arm-smmu-v3.c 96.6 KB
Newer Older
A
Andrew Murray 已提交
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11
/*
 * IOMMU API for ARM architected SMMUv3 implementations.
 *
 * Copyright (C) 2015 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver is powered by bad coffee and bombay mix.
 */

12 13
#include <linux/acpi.h>
#include <linux/acpi_iort.h>
14
#include <linux/bitfield.h>
15
#include <linux/bitops.h>
16
#include <linux/crash_dump.h>
17
#include <linux/delay.h>
18
#include <linux/dma-iommu.h>
19 20
#include <linux/err.h>
#include <linux/interrupt.h>
21
#include <linux/io-pgtable.h>
22 23
#include <linux/iommu.h>
#include <linux/iopoll.h>
24 25
#include <linux/init.h>
#include <linux/moduleparam.h>
26
#include <linux/msi.h>
27 28
#include <linux/of.h>
#include <linux/of_address.h>
29
#include <linux/of_iommu.h>
30
#include <linux/of_platform.h>
31
#include <linux/pci.h>
32
#include <linux/pci-ats.h>
33 34
#include <linux/platform_device.h>

35 36
#include <linux/amba/bus.h>

37 38
/* MMIO registers */
#define ARM_SMMU_IDR0			0x0
39 40 41 42 43 44 45 46 47
#define IDR0_ST_LVL			GENMASK(28, 27)
#define IDR0_ST_LVL_2LVL		1
#define IDR0_STALL_MODEL		GENMASK(25, 24)
#define IDR0_STALL_MODEL_STALL		0
#define IDR0_STALL_MODEL_FORCE		2
#define IDR0_TTENDIAN			GENMASK(22, 21)
#define IDR0_TTENDIAN_MIXED		0
#define IDR0_TTENDIAN_LE		2
#define IDR0_TTENDIAN_BE		3
48 49 50 51 52 53 54 55 56
#define IDR0_CD2L			(1 << 19)
#define IDR0_VMID16			(1 << 18)
#define IDR0_PRI			(1 << 16)
#define IDR0_SEV			(1 << 14)
#define IDR0_MSI			(1 << 13)
#define IDR0_ASID16			(1 << 12)
#define IDR0_ATS			(1 << 10)
#define IDR0_HYP			(1 << 9)
#define IDR0_COHACC			(1 << 4)
57 58 59
#define IDR0_TTF			GENMASK(3, 2)
#define IDR0_TTF_AARCH64		2
#define IDR0_TTF_AARCH32_64		3
60 61 62 63 64 65 66
#define IDR0_S1P			(1 << 1)
#define IDR0_S2P			(1 << 0)

#define ARM_SMMU_IDR1			0x4
#define IDR1_TABLES_PRESET		(1 << 30)
#define IDR1_QUEUES_PRESET		(1 << 29)
#define IDR1_REL			(1 << 28)
67 68 69 70 71
#define IDR1_CMDQS			GENMASK(25, 21)
#define IDR1_EVTQS			GENMASK(20, 16)
#define IDR1_PRIQS			GENMASK(15, 11)
#define IDR1_SSIDSIZE			GENMASK(10, 6)
#define IDR1_SIDSIZE			GENMASK(5, 0)
72 73

#define ARM_SMMU_IDR5			0x14
74
#define IDR5_STALL_MAX			GENMASK(31, 16)
75 76 77
#define IDR5_GRAN64K			(1 << 6)
#define IDR5_GRAN16K			(1 << 5)
#define IDR5_GRAN4K			(1 << 4)
78 79 80 81 82 83 84
#define IDR5_OAS			GENMASK(2, 0)
#define IDR5_OAS_32_BIT			0
#define IDR5_OAS_36_BIT			1
#define IDR5_OAS_40_BIT			2
#define IDR5_OAS_42_BIT			3
#define IDR5_OAS_44_BIT			4
#define IDR5_OAS_48_BIT			5
85
#define IDR5_OAS_52_BIT			6
86 87
#define IDR5_VAX			GENMASK(11, 10)
#define IDR5_VAX_52_BIT			1
88 89

#define ARM_SMMU_CR0			0x20
90
#define CR0_ATSCHK			(1 << 4)
91 92 93 94 95 96 97 98
#define CR0_CMDQEN			(1 << 3)
#define CR0_EVTQEN			(1 << 2)
#define CR0_PRIQEN			(1 << 1)
#define CR0_SMMUEN			(1 << 0)

#define ARM_SMMU_CR0ACK			0x24

#define ARM_SMMU_CR1			0x28
99 100 101 102 103 104 105
#define CR1_TABLE_SH			GENMASK(11, 10)
#define CR1_TABLE_OC			GENMASK(9, 8)
#define CR1_TABLE_IC			GENMASK(7, 6)
#define CR1_QUEUE_SH			GENMASK(5, 4)
#define CR1_QUEUE_OC			GENMASK(3, 2)
#define CR1_QUEUE_IC			GENMASK(1, 0)
/* CR1 cacheability fields don't quite follow the usual TCR-style encoding */
106 107 108 109 110 111 112 113 114
#define CR1_CACHE_NC			0
#define CR1_CACHE_WB			1
#define CR1_CACHE_WT			2

#define ARM_SMMU_CR2			0x2c
#define CR2_PTM				(1 << 2)
#define CR2_RECINVSID			(1 << 1)
#define CR2_E2H				(1 << 0)

115 116
#define ARM_SMMU_GBPA			0x44
#define GBPA_UPDATE			(1 << 31)
117
#define GBPA_ABORT			(1 << 20)
118

119 120
#define ARM_SMMU_IRQ_CTRL		0x50
#define IRQ_CTRL_EVTQ_IRQEN		(1 << 2)
121
#define IRQ_CTRL_PRIQ_IRQEN		(1 << 1)
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
#define IRQ_CTRL_GERROR_IRQEN		(1 << 0)

#define ARM_SMMU_IRQ_CTRLACK		0x54

#define ARM_SMMU_GERROR			0x60
#define GERROR_SFM_ERR			(1 << 8)
#define GERROR_MSI_GERROR_ABT_ERR	(1 << 7)
#define GERROR_MSI_PRIQ_ABT_ERR		(1 << 6)
#define GERROR_MSI_EVTQ_ABT_ERR		(1 << 5)
#define GERROR_MSI_CMDQ_ABT_ERR		(1 << 4)
#define GERROR_PRIQ_ABT_ERR		(1 << 3)
#define GERROR_EVTQ_ABT_ERR		(1 << 2)
#define GERROR_CMDQ_ERR			(1 << 0)
#define GERROR_ERR_MASK			0xfd

#define ARM_SMMU_GERRORN		0x64

#define ARM_SMMU_GERROR_IRQ_CFG0	0x68
#define ARM_SMMU_GERROR_IRQ_CFG1	0x70
#define ARM_SMMU_GERROR_IRQ_CFG2	0x74

#define ARM_SMMU_STRTAB_BASE		0x80
#define STRTAB_BASE_RA			(1UL << 62)
145
#define STRTAB_BASE_ADDR_MASK		GENMASK_ULL(51, 6)
146 147

#define ARM_SMMU_STRTAB_BASE_CFG	0x88
148 149 150 151 152
#define STRTAB_BASE_CFG_FMT		GENMASK(17, 16)
#define STRTAB_BASE_CFG_FMT_LINEAR	0
#define STRTAB_BASE_CFG_FMT_2LVL	1
#define STRTAB_BASE_CFG_SPLIT		GENMASK(10, 6)
#define STRTAB_BASE_CFG_LOG2SIZE	GENMASK(5, 0)
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

#define ARM_SMMU_CMDQ_BASE		0x90
#define ARM_SMMU_CMDQ_PROD		0x98
#define ARM_SMMU_CMDQ_CONS		0x9c

#define ARM_SMMU_EVTQ_BASE		0xa0
#define ARM_SMMU_EVTQ_PROD		0x100a8
#define ARM_SMMU_EVTQ_CONS		0x100ac
#define ARM_SMMU_EVTQ_IRQ_CFG0		0xb0
#define ARM_SMMU_EVTQ_IRQ_CFG1		0xb8
#define ARM_SMMU_EVTQ_IRQ_CFG2		0xbc

#define ARM_SMMU_PRIQ_BASE		0xc0
#define ARM_SMMU_PRIQ_PROD		0x100c8
#define ARM_SMMU_PRIQ_CONS		0x100cc
#define ARM_SMMU_PRIQ_IRQ_CFG0		0xd0
#define ARM_SMMU_PRIQ_IRQ_CFG1		0xd8
#define ARM_SMMU_PRIQ_IRQ_CFG2		0xdc

/* Common MSI config fields */
173
#define MSI_CFG0_ADDR_MASK		GENMASK_ULL(51, 2)
174 175 176 177 178 179 180 181
#define MSI_CFG2_SH			GENMASK(5, 4)
#define MSI_CFG2_MEMATTR		GENMASK(3, 0)

/* Common memory attribute values */
#define ARM_SMMU_SH_NSH			0
#define ARM_SMMU_SH_OSH			2
#define ARM_SMMU_SH_ISH			3
#define ARM_SMMU_MEMATTR_DEVICE_nGnRE	0x1
182
#define ARM_SMMU_MEMATTR_OIWB		0xf
183

184 185
#define Q_IDX(llq, p)			((p) & ((1 << (llq)->max_n_shift) - 1))
#define Q_WRP(llq, p)			((p) & (1 << (llq)->max_n_shift))
186
#define Q_OVERFLOW_FLAG			(1U << 31)
187
#define Q_OVF(p)			((p) & Q_OVERFLOW_FLAG)
188
#define Q_ENT(q, p)			((q)->base +			\
189 190
					 Q_IDX(&((q)->llq), p) *	\
					 (q)->ent_dwords)
191 192

#define Q_BASE_RWA			(1UL << 62)
193
#define Q_BASE_ADDR_MASK		GENMASK_ULL(51, 5)
194
#define Q_BASE_LOG2SIZE			GENMASK(4, 0)
195 196 197

/* Ensure DMA allocations are naturally aligned */
#ifdef CONFIG_CMA_ALIGNMENT
198
#define Q_MAX_SZ_SHIFT			(PAGE_SHIFT + CONFIG_CMA_ALIGNMENT)
199 200 201
#else
#define Q_MAX_SZ_SHIFT			(PAGE_SHIFT + MAX_ORDER - 1)
#endif
202 203 204 205 206

/*
 * Stream table.
 *
 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
207 208
 * 2lvl: 128k L1 entries,
 *       256 lazy entries per table (each table covers a PCI bus)
209
 */
210
#define STRTAB_L1_SZ_SHIFT		20
211 212 213
#define STRTAB_SPLIT			8

#define STRTAB_L1_DESC_DWORDS		1
214
#define STRTAB_L1_DESC_SPAN		GENMASK_ULL(4, 0)
215
#define STRTAB_L1_DESC_L2PTR_MASK	GENMASK_ULL(51, 6)
216 217 218

#define STRTAB_STE_DWORDS		8
#define STRTAB_STE_0_V			(1UL << 0)
219 220 221 222 223 224 225 226
#define STRTAB_STE_0_CFG		GENMASK_ULL(3, 1)
#define STRTAB_STE_0_CFG_ABORT		0
#define STRTAB_STE_0_CFG_BYPASS		4
#define STRTAB_STE_0_CFG_S1_TRANS	5
#define STRTAB_STE_0_CFG_S2_TRANS	6

#define STRTAB_STE_0_S1FMT		GENMASK_ULL(5, 4)
#define STRTAB_STE_0_S1FMT_LINEAR	0
227
#define STRTAB_STE_0_S1CTXPTR_MASK	GENMASK_ULL(51, 6)
228
#define STRTAB_STE_0_S1CDMAX		GENMASK_ULL(63, 59)
229 230 231 232 233

#define STRTAB_STE_1_S1C_CACHE_NC	0UL
#define STRTAB_STE_1_S1C_CACHE_WBRA	1UL
#define STRTAB_STE_1_S1C_CACHE_WT	2UL
#define STRTAB_STE_1_S1C_CACHE_WB	3UL
234 235 236
#define STRTAB_STE_1_S1CIR		GENMASK_ULL(3, 2)
#define STRTAB_STE_1_S1COR		GENMASK_ULL(5, 4)
#define STRTAB_STE_1_S1CSH		GENMASK_ULL(7, 6)
237 238 239

#define STRTAB_STE_1_S1STALLD		(1UL << 27)

240
#define STRTAB_STE_1_EATS		GENMASK_ULL(29, 28)
241 242 243 244
#define STRTAB_STE_1_EATS_ABT		0UL
#define STRTAB_STE_1_EATS_TRANS		1UL
#define STRTAB_STE_1_EATS_S1CHK		2UL

245
#define STRTAB_STE_1_STRW		GENMASK_ULL(31, 30)
246 247 248
#define STRTAB_STE_1_STRW_NSEL1		0UL
#define STRTAB_STE_1_STRW_EL2		2UL

249
#define STRTAB_STE_1_SHCFG		GENMASK_ULL(45, 44)
250 251
#define STRTAB_STE_1_SHCFG_INCOMING	1UL

252 253
#define STRTAB_STE_2_S2VMID		GENMASK_ULL(15, 0)
#define STRTAB_STE_2_VTCR		GENMASK_ULL(50, 32)
254 255 256 257 258
#define STRTAB_STE_2_S2AA64		(1UL << 51)
#define STRTAB_STE_2_S2ENDI		(1UL << 52)
#define STRTAB_STE_2_S2PTW		(1UL << 54)
#define STRTAB_STE_2_S2R		(1UL << 58)

259
#define STRTAB_STE_3_S2TTB_MASK		GENMASK_ULL(51, 4)
260 261 262

/* Context descriptor (stage-1 only) */
#define CTXDESC_CD_DWORDS		8
263 264 265 266 267 268 269 270 271 272 273 274 275 276
#define CTXDESC_CD_0_TCR_T0SZ		GENMASK_ULL(5, 0)
#define ARM64_TCR_T0SZ			GENMASK_ULL(5, 0)
#define CTXDESC_CD_0_TCR_TG0		GENMASK_ULL(7, 6)
#define ARM64_TCR_TG0			GENMASK_ULL(15, 14)
#define CTXDESC_CD_0_TCR_IRGN0		GENMASK_ULL(9, 8)
#define ARM64_TCR_IRGN0			GENMASK_ULL(9, 8)
#define CTXDESC_CD_0_TCR_ORGN0		GENMASK_ULL(11, 10)
#define ARM64_TCR_ORGN0			GENMASK_ULL(11, 10)
#define CTXDESC_CD_0_TCR_SH0		GENMASK_ULL(13, 12)
#define ARM64_TCR_SH0			GENMASK_ULL(13, 12)
#define CTXDESC_CD_0_TCR_EPD0		(1ULL << 14)
#define ARM64_TCR_EPD0			(1ULL << 7)
#define CTXDESC_CD_0_TCR_EPD1		(1ULL << 30)
#define ARM64_TCR_EPD1			(1ULL << 23)
277 278 279 280

#define CTXDESC_CD_0_ENDI		(1UL << 15)
#define CTXDESC_CD_0_V			(1UL << 31)

281 282 283 284
#define CTXDESC_CD_0_TCR_IPS		GENMASK_ULL(34, 32)
#define ARM64_TCR_IPS			GENMASK_ULL(34, 32)
#define CTXDESC_CD_0_TCR_TBI0		(1ULL << 38)
#define ARM64_TCR_TBI0			(1ULL << 37)
285 286

#define CTXDESC_CD_0_AA64		(1UL << 41)
287
#define CTXDESC_CD_0_S			(1UL << 44)
288 289
#define CTXDESC_CD_0_R			(1UL << 45)
#define CTXDESC_CD_0_A			(1UL << 46)
290 291
#define CTXDESC_CD_0_ASET		(1UL << 47)
#define CTXDESC_CD_0_ASID		GENMASK_ULL(63, 48)
292

293
#define CTXDESC_CD_1_TTB0_MASK		GENMASK_ULL(51, 4)
294 295

/* Convert between AArch64 (CPU) TCR format and SMMU CD format */
296 297
#define ARM_SMMU_TCR2CD(tcr, fld)	FIELD_PREP(CTXDESC_CD_0_TCR_##fld, \
					FIELD_GET(ARM64_TCR_##fld, tcr))
298 299

/* Command queue */
300 301 302
#define CMDQ_ENT_SZ_SHIFT		4
#define CMDQ_ENT_DWORDS			((1 << CMDQ_ENT_SZ_SHIFT) >> 3)
#define CMDQ_MAX_SZ_SHIFT		(Q_MAX_SZ_SHIFT - CMDQ_ENT_SZ_SHIFT)
303

304
#define CMDQ_CONS_ERR			GENMASK(30, 24)
305 306 307
#define CMDQ_ERR_CERROR_NONE_IDX	0
#define CMDQ_ERR_CERROR_ILL_IDX		1
#define CMDQ_ERR_CERROR_ABT_IDX		2
308
#define CMDQ_ERR_CERROR_ATC_INV_IDX	3
309

310 311
#define CMDQ_PROD_OWNED_FLAG		Q_OVERFLOW_FLAG

312 313 314 315 316 317 318
/*
 * This is used to size the command queue and therefore must be at least
 * BITS_PER_LONG so that the valid_map works correctly (it relies on the
 * total number of queue entries being a multiple of BITS_PER_LONG).
 */
#define CMDQ_BATCH_ENTRIES		BITS_PER_LONG

319
#define CMDQ_0_OP			GENMASK_ULL(7, 0)
320 321
#define CMDQ_0_SSV			(1UL << 11)

322 323
#define CMDQ_PREFETCH_0_SID		GENMASK_ULL(63, 32)
#define CMDQ_PREFETCH_1_SIZE		GENMASK_ULL(4, 0)
324
#define CMDQ_PREFETCH_1_ADDR_MASK	GENMASK_ULL(63, 12)
325

326
#define CMDQ_CFGI_0_SID			GENMASK_ULL(63, 32)
327
#define CMDQ_CFGI_1_LEAF		(1UL << 0)
328
#define CMDQ_CFGI_1_RANGE		GENMASK_ULL(4, 0)
329

330 331
#define CMDQ_TLBI_0_VMID		GENMASK_ULL(47, 32)
#define CMDQ_TLBI_0_ASID		GENMASK_ULL(63, 48)
332
#define CMDQ_TLBI_1_LEAF		(1UL << 0)
333
#define CMDQ_TLBI_1_VA_MASK		GENMASK_ULL(63, 12)
334
#define CMDQ_TLBI_1_IPA_MASK		GENMASK_ULL(51, 12)
335

336 337 338 339 340 341
#define CMDQ_ATC_0_SSID			GENMASK_ULL(31, 12)
#define CMDQ_ATC_0_SID			GENMASK_ULL(63, 32)
#define CMDQ_ATC_0_GLOBAL		(1UL << 9)
#define CMDQ_ATC_1_SIZE			GENMASK_ULL(5, 0)
#define CMDQ_ATC_1_ADDR_MASK		GENMASK_ULL(63, 12)

342 343 344 345 346 347 348 349 350 351 352 353
#define CMDQ_PRI_0_SSID			GENMASK_ULL(31, 12)
#define CMDQ_PRI_0_SID			GENMASK_ULL(63, 32)
#define CMDQ_PRI_1_GRPID		GENMASK_ULL(8, 0)
#define CMDQ_PRI_1_RESP			GENMASK_ULL(13, 12)

#define CMDQ_SYNC_0_CS			GENMASK_ULL(13, 12)
#define CMDQ_SYNC_0_CS_NONE		0
#define CMDQ_SYNC_0_CS_IRQ		1
#define CMDQ_SYNC_0_CS_SEV		2
#define CMDQ_SYNC_0_MSH			GENMASK_ULL(23, 22)
#define CMDQ_SYNC_0_MSIATTR		GENMASK_ULL(27, 24)
#define CMDQ_SYNC_0_MSIDATA		GENMASK_ULL(63, 32)
354
#define CMDQ_SYNC_1_MSIADDR_MASK	GENMASK_ULL(51, 2)
355 356

/* Event queue */
357 358 359
#define EVTQ_ENT_SZ_SHIFT		5
#define EVTQ_ENT_DWORDS			((1 << EVTQ_ENT_SZ_SHIFT) >> 3)
#define EVTQ_MAX_SZ_SHIFT		(Q_MAX_SZ_SHIFT - EVTQ_ENT_SZ_SHIFT)
360

361
#define EVTQ_0_ID			GENMASK_ULL(7, 0)
362 363

/* PRI queue */
364 365 366
#define PRIQ_ENT_SZ_SHIFT		4
#define PRIQ_ENT_DWORDS			((1 << PRIQ_ENT_SZ_SHIFT) >> 3)
#define PRIQ_MAX_SZ_SHIFT		(Q_MAX_SZ_SHIFT - PRIQ_ENT_SZ_SHIFT)
367

368 369
#define PRIQ_0_SID			GENMASK_ULL(31, 0)
#define PRIQ_0_SSID			GENMASK_ULL(51, 32)
370 371 372 373 374 375 376
#define PRIQ_0_PERM_PRIV		(1UL << 58)
#define PRIQ_0_PERM_EXEC		(1UL << 59)
#define PRIQ_0_PERM_READ		(1UL << 60)
#define PRIQ_0_PERM_WRITE		(1UL << 61)
#define PRIQ_0_PRG_LAST			(1UL << 62)
#define PRIQ_0_SSID_V			(1UL << 63)

377
#define PRIQ_1_PRG_IDX			GENMASK_ULL(8, 0)
378
#define PRIQ_1_ADDR_MASK		GENMASK_ULL(63, 12)
379 380

/* High-level queue structures */
381 382
#define ARM_SMMU_POLL_TIMEOUT_US	1000000 /* 1s! */
#define ARM_SMMU_POLL_SPIN_COUNT	10
383

384 385 386
#define MSI_IOVA_BASE			0x8000000
#define MSI_IOVA_LENGTH			0x100000

387 388 389 390
/*
 * not really modular, but the easiest way to keep compat with existing
 * bootargs behaviour is to continue using module_param_named here.
 */
391
static bool disable_bypass = 1;
392 393 394 395 396
module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");

enum pri_resp {
397 398 399
	PRI_RESP_DENY = 0,
	PRI_RESP_FAIL = 1,
	PRI_RESP_SUCC = 2,
400 401
};

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
enum arm_smmu_msi_index {
	EVTQ_MSI_INDEX,
	GERROR_MSI_INDEX,
	PRIQ_MSI_INDEX,
	ARM_SMMU_MAX_MSIS,
};

static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
	[EVTQ_MSI_INDEX] = {
		ARM_SMMU_EVTQ_IRQ_CFG0,
		ARM_SMMU_EVTQ_IRQ_CFG1,
		ARM_SMMU_EVTQ_IRQ_CFG2,
	},
	[GERROR_MSI_INDEX] = {
		ARM_SMMU_GERROR_IRQ_CFG0,
		ARM_SMMU_GERROR_IRQ_CFG1,
		ARM_SMMU_GERROR_IRQ_CFG2,
	},
	[PRIQ_MSI_INDEX] = {
		ARM_SMMU_PRIQ_IRQ_CFG0,
		ARM_SMMU_PRIQ_IRQ_CFG1,
		ARM_SMMU_PRIQ_IRQ_CFG2,
	},
};

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
struct arm_smmu_cmdq_ent {
	/* Common fields */
	u8				opcode;
	bool				substream_valid;

	/* Command-specific fields */
	union {
		#define CMDQ_OP_PREFETCH_CFG	0x1
		struct {
			u32			sid;
			u8			size;
			u64			addr;
		} prefetch;

		#define CMDQ_OP_CFGI_STE	0x3
		#define CMDQ_OP_CFGI_ALL	0x4
		struct {
			u32			sid;
			union {
				bool		leaf;
				u8		span;
			};
		} cfgi;

		#define CMDQ_OP_TLBI_NH_ASID	0x11
		#define CMDQ_OP_TLBI_NH_VA	0x12
		#define CMDQ_OP_TLBI_EL2_ALL	0x20
		#define CMDQ_OP_TLBI_S12_VMALL	0x28
		#define CMDQ_OP_TLBI_S2_IPA	0x2a
		#define CMDQ_OP_TLBI_NSNH_ALL	0x30
		struct {
			u16			asid;
			u16			vmid;
			bool			leaf;
			u64			addr;
		} tlbi;

464 465 466 467 468 469 470 471 472 473
		#define CMDQ_OP_ATC_INV		0x40
		#define ATC_INV_SIZE_ALL	52
		struct {
			u32			sid;
			u32			ssid;
			u64			addr;
			u8			size;
			bool			global;
		} atc;

474 475 476 477 478 479 480 481 482
		#define CMDQ_OP_PRI_RESP	0x41
		struct {
			u32			sid;
			u32			ssid;
			u16			grpid;
			enum pri_resp		resp;
		} pri;

		#define CMDQ_OP_CMD_SYNC	0x46
483 484 485
		struct {
			u64			msiaddr;
		} sync;
486 487 488
	};
};

489
struct arm_smmu_ll_queue {
490 491 492 493 494 495 496 497 498 499 500 501
	union {
		u64			val;
		struct {
			u32		prod;
			u32		cons;
		};
		struct {
			atomic_t	prod;
			atomic_t	cons;
		} atomic;
		u8			__pad[SMP_CACHE_BYTES];
	} ____cacheline_aligned_in_smp;
502 503 504
	u32				max_n_shift;
};

505
struct arm_smmu_queue {
506
	struct arm_smmu_ll_queue	llq;
507 508 509 510 511 512 513 514 515 516 517 518
	int				irq; /* Wired interrupt */

	__le64				*base;
	dma_addr_t			base_dma;
	u64				q_base;

	size_t				ent_dwords;

	u32 __iomem			*prod_reg;
	u32 __iomem			*cons_reg;
};

519 520 521 522 523 524 525
struct arm_smmu_queue_poll {
	ktime_t				timeout;
	unsigned int			delay;
	unsigned int			spin_cnt;
	bool				wfe;
};

526 527
struct arm_smmu_cmdq {
	struct arm_smmu_queue		q;
528 529 530
	atomic_long_t			*valid_map;
	atomic_t			owner_prod;
	atomic_t			lock;
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
};

struct arm_smmu_evtq {
	struct arm_smmu_queue		q;
	u32				max_stalls;
};

struct arm_smmu_priq {
	struct arm_smmu_queue		q;
};

/* High-level stream table and context descriptor structures */
struct arm_smmu_strtab_l1_desc {
	u8				span;

	__le64				*l2ptr;
	dma_addr_t			l2ptr_dma;
};

struct arm_smmu_s1_cfg {
	__le64				*cdptr;
	dma_addr_t			cdptr_dma;

	struct arm_smmu_ctx_desc {
		u16	asid;
		u64	ttbr;
		u64	tcr;
		u64	mair;
	}				cd;
};

struct arm_smmu_s2_cfg {
	u16				vmid;
	u64				vttbr;
	u64				vtcr;
};

struct arm_smmu_strtab_cfg {
	__le64				*strtab;
	dma_addr_t			strtab_dma;
	struct arm_smmu_strtab_l1_desc	*l1_desc;
	unsigned int			num_l1_ents;

	u64				strtab_base;
	u32				strtab_base_cfg;
};

/* An SMMUv3 instance */
struct arm_smmu_device {
	struct device			*dev;
	void __iomem			*base;

#define ARM_SMMU_FEAT_2_LVL_STRTAB	(1 << 0)
#define ARM_SMMU_FEAT_2_LVL_CDTAB	(1 << 1)
#define ARM_SMMU_FEAT_TT_LE		(1 << 2)
#define ARM_SMMU_FEAT_TT_BE		(1 << 3)
#define ARM_SMMU_FEAT_PRI		(1 << 4)
#define ARM_SMMU_FEAT_ATS		(1 << 5)
#define ARM_SMMU_FEAT_SEV		(1 << 6)
#define ARM_SMMU_FEAT_MSI		(1 << 7)
#define ARM_SMMU_FEAT_COHERENCY		(1 << 8)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 9)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 10)
#define ARM_SMMU_FEAT_STALLS		(1 << 11)
#define ARM_SMMU_FEAT_HYP		(1 << 12)
596
#define ARM_SMMU_FEAT_STALL_FORCE	(1 << 13)
597
#define ARM_SMMU_FEAT_VAX		(1 << 14)
598 599
	u32				features;

600
#define ARM_SMMU_OPT_SKIP_PREFETCH	(1 << 0)
601
#define ARM_SMMU_OPT_PAGE0_REGS_ONLY	(1 << 1)
602 603
	u32				options;

604 605 606 607 608
	struct arm_smmu_cmdq		cmdq;
	struct arm_smmu_evtq		evtq;
	struct arm_smmu_priq		priq;

	int				gerr_irq;
609
	int				combined_irq;
610 611 612

	unsigned long			ias; /* IPA */
	unsigned long			oas; /* PA */
613
	unsigned long			pgsize_bitmap;
614 615 616 617 618 619 620 621 622 623 624 625 626

#define ARM_SMMU_MAX_ASIDS		(1 << 16)
	unsigned int			asid_bits;
	DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);

#define ARM_SMMU_MAX_VMIDS		(1 << 16)
	unsigned int			vmid_bits;
	DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);

	unsigned int			ssid_bits;
	unsigned int			sid_bits;

	struct arm_smmu_strtab_cfg	strtab_cfg;
627 628 629

	/* IOMMU core code handle */
	struct iommu_device		iommu;
630 631
};

632
/* SMMU private data for each master */
633
struct arm_smmu_master {
634
	struct arm_smmu_device		*smmu;
635
	struct device			*dev;
636
	struct arm_smmu_domain		*domain;
637
	struct list_head		domain_head;
638 639
	u32				*sids;
	unsigned int			num_sids;
640
	bool				ats_enabled;
641 642 643 644 645 646 647
};

/* SMMU private data for an IOMMU domain */
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
648
	ARM_SMMU_DOMAIN_BYPASS,
649 650 651 652 653 654 655
};

struct arm_smmu_domain {
	struct arm_smmu_device		*smmu;
	struct mutex			init_mutex; /* Protects smmu pointer */

	struct io_pgtable_ops		*pgtbl_ops;
656
	bool				non_strict;
657
	atomic_t			nr_ats_masters;
658 659 660 661 662 663 664 665

	enum arm_smmu_domain_stage	stage;
	union {
		struct arm_smmu_s1_cfg	s1_cfg;
		struct arm_smmu_s2_cfg	s2_cfg;
	};

	struct iommu_domain		domain;
666 667 668

	struct list_head		devices;
	spinlock_t			devices_lock;
669 670
};

671 672 673 674 675 676 677
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

static struct arm_smmu_option_prop arm_smmu_options[] = {
	{ ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
678
	{ ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
679 680 681
	{ 0, NULL},
};

682 683 684 685 686 687 688 689 690 691
static inline void __iomem *arm_smmu_page1_fixup(unsigned long offset,
						 struct arm_smmu_device *smmu)
{
	if ((offset > SZ_64K) &&
	    (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY))
		offset -= SZ_64K;

	return smmu->base + offset;
}

692 693 694 695 696
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

697 698 699 700 701 702 703 704 705 706 707 708 709 710
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;

	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

711
/* Low-level queue manipulation functions */
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
static bool queue_has_space(struct arm_smmu_ll_queue *q, u32 n)
{
	u32 space, prod, cons;

	prod = Q_IDX(q, q->prod);
	cons = Q_IDX(q, q->cons);

	if (Q_WRP(q, q->prod) == Q_WRP(q, q->cons))
		space = (1 << q->max_n_shift) - (prod - cons);
	else
		space = cons - prod;

	return space >= n;
}

727
static bool queue_full(struct arm_smmu_ll_queue *q)
728
{
729 730
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
731 732
}

733
static bool queue_empty(struct arm_smmu_ll_queue *q)
734
{
735 736
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
737 738
}

739
static bool queue_consumed(struct arm_smmu_ll_queue *q, u32 prod)
740
{
741 742 743 744
	return ((Q_WRP(q, q->cons) == Q_WRP(q, prod)) &&
		(Q_IDX(q, q->cons) > Q_IDX(q, prod))) ||
	       ((Q_WRP(q, q->cons) != Q_WRP(q, prod)) &&
		(Q_IDX(q, q->cons) <= Q_IDX(q, prod)));
745 746
}

747
static void queue_sync_cons_out(struct arm_smmu_queue *q)
748
{
749 750 751 752 753
	/*
	 * Ensure that all CPU accesses (reads and writes) to the queue
	 * are complete before we update the cons pointer.
	 */
	mb();
754
	writel_relaxed(q->llq.cons, q->cons_reg);
755 756
}

757
static void queue_inc_cons(struct arm_smmu_ll_queue *q)
758
{
759 760
	u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
	q->cons = Q_OVF(q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
761 762 763
}

static int queue_sync_prod_in(struct arm_smmu_queue *q)
764 765 766 767
{
	int ret = 0;
	u32 prod = readl_relaxed(q->prod_reg);

768
	if (Q_OVF(prod) != Q_OVF(q->llq.prod))
769 770
		ret = -EOVERFLOW;

771
	q->llq.prod = prod;
772 773 774
	return ret;
}

775
static u32 queue_inc_prod_n(struct arm_smmu_ll_queue *q, int n)
776
{
777 778
	u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + n;
	return Q_OVF(q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
779 780
}

781 782
static void queue_poll_init(struct arm_smmu_device *smmu,
			    struct arm_smmu_queue_poll *qp)
783
{
784 785 786 787
	qp->delay = 1;
	qp->spin_cnt = 0;
	qp->wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
	qp->timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
788 789
}

790
static int queue_poll(struct arm_smmu_queue_poll *qp)
791
{
792 793
	if (ktime_compare(ktime_get(), qp->timeout) > 0)
		return -ETIMEDOUT;
794

795 796 797 798 799 800 801 802
	if (qp->wfe) {
		wfe();
	} else if (++qp->spin_cnt < ARM_SMMU_POLL_SPIN_COUNT) {
		cpu_relax();
	} else {
		udelay(qp->delay);
		qp->delay *= 2;
		qp->spin_cnt = 0;
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
	}

	return 0;
}

static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = cpu_to_le64(*src++);
}

static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = le64_to_cpu(*src++);
}

static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
{
826
	if (queue_empty(&q->llq))
827 828
		return -EAGAIN;

829
	queue_read(ent, Q_ENT(q, q->llq.cons), q->ent_dwords);
830
	queue_inc_cons(&q->llq);
831
	queue_sync_cons_out(q);
832 833 834 835 836 837
	return 0;
}

/* High-level queue accessors */
static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
{
838
	memset(cmd, 0, 1 << CMDQ_ENT_SZ_SHIFT);
839
	cmd[0] |= FIELD_PREP(CMDQ_0_OP, ent->opcode);
840 841 842 843 844 845

	switch (ent->opcode) {
	case CMDQ_OP_TLBI_EL2_ALL:
	case CMDQ_OP_TLBI_NSNH_ALL:
		break;
	case CMDQ_OP_PREFETCH_CFG:
846 847
		cmd[0] |= FIELD_PREP(CMDQ_PREFETCH_0_SID, ent->prefetch.sid);
		cmd[1] |= FIELD_PREP(CMDQ_PREFETCH_1_SIZE, ent->prefetch.size);
848 849 850
		cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
		break;
	case CMDQ_OP_CFGI_STE:
851 852
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_LEAF, ent->cfgi.leaf);
853 854 855
		break;
	case CMDQ_OP_CFGI_ALL:
		/* Cover the entire SID range */
856
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_RANGE, 31);
857 858
		break;
	case CMDQ_OP_TLBI_NH_VA:
859 860
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
861 862
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
		break;
863
	case CMDQ_OP_TLBI_S2_IPA:
864 865
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
866
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
867 868
		break;
	case CMDQ_OP_TLBI_NH_ASID:
869
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
870 871
		/* Fallthrough */
	case CMDQ_OP_TLBI_S12_VMALL:
872
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
873
		break;
874 875 876 877 878 879 880 881
	case CMDQ_OP_ATC_INV:
		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_GLOBAL, ent->atc.global);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SSID, ent->atc.ssid);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SID, ent->atc.sid);
		cmd[1] |= FIELD_PREP(CMDQ_ATC_1_SIZE, ent->atc.size);
		cmd[1] |= ent->atc.addr & CMDQ_ATC_1_ADDR_MASK;
		break;
882
	case CMDQ_OP_PRI_RESP:
883 884 885 886
		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SSID, ent->pri.ssid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SID, ent->pri.sid);
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_GRPID, ent->pri.grpid);
887 888 889 890 891 892 893 894
		switch (ent->pri.resp) {
		case PRI_RESP_DENY:
		case PRI_RESP_FAIL:
		case PRI_RESP_SUCC:
			break;
		default:
			return -EINVAL;
		}
895
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_RESP, ent->pri.resp);
896 897
		break;
	case CMDQ_OP_CMD_SYNC:
898
		if (ent->sync.msiaddr) {
899
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_IRQ);
900 901
			cmd[1] |= ent->sync.msiaddr & CMDQ_SYNC_1_MSIADDR_MASK;
		} else {
902
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_SEV);
903
		}
904 905
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSH, ARM_SMMU_SH_ISH);
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIATTR, ARM_SMMU_MEMATTR_OIWB);
906 907 908 909 910 911 912 913
		break;
	default:
		return -ENOENT;
	}

	return 0;
}

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
static void arm_smmu_cmdq_build_sync_cmd(u64 *cmd, struct arm_smmu_device *smmu,
					 u32 prod)
{
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	struct arm_smmu_cmdq_ent ent = {
		.opcode = CMDQ_OP_CMD_SYNC,
	};

	/*
	 * Beware that Hi16xx adds an extra 32 bits of goodness to its MSI
	 * payload, so the write will zero the entire command on that platform.
	 */
	if (smmu->features & ARM_SMMU_FEAT_MSI &&
	    smmu->features & ARM_SMMU_FEAT_COHERENCY) {
		ent.sync.msiaddr = q->base_dma + Q_IDX(&q->llq, prod) *
				   q->ent_dwords * 8;
	}

	arm_smmu_cmdq_build_cmd(cmd, &ent);
}

935 936 937 938 939 940
static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
{
	static const char *cerror_str[] = {
		[CMDQ_ERR_CERROR_NONE_IDX]	= "No error",
		[CMDQ_ERR_CERROR_ILL_IDX]	= "Illegal command",
		[CMDQ_ERR_CERROR_ABT_IDX]	= "Abort on command fetch",
941
		[CMDQ_ERR_CERROR_ATC_INV_IDX]	= "ATC invalidate timeout",
942 943 944 945 946 947
	};

	int i;
	u64 cmd[CMDQ_ENT_DWORDS];
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	u32 cons = readl_relaxed(q->cons_reg);
948
	u32 idx = FIELD_GET(CMDQ_CONS_ERR, cons);
949 950 951 952 953
	struct arm_smmu_cmdq_ent cmd_sync = {
		.opcode = CMDQ_OP_CMD_SYNC,
	};

	dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
954
		idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
955 956 957 958 959 960

	switch (idx) {
	case CMDQ_ERR_CERROR_ABT_IDX:
		dev_err(smmu->dev, "retrying command fetch\n");
	case CMDQ_ERR_CERROR_NONE_IDX:
		return;
961 962 963 964 965 966 967 968
	case CMDQ_ERR_CERROR_ATC_INV_IDX:
		/*
		 * ATC Invalidation Completion timeout. CONS is still pointing
		 * at the CMD_SYNC. Attempt to complete other pending commands
		 * by repeating the CMD_SYNC, though we might well end up back
		 * here since the ATC invalidation may still be pending.
		 */
		return;
969 970 971 972
	case CMDQ_ERR_CERROR_ILL_IDX:
		/* Fallthrough */
	default:
		break;
973 974 975 976 977 978
	}

	/*
	 * We may have concurrent producers, so we need to be careful
	 * not to touch any of the shadow cmdq state.
	 */
979
	queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
980 981 982 983 984 985 986 987 988 989
	dev_err(smmu->dev, "skipping command in error state:\n");
	for (i = 0; i < ARRAY_SIZE(cmd); ++i)
		dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);

	/* Convert the erroneous command into a CMD_SYNC */
	if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
		dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
		return;
	}

990
	queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
991 992
}

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/*
 * Command queue locking.
 * This is a form of bastardised rwlock with the following major changes:
 *
 * - The only LOCK routines are exclusive_trylock() and shared_lock().
 *   Neither have barrier semantics, and instead provide only a control
 *   dependency.
 *
 * - The UNLOCK routines are supplemented with shared_tryunlock(), which
 *   fails if the caller appears to be the last lock holder (yes, this is
 *   racy). All successful UNLOCK routines have RELEASE semantics.
 */
static void arm_smmu_cmdq_shared_lock(struct arm_smmu_cmdq *cmdq)
1006
{
1007
	int val;
1008

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
	/*
	 * We can try to avoid the cmpxchg() loop by simply incrementing the
	 * lock counter. When held in exclusive state, the lock counter is set
	 * to INT_MIN so these increments won't hurt as the value will remain
	 * negative.
	 */
	if (atomic_fetch_inc_relaxed(&cmdq->lock) >= 0)
		return;

	do {
		val = atomic_cond_read_relaxed(&cmdq->lock, VAL >= 0);
	} while (atomic_cmpxchg_relaxed(&cmdq->lock, val, val + 1) != val);
}

static void arm_smmu_cmdq_shared_unlock(struct arm_smmu_cmdq *cmdq)
{
	(void)atomic_dec_return_release(&cmdq->lock);
}

static bool arm_smmu_cmdq_shared_tryunlock(struct arm_smmu_cmdq *cmdq)
{
	if (atomic_read(&cmdq->lock) == 1)
		return false;

	arm_smmu_cmdq_shared_unlock(cmdq);
	return true;
}

#define arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)		\
({									\
	bool __ret;							\
	local_irq_save(flags);						\
	__ret = !atomic_cmpxchg_relaxed(&cmdq->lock, 0, INT_MIN);	\
	if (!__ret)							\
		local_irq_restore(flags);				\
	__ret;								\
})

#define arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags)		\
({									\
	atomic_set_release(&cmdq->lock, 0);				\
	local_irq_restore(flags);					\
})


/*
 * Command queue insertion.
 * This is made fiddly by our attempts to achieve some sort of scalability
 * since there is one queue shared amongst all of the CPUs in the system.  If
 * you like mixed-size concurrency, dependency ordering and relaxed atomics,
 * then you'll *love* this monstrosity.
 *
 * The basic idea is to split the queue up into ranges of commands that are
 * owned by a given CPU; the owner may not have written all of the commands
 * itself, but is responsible for advancing the hardware prod pointer when
 * the time comes. The algorithm is roughly:
 *
 * 	1. Allocate some space in the queue. At this point we also discover
 *	   whether the head of the queue is currently owned by another CPU,
 *	   or whether we are the owner.
 *
 *	2. Write our commands into our allocated slots in the queue.
 *
 *	3. Mark our slots as valid in arm_smmu_cmdq.valid_map.
 *
 *	4. If we are an owner:
 *		a. Wait for the previous owner to finish.
 *		b. Mark the queue head as unowned, which tells us the range
 *		   that we are responsible for publishing.
 *		c. Wait for all commands in our owned range to become valid.
 *		d. Advance the hardware prod pointer.
 *		e. Tell the next owner we've finished.
 *
 *	5. If we are inserting a CMD_SYNC (we may or may not have been an
 *	   owner), then we need to stick around until it has completed:
 *		a. If we have MSIs, the SMMU can write back into the CMD_SYNC
 *		   to clear the first 4 bytes.
 *		b. Otherwise, we spin waiting for the hardware cons pointer to
 *		   advance past our command.
 *
 * The devil is in the details, particularly the use of locking for handling
 * SYNC completion and freeing up space in the queue before we think that it is
 * full.
 */
static void __arm_smmu_cmdq_poll_set_valid_map(struct arm_smmu_cmdq *cmdq,
					       u32 sprod, u32 eprod, bool set)
{
	u32 swidx, sbidx, ewidx, ebidx;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift	= cmdq->q.llq.max_n_shift,
		.prod		= sprod,
	};
1101

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	ewidx = BIT_WORD(Q_IDX(&llq, eprod));
	ebidx = Q_IDX(&llq, eprod) % BITS_PER_LONG;

	while (llq.prod != eprod) {
		unsigned long mask;
		atomic_long_t *ptr;
		u32 limit = BITS_PER_LONG;

		swidx = BIT_WORD(Q_IDX(&llq, llq.prod));
		sbidx = Q_IDX(&llq, llq.prod) % BITS_PER_LONG;

		ptr = &cmdq->valid_map[swidx];

		if ((swidx == ewidx) && (sbidx < ebidx))
			limit = ebidx;

		mask = GENMASK(limit - 1, sbidx);

		/*
		 * The valid bit is the inverse of the wrap bit. This means
		 * that a zero-initialised queue is invalid and, after marking
		 * all entries as valid, they become invalid again when we
		 * wrap.
		 */
		if (set) {
			atomic_long_xor(mask, ptr);
		} else { /* Poll */
			unsigned long valid;

			valid = (ULONG_MAX + !!Q_WRP(&llq, llq.prod)) & mask;
			atomic_long_cond_read_relaxed(ptr, (VAL & mask) == valid);
		}

		llq.prod = queue_inc_prod_n(&llq, limit - sbidx);
1136 1137 1138
	}
}

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
/* Mark all entries in the range [sprod, eprod) as valid */
static void arm_smmu_cmdq_set_valid_map(struct arm_smmu_cmdq *cmdq,
					u32 sprod, u32 eprod)
{
	__arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, true);
}

/* Wait for all entries in the range [sprod, eprod) to become valid */
static void arm_smmu_cmdq_poll_valid_map(struct arm_smmu_cmdq *cmdq,
					 u32 sprod, u32 eprod)
{
	__arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, false);
}

/* Wait for the command queue to become non-full */
static int arm_smmu_cmdq_poll_until_not_full(struct arm_smmu_device *smmu,
					     struct arm_smmu_ll_queue *llq)
1156
{
1157
	unsigned long flags;
1158 1159 1160
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	int ret = 0;
1161

1162 1163 1164 1165 1166 1167 1168 1169 1170
	/*
	 * Try to update our copy of cons by grabbing exclusive cmdq access. If
	 * that fails, spin until somebody else updates it for us.
	 */
	if (arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)) {
		WRITE_ONCE(cmdq->q.llq.cons, readl_relaxed(cmdq->q.cons_reg));
		arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags);
		llq->val = READ_ONCE(cmdq->q.llq.val);
		return 0;
1171 1172
	}

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	queue_poll_init(smmu, &qp);
	do {
		llq->val = READ_ONCE(smmu->cmdq.q.llq.val);
		if (!queue_full(llq))
			break;

		ret = queue_poll(&qp);
	} while (!ret);

	return ret;
1183
}
1184

1185
/*
1186 1187
 * Wait until the SMMU signals a CMD_SYNC completion MSI.
 * Must be called with the cmdq lock held in some capacity.
1188
 */
1189 1190
static int __arm_smmu_cmdq_poll_until_msi(struct arm_smmu_device *smmu,
					  struct arm_smmu_ll_queue *llq)
1191
{
1192 1193 1194 1195
	int ret = 0;
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	u32 *cmd = (u32 *)(Q_ENT(&cmdq->q, llq->prod));
1196

1197
	queue_poll_init(smmu, &qp);
1198

1199 1200 1201 1202 1203 1204 1205 1206
	/*
	 * The MSI won't generate an event, since it's being written back
	 * into the command queue.
	 */
	qp.wfe = false;
	smp_cond_load_relaxed(cmd, !VAL || (ret = queue_poll(&qp)));
	llq->cons = ret ? llq->prod : queue_inc_prod_n(llq, 1);
	return ret;
1207 1208
}

1209 1210 1211 1212 1213 1214
/*
 * Wait until the SMMU cons index passes llq->prod.
 * Must be called with the cmdq lock held in some capacity.
 */
static int __arm_smmu_cmdq_poll_until_consumed(struct arm_smmu_device *smmu,
					       struct arm_smmu_ll_queue *llq)
1215
{
1216 1217 1218 1219
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	u32 prod = llq->prod;
	int ret = 0;
1220

1221 1222 1223 1224 1225
	queue_poll_init(smmu, &qp);
	llq->val = READ_ONCE(smmu->cmdq.q.llq.val);
	do {
		if (queue_consumed(llq, prod))
			break;
1226

1227
		ret = queue_poll(&qp);
1228

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
		/*
		 * This needs to be a readl() so that our subsequent call
		 * to arm_smmu_cmdq_shared_tryunlock() can fail accurately.
		 *
		 * Specifically, we need to ensure that we observe all
		 * shared_lock()s by other CMD_SYNCs that share our owner,
		 * so that a failing call to tryunlock() means that we're
		 * the last one out and therefore we can safely advance
		 * cmdq->q.llq.cons. Roughly speaking:
		 *
		 * CPU 0		CPU1			CPU2 (us)
		 *
		 * if (sync)
		 * 	shared_lock();
		 *
		 * dma_wmb();
		 * set_valid_map();
		 *
		 * 			if (owner) {
		 *				poll_valid_map();
		 *				<control dependency>
		 *				writel(prod_reg);
		 *
		 *						readl(cons_reg);
		 *						tryunlock();
		 *
		 * Requires us to see CPU 0's shared_lock() acquisition.
		 */
		llq->cons = readl(cmdq->q.cons_reg);
	} while (!ret);
1259

1260
	return ret;
1261 1262
}

1263 1264
static int arm_smmu_cmdq_poll_until_sync(struct arm_smmu_device *smmu,
					 struct arm_smmu_ll_queue *llq)
1265
{
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	if (smmu->features & ARM_SMMU_FEAT_MSI &&
	    smmu->features & ARM_SMMU_FEAT_COHERENCY)
		return __arm_smmu_cmdq_poll_until_msi(smmu, llq);

	return __arm_smmu_cmdq_poll_until_consumed(smmu, llq);
}

static void arm_smmu_cmdq_write_entries(struct arm_smmu_cmdq *cmdq, u64 *cmds,
					u32 prod, int n)
{
	int i;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift	= cmdq->q.llq.max_n_shift,
		.prod		= prod,
	};

	for (i = 0; i < n; ++i) {
		u64 *cmd = &cmds[i * CMDQ_ENT_DWORDS];

		prod = queue_inc_prod_n(&llq, i);
		queue_write(Q_ENT(&cmdq->q, prod), cmd, CMDQ_ENT_DWORDS);
	}
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
/*
 * This is the actual insertion function, and provides the following
 * ordering guarantees to callers:
 *
 * - There is a dma_wmb() before publishing any commands to the queue.
 *   This can be relied upon to order prior writes to data structures
 *   in memory (such as a CD or an STE) before the command.
 *
 * - On completion of a CMD_SYNC, there is a control dependency.
 *   This can be relied upon to order subsequent writes to memory (e.g.
 *   freeing an IOVA) after completion of the CMD_SYNC.
 *
 * - Command insertion is totally ordered, so if two CPUs each race to
 *   insert their own list of commands then all of the commands from one
 *   CPU will appear before any of the commands from the other CPU.
 */
1306 1307 1308 1309 1310
static int arm_smmu_cmdq_issue_cmdlist(struct arm_smmu_device *smmu,
				       u64 *cmds, int n, bool sync)
{
	u64 cmd_sync[CMDQ_ENT_DWORDS];
	u32 prod;
1311
	unsigned long flags;
1312 1313 1314 1315 1316 1317
	bool owner;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift = cmdq->q.llq.max_n_shift,
	}, head = llq;
	int ret = 0;
1318

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	/* 1. Allocate some space in the queue */
	local_irq_save(flags);
	llq.val = READ_ONCE(cmdq->q.llq.val);
	do {
		u64 old;

		while (!queue_has_space(&llq, n + sync)) {
			local_irq_restore(flags);
			if (arm_smmu_cmdq_poll_until_not_full(smmu, &llq))
				dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
			local_irq_save(flags);
		}

		head.cons = llq.cons;
		head.prod = queue_inc_prod_n(&llq, n + sync) |
					     CMDQ_PROD_OWNED_FLAG;

		old = cmpxchg_relaxed(&cmdq->q.llq.val, llq.val, head.val);
		if (old == llq.val)
			break;

		llq.val = old;
	} while (1);
	owner = !(llq.prod & CMDQ_PROD_OWNED_FLAG);
	head.prod &= ~CMDQ_PROD_OWNED_FLAG;
	llq.prod &= ~CMDQ_PROD_OWNED_FLAG;

	/*
	 * 2. Write our commands into the queue
	 * Dependency ordering from the cmpxchg() loop above.
	 */
	arm_smmu_cmdq_write_entries(cmdq, cmds, llq.prod, n);
	if (sync) {
		prod = queue_inc_prod_n(&llq, n);
		arm_smmu_cmdq_build_sync_cmd(cmd_sync, smmu, prod);
		queue_write(Q_ENT(&cmdq->q, prod), cmd_sync, CMDQ_ENT_DWORDS);

		/*
		 * In order to determine completion of our CMD_SYNC, we must
		 * ensure that the queue can't wrap twice without us noticing.
		 * We achieve that by taking the cmdq lock as shared before
		 * marking our slot as valid.
		 */
		arm_smmu_cmdq_shared_lock(cmdq);
	}
1364

1365 1366 1367
	/* 3. Mark our slots as valid, ensuring commands are visible first */
	dma_wmb();
	arm_smmu_cmdq_set_valid_map(cmdq, llq.prod, head.prod);
1368

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
	/* 4. If we are the owner, take control of the SMMU hardware */
	if (owner) {
		/* a. Wait for previous owner to finish */
		atomic_cond_read_relaxed(&cmdq->owner_prod, VAL == llq.prod);

		/* b. Stop gathering work by clearing the owned flag */
		prod = atomic_fetch_andnot_relaxed(CMDQ_PROD_OWNED_FLAG,
						   &cmdq->q.llq.atomic.prod);
		prod &= ~CMDQ_PROD_OWNED_FLAG;

		/*
		 * c. Wait for any gathered work to be written to the queue.
		 * Note that we read our own entries so that we have the control
		 * dependency required by (d).
		 */
		arm_smmu_cmdq_poll_valid_map(cmdq, llq.prod, prod);

		/*
		 * d. Advance the hardware prod pointer
		 * Control dependency ordering from the entries becoming valid.
		 */
		writel_relaxed(prod, cmdq->q.prod_reg);

		/*
		 * e. Tell the next owner we're done
		 * Make sure we've updated the hardware first, so that we don't
		 * race to update prod and potentially move it backwards.
		 */
		atomic_set_release(&cmdq->owner_prod, prod);
	}

	/* 5. If we are inserting a CMD_SYNC, we must wait for it to complete */
	if (sync) {
		llq.prod = queue_inc_prod_n(&llq, n);
		ret = arm_smmu_cmdq_poll_until_sync(smmu, &llq);
		if (ret) {
			dev_err_ratelimited(smmu->dev,
					    "CMD_SYNC timeout at 0x%08x [hwprod 0x%08x, hwcons 0x%08x]\n",
					    llq.prod,
					    readl_relaxed(cmdq->q.prod_reg),
					    readl_relaxed(cmdq->q.cons_reg));
		}

		/*
		 * Try to unlock the cmq lock. This will fail if we're the last
		 * reader, in which case we can safely update cmdq->q.llq.cons
		 */
		if (!arm_smmu_cmdq_shared_tryunlock(cmdq)) {
			WRITE_ONCE(cmdq->q.llq.cons, llq.cons);
			arm_smmu_cmdq_shared_unlock(cmdq);
		}
	}

	local_irq_restore(flags);
1423 1424 1425
	return ret;
}

1426 1427
static int arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
				   struct arm_smmu_cmdq_ent *ent)
1428
{
1429
	u64 cmd[CMDQ_ENT_DWORDS];
1430

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
		dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
			 ent->opcode);
		return -EINVAL;
	}

	return arm_smmu_cmdq_issue_cmdlist(smmu, cmd, 1, false);
}

static int arm_smmu_cmdq_issue_sync(struct arm_smmu_device *smmu)
{
	return arm_smmu_cmdq_issue_cmdlist(smmu, NULL, 0, true);
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
}

/* Context descriptor manipulation functions */
static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
{
	u64 val = 0;

	/* Repack the TCR. Just care about TTBR0 for now */
	val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
	val |= ARM_SMMU_TCR2CD(tcr, TG0);
	val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
	val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
	val |= ARM_SMMU_TCR2CD(tcr, SH0);
	val |= ARM_SMMU_TCR2CD(tcr, EPD0);
	val |= ARM_SMMU_TCR2CD(tcr, EPD1);
	val |= ARM_SMMU_TCR2CD(tcr, IPS);

	return val;
}

static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
				    struct arm_smmu_s1_cfg *cfg)
{
	u64 val;

	/*
	 * We don't need to issue any invalidation here, as we'll invalidate
	 * the STE when installing the new entry anyway.
	 */
	val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
#ifdef __BIG_ENDIAN
	      CTXDESC_CD_0_ENDI |
#endif
1476 1477
	      CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET |
	      CTXDESC_CD_0_AA64 | FIELD_PREP(CTXDESC_CD_0_ASID, cfg->cd.asid) |
1478
	      CTXDESC_CD_0_V;
1479 1480 1481 1482 1483

	/* STALL_MODEL==0b10 && CD.S==0 is ILLEGAL */
	if (smmu->features & ARM_SMMU_FEAT_STALL_FORCE)
		val |= CTXDESC_CD_0_S;

1484 1485
	cfg->cdptr[0] = cpu_to_le64(val);

1486
	val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK;
1487 1488
	cfg->cdptr[1] = cpu_to_le64(val);

1489
	cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair);
1490 1491 1492 1493 1494 1495 1496 1497
}

/* Stream table manipulation functions */
static void
arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
{
	u64 val = 0;

1498
	val |= FIELD_PREP(STRTAB_L1_DESC_SPAN, desc->span);
1499
	val |= desc->l2ptr_dma & STRTAB_L1_DESC_L2PTR_MASK;
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

	*dst = cpu_to_le64(val);
}

static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= CMDQ_OP_CFGI_STE,
		.cfgi	= {
			.sid	= sid,
			.leaf	= true,
		},
	};

	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1515
	arm_smmu_cmdq_issue_sync(smmu);
1516 1517
}

1518 1519
static void arm_smmu_write_strtab_ent(struct arm_smmu_master *master, u32 sid,
				      __le64 *dst)
1520 1521 1522 1523 1524
{
	/*
	 * This is hideously complicated, but we only really care about
	 * three cases at the moment:
	 *
1525 1526 1527
	 * 1. Invalid (all zero) -> bypass/fault (init)
	 * 2. Bypass/fault -> translation/bypass (attach)
	 * 3. Translation/bypass -> bypass/fault (detach)
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	 *
	 * Given that we can't update the STE atomically and the SMMU
	 * doesn't read the thing in a defined order, that leaves us
	 * with the following maintenance requirements:
	 *
	 * 1. Update Config, return (init time STEs aren't live)
	 * 2. Write everything apart from dword 0, sync, write dword 0, sync
	 * 3. Update Config, sync
	 */
	u64 val = le64_to_cpu(dst[0]);
	bool ste_live = false;
1539 1540 1541 1542
	struct arm_smmu_device *smmu = NULL;
	struct arm_smmu_s1_cfg *s1_cfg = NULL;
	struct arm_smmu_s2_cfg *s2_cfg = NULL;
	struct arm_smmu_domain *smmu_domain = NULL;
1543 1544 1545 1546 1547 1548 1549
	struct arm_smmu_cmdq_ent prefetch_cmd = {
		.opcode		= CMDQ_OP_PREFETCH_CFG,
		.prefetch	= {
			.sid	= sid,
		},
	};

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	if (master) {
		smmu_domain = master->domain;
		smmu = master->smmu;
	}

	if (smmu_domain) {
		switch (smmu_domain->stage) {
		case ARM_SMMU_DOMAIN_S1:
			s1_cfg = &smmu_domain->s1_cfg;
			break;
		case ARM_SMMU_DOMAIN_S2:
		case ARM_SMMU_DOMAIN_NESTED:
			s2_cfg = &smmu_domain->s2_cfg;
			break;
		default:
			break;
		}
	}

1569
	if (val & STRTAB_STE_0_V) {
1570
		switch (FIELD_GET(STRTAB_STE_0_CFG, val)) {
1571 1572 1573 1574 1575 1576
		case STRTAB_STE_0_CFG_BYPASS:
			break;
		case STRTAB_STE_0_CFG_S1_TRANS:
		case STRTAB_STE_0_CFG_S2_TRANS:
			ste_live = true;
			break;
1577 1578 1579
		case STRTAB_STE_0_CFG_ABORT:
			if (disable_bypass)
				break;
1580 1581 1582 1583 1584
		default:
			BUG(); /* STE corruption */
		}
	}

1585
	/* Nuke the existing STE_0 value, as we're going to rewrite it */
1586 1587 1588
	val = STRTAB_STE_0_V;

	/* Bypass/fault */
1589 1590
	if (!smmu_domain || !(s1_cfg || s2_cfg)) {
		if (!smmu_domain && disable_bypass)
1591
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT);
1592
		else
1593
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS);
1594 1595

		dst[0] = cpu_to_le64(val);
1596 1597
		dst[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG,
						STRTAB_STE_1_SHCFG_INCOMING));
1598
		dst[2] = 0; /* Nuke the VMID */
1599 1600 1601 1602 1603
		/*
		 * The SMMU can perform negative caching, so we must sync
		 * the STE regardless of whether the old value was live.
		 */
		if (smmu)
1604 1605 1606 1607
			arm_smmu_sync_ste_for_sid(smmu, sid);
		return;
	}

1608
	if (s1_cfg) {
1609 1610
		BUG_ON(ste_live);
		dst[1] = cpu_to_le64(
1611 1612 1613 1614
			 FIELD_PREP(STRTAB_STE_1_S1CIR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1COR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1CSH, ARM_SMMU_SH_ISH) |
			 FIELD_PREP(STRTAB_STE_1_STRW, STRTAB_STE_1_STRW_NSEL1));
1615

1616 1617
		if (smmu->features & ARM_SMMU_FEAT_STALLS &&
		   !(smmu->features & ARM_SMMU_FEAT_STALL_FORCE))
1618 1619
			dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);

1620
		val |= (s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK) |
1621
			FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S1_TRANS);
1622 1623
	}

1624
	if (s2_cfg) {
1625 1626
		BUG_ON(ste_live);
		dst[2] = cpu_to_le64(
1627 1628
			 FIELD_PREP(STRTAB_STE_2_S2VMID, s2_cfg->vmid) |
			 FIELD_PREP(STRTAB_STE_2_VTCR, s2_cfg->vtcr) |
1629 1630 1631 1632 1633 1634
#ifdef __BIG_ENDIAN
			 STRTAB_STE_2_S2ENDI |
#endif
			 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
			 STRTAB_STE_2_S2R);

1635
		dst[3] = cpu_to_le64(s2_cfg->vttbr & STRTAB_STE_3_S2TTB_MASK);
1636

1637
		val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S2_TRANS);
1638 1639
	}

1640 1641 1642 1643
	if (master->ats_enabled)
		dst[1] |= cpu_to_le64(FIELD_PREP(STRTAB_STE_1_EATS,
						 STRTAB_STE_1_EATS_TRANS));

1644 1645 1646 1647 1648
	arm_smmu_sync_ste_for_sid(smmu, sid);
	dst[0] = cpu_to_le64(val);
	arm_smmu_sync_ste_for_sid(smmu, sid);

	/* It's likely that we'll want to use the new STE soon */
1649 1650
	if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
		arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1651 1652 1653 1654 1655 1656 1657
}

static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
{
	unsigned int i;

	for (i = 0; i < nent; ++i) {
1658
		arm_smmu_write_strtab_ent(NULL, -1, strtab);
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
		strtab += STRTAB_STE_DWORDS;
	}
}

static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
{
	size_t size;
	void *strtab;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];

	if (desc->l2ptr)
		return 0;

	size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1674
	strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1675 1676

	desc->span = STRTAB_SPLIT + 1;
1677 1678
	desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
					  GFP_KERNEL | __GFP_ZERO);
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	if (!desc->l2ptr) {
		dev_err(smmu->dev,
			"failed to allocate l2 stream table for SID %u\n",
			sid);
		return -ENOMEM;
	}

	arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
	arm_smmu_write_strtab_l1_desc(strtab, desc);
	return 0;
}

/* IRQ and event handlers */
static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
{
	int i;
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->evtq.q;
1697
	struct arm_smmu_ll_queue *llq = &q->llq;
1698 1699
	u64 evt[EVTQ_ENT_DWORDS];

1700 1701
	do {
		while (!queue_remove_raw(q, evt)) {
1702
			u8 id = FIELD_GET(EVTQ_0_ID, evt[0]);
1703

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
			dev_info(smmu->dev, "event 0x%02x received:\n", id);
			for (i = 0; i < ARRAY_SIZE(evt); ++i)
				dev_info(smmu->dev, "\t0x%016llx\n",
					 (unsigned long long)evt[i]);

		}

		/*
		 * Not much we can do on overflow, so scream and pretend we're
		 * trying harder.
		 */
1715
		if (queue_sync_prod_in(q) == -EOVERFLOW)
1716
			dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1717
	} while (!queue_empty(llq));
1718 1719

	/* Sync our overflow flag, as we believe we're up to speed */
1720 1721
	llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) |
		    Q_IDX(llq, llq->cons);
1722 1723 1724
	return IRQ_HANDLED;
}

1725 1726 1727 1728 1729 1730
static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
{
	u32 sid, ssid;
	u16 grpid;
	bool ssv, last;

1731 1732 1733 1734 1735
	sid = FIELD_GET(PRIQ_0_SID, evt[0]);
	ssv = FIELD_GET(PRIQ_0_SSID_V, evt[0]);
	ssid = ssv ? FIELD_GET(PRIQ_0_SSID, evt[0]) : 0;
	last = FIELD_GET(PRIQ_0_PRG_LAST, evt[0]);
	grpid = FIELD_GET(PRIQ_1_PRG_IDX, evt[1]);
1736 1737 1738 1739 1740 1741 1742 1743 1744

	dev_info(smmu->dev, "unexpected PRI request received:\n");
	dev_info(smmu->dev,
		 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
		 sid, ssid, grpid, last ? "L" : "",
		 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
		 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
		 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
		 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1745
		 evt[1] & PRIQ_1_ADDR_MASK);
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757

	if (last) {
		struct arm_smmu_cmdq_ent cmd = {
			.opcode			= CMDQ_OP_PRI_RESP,
			.substream_valid	= ssv,
			.pri			= {
				.sid	= sid,
				.ssid	= ssid,
				.grpid	= grpid,
				.resp	= PRI_RESP_DENY,
			},
		};
1758

1759 1760
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}
1761 1762 1763 1764 1765 1766
}

static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->priq.q;
1767
	struct arm_smmu_ll_queue *llq = &q->llq;
1768 1769
	u64 evt[PRIQ_ENT_DWORDS];

1770 1771 1772
	do {
		while (!queue_remove_raw(q, evt))
			arm_smmu_handle_ppr(smmu, evt);
1773

1774
		if (queue_sync_prod_in(q) == -EOVERFLOW)
1775
			dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1776
	} while (!queue_empty(llq));
1777 1778

	/* Sync our overflow flag, as we believe we're up to speed */
1779 1780 1781
	llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) |
		      Q_IDX(llq, llq->cons);
	queue_sync_cons_out(q);
1782 1783 1784 1785 1786 1787 1788
	return IRQ_HANDLED;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu);

static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
{
1789
	u32 gerror, gerrorn, active;
1790 1791 1792 1793 1794
	struct arm_smmu_device *smmu = dev;

	gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
	gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);

1795 1796
	active = gerror ^ gerrorn;
	if (!(active & GERROR_ERR_MASK))
1797 1798 1799 1800
		return IRQ_NONE; /* No errors pending */

	dev_warn(smmu->dev,
		 "unexpected global error reported (0x%08x), this could be serious\n",
1801
		 active);
1802

1803
	if (active & GERROR_SFM_ERR) {
1804 1805 1806 1807
		dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
		arm_smmu_device_disable(smmu);
	}

1808
	if (active & GERROR_MSI_GERROR_ABT_ERR)
1809 1810
		dev_warn(smmu->dev, "GERROR MSI write aborted\n");

1811
	if (active & GERROR_MSI_PRIQ_ABT_ERR)
1812 1813
		dev_warn(smmu->dev, "PRIQ MSI write aborted\n");

1814
	if (active & GERROR_MSI_EVTQ_ABT_ERR)
1815 1816
		dev_warn(smmu->dev, "EVTQ MSI write aborted\n");

1817
	if (active & GERROR_MSI_CMDQ_ABT_ERR)
1818 1819
		dev_warn(smmu->dev, "CMDQ MSI write aborted\n");

1820
	if (active & GERROR_PRIQ_ABT_ERR)
1821 1822
		dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");

1823
	if (active & GERROR_EVTQ_ABT_ERR)
1824 1825
		dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");

1826
	if (active & GERROR_CMDQ_ERR)
1827 1828 1829 1830 1831 1832
		arm_smmu_cmdq_skip_err(smmu);

	writel(gerror, smmu->base + ARM_SMMU_GERRORN);
	return IRQ_HANDLED;
}

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;

	arm_smmu_evtq_thread(irq, dev);
	if (smmu->features & ARM_SMMU_FEAT_PRI)
		arm_smmu_priq_thread(irq, dev);

	return IRQ_HANDLED;
}

static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
{
	arm_smmu_gerror_handler(irq, dev);
	return IRQ_WAKE_THREAD;
}

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
static void
arm_smmu_atc_inv_to_cmd(int ssid, unsigned long iova, size_t size,
			struct arm_smmu_cmdq_ent *cmd)
{
	size_t log2_span;
	size_t span_mask;
	/* ATC invalidates are always on 4096-bytes pages */
	size_t inval_grain_shift = 12;
	unsigned long page_start, page_end;

	*cmd = (struct arm_smmu_cmdq_ent) {
		.opcode			= CMDQ_OP_ATC_INV,
		.substream_valid	= !!ssid,
		.atc.ssid		= ssid,
	};

	if (!size) {
		cmd->atc.size = ATC_INV_SIZE_ALL;
		return;
	}

	page_start	= iova >> inval_grain_shift;
	page_end	= (iova + size - 1) >> inval_grain_shift;

	/*
	 * In an ATS Invalidate Request, the address must be aligned on the
	 * range size, which must be a power of two number of page sizes. We
	 * thus have to choose between grossly over-invalidating the region, or
	 * splitting the invalidation into multiple commands. For simplicity
	 * we'll go with the first solution, but should refine it in the future
	 * if multiple commands are shown to be more efficient.
	 *
	 * Find the smallest power of two that covers the range. The most
	 * significant differing bit between the start and end addresses,
	 * fls(start ^ end), indicates the required span. For example:
	 *
	 * We want to invalidate pages [8; 11]. This is already the ideal range:
	 *		x = 0b1000 ^ 0b1011 = 0b11
	 *		span = 1 << fls(x) = 4
	 *
	 * To invalidate pages [7; 10], we need to invalidate [0; 15]:
	 *		x = 0b0111 ^ 0b1010 = 0b1101
	 *		span = 1 << fls(x) = 16
	 */
	log2_span	= fls_long(page_start ^ page_end);
	span_mask	= (1ULL << log2_span) - 1;

	page_start	&= ~span_mask;

	cmd->atc.addr	= page_start << inval_grain_shift;
	cmd->atc.size	= log2_span;
}

static int arm_smmu_atc_inv_master(struct arm_smmu_master *master,
				   struct arm_smmu_cmdq_ent *cmd)
{
	int i;

	if (!master->ats_enabled)
		return 0;

	for (i = 0; i < master->num_sids; i++) {
		cmd->atc.sid = master->sids[i];
		arm_smmu_cmdq_issue_cmd(master->smmu, cmd);
	}

	return arm_smmu_cmdq_issue_sync(master->smmu);
}

static int arm_smmu_atc_inv_domain(struct arm_smmu_domain *smmu_domain,
				   int ssid, unsigned long iova, size_t size)
{
	int ret = 0;
	unsigned long flags;
	struct arm_smmu_cmdq_ent cmd;
	struct arm_smmu_master *master;

	if (!(smmu_domain->smmu->features & ARM_SMMU_FEAT_ATS))
		return 0;

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
	/*
	 * Ensure that we've completed prior invalidation of the main TLBs
	 * before we read 'nr_ats_masters' in case of a concurrent call to
	 * arm_smmu_enable_ats():
	 *
	 *	// unmap()			// arm_smmu_enable_ats()
	 *	TLBI+SYNC			atomic_inc(&nr_ats_masters);
	 *	smp_mb();			[...]
	 *	atomic_read(&nr_ats_masters);	pci_enable_ats() // writel()
	 *
	 * Ensures that we always see the incremented 'nr_ats_masters' count if
	 * ATS was enabled at the PCI device before completion of the TLBI.
	 */
	smp_mb();
	if (!atomic_read(&smmu_domain->nr_ats_masters))
		return 0;

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	arm_smmu_atc_inv_to_cmd(ssid, iova, size, &cmd);

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_for_each_entry(master, &smmu_domain->devices, domain_head)
		ret |= arm_smmu_atc_inv_master(master, &cmd);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

	return ret ? -ETIMEDOUT : 0;
}

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
/* IO_PGTABLE API */
static void arm_smmu_tlb_inv_context(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd;

	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= CMDQ_OP_TLBI_NH_ASID;
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
		cmd.tlbi.vmid	= 0;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S12_VMALL;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}

1973 1974 1975
	/*
	 * NOTE: when io-pgtable is in non-strict mode, we may get here with
	 * PTEs previously cleared by unmaps on the current CPU not yet visible
1976 1977 1978
	 * to the SMMU. We are relying on the dma_wmb() implicit during cmd
	 * insertion to guarantee those are observed before the TLBI. Do be
	 * careful, 007.
1979
	 */
1980
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1981
	arm_smmu_cmdq_issue_sync(smmu);
1982
	arm_smmu_atc_inv_domain(smmu_domain, 0, 0, 0);
1983 1984
}

1985 1986 1987
static void arm_smmu_tlb_inv_range(unsigned long iova, size_t size,
				   size_t granule, bool leaf,
				   struct arm_smmu_domain *smmu_domain)
1988
{
1989
	u64 cmds[CMDQ_BATCH_ENTRIES * CMDQ_ENT_DWORDS];
1990
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1991
	unsigned long start = iova, end = iova + size;
1992
	int i = 0;
1993 1994 1995 1996 1997 1998
	struct arm_smmu_cmdq_ent cmd = {
		.tlbi = {
			.leaf	= leaf,
		},
	};

1999 2000 2001
	if (!size)
		return;

2002 2003 2004 2005 2006 2007 2008 2009
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= CMDQ_OP_TLBI_NH_VA;
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S2_IPA;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	while (iova < end) {
		if (i == CMDQ_BATCH_ENTRIES) {
			arm_smmu_cmdq_issue_cmdlist(smmu, cmds, i, false);
			i = 0;
		}

		cmd.tlbi.addr = iova;
		arm_smmu_cmdq_build_cmd(&cmds[i * CMDQ_ENT_DWORDS], &cmd);
		iova += granule;
		i++;
	}

	arm_smmu_cmdq_issue_cmdlist(smmu, cmds, i, true);
2023 2024 2025 2026 2027 2028

	/*
	 * Unfortunately, this can't be leaf-only since we may have
	 * zapped an entire table.
	 */
	arm_smmu_atc_inv_domain(smmu_domain, 0, start, size);
2029 2030
}

2031 2032
static void arm_smmu_tlb_inv_page_nosync(struct iommu_iotlb_gather *gather,
					 unsigned long iova, size_t granule,
2033 2034
					 void *cookie)
{
2035 2036 2037 2038
	struct arm_smmu_domain *smmu_domain = cookie;
	struct iommu_domain *domain = &smmu_domain->domain;

	iommu_iotlb_gather_add_page(domain, gather, iova, granule);
2039 2040
}

2041 2042 2043
static void arm_smmu_tlb_inv_walk(unsigned long iova, size_t size,
				  size_t granule, void *cookie)
{
2044
	arm_smmu_tlb_inv_range(iova, size, granule, false, cookie);
2045 2046 2047 2048 2049
}

static void arm_smmu_tlb_inv_leaf(unsigned long iova, size_t size,
				  size_t granule, void *cookie)
{
2050
	arm_smmu_tlb_inv_range(iova, size, granule, true, cookie);
2051 2052
}

2053
static const struct iommu_flush_ops arm_smmu_flush_ops = {
2054
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
2055 2056
	.tlb_flush_walk = arm_smmu_tlb_inv_walk,
	.tlb_flush_leaf = arm_smmu_tlb_inv_leaf,
2057
	.tlb_add_page	= arm_smmu_tlb_inv_page_nosync,
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
};

/* IOMMU API */
static bool arm_smmu_capable(enum iommu_cap cap)
{
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return true;
	case IOMMU_CAP_NOEXEC:
		return true;
	default:
		return false;
	}
}

static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
{
	struct arm_smmu_domain *smmu_domain;

2077 2078 2079
	if (type != IOMMU_DOMAIN_UNMANAGED &&
	    type != IOMMU_DOMAIN_DMA &&
	    type != IOMMU_DOMAIN_IDENTITY)
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
		return NULL;

	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
		return NULL;

2091 2092 2093 2094 2095 2096
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

2097
	mutex_init(&smmu_domain->init_mutex);
2098 2099 2100
	INIT_LIST_HEAD(&smmu_domain->devices);
	spin_lock_init(&smmu_domain->devices_lock);

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	return &smmu_domain->domain;
}

static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
{
	int idx, size = 1 << span;

	do {
		idx = find_first_zero_bit(map, size);
		if (idx == size)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void arm_smmu_bitmap_free(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

static void arm_smmu_domain_free(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

2127
	iommu_put_dma_cookie(domain);
2128
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
2129 2130 2131 2132 2133 2134

	/* Free the CD and ASID, if we allocated them */
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;

		if (cfg->cdptr) {
2135 2136 2137 2138
			dmam_free_coherent(smmu_domain->smmu->dev,
					   CTXDESC_CD_DWORDS << 3,
					   cfg->cdptr,
					   cfg->cdptr_dma);
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154

			arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
		}
	} else {
		struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
		if (cfg->vmid)
			arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
	}

	kfree(smmu_domain);
}

static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
{
	int ret;
2155
	int asid;
2156 2157 2158 2159
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;

	asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
2160
	if (asid < 0)
2161 2162
		return asid;

2163 2164 2165
	cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
					 &cfg->cdptr_dma,
					 GFP_KERNEL | __GFP_ZERO);
2166 2167
	if (!cfg->cdptr) {
		dev_warn(smmu->dev, "failed to allocate context descriptor\n");
2168
		ret = -ENOMEM;
2169 2170 2171
		goto out_free_asid;
	}

2172
	cfg->cd.asid	= (u16)asid;
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
	cfg->cd.ttbr	= pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
	cfg->cd.tcr	= pgtbl_cfg->arm_lpae_s1_cfg.tcr;
	cfg->cd.mair	= pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
	return 0;

out_free_asid:
	arm_smmu_bitmap_free(smmu->asid_map, asid);
	return ret;
}

static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
{
2186
	int vmid;
2187 2188 2189 2190
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;

	vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
2191
	if (vmid < 0)
2192 2193
		return vmid;

2194
	cfg->vmid	= (u16)vmid;
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
	cfg->vttbr	= pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
	cfg->vtcr	= pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
	return 0;
}

static int arm_smmu_domain_finalise(struct iommu_domain *domain)
{
	int ret;
	unsigned long ias, oas;
	enum io_pgtable_fmt fmt;
	struct io_pgtable_cfg pgtbl_cfg;
	struct io_pgtable_ops *pgtbl_ops;
	int (*finalise_stage_fn)(struct arm_smmu_domain *,
				 struct io_pgtable_cfg *);
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

2212 2213 2214 2215 2216
	if (domain->type == IOMMU_DOMAIN_IDENTITY) {
		smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
		return 0;
	}

2217 2218 2219 2220 2221 2222 2223 2224
	/* Restrict the stage to what we can actually support */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
2225 2226
		ias = (smmu->features & ARM_SMMU_FEAT_VAX) ? 52 : 48;
		ias = min_t(unsigned long, ias, VA_BITS);
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
		oas = smmu->ias;
		fmt = ARM_64_LPAE_S1;
		finalise_stage_fn = arm_smmu_domain_finalise_s1;
		break;
	case ARM_SMMU_DOMAIN_NESTED:
	case ARM_SMMU_DOMAIN_S2:
		ias = smmu->ias;
		oas = smmu->oas;
		fmt = ARM_64_LPAE_S2;
		finalise_stage_fn = arm_smmu_domain_finalise_s2;
		break;
	default:
		return -EINVAL;
	}

	pgtbl_cfg = (struct io_pgtable_cfg) {
2243
		.pgsize_bitmap	= smmu->pgsize_bitmap,
2244 2245
		.ias		= ias,
		.oas		= oas,
2246
		.coherent_walk	= smmu->features & ARM_SMMU_FEAT_COHERENCY,
2247
		.tlb		= &arm_smmu_flush_ops,
2248
		.iommu_dev	= smmu->dev,
2249 2250
	};

2251 2252 2253
	if (smmu_domain->non_strict)
		pgtbl_cfg.quirks |= IO_PGTABLE_QUIRK_NON_STRICT;

2254 2255 2256 2257
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops)
		return -ENOMEM;

2258
	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
2259
	domain->geometry.aperture_end = (1UL << pgtbl_cfg.ias) - 1;
2260
	domain->geometry.force_aperture = true;
2261 2262

	ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
2263
	if (ret < 0) {
2264
		free_io_pgtable_ops(pgtbl_ops);
2265 2266
		return ret;
	}
2267

2268 2269
	smmu_domain->pgtbl_ops = pgtbl_ops;
	return 0;
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
}

static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	__le64 *step;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
		struct arm_smmu_strtab_l1_desc *l1_desc;
		int idx;

		/* Two-level walk */
		idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
		l1_desc = &cfg->l1_desc[idx];
		idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
		step = &l1_desc->l2ptr[idx];
	} else {
		/* Simple linear lookup */
		step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
	}

	return step;
}

2294
static void arm_smmu_install_ste_for_dev(struct arm_smmu_master *master)
2295
{
2296
	int i, j;
2297
	struct arm_smmu_device *smmu = master->smmu;
2298

2299 2300
	for (i = 0; i < master->num_sids; ++i) {
		u32 sid = master->sids[i];
2301 2302
		__le64 *step = arm_smmu_get_step_for_sid(smmu, sid);

2303 2304
		/* Bridged PCI devices may end up with duplicated IDs */
		for (j = 0; j < i; j++)
2305
			if (master->sids[j] == sid)
2306 2307 2308 2309
				break;
		if (j < i)
			continue;

2310
		arm_smmu_write_strtab_ent(master, sid, step);
2311 2312 2313
	}
}

2314
static bool arm_smmu_ats_supported(struct arm_smmu_master *master)
2315 2316 2317 2318 2319 2320 2321
{
	struct pci_dev *pdev;
	struct arm_smmu_device *smmu = master->smmu;
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(master->dev);

	if (!(smmu->features & ARM_SMMU_FEAT_ATS) || !dev_is_pci(master->dev) ||
	    !(fwspec->flags & IOMMU_FWSPEC_PCI_RC_ATS) || pci_ats_disabled())
2322
		return false;
2323 2324

	pdev = to_pci_dev(master->dev);
2325 2326
	return !pdev->untrusted && pdev->ats_cap;
}
2327

2328 2329 2330 2331 2332
static void arm_smmu_enable_ats(struct arm_smmu_master *master)
{
	size_t stu;
	struct pci_dev *pdev;
	struct arm_smmu_device *smmu = master->smmu;
2333
	struct arm_smmu_domain *smmu_domain = master->domain;
2334

2335 2336 2337
	/* Don't enable ATS at the endpoint if it's not enabled in the STE */
	if (!master->ats_enabled)
		return;
2338

2339 2340 2341
	/* Smallest Translation Unit: log2 of the smallest supported granule */
	stu = __ffs(smmu->pgsize_bitmap);
	pdev = to_pci_dev(master->dev);
2342 2343 2344

	atomic_inc(&smmu_domain->nr_ats_masters);
	arm_smmu_atc_inv_domain(smmu_domain, 0, 0, 0);
2345 2346
	if (pci_enable_ats(pdev, stu))
		dev_err(master->dev, "Failed to enable ATS (STU %zu)\n", stu);
2347 2348 2349 2350
}

static void arm_smmu_disable_ats(struct arm_smmu_master *master)
{
2351
	struct arm_smmu_cmdq_ent cmd;
2352
	struct arm_smmu_domain *smmu_domain = master->domain;
2353

2354
	if (!master->ats_enabled)
2355 2356
		return;

2357 2358 2359 2360 2361 2362
	pci_disable_ats(to_pci_dev(master->dev));
	/*
	 * Ensure ATS is disabled at the endpoint before we issue the
	 * ATC invalidation via the SMMU.
	 */
	wmb();
2363 2364
	arm_smmu_atc_inv_to_cmd(0, 0, 0, &cmd);
	arm_smmu_atc_inv_master(master, &cmd);
2365
	atomic_dec(&smmu_domain->nr_ats_masters);
2366 2367
}

2368
static void arm_smmu_detach_dev(struct arm_smmu_master *master)
2369
{
2370 2371 2372 2373
	unsigned long flags;
	struct arm_smmu_domain *smmu_domain = master->domain;

	if (!smmu_domain)
2374 2375
		return;

2376 2377
	arm_smmu_disable_ats(master);

2378 2379 2380 2381
	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_del(&master->domain_head);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

2382
	master->domain = NULL;
2383
	master->ats_enabled = false;
2384
	arm_smmu_install_ste_for_dev(master);
2385 2386
}

2387 2388 2389
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
	int ret = 0;
2390
	unsigned long flags;
2391
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2392 2393
	struct arm_smmu_device *smmu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2394
	struct arm_smmu_master *master;
2395

2396
	if (!fwspec)
2397 2398
		return -ENOENT;

2399
	master = fwspec->iommu_priv;
2400 2401
	smmu = master->smmu;

2402
	arm_smmu_detach_dev(master);
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421

	mutex_lock(&smmu_domain->init_mutex);

	if (!smmu_domain->smmu) {
		smmu_domain->smmu = smmu;
		ret = arm_smmu_domain_finalise(domain);
		if (ret) {
			smmu_domain->smmu = NULL;
			goto out_unlock;
		}
	} else if (smmu_domain->smmu != smmu) {
		dev_err(dev,
			"cannot attach to SMMU %s (upstream of %s)\n",
			dev_name(smmu_domain->smmu->dev),
			dev_name(smmu->dev));
		ret = -ENXIO;
		goto out_unlock;
	}

2422
	master->domain = smmu_domain;
2423

2424
	if (smmu_domain->stage != ARM_SMMU_DOMAIN_BYPASS)
2425
		master->ats_enabled = arm_smmu_ats_supported(master);
2426

2427 2428
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1)
		arm_smmu_write_ctx_desc(smmu, &smmu_domain->s1_cfg);
2429

2430
	arm_smmu_install_ste_for_dev(master);
2431 2432 2433 2434 2435

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_add(&master->domain_head, &smmu_domain->devices);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

2436
	arm_smmu_enable_ats(master);
2437

2438 2439 2440 2441 2442 2443 2444 2445
out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
			phys_addr_t paddr, size_t size, int prot)
{
2446
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
2447 2448 2449 2450

	if (!ops)
		return -ENODEV;

2451
	return ops->map(ops, iova, paddr, size, prot);
2452 2453
}

2454 2455
static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size, struct iommu_iotlb_gather *gather)
2456
{
2457 2458
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
2459 2460 2461 2462

	if (!ops)
		return 0;

2463
	return ops->unmap(ops, iova, size, gather);
2464 2465
}

2466 2467 2468 2469 2470 2471 2472 2473
static void arm_smmu_flush_iotlb_all(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	if (smmu_domain->smmu)
		arm_smmu_tlb_inv_context(smmu_domain);
}

2474 2475
static void arm_smmu_iotlb_sync(struct iommu_domain *domain,
				struct iommu_iotlb_gather *gather)
2476
{
2477
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2478

2479 2480
	arm_smmu_tlb_inv_range(gather->start, gather->end - gather->start,
			       gather->pgsize, true, smmu_domain);
2481 2482
}

2483 2484 2485
static phys_addr_t
arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
{
2486
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
2487

2488 2489 2490
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
		return iova;

2491 2492 2493
	if (!ops)
		return 0;

2494
	return ops->iova_to_phys(ops, iova);
2495 2496
}

2497
static struct platform_driver arm_smmu_driver;
2498

2499
static int arm_smmu_match_node(struct device *dev, const void *data)
2500
{
2501
	return dev->fwnode == data;
2502 2503
}

2504 2505
static
struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
2506
{
2507
	struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
2508
						fwnode, arm_smmu_match_node);
2509 2510
	put_device(dev);
	return dev ? dev_get_drvdata(dev) : NULL;
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
}

static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
{
	unsigned long limit = smmu->strtab_cfg.num_l1_ents;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		limit *= 1UL << STRTAB_SPLIT;

	return sid < limit;
}

2523 2524
static struct iommu_ops arm_smmu_ops;

2525 2526 2527 2528
static int arm_smmu_add_device(struct device *dev)
{
	int i, ret;
	struct arm_smmu_device *smmu;
2529
	struct arm_smmu_master *master;
2530
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2531
	struct iommu_group *group;
2532

2533
	if (!fwspec || fwspec->ops != &arm_smmu_ops)
2534
		return -ENODEV;
2535 2536 2537 2538 2539 2540 2541 2542
	/*
	 * We _can_ actually withstand dodgy bus code re-calling add_device()
	 * without an intervening remove_device()/of_xlate() sequence, but
	 * we're not going to do so quietly...
	 */
	if (WARN_ON_ONCE(fwspec->iommu_priv)) {
		master = fwspec->iommu_priv;
		smmu = master->smmu;
2543
	} else {
2544
		smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
2545 2546 2547 2548 2549 2550
		if (!smmu)
			return -ENODEV;
		master = kzalloc(sizeof(*master), GFP_KERNEL);
		if (!master)
			return -ENOMEM;

2551
		master->dev = dev;
2552
		master->smmu = smmu;
2553 2554
		master->sids = fwspec->ids;
		master->num_sids = fwspec->num_ids;
2555
		fwspec->iommu_priv = master;
2556 2557
	}

2558
	/* Check the SIDs are in range of the SMMU and our stream table */
2559 2560
	for (i = 0; i < master->num_sids; i++) {
		u32 sid = master->sids[i];
2561

2562 2563
		if (!arm_smmu_sid_in_range(smmu, sid))
			return -ERANGE;
2564

2565 2566 2567 2568 2569 2570
		/* Ensure l2 strtab is initialised */
		if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
			ret = arm_smmu_init_l2_strtab(smmu, sid);
			if (ret)
				return ret;
		}
2571 2572
	}

2573
	group = iommu_group_get_for_dev(dev);
2574
	if (!IS_ERR(group)) {
2575
		iommu_group_put(group);
2576 2577
		iommu_device_link(&smmu->iommu, dev);
	}
2578

2579
	return PTR_ERR_OR_ZERO(group);
2580 2581 2582 2583
}

static void arm_smmu_remove_device(struct device *dev)
{
2584
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2585
	struct arm_smmu_master *master;
2586
	struct arm_smmu_device *smmu;
2587 2588 2589 2590 2591

	if (!fwspec || fwspec->ops != &arm_smmu_ops)
		return;

	master = fwspec->iommu_priv;
2592
	smmu = master->smmu;
2593
	arm_smmu_detach_dev(master);
2594
	iommu_group_remove_device(dev);
2595
	iommu_device_unlink(&smmu->iommu, dev);
2596 2597
	kfree(master);
	iommu_fwspec_free(dev);
2598 2599
}

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;

	/*
	 * We don't support devices sharing stream IDs other than PCI RID
	 * aliases, since the necessary ID-to-device lookup becomes rather
	 * impractical given a potential sparse 32-bit stream ID space.
	 */
	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	return group;
}

2617 2618 2619 2620 2621
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
	switch (domain->type) {
	case IOMMU_DOMAIN_UNMANAGED:
		switch (attr) {
		case DOMAIN_ATTR_NESTING:
			*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
			return 0;
		default:
			return -ENODEV;
		}
		break;
	case IOMMU_DOMAIN_DMA:
		switch (attr) {
		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
			*(int *)data = smmu_domain->non_strict;
			return 0;
		default:
			return -ENODEV;
		}
		break;
2641
	default:
2642
		return -EINVAL;
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	int ret = 0;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	mutex_lock(&smmu_domain->init_mutex);

2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
	switch (domain->type) {
	case IOMMU_DOMAIN_UNMANAGED:
		switch (attr) {
		case DOMAIN_ATTR_NESTING:
			if (smmu_domain->smmu) {
				ret = -EPERM;
				goto out_unlock;
			}

			if (*(int *)data)
				smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
			else
				smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
			break;
		default:
			ret = -ENODEV;
		}
		break;
	case IOMMU_DOMAIN_DMA:
		switch(attr) {
		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
			smmu_domain->non_strict = *(int *)data;
			break;
		default:
			ret = -ENODEV;
2679 2680 2681
		}
		break;
	default:
2682
		ret = -EINVAL;
2683 2684 2685 2686 2687 2688 2689
	}

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

2690 2691 2692 2693 2694
static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
{
	return iommu_fwspec_add_ids(dev, args->args, 1);
}

2695 2696 2697 2698 2699 2700 2701
static void arm_smmu_get_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *region;
	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;

	region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
2702
					 prot, IOMMU_RESV_SW_MSI);
2703 2704 2705 2706
	if (!region)
		return;

	list_add_tail(&region->list, head);
2707 2708

	iommu_dma_get_resv_regions(dev, head);
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
}

static void arm_smmu_put_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

2720 2721 2722 2723 2724 2725 2726
static struct iommu_ops arm_smmu_ops = {
	.capable		= arm_smmu_capable,
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
2727
	.flush_iotlb_all	= arm_smmu_flush_iotlb_all,
2728
	.iotlb_sync		= arm_smmu_iotlb_sync,
2729 2730 2731
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
2732
	.device_group		= arm_smmu_device_group,
2733 2734
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
2735
	.of_xlate		= arm_smmu_of_xlate,
2736 2737
	.get_resv_regions	= arm_smmu_get_resv_regions,
	.put_resv_regions	= arm_smmu_put_resv_regions,
2738 2739 2740 2741 2742 2743 2744 2745
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
};

/* Probing and initialisation functions */
static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
				   struct arm_smmu_queue *q,
				   unsigned long prod_off,
				   unsigned long cons_off,
2746
				   size_t dwords, const char *name)
2747
{
2748 2749 2750
	size_t qsz;

	do {
2751
		qsz = ((1 << q->llq.max_n_shift) * dwords) << 3;
2752 2753 2754 2755 2756
		q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma,
					      GFP_KERNEL);
		if (q->base || qsz < PAGE_SIZE)
			break;

2757
		q->llq.max_n_shift--;
2758
	} while (1);
2759 2760

	if (!q->base) {
2761 2762 2763
		dev_err(smmu->dev,
			"failed to allocate queue (0x%zx bytes) for %s\n",
			qsz, name);
2764 2765 2766
		return -ENOMEM;
	}

2767 2768
	if (!WARN_ON(q->base_dma & (qsz - 1))) {
		dev_info(smmu->dev, "allocated %u entries for %s\n",
2769
			 1 << q->llq.max_n_shift, name);
2770 2771
	}

2772 2773
	q->prod_reg	= arm_smmu_page1_fixup(prod_off, smmu);
	q->cons_reg	= arm_smmu_page1_fixup(cons_off, smmu);
2774 2775 2776
	q->ent_dwords	= dwords;

	q->q_base  = Q_BASE_RWA;
2777
	q->q_base |= q->base_dma & Q_BASE_ADDR_MASK;
2778
	q->q_base |= FIELD_PREP(Q_BASE_LOG2SIZE, q->llq.max_n_shift);
2779

2780
	q->llq.prod = q->llq.cons = 0;
2781 2782 2783
	return 0;
}

2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
static void arm_smmu_cmdq_free_bitmap(void *data)
{
	unsigned long *bitmap = data;
	bitmap_free(bitmap);
}

static int arm_smmu_cmdq_init(struct arm_smmu_device *smmu)
{
	int ret = 0;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	unsigned int nents = 1 << cmdq->q.llq.max_n_shift;
	atomic_long_t *bitmap;

	atomic_set(&cmdq->owner_prod, 0);
	atomic_set(&cmdq->lock, 0);

	bitmap = (atomic_long_t *)bitmap_zalloc(nents, GFP_KERNEL);
	if (!bitmap) {
		dev_err(smmu->dev, "failed to allocate cmdq bitmap\n");
		ret = -ENOMEM;
	} else {
		cmdq->valid_map = bitmap;
		devm_add_action(smmu->dev, arm_smmu_cmdq_free_bitmap, bitmap);
	}

	return ret;
}

2812 2813 2814 2815 2816 2817
static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
{
	int ret;

	/* cmdq */
	ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
2818 2819
				      ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS,
				      "cmdq");
2820
	if (ret)
2821
		return ret;
2822

2823 2824 2825 2826
	ret = arm_smmu_cmdq_init(smmu);
	if (ret)
		return ret;

2827 2828
	/* evtq */
	ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
2829 2830
				      ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS,
				      "evtq");
2831
	if (ret)
2832
		return ret;
2833 2834 2835 2836 2837

	/* priq */
	if (!(smmu->features & ARM_SMMU_FEAT_PRI))
		return 0;

2838
	return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
2839 2840
				       ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS,
				       "priq");
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
}

static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
{
	unsigned int i;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
	void *strtab = smmu->strtab_cfg.strtab;

	cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
	if (!cfg->l1_desc) {
		dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
		return -ENOMEM;
	}

	for (i = 0; i < cfg->num_l1_ents; ++i) {
		arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
		strtab += STRTAB_L1_DESC_DWORDS << 3;
	}

	return 0;
}

static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
2868
	u32 size, l1size;
2869 2870
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

2871 2872 2873
	/* Calculate the L1 size, capped to the SIDSIZE. */
	size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
	size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2874 2875 2876 2877
	cfg->num_l1_ents = 1 << size;

	size += STRTAB_SPLIT;
	if (size < smmu->sid_bits)
2878 2879
		dev_warn(smmu->dev,
			 "2-level strtab only covers %u/%u bits of SID\n",
2880
			 size, smmu->sid_bits);
2881

2882
	l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2883 2884
	strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
				     GFP_KERNEL | __GFP_ZERO);
2885 2886 2887 2888 2889 2890 2891 2892 2893
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate l1 stream table (%u bytes)\n",
			size);
		return -ENOMEM;
	}
	cfg->strtab = strtab;

	/* Configure strtab_base_cfg for 2 levels */
2894 2895 2896
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_2LVL);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, size);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_SPLIT, STRTAB_SPLIT);
2897 2898
	cfg->strtab_base_cfg = reg;

2899
	return arm_smmu_init_l1_strtab(smmu);
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
}

static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
	u32 size;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2910 2911
	strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
				     GFP_KERNEL | __GFP_ZERO);
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate linear stream table (%u bytes)\n",
			size);
		return -ENOMEM;
	}
	cfg->strtab = strtab;
	cfg->num_l1_ents = 1 << smmu->sid_bits;

	/* Configure strtab_base_cfg for a linear table covering all SIDs */
2922 2923
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_LINEAR);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, smmu->sid_bits);
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
	cfg->strtab_base_cfg = reg;

	arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
	return 0;
}

static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
{
	u64 reg;
	int ret;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		ret = arm_smmu_init_strtab_2lvl(smmu);
	else
		ret = arm_smmu_init_strtab_linear(smmu);

	if (ret)
		return ret;

	/* Set the strtab base address */
2944
	reg  = smmu->strtab_cfg.strtab_dma & STRTAB_BASE_ADDR_MASK;
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
	reg |= STRTAB_BASE_RA;
	smmu->strtab_cfg.strtab_base = reg;

	/* Allocate the first VMID for stage-2 bypass STEs */
	set_bit(0, smmu->vmid_map);
	return 0;
}

static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_init_queues(smmu);
	if (ret)
		return ret;

2961
	return arm_smmu_init_strtab(smmu);
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
}

static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
				   unsigned int reg_off, unsigned int ack_off)
{
	u32 reg;

	writel_relaxed(val, smmu->base + reg_off);
	return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
					  1, ARM_SMMU_POLL_TIMEOUT_US);
}

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
/* GBPA is "special" */
static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
{
	int ret;
	u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;

	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);
	if (ret)
		return ret;

	reg &= ~clr;
	reg |= set;
	writel_relaxed(reg | GBPA_UPDATE, gbpa);
2988 2989 2990 2991 2992 2993
	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);

	if (ret)
		dev_err(smmu->dev, "GBPA not responding to update\n");
	return ret;
2994 2995
}

2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
static void arm_smmu_free_msis(void *data)
{
	struct device *dev = data;
	platform_msi_domain_free_irqs(dev);
}

static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
{
	phys_addr_t doorbell;
	struct device *dev = msi_desc_to_dev(desc);
	struct arm_smmu_device *smmu = dev_get_drvdata(dev);
	phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];

	doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
3010
	doorbell &= MSI_CFG0_ADDR_MASK;
3011 3012 3013

	writeq_relaxed(doorbell, smmu->base + cfg[0]);
	writel_relaxed(msg->data, smmu->base + cfg[1]);
3014
	writel_relaxed(ARM_SMMU_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
}

static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
{
	struct msi_desc *desc;
	int ret, nvec = ARM_SMMU_MAX_MSIS;
	struct device *dev = smmu->dev;

	/* Clear the MSI address regs */
	writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
	writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
	else
		nvec--;

	if (!(smmu->features & ARM_SMMU_FEAT_MSI))
		return;

3035 3036 3037 3038 3039
	if (!dev->msi_domain) {
		dev_info(smmu->dev, "msi_domain absent - falling back to wired irqs\n");
		return;
	}

3040 3041 3042
	/* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
	ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
	if (ret) {
3043
		dev_warn(dev, "failed to allocate MSIs - falling back to wired irqs\n");
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
		return;
	}

	for_each_msi_entry(desc, dev) {
		switch (desc->platform.msi_index) {
		case EVTQ_MSI_INDEX:
			smmu->evtq.q.irq = desc->irq;
			break;
		case GERROR_MSI_INDEX:
			smmu->gerr_irq = desc->irq;
			break;
		case PRIQ_MSI_INDEX:
			smmu->priq.q.irq = desc->irq;
			break;
		default:	/* Unknown */
			continue;
		}
	}

	/* Add callback to free MSIs on teardown */
	devm_add_action(dev, arm_smmu_free_msis, dev);
}

3067
static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
3068
{
3069
	int irq, ret;
3070

3071
	arm_smmu_setup_msis(smmu);
3072

3073
	/* Request interrupt lines */
3074 3075
	irq = smmu->evtq.q.irq;
	if (irq) {
3076
		ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
3077
						arm_smmu_evtq_thread,
3078 3079
						IRQF_ONESHOT,
						"arm-smmu-v3-evtq", smmu);
3080
		if (ret < 0)
3081
			dev_warn(smmu->dev, "failed to enable evtq irq\n");
3082 3083
	} else {
		dev_warn(smmu->dev, "no evtq irq - events will not be reported!\n");
3084 3085 3086 3087 3088 3089
	}

	irq = smmu->gerr_irq;
	if (irq) {
		ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
				       0, "arm-smmu-v3-gerror", smmu);
3090
		if (ret < 0)
3091
			dev_warn(smmu->dev, "failed to enable gerror irq\n");
3092 3093
	} else {
		dev_warn(smmu->dev, "no gerr irq - errors will not be reported!\n");
3094 3095 3096 3097 3098
	}

	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		irq = smmu->priq.q.irq;
		if (irq) {
3099
			ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
3100
							arm_smmu_priq_thread,
3101 3102
							IRQF_ONESHOT,
							"arm-smmu-v3-priq",
3103
							smmu);
3104
			if (ret < 0)
3105 3106
				dev_warn(smmu->dev,
					 "failed to enable priq irq\n");
3107 3108
		} else {
			dev_warn(smmu->dev, "no priq irq - PRI will be broken\n");
3109 3110
		}
	}
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
}

static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
{
	int ret, irq;
	u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;

	/* Disable IRQs first */
	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
				      ARM_SMMU_IRQ_CTRLACK);
	if (ret) {
		dev_err(smmu->dev, "failed to disable irqs\n");
		return ret;
	}

	irq = smmu->combined_irq;
	if (irq) {
		/*
3129 3130
		 * Cavium ThunderX2 implementation doesn't support unique irq
		 * lines. Use a single irq line for all the SMMUv3 interrupts.
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
		 */
		ret = devm_request_threaded_irq(smmu->dev, irq,
					arm_smmu_combined_irq_handler,
					arm_smmu_combined_irq_thread,
					IRQF_ONESHOT,
					"arm-smmu-v3-combined-irq", smmu);
		if (ret < 0)
			dev_warn(smmu->dev, "failed to enable combined irq\n");
	} else
		arm_smmu_setup_unique_irqs(smmu);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
3144 3145

	/* Enable interrupt generation on the SMMU */
3146
	ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
				      ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
	if (ret)
		dev_warn(smmu->dev, "failed to enable irqs\n");

	return 0;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
	if (ret)
		dev_err(smmu->dev, "failed to clear cr0\n");

	return ret;
}

3165
static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
3166 3167 3168 3169 3170 3171 3172
{
	int ret;
	u32 reg, enables;
	struct arm_smmu_cmdq_ent cmd;

	/* Clear CR0 and sync (disables SMMU and queue processing) */
	reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
3173
	if (reg & CR0_SMMUEN) {
3174
		dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
3175 3176
		WARN_ON(is_kdump_kernel() && !disable_bypass);
		arm_smmu_update_gbpa(smmu, GBPA_ABORT, 0);
3177
	}
3178 3179 3180 3181 3182 3183

	ret = arm_smmu_device_disable(smmu);
	if (ret)
		return ret;

	/* CR1 (table and queue memory attributes) */
3184 3185 3186 3187 3188 3189
	reg = FIELD_PREP(CR1_TABLE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_TABLE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_TABLE_IC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_QUEUE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_IC, CR1_CACHE_WB);
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);

	/* CR2 (random crap) */
	reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);

	/* Stream table */
	writeq_relaxed(smmu->strtab_cfg.strtab_base,
		       smmu->base + ARM_SMMU_STRTAB_BASE);
	writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
		       smmu->base + ARM_SMMU_STRTAB_BASE_CFG);

	/* Command queue */
	writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
3204 3205
	writel_relaxed(smmu->cmdq.q.llq.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
	writel_relaxed(smmu->cmdq.q.llq.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217

	enables = CR0_CMDQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable command queue\n");
		return ret;
	}

	/* Invalidate any cached configuration */
	cmd.opcode = CMDQ_OP_CFGI_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
3218
	arm_smmu_cmdq_issue_sync(smmu);
3219 3220 3221 3222 3223 3224 3225 3226 3227

	/* Invalidate any stale TLB entries */
	if (smmu->features & ARM_SMMU_FEAT_HYP) {
		cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}

	cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
3228
	arm_smmu_cmdq_issue_sync(smmu);
3229 3230 3231

	/* Event queue */
	writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
3232
	writel_relaxed(smmu->evtq.q.llq.prod,
3233
		       arm_smmu_page1_fixup(ARM_SMMU_EVTQ_PROD, smmu));
3234
	writel_relaxed(smmu->evtq.q.llq.cons,
3235
		       arm_smmu_page1_fixup(ARM_SMMU_EVTQ_CONS, smmu));
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248

	enables |= CR0_EVTQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable event queue\n");
		return ret;
	}

	/* PRI queue */
	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		writeq_relaxed(smmu->priq.q.q_base,
			       smmu->base + ARM_SMMU_PRIQ_BASE);
3249
		writel_relaxed(smmu->priq.q.llq.prod,
3250
			       arm_smmu_page1_fixup(ARM_SMMU_PRIQ_PROD, smmu));
3251
		writel_relaxed(smmu->priq.q.llq.cons,
3252
			       arm_smmu_page1_fixup(ARM_SMMU_PRIQ_CONS, smmu));
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262

		enables |= CR0_PRIQEN;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable PRI queue\n");
			return ret;
		}
	}

3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
	if (smmu->features & ARM_SMMU_FEAT_ATS) {
		enables |= CR0_ATSCHK;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable ATS check\n");
			return ret;
		}
	}

3273 3274 3275 3276 3277 3278
	ret = arm_smmu_setup_irqs(smmu);
	if (ret) {
		dev_err(smmu->dev, "failed to setup irqs\n");
		return ret;
	}

3279 3280
	if (is_kdump_kernel())
		enables &= ~(CR0_EVTQEN | CR0_PRIQEN);
3281 3282 3283 3284 3285 3286

	/* Enable the SMMU interface, or ensure bypass */
	if (!bypass || disable_bypass) {
		enables |= CR0_SMMUEN;
	} else {
		ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
3287
		if (ret)
3288 3289
			return ret;
	}
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable SMMU interface\n");
		return ret;
	}

	return 0;
}

3300
static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
3301 3302
{
	u32 reg;
3303
	bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
3304 3305 3306 3307 3308

	/* IDR0 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);

	/* 2-level structures */
3309
	if (FIELD_GET(IDR0_ST_LVL, reg) == IDR0_ST_LVL_2LVL)
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
		smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;

	if (reg & IDR0_CD2L)
		smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;

	/*
	 * Translation table endianness.
	 * We currently require the same endianness as the CPU, but this
	 * could be changed later by adding a new IO_PGTABLE_QUIRK.
	 */
3320
	switch (FIELD_GET(IDR0_TTENDIAN, reg)) {
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
	case IDR0_TTENDIAN_MIXED:
		smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
		break;
#ifdef __BIG_ENDIAN
	case IDR0_TTENDIAN_BE:
		smmu->features |= ARM_SMMU_FEAT_TT_BE;
		break;
#else
	case IDR0_TTENDIAN_LE:
		smmu->features |= ARM_SMMU_FEAT_TT_LE;
		break;
#endif
	default:
		dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
		return -ENXIO;
	}

	/* Boolean feature flags */
3339
#if 0	/* ATS invalidation is slow and broken */
3340 3341 3342 3343 3344
	if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
		smmu->features |= ARM_SMMU_FEAT_PRI;

	if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
		smmu->features |= ARM_SMMU_FEAT_ATS;
3345
#endif
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356

	if (reg & IDR0_SEV)
		smmu->features |= ARM_SMMU_FEAT_SEV;

	if (reg & IDR0_MSI)
		smmu->features |= ARM_SMMU_FEAT_MSI;

	if (reg & IDR0_HYP)
		smmu->features |= ARM_SMMU_FEAT_HYP;

	/*
3357
	 * The coherency feature as set by FW is used in preference to the ID
3358 3359 3360
	 * register, but warn on mismatch.
	 */
	if (!!(reg & IDR0_COHACC) != coherent)
3361
		dev_warn(smmu->dev, "IDR0.COHACC overridden by FW configuration (%s)\n",
3362 3363
			 coherent ? "true" : "false");

3364
	switch (FIELD_GET(IDR0_STALL_MODEL, reg)) {
3365
	case IDR0_STALL_MODEL_FORCE:
3366 3367 3368
		smmu->features |= ARM_SMMU_FEAT_STALL_FORCE;
		/* Fallthrough */
	case IDR0_STALL_MODEL_STALL:
3369
		smmu->features |= ARM_SMMU_FEAT_STALLS;
3370
	}
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383

	if (reg & IDR0_S1P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;

	if (reg & IDR0_S2P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;

	if (!(reg & (IDR0_S1P | IDR0_S2P))) {
		dev_err(smmu->dev, "no translation support!\n");
		return -ENXIO;
	}

	/* We only support the AArch64 table format at present */
3384
	switch (FIELD_GET(IDR0_TTF, reg)) {
3385 3386 3387 3388 3389 3390
	case IDR0_TTF_AARCH32_64:
		smmu->ias = 40;
		/* Fallthrough */
	case IDR0_TTF_AARCH64:
		break;
	default:
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
		dev_err(smmu->dev, "AArch64 table format not supported!\n");
		return -ENXIO;
	}

	/* ASID/VMID sizes */
	smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
	smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;

	/* IDR1 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
	if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
		dev_err(smmu->dev, "embedded implementation not supported\n");
		return -ENXIO;
	}

3406
	/* Queue sizes, capped to ensure natural alignment */
3407 3408
	smmu->cmdq.q.llq.max_n_shift = min_t(u32, CMDQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_CMDQS, reg));
3409
	if (smmu->cmdq.q.llq.max_n_shift <= ilog2(CMDQ_BATCH_ENTRIES)) {
3410
		/*
3411 3412 3413 3414
		 * We don't support splitting up batches, so one batch of
		 * commands plus an extra sync needs to fit inside the command
		 * queue. There's also no way we can handle the weird alignment
		 * restrictions on the base pointer for a unit-length queue.
3415
		 */
3416 3417
		dev_err(smmu->dev, "command queue size <= %d entries not supported\n",
			CMDQ_BATCH_ENTRIES);
3418 3419 3420
		return -ENXIO;
	}

3421 3422 3423 3424
	smmu->evtq.q.llq.max_n_shift = min_t(u32, EVTQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_EVTQS, reg));
	smmu->priq.q.llq.max_n_shift = min_t(u32, PRIQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_PRIQS, reg));
3425 3426

	/* SID/SSID sizes */
3427 3428
	smmu->ssid_bits = FIELD_GET(IDR1_SSIDSIZE, reg);
	smmu->sid_bits = FIELD_GET(IDR1_SIDSIZE, reg);
3429

3430 3431 3432 3433 3434 3435 3436
	/*
	 * If the SMMU supports fewer bits than would fill a single L2 stream
	 * table, use a linear table instead.
	 */
	if (smmu->sid_bits <= STRTAB_SPLIT)
		smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;

3437 3438 3439 3440
	/* IDR5 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);

	/* Maximum number of outstanding stalls */
3441
	smmu->evtq.max_stalls = FIELD_GET(IDR5_STALL_MAX, reg);
3442 3443 3444

	/* Page sizes */
	if (reg & IDR5_GRAN64K)
3445
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
3446
	if (reg & IDR5_GRAN16K)
3447
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
3448
	if (reg & IDR5_GRAN4K)
3449
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
3450

3451 3452 3453 3454
	/* Input address size */
	if (FIELD_GET(IDR5_VAX, reg) == IDR5_VAX_52_BIT)
		smmu->features |= ARM_SMMU_FEAT_VAX;

3455
	/* Output address size */
3456
	switch (FIELD_GET(IDR5_OAS, reg)) {
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
	case IDR5_OAS_32_BIT:
		smmu->oas = 32;
		break;
	case IDR5_OAS_36_BIT:
		smmu->oas = 36;
		break;
	case IDR5_OAS_40_BIT:
		smmu->oas = 40;
		break;
	case IDR5_OAS_42_BIT:
		smmu->oas = 42;
		break;
	case IDR5_OAS_44_BIT:
		smmu->oas = 44;
		break;
3472 3473 3474 3475
	case IDR5_OAS_52_BIT:
		smmu->oas = 52;
		smmu->pgsize_bitmap |= 1ULL << 42; /* 4TB */
		break;
3476 3477 3478 3479
	default:
		dev_info(smmu->dev,
			"unknown output address size. Truncating to 48-bit\n");
		/* Fallthrough */
3480 3481 3482 3483
	case IDR5_OAS_48_BIT:
		smmu->oas = 48;
	}

3484 3485 3486 3487 3488
	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;

3489 3490 3491 3492 3493
	/* Set the DMA mask for our table walker */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

3494
	smmu->ias = max(smmu->ias, smmu->oas);
3495 3496 3497 3498 3499 3500

	dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
		 smmu->ias, smmu->oas, smmu->features);
	return 0;
}

3501
#ifdef CONFIG_ACPI
3502 3503
static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu)
{
3504 3505
	switch (model) {
	case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
3506
		smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
3507
		break;
3508
	case ACPI_IORT_SMMU_V3_HISILICON_HI161X:
3509 3510 3511
		smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
		break;
	}
3512 3513 3514 3515

	dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
}

3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
				      struct arm_smmu_device *smmu)
{
	struct acpi_iort_smmu_v3 *iort_smmu;
	struct device *dev = smmu->dev;
	struct acpi_iort_node *node;

	node = *(struct acpi_iort_node **)dev_get_platdata(dev);

	/* Retrieve SMMUv3 specific data */
	iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;

3528 3529
	acpi_smmu_get_options(iort_smmu->model, smmu);

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
	if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return 0;
}
#else
static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
					     struct arm_smmu_device *smmu)
{
	return -ENODEV;
}
#endif

3543 3544
static int arm_smmu_device_dt_probe(struct platform_device *pdev,
				    struct arm_smmu_device *smmu)
3545 3546
{
	struct device *dev = &pdev->dev;
3547
	u32 cells;
3548
	int ret = -EINVAL;
3549 3550 3551 3552 3553 3554

	if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
		dev_err(dev, "missing #iommu-cells property\n");
	else if (cells != 1)
		dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
	else
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
		ret = 0;

	parse_driver_options(smmu);

	if (of_dma_is_coherent(dev->of_node))
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return ret;
}

3565 3566 3567 3568 3569 3570 3571 3572
static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
{
	if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
		return SZ_64K;
	else
		return SZ_128K;
}

3573 3574 3575 3576
static int arm_smmu_device_probe(struct platform_device *pdev)
{
	int irq, ret;
	struct resource *res;
3577
	resource_size_t ioaddr;
3578 3579 3580
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	bool bypass;
3581 3582 3583 3584 3585 3586 3587 3588

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
	if (dev->of_node) {
		ret = arm_smmu_device_dt_probe(pdev, smmu);
	} else {
		ret = arm_smmu_device_acpi_probe(pdev, smmu);
		if (ret == -ENODEV)
			return ret;
	}

	/* Set bypass mode according to firmware probing result */
	bypass = !!ret;

3600 3601
	/* Base address */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3602
	if (resource_size(res) + 1 < arm_smmu_resource_size(smmu)) {
3603 3604 3605
		dev_err(dev, "MMIO region too small (%pr)\n", res);
		return -EINVAL;
	}
3606
	ioaddr = res->start;
3607 3608 3609 3610 3611 3612 3613

	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);

	/* Interrupt lines */

3614
	irq = platform_get_irq_byname(pdev, "combined");
3615
	if (irq > 0)
3616 3617 3618 3619 3620
		smmu->combined_irq = irq;
	else {
		irq = platform_get_irq_byname(pdev, "eventq");
		if (irq > 0)
			smmu->evtq.q.irq = irq;
3621

3622 3623 3624
		irq = platform_get_irq_byname(pdev, "priq");
		if (irq > 0)
			smmu->priq.q.irq = irq;
3625

3626 3627 3628 3629
		irq = platform_get_irq_byname(pdev, "gerror");
		if (irq > 0)
			smmu->gerr_irq = irq;
	}
3630
	/* Probe the h/w */
3631
	ret = arm_smmu_device_hw_probe(smmu);
3632 3633 3634 3635 3636 3637 3638 3639
	if (ret)
		return ret;

	/* Initialise in-memory data structures */
	ret = arm_smmu_init_structures(smmu);
	if (ret)
		return ret;

3640 3641 3642
	/* Record our private device structure */
	platform_set_drvdata(pdev, smmu);

3643
	/* Reset the device */
3644 3645 3646 3647 3648
	ret = arm_smmu_device_reset(smmu, bypass);
	if (ret)
		return ret;

	/* And we're up. Go go go! */
3649 3650
	ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
				     "smmu3.%pa", &ioaddr);
3651 3652
	if (ret)
		return ret;
3653 3654 3655 3656 3657

	iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
	iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);

	ret = iommu_device_register(&smmu->iommu);
3658 3659 3660 3661
	if (ret) {
		dev_err(dev, "Failed to register iommu\n");
		return ret;
	}
3662

3663
#ifdef CONFIG_PCI
3664 3665 3666 3667 3668 3669
	if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
		pci_request_acs();
		ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
		if (ret)
			return ret;
	}
3670 3671
#endif
#ifdef CONFIG_ARM_AMBA
3672 3673 3674 3675 3676
	if (amba_bustype.iommu_ops != &arm_smmu_ops) {
		ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
		if (ret)
			return ret;
	}
3677
#endif
3678 3679 3680 3681 3682 3683
	if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
		ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
		if (ret)
			return ret;
	}
	return 0;
3684 3685
}

3686
static void arm_smmu_device_shutdown(struct platform_device *pdev)
3687
{
3688
	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
3689 3690

	arm_smmu_device_disable(smmu);
3691 3692
}

3693
static const struct of_device_id arm_smmu_of_match[] = {
3694 3695 3696 3697 3698 3699 3700 3701
	{ .compatible = "arm,smmu-v3", },
	{ },
};

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu-v3",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
3702
		.suppress_bind_attrs = true,
3703
	},
3704
	.probe	= arm_smmu_device_probe,
3705
	.shutdown = arm_smmu_device_shutdown,
3706
};
3707
builtin_platform_driver(arm_smmu_driver);