blk-throttle.c 32.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
#include "blk-cgroup.h"
13
#include "blk.h"
14 15 16 17 18 19 20 21 22 23

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

/* Throttling is performed over 100ms slice and after that slice is renewed */
static unsigned long throtl_slice = HZ/10;	/* 100 ms */

24 25 26 27 28
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;
static void throtl_schedule_delayed_work(struct throtl_data *td,
				unsigned long delay);

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
struct throtl_rb_root {
	struct rb_root rb;
	struct rb_node *left;
	unsigned int count;
	unsigned long min_disptime;
};

#define THROTL_RB_ROOT	(struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
			.count = 0, .min_disptime = 0}

#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

struct throtl_grp {
	/* List of throtl groups on the request queue*/
	struct hlist_node tg_node;

	/* active throtl group service_tree member */
	struct rb_node rb_node;

	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	struct blkio_group blkg;
	atomic_t ref;
	unsigned int flags;

	/* Two lists for READ and WRITE */
	struct bio_list bio_lists[2];

	/* Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/* bytes per second rate limits */
	uint64_t bps[2];

68 69 70
	/* IOPS limits */
	unsigned int iops[2];

71 72
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
73 74
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
75 76 77 78

	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
79 80

	/* Some throttle limits got updated for the group */
81
	int limits_changed;
82 83

	struct rcu_head rcu_head;
84 85 86 87 88 89 90 91 92 93
};

struct throtl_data
{
	/* List of throtl groups */
	struct hlist_head tg_list;

	/* service tree for active throtl groups */
	struct throtl_rb_root tg_service_tree;

94
	struct throtl_grp *root_tg;
95 96 97 98 99 100
	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/*
V
Vivek Goyal 已提交
101
	 * number of total undestroyed groups
102 103 104 105 106
	 */
	unsigned int nr_undestroyed_grps;

	/* Work for dispatching throttled bios */
	struct delayed_work throtl_work;
107

108
	int limits_changed;
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
};

enum tg_state_flags {
	THROTL_TG_FLAG_on_rr = 0,	/* on round-robin busy list */
};

#define THROTL_TG_FNS(name)						\
static inline void throtl_mark_tg_##name(struct throtl_grp *tg)		\
{									\
	(tg)->flags |= (1 << THROTL_TG_FLAG_##name);			\
}									\
static inline void throtl_clear_tg_##name(struct throtl_grp *tg)	\
{									\
	(tg)->flags &= ~(1 << THROTL_TG_FLAG_##name);			\
}									\
static inline int throtl_tg_##name(const struct throtl_grp *tg)		\
{									\
	return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0;	\
}

THROTL_TG_FNS(on_rr);

#define throtl_log_tg(td, tg, fmt, args...)				\
	blk_add_trace_msg((td)->queue, "throtl %s " fmt,		\
				blkg_path(&(tg)->blkg), ##args);      	\

#define throtl_log(td, fmt, args...)	\
	blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)

static inline struct throtl_grp *tg_of_blkg(struct blkio_group *blkg)
{
	if (blkg)
		return container_of(blkg, struct throtl_grp, blkg);

	return NULL;
}

146
static inline unsigned int total_nr_queued(struct throtl_data *td)
147
{
148
	return td->nr_queued[0] + td->nr_queued[1];
149 150 151 152 153 154 155 156
}

static inline struct throtl_grp *throtl_ref_get_tg(struct throtl_grp *tg)
{
	atomic_inc(&tg->ref);
	return tg;
}

157 158 159 160 161
static void throtl_free_tg(struct rcu_head *head)
{
	struct throtl_grp *tg;

	tg = container_of(head, struct throtl_grp, rcu_head);
162
	free_percpu(tg->blkg.stats_cpu);
163 164 165
	kfree(tg);
}

166 167 168 169 170
static void throtl_put_tg(struct throtl_grp *tg)
{
	BUG_ON(atomic_read(&tg->ref) <= 0);
	if (!atomic_dec_and_test(&tg->ref))
		return;
171 172 173 174 175 176 177 178 179 180 181

	/*
	 * A group is freed in rcu manner. But having an rcu lock does not
	 * mean that one can access all the fields of blkg and assume these
	 * are valid. For example, don't try to follow throtl_data and
	 * request queue links.
	 *
	 * Having a reference to blkg under an rcu allows acess to only
	 * values local to groups like group stats and group rate limits
	 */
	call_rcu(&tg->rcu_head, throtl_free_tg);
182 183
}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
static void throtl_init_group(struct throtl_grp *tg)
{
	INIT_HLIST_NODE(&tg->tg_node);
	RB_CLEAR_NODE(&tg->rb_node);
	bio_list_init(&tg->bio_lists[0]);
	bio_list_init(&tg->bio_lists[1]);
	tg->limits_changed = false;

	/* Practically unlimited BW */
	tg->bps[0] = tg->bps[1] = -1;
	tg->iops[0] = tg->iops[1] = -1;

	/*
	 * Take the initial reference that will be released on destroy
	 * This can be thought of a joint reference by cgroup and
	 * request queue which will be dropped by either request queue
	 * exit or cgroup deletion path depending on who is exiting first.
	 */
	atomic_set(&tg->ref, 1);
}

/* Should be called with rcu read lock held (needed for blkcg) */
static void
throtl_add_group_to_td_list(struct throtl_data *td, struct throtl_grp *tg)
{
	hlist_add_head(&tg->tg_node, &td->tg_list);
	td->nr_undestroyed_grps++;
}

213 214
static void
__throtl_tg_fill_dev_details(struct throtl_data *td, struct throtl_grp *tg)
215 216 217 218
{
	struct backing_dev_info *bdi = &td->queue->backing_dev_info;
	unsigned int major, minor;

219 220 221 222 223 224 225 226 227 228 229 230 231 232
	if (!tg || tg->blkg.dev)
		return;

	/*
	 * Fill in device details for a group which might not have been
	 * filled at group creation time as queue was being instantiated
	 * and driver had not attached a device yet
	 */
	if (bdi->dev && dev_name(bdi->dev)) {
		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
		tg->blkg.dev = MKDEV(major, minor);
	}
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
/*
 * Should be called with without queue lock held. Here queue lock will be
 * taken rarely. It will be taken only once during life time of a group
 * if need be
 */
static void
throtl_tg_fill_dev_details(struct throtl_data *td, struct throtl_grp *tg)
{
	if (!tg || tg->blkg.dev)
		return;

	spin_lock_irq(td->queue->queue_lock);
	__throtl_tg_fill_dev_details(td, tg);
	spin_unlock_irq(td->queue->queue_lock);
}

249 250 251 252 253
static void throtl_init_add_tg_lists(struct throtl_data *td,
			struct throtl_grp *tg, struct blkio_cgroup *blkcg)
{
	__throtl_tg_fill_dev_details(td, tg);

254
	/* Add group onto cgroup list */
255
	blkiocg_add_blkio_group(blkcg, &tg->blkg, td->queue,
256
				tg->blkg.dev, BLKIO_POLICY_THROTL);
257 258 259 260 261 262 263 264 265 266 267 268 269

	tg->bps[READ] = blkcg_get_read_bps(blkcg, tg->blkg.dev);
	tg->bps[WRITE] = blkcg_get_write_bps(blkcg, tg->blkg.dev);
	tg->iops[READ] = blkcg_get_read_iops(blkcg, tg->blkg.dev);
	tg->iops[WRITE] = blkcg_get_write_iops(blkcg, tg->blkg.dev);

	throtl_add_group_to_td_list(td, tg);
}

/* Should be called without queue lock and outside of rcu period */
static struct throtl_grp *throtl_alloc_tg(struct throtl_data *td)
{
	struct throtl_grp *tg = NULL;
270
	int ret;
271 272 273 274 275

	tg = kzalloc_node(sizeof(*tg), GFP_ATOMIC, td->queue->node);
	if (!tg)
		return NULL;

276 277 278 279 280 281 282
	ret = blkio_alloc_blkg_stats(&tg->blkg);

	if (ret) {
		kfree(tg);
		return NULL;
	}

283 284 285 286 287 288
	throtl_init_group(tg);
	return tg;
}

static struct
throtl_grp *throtl_find_tg(struct throtl_data *td, struct blkio_cgroup *blkcg)
289 290 291
{
	struct throtl_grp *tg = NULL;

292 293 294 295 296
	/*
	 * This is the common case when there are no blkio cgroups.
 	 * Avoid lookup in this case
 	 */
	if (blkcg == &blkio_root_cgroup)
297
		tg = td->root_tg;
298
	else
299 300
		tg = tg_of_blkg(blkiocg_lookup_group(blkcg, td->queue,
						     BLKIO_POLICY_THROTL));
301

302
	__throtl_tg_fill_dev_details(td, tg);
303 304 305
	return tg;
}

306 307
static struct throtl_grp *throtl_get_tg(struct throtl_data *td,
					struct blkio_cgroup *blkcg)
308
{
309 310
	struct throtl_grp *tg = NULL, *__tg = NULL;
	struct request_queue *q = td->queue;
311

312
	/* no throttling for dead queue */
313
	if (unlikely(blk_queue_bypass(q)))
314 315
		return NULL;

316
	tg = throtl_find_tg(td, blkcg);
317
	if (tg)
318 319
		return tg;

320 321 322
	if (!css_tryget(&blkcg->css))
		return NULL;

323 324 325
	/*
	 * Need to allocate a group. Allocation of group also needs allocation
	 * of per cpu stats which in-turn takes a mutex() and can block. Hence
326
	 * we need to drop rcu lock and queue_lock before we call alloc.
327 328
	 */
	spin_unlock_irq(q->queue_lock);
329
	rcu_read_unlock();
330 331 332 333

	tg = throtl_alloc_tg(td);

	/* Group allocated and queue is still alive. take the lock */
334
	rcu_read_lock();
335
	spin_lock_irq(q->queue_lock);
336
	css_put(&blkcg->css);
337

338
	/* Make sure @q is still alive */
339
	if (unlikely(blk_queue_bypass(q))) {
340 341 342 343
		kfree(tg);
		return NULL;
	}

344 345 346 347 348 349 350 351 352 353 354 355 356
	/*
	 * If some other thread already allocated the group while we were
	 * not holding queue lock, free up the group
	 */
	__tg = throtl_find_tg(td, blkcg);

	if (__tg) {
		kfree(tg);
		return __tg;
	}

	/* Group allocation failed. Account the IO to root group */
	if (!tg) {
357
		tg = td->root_tg;
358 359 360 361
		return tg;
	}

	throtl_init_add_tg_lists(td, tg, blkcg);
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
	return tg;
}

static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
{
	/* Service tree is empty */
	if (!root->count)
		return NULL;

	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_tg(root->left);

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
	rb_erase_init(n, &root->rb);
	--root->count;
}

static void update_min_dispatch_time(struct throtl_rb_root *st)
{
	struct throtl_grp *tg;

	tg = throtl_rb_first(st);
	if (!tg)
		return;

	st->min_disptime = tg->disptime;
}

static void
tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &tg->rb_node;

	rb_link_node(&tg->rb_node, parent, node);
	rb_insert_color(&tg->rb_node, &st->rb);
}

static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	struct throtl_rb_root *st = &td->tg_service_tree;

	tg_service_tree_add(st, tg);
	throtl_mark_tg_on_rr(tg);
	st->count++;
}

static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	if (!throtl_tg_on_rr(tg))
		__throtl_enqueue_tg(td, tg);
}

static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
	throtl_clear_tg_on_rr(tg);
}

static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	if (throtl_tg_on_rr(tg))
		__throtl_dequeue_tg(td, tg);
}

static void throtl_schedule_next_dispatch(struct throtl_data *td)
{
	struct throtl_rb_root *st = &td->tg_service_tree;

	/*
	 * If there are more bios pending, schedule more work.
	 */
	if (!total_nr_queued(td))
		return;

	BUG_ON(!st->count);

	update_min_dispatch_time(st);

	if (time_before_eq(st->min_disptime, jiffies))
475
		throtl_schedule_delayed_work(td, 0);
476
	else
477
		throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
478 479 480 481 482 483
}

static inline void
throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
	tg->bytes_disp[rw] = 0;
484
	tg->io_disp[rw] = 0;
485 486 487 488 489 490 491
	tg->slice_start[rw] = jiffies;
	tg->slice_end[rw] = jiffies + throtl_slice;
	throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
			rw == READ ? 'R' : 'W', tg->slice_start[rw],
			tg->slice_end[rw], jiffies);
}

492 493 494 495 496 497
static inline void throtl_set_slice_end(struct throtl_data *td,
		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
}

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
static inline void throtl_extend_slice(struct throtl_data *td,
		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
	throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
			rw == READ ? 'R' : 'W', tg->slice_start[rw],
			tg->slice_end[rw], jiffies);
}

/* Determine if previously allocated or extended slice is complete or not */
static bool
throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
		return 0;

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
static inline void
throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
521 522
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
523 524 525 526 527 528 529 530 531 532 533

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
	if (throtl_slice_used(td, tg, rw))
		return;

534 535 536 537 538 539 540 541 542 543
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

	throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);

544 545 546 547 548 549
	time_elapsed = jiffies - tg->slice_start[rw];

	nr_slices = time_elapsed / throtl_slice;

	if (!nr_slices)
		return;
550 551 552
	tmp = tg->bps[rw] * throtl_slice * nr_slices;
	do_div(tmp, HZ);
	bytes_trim = tmp;
553

554
	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
555

556
	if (!bytes_trim && !io_trim)
557 558 559 560 561 562 563
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

564 565 566 567 568
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

569 570
	tg->slice_start[rw] += nr_slices * throtl_slice;

571
	throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
572
			" start=%lu end=%lu jiffies=%lu",
573
			rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
574 575 576
			tg->slice_start[rw], tg->slice_end[rw], jiffies);
}

577 578
static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
		struct bio *bio, unsigned long *wait)
579 580
{
	bool rw = bio_data_dir(bio);
581
	unsigned int io_allowed;
582
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
583
	u64 tmp;
584

585
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
586

587 588 589 590 591 592
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

593 594 595 596 597 598 599 600 601 602 603 604 605 606
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
607 608

	if (tg->io_disp[rw] + 1 <= io_allowed) {
609 610 611 612 613
		if (wait)
			*wait = 0;
		return 1;
	}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
	/* Calc approx time to dispatch */
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
		struct bio *bio, unsigned long *wait)
{
	bool rw = bio_data_dir(bio);
631
	u64 bytes_allowed, extra_bytes, tmp;
632
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
633 634 635 636 637 638 639 640 641

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

642 643
	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);
644
	bytes_allowed = tmp;
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665

	if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
		if (wait)
			*wait = 0;
		return 1;
	}

	/* Calc approx time to dispatch */
	extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
666 667 668
	return 0;
}

669 670 671 672 673 674
static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
		return 1;
	return 0;
}

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
				struct bio *bio, unsigned long *wait)
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
	BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
692

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
	/* If tg->bps = -1, then BW is unlimited */
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
		if (wait)
			*wait = 0;
		return 1;
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
	 * long since now.
	 */
	if (throtl_slice_used(td, tg, rw))
		throtl_start_new_slice(td, tg, rw);
	else {
		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
			throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
	}

	if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
	    && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
		throtl_extend_slice(td, tg, rw, jiffies + max_wait);
726 727 728 729 730 731 732

	return 0;
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);
733
	bool sync = rw_is_sync(bio->bi_rw);
734 735 736

	/* Charge the bio to the group */
	tg->bytes_disp[rw] += bio->bi_size;
737
	tg->io_disp[rw]++;
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

	blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size, rw, sync);
}

static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
			struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	bio_list_add(&tg->bio_lists[rw], bio);
	/* Take a bio reference on tg */
	throtl_ref_get_tg(tg);
	tg->nr_queued[rw]++;
	td->nr_queued[rw]++;
	throtl_enqueue_tg(td, tg);
}

static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
{
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

	if ((bio = bio_list_peek(&tg->bio_lists[READ])))
		tg_may_dispatch(td, tg, bio, &read_wait);

	if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
		tg_may_dispatch(td, tg, bio, &write_wait);

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
	throtl_dequeue_tg(td, tg);
	tg->disptime = disptime;
	throtl_enqueue_tg(td, tg);
}

static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
				bool rw, struct bio_list *bl)
{
	struct bio *bio;

	bio = bio_list_pop(&tg->bio_lists[rw]);
	tg->nr_queued[rw]--;
	/* Drop bio reference on tg */
	throtl_put_tg(tg);

	BUG_ON(td->nr_queued[rw] <= 0);
	td->nr_queued[rw]--;

	throtl_charge_bio(tg, bio);
	bio_list_add(bl, bio);
	bio->bi_rw |= REQ_THROTTLED;

	throtl_trim_slice(td, tg, rw);
}

static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
				struct bio_list *bl)
{
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
800
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

	while ((bio = bio_list_peek(&tg->bio_lists[READ]))
		&& tg_may_dispatch(td, tg, bio, NULL)) {

		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

	while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
		&& tg_may_dispatch(td, tg, bio, NULL)) {

		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
{
	unsigned int nr_disp = 0;
	struct throtl_grp *tg;
	struct throtl_rb_root *st = &td->tg_service_tree;

	while (1) {
		tg = throtl_rb_first(st);

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

		throtl_dequeue_tg(td, tg);

		nr_disp += throtl_dispatch_tg(td, tg, bl);

		if (tg->nr_queued[0] || tg->nr_queued[1]) {
			tg_update_disptime(td, tg);
			throtl_enqueue_tg(td, tg);
		}

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

859 860 861 862 863
static void throtl_process_limit_change(struct throtl_data *td)
{
	struct throtl_grp *tg;
	struct hlist_node *pos, *n;

864
	if (!td->limits_changed)
865 866
		return;

867
	xchg(&td->limits_changed, false);
868

869
	throtl_log(td, "limits changed");
870

871
	hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
872 873 874 875 876 877 878 879 880 881
		if (!tg->limits_changed)
			continue;

		if (!xchg(&tg->limits_changed, false))
			continue;

		throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
			" riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE],
			tg->iops[READ], tg->iops[WRITE]);

882 883 884 885 886 887 888 889 890
		/*
		 * Restart the slices for both READ and WRITES. It
		 * might happen that a group's limit are dropped
		 * suddenly and we don't want to account recently
		 * dispatched IO with new low rate
		 */
		throtl_start_new_slice(td, tg, 0);
		throtl_start_new_slice(td, tg, 1);

891
		if (throtl_tg_on_rr(tg))
892 893 894 895
			tg_update_disptime(td, tg);
	}
}

896 897 898 899 900 901 902
/* Dispatch throttled bios. Should be called without queue lock held. */
static int throtl_dispatch(struct request_queue *q)
{
	struct throtl_data *td = q->td;
	unsigned int nr_disp = 0;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
903
	struct blk_plug plug;
904 905 906

	spin_lock_irq(q->queue_lock);

907 908
	throtl_process_limit_change(td);

909 910 911 912 913
	if (!total_nr_queued(td))
		goto out;

	bio_list_init(&bio_list_on_stack);

914
	throtl_log(td, "dispatch nr_queued=%u read=%u write=%u",
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
			total_nr_queued(td), td->nr_queued[READ],
			td->nr_queued[WRITE]);

	nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);

	if (nr_disp)
		throtl_log(td, "bios disp=%u", nr_disp);

	throtl_schedule_next_dispatch(td);
out:
	spin_unlock_irq(q->queue_lock);

	/*
	 * If we dispatched some requests, unplug the queue to make sure
	 * immediate dispatch
	 */
	if (nr_disp) {
932
		blk_start_plug(&plug);
933 934
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
935
		blk_finish_plug(&plug);
936 937 938 939 940 941 942 943 944 945 946 947 948 949
	}
	return nr_disp;
}

void blk_throtl_work(struct work_struct *work)
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					throtl_work.work);
	struct request_queue *q = td->queue;

	throtl_dispatch(q);
}

/* Call with queue lock held */
950 951
static void
throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
952 953 954 955
{

	struct delayed_work *dwork = &td->throtl_work;

956
	/* schedule work if limits changed even if no bio is queued */
957
	if (total_nr_queued(td) || td->limits_changed) {
958 959 960 961 962
		/*
		 * We might have a work scheduled to be executed in future.
		 * Cancel that and schedule a new one.
		 */
		__cancel_delayed_work(dwork);
963
		queue_delayed_work(kthrotld_workqueue, dwork, delay);
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
		throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
				delay, jiffies);
	}
}

static void
throtl_destroy_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	/* Something wrong if we are trying to remove same group twice */
	BUG_ON(hlist_unhashed(&tg->tg_node));

	hlist_del_init(&tg->tg_node);

	/*
	 * Put the reference taken at the time of creation so that when all
	 * queues are gone, group can be destroyed.
	 */
	throtl_put_tg(tg);
	td->nr_undestroyed_grps--;
}

985
static bool throtl_release_tgs(struct throtl_data *td, bool release_root)
986 987 988
{
	struct hlist_node *pos, *n;
	struct throtl_grp *tg;
989
	bool empty = true;
990 991

	hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
992 993 994 995
		/* skip root? */
		if (!release_root && tg == td->root_tg)
			continue;

996 997 998 999 1000 1001 1002
		/*
		 * If cgroup removal path got to blk_group first and removed
		 * it from cgroup list, then it will take care of destroying
		 * cfqg also.
		 */
		if (!blkiocg_del_blkio_group(&tg->blkg))
			throtl_destroy_tg(td, tg);
1003 1004
		else
			empty = false;
1005
	}
1006
	return empty;
1007 1008 1009 1010 1011 1012 1013 1014
}

/*
 * Blk cgroup controller notification saying that blkio_group object is being
 * delinked as associated cgroup object is going away. That also means that
 * no new IO will come in this group. So get rid of this group as soon as
 * any pending IO in the group is finished.
 *
1015 1016 1017
 * This function is called under rcu_read_lock(). @q is the rcu protected
 * pointer. That means @q is a valid request_queue pointer as long as we
 * are rcu read lock.
1018
 *
1019
 * @q was fetched from blkio_group under blkio_cgroup->lock. That means
1020 1021 1022
 * it should not be NULL as even if queue was going away, cgroup deltion
 * path got to it first.
 */
1023 1024
void throtl_unlink_blkio_group(struct request_queue *q,
			       struct blkio_group *blkg)
1025 1026 1027
{
	unsigned long flags;

1028 1029 1030
	spin_lock_irqsave(q->queue_lock, flags);
	throtl_destroy_tg(q->td, tg_of_blkg(blkg));
	spin_unlock_irqrestore(q->queue_lock, flags);
1031 1032
}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
static bool throtl_clear_queue(struct request_queue *q)
{
	lockdep_assert_held(q->queue_lock);

	/*
	 * Clear tgs but leave the root one alone.  This is necessary
	 * because root_tg is expected to be persistent and safe because
	 * blk-throtl can never be disabled while @q is alive.  This is a
	 * kludge to prepare for unified blkg.  This whole function will be
	 * removed soon.
	 */
	return throtl_release_tgs(q->td, false);
}

1047 1048 1049 1050 1051 1052 1053 1054 1055
static void throtl_update_blkio_group_common(struct throtl_data *td,
				struct throtl_grp *tg)
{
	xchg(&tg->limits_changed, true);
	xchg(&td->limits_changed, true);
	/* Schedule a work now to process the limit change */
	throtl_schedule_delayed_work(td, 0);
}

1056
/*
1057
 * For all update functions, @q should be a valid pointer because these
1058
 * update functions are called under blkcg_lock, that means, blkg is
1059
 * valid and in turn @q is valid. queue exit path can not race because
1060 1061 1062 1063 1064
 * of blkcg_lock
 *
 * Can not take queue lock in update functions as queue lock under blkcg_lock
 * is not allowed. Under other paths we take blkcg_lock under queue_lock.
 */
1065
static void throtl_update_blkio_group_read_bps(struct request_queue *q,
1066
				struct blkio_group *blkg, u64 read_bps)
1067
{
1068
	struct throtl_grp *tg = tg_of_blkg(blkg);
1069

1070
	tg->bps[READ] = read_bps;
1071
	throtl_update_blkio_group_common(q->td, tg);
1072 1073
}

1074
static void throtl_update_blkio_group_write_bps(struct request_queue *q,
1075
				struct blkio_group *blkg, u64 write_bps)
1076
{
1077
	struct throtl_grp *tg = tg_of_blkg(blkg);
1078

1079
	tg->bps[WRITE] = write_bps;
1080
	throtl_update_blkio_group_common(q->td, tg);
1081 1082
}

1083
static void throtl_update_blkio_group_read_iops(struct request_queue *q,
1084
			struct blkio_group *blkg, unsigned int read_iops)
1085
{
1086
	struct throtl_grp *tg = tg_of_blkg(blkg);
1087

1088
	tg->iops[READ] = read_iops;
1089
	throtl_update_blkio_group_common(q->td, tg);
1090 1091
}

1092
static void throtl_update_blkio_group_write_iops(struct request_queue *q,
1093
			struct blkio_group *blkg, unsigned int write_iops)
1094
{
1095
	struct throtl_grp *tg = tg_of_blkg(blkg);
1096

1097
	tg->iops[WRITE] = write_iops;
1098
	throtl_update_blkio_group_common(q->td, tg);
1099 1100
}

1101
static void throtl_shutdown_wq(struct request_queue *q)
1102 1103 1104 1105 1106 1107 1108 1109 1110
{
	struct throtl_data *td = q->td;

	cancel_delayed_work_sync(&td->throtl_work);
}

static struct blkio_policy_type blkio_policy_throtl = {
	.ops = {
		.blkio_unlink_group_fn = throtl_unlink_blkio_group,
1111
		.blkio_clear_queue_fn = throtl_clear_queue,
1112 1113 1114 1115
		.blkio_update_group_read_bps_fn =
					throtl_update_blkio_group_read_bps,
		.blkio_update_group_write_bps_fn =
					throtl_update_blkio_group_write_bps,
1116 1117 1118 1119
		.blkio_update_group_read_iops_fn =
					throtl_update_blkio_group_read_iops,
		.blkio_update_group_write_iops_fn =
					throtl_update_blkio_group_write_iops,
1120
	},
1121
	.plid = BLKIO_POLICY_THROTL,
1122 1123
};

1124
bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1125 1126 1127 1128
{
	struct throtl_data *td = q->td;
	struct throtl_grp *tg;
	bool rw = bio_data_dir(bio), update_disptime = true;
1129
	struct blkio_cgroup *blkcg;
1130
	bool throttled = false;
1131 1132 1133

	if (bio->bi_rw & REQ_THROTTLED) {
		bio->bi_rw &= ~REQ_THROTTLED;
1134
		goto out;
1135 1136
	}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	/*
	 * A throtl_grp pointer retrieved under rcu can be used to access
	 * basic fields like stats and io rates. If a group has no rules,
	 * just update the dispatch stats in lockless manner and return.
	 */
	rcu_read_lock();
	blkcg = task_blkio_cgroup(current);
	tg = throtl_find_tg(td, blkcg);
	if (tg) {
		throtl_tg_fill_dev_details(td, tg);

		if (tg_no_rule_group(tg, rw)) {
			blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size,
1150
					rw, rw_is_sync(bio->bi_rw));
1151
			goto out_unlock_rcu;
1152 1153 1154 1155 1156 1157 1158
		}
	}

	/*
	 * Either group has not been allocated yet or it is not an unlimited
	 * IO group
	 */
1159
	spin_lock_irq(q->queue_lock);
1160
	tg = throtl_get_tg(td, blkcg);
1161 1162
	if (unlikely(!tg))
		goto out_unlock;
1163

1164 1165 1166 1167 1168
	if (tg->nr_queued[rw]) {
		/*
		 * There is already another bio queued in same dir. No
		 * need to update dispatch time.
		 */
1169
		update_disptime = false;
1170
		goto queue_bio;
1171

1172 1173 1174 1175 1176
	}

	/* Bio is with-in rate limit of group */
	if (tg_may_dispatch(td, tg, bio, NULL)) {
		throtl_charge_bio(tg, bio);
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
		throtl_trim_slice(td, tg, rw);
1190
		goto out_unlock;
1191 1192 1193
	}

queue_bio:
1194
	throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
1195 1196
			" iodisp=%u iops=%u queued=%d/%d",
			rw == READ ? 'R' : 'W',
1197
			tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1198
			tg->io_disp[rw], tg->iops[rw],
1199 1200 1201
			tg->nr_queued[READ], tg->nr_queued[WRITE]);

	throtl_add_bio_tg(q->td, tg, bio);
1202
	throttled = true;
1203 1204 1205 1206 1207 1208

	if (update_disptime) {
		tg_update_disptime(td, tg);
		throtl_schedule_next_dispatch(td);
	}

1209
out_unlock:
1210
	spin_unlock_irq(q->queue_lock);
1211 1212
out_unlock_rcu:
	rcu_read_unlock();
1213 1214
out:
	return throttled;
1215 1216
}

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
	struct throtl_rb_root *st = &td->tg_service_tree;
	struct throtl_grp *tg;
	struct bio_list bl;
	struct bio *bio;

1232
	WARN_ON_ONCE(!queue_is_locked(q));
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251

	bio_list_init(&bl);

	while ((tg = throtl_rb_first(st))) {
		throtl_dequeue_tg(td, tg);

		while ((bio = bio_list_peek(&tg->bio_lists[READ])))
			tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
		while ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
			tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
	}
	spin_unlock_irq(q->queue_lock);

	while ((bio = bio_list_pop(&bl)))
		generic_make_request(bio);

	spin_lock_irq(q->queue_lock);
}

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;

	INIT_HLIST_HEAD(&td->tg_list);
	td->tg_service_tree = THROTL_RB_ROOT;
1262
	td->limits_changed = false;
1263
	INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1264

1265 1266
	/* alloc and Init root group. */
	td->queue = q;
V
Vivek Goyal 已提交
1267

1268 1269
	rcu_read_lock();
	spin_lock_irq(q->queue_lock);
1270

1271
	td->root_tg = throtl_get_tg(td, &blkio_root_cgroup);
1272

1273
	spin_unlock_irq(q->queue_lock);
1274 1275
	rcu_read_unlock();

1276 1277 1278 1279 1280
	if (!td->root_tg) {
		kfree(td);
		return -ENOMEM;
	}

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	/* Attach throtl data to request queue */
	q->td = td;
	return 0;
}

void blk_throtl_exit(struct request_queue *q)
{
	struct throtl_data *td = q->td;
	bool wait = false;

	BUG_ON(!td);

1293
	throtl_shutdown_wq(q);
1294 1295

	spin_lock_irq(q->queue_lock);
1296
	throtl_release_tgs(td, true);
1297 1298

	/* If there are other groups */
V
Vivek Goyal 已提交
1299
	if (td->nr_undestroyed_grps > 0)
1300 1301 1302 1303 1304
		wait = true;

	spin_unlock_irq(q->queue_lock);

	/*
1305
	 * Wait for tg->blkg->q accessors to exit their grace periods.
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	 * Do this wait only if there are other undestroyed groups out
	 * there (other than root group). This can happen if cgroup deletion
	 * path claimed the responsibility of cleaning up a group before
	 * queue cleanup code get to the group.
	 *
	 * Do not call synchronize_rcu() unconditionally as there are drivers
	 * which create/delete request queue hundreds of times during scan/boot
	 * and synchronize_rcu() can take significant time and slow down boot.
	 */
	if (wait)
		synchronize_rcu();
1317 1318 1319 1320 1321 1322

	/*
	 * Just being safe to make sure after previous flush if some body did
	 * update limits through cgroup and another work got queued, cancel
	 * it.
	 */
1323
	throtl_shutdown_wq(q);
1324 1325 1326 1327 1328
}

void blk_throtl_release(struct request_queue *q)
{
	kfree(q->td);
1329 1330 1331 1332
}

static int __init throtl_init(void)
{
1333 1334 1335 1336
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

1337 1338 1339 1340 1341
	blkio_policy_register(&blkio_policy_throtl);
	return 0;
}

module_init(throtl_init);