		 */
1183
		update_disptime = false;
1184
		goto queue_bio;
1185

1186 1187 1188 1189 1190
	}

	/* Bio is with-in rate limit of group */
	if (tg_may_dispatch(td, tg, bio, NULL)) {
		throtl_charge_bio(tg, bio);
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
		throtl_trim_slice(td, tg, rw);
1204
		goto out_unlock;
1205 1206 1207
	}

queue_bio:
1208
	throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
1209 1210
			" iodisp=%u iops=%u queued=%d/%d",
			rw == READ ? 'R' : 'W',
1211
			tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1212
			tg->io_disp[rw], tg->iops[rw],
1213 1214 1215
			tg->nr_queued[READ], tg->nr_queued[WRITE]);

	throtl_add_bio_tg(q->td, tg, bio);
1216
	throttled = true;
1217 1218 1219 1220 1221 1222

	if (update_disptime) {
		tg_update_disptime(td, tg);
		throtl_schedule_next_dispatch(td);
	}

1223
out_unlock:
1224
	spin_unlock_irq(q->queue_lock);
1225 1226
out:
	return throttled;
1227 1228
}

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
	struct throtl_rb_root *st = &td->tg_service_tree;
	struct throtl_grp *tg;
	struct bio_list bl;
	struct bio *bio;

1244
	WARN_ON_ONCE(!queue_is_locked(q));
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

	bio_list_init(&bl);

	while ((tg = throtl_rb_first(st))) {
		throtl_dequeue_tg(td, tg);

		while ((bio = bio_list_peek(&tg->bio_lists[READ])))
			tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
		while ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
			tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
	}
	spin_unlock_irq(q->queue_lock);

	while ((bio = bio_list_pop(&bl)))
		generic_make_request(bio);

	spin_lock_irq(q->queue_lock);
}

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
	struct throtl_grp *tg;

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;

	INIT_HLIST_HEAD(&td->tg_list);
	td->tg_service_tree = THROTL_RB_ROOT;
1275
	td->limits_changed = false;
1276
	INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1277

1278 1279 1280
	/* alloc and Init root group. */
	td->queue = q;
	tg = throtl_alloc_tg(td);
V
Vivek Goyal 已提交
1281

1282 1283 1284 1285 1286 1287
	if (!tg) {
		kfree(td);
		return -ENOMEM;
	}

	td->root_tg = tg;
1288 1289

	rcu_read_lock();
1290
	throtl_init_add_tg_lists(td, tg, &blkio_root_cgroup);
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	rcu_read_unlock();

	/* Attach throtl data to request queue */
	q->td = td;
	return 0;
}

void blk_throtl_exit(struct request_queue *q)
{
	struct throtl_data *td = q->td;
	bool wait = false;

	BUG_ON(!td);

1305
	throtl_shutdown_wq(q);
1306 1307

	spin_lock_irq(q->queue_lock);
1308
	throtl_release_tgs(td, true);
1309 1310

	/* If there are other groups */
V
Vivek Goyal 已提交
1311
	if (td->nr_undestroyed_grps > 0)
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
		wait = true;

	spin_unlock_irq(q->queue_lock);

	/*
	 * Wait for tg->blkg->key accessors to exit their grace periods.
	 * Do this wait only if there are other undestroyed groups out
	 * there (other than root group). This can happen if cgroup deletion
	 * path claimed the responsibility of cleaning up a group before
	 * queue cleanup code get to the group.
	 *
	 * Do not call synchronize_rcu() unconditionally as there are drivers
	 * which create/delete request queue hundreds of times during scan/boot
	 * and synchronize_rcu() can take significant time and slow down boot.
	 */
	if (wait)
		synchronize_rcu();
1329 1330 1331 1332 1333 1334

	/*
	 * Just being safe to make sure after previous flush if some body did
	 * update limits through cgroup and another work got queued, cancel
	 * it.
	 */
1335
	throtl_shutdown_wq(q);
1336 1337 1338 1339 1340
}

void blk_throtl_release(struct request_queue *q)
{
	kfree(q->td);
1341 1342 1343 1344
}

static int __init throtl_init(void)
{
1345 1346 1347 1348
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

1349 1350 1351 1352 1353
	blkio_policy_register(&blkio_policy_throtl);
	return 0;
}

module_init(throtl_init);