fsl-quadspi.c 29.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Freescale QuadSPI driver.
 *
 * Copyright (C) 2013 Freescale Semiconductor, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/timer.h>
#include <linux/jiffies.h>
#include <linux/completion.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
29
#include <linux/mutex.h>
30
#include <linux/pm_qos.h>
31
#include <linux/sizes.h>
32

33 34 35 36
/* Controller needs driver to swap endian */
#define QUADSPI_QUIRK_SWAP_ENDIAN	(1 << 0)
/* Controller needs 4x internal clock */
#define QUADSPI_QUIRK_4X_INT_CLK	(1 << 1)
37 38 39 40 41
/*
 * TKT253890, Controller needs driver to fill txfifo till 16 byte to
 * trigger data transfer even though extern data will not transferred.
 */
#define QUADSPI_QUIRK_TKT253890		(1 << 2)
42 43
/* Controller cannot wake up from wait mode, TKT245618 */
#define QUADSPI_QUIRK_TKT245618         (1 << 3)
44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
/* The registers */
#define QUADSPI_MCR			0x00
#define QUADSPI_MCR_RESERVED_SHIFT	16
#define QUADSPI_MCR_RESERVED_MASK	(0xF << QUADSPI_MCR_RESERVED_SHIFT)
#define QUADSPI_MCR_MDIS_SHIFT		14
#define QUADSPI_MCR_MDIS_MASK		(1 << QUADSPI_MCR_MDIS_SHIFT)
#define QUADSPI_MCR_CLR_TXF_SHIFT	11
#define QUADSPI_MCR_CLR_TXF_MASK	(1 << QUADSPI_MCR_CLR_TXF_SHIFT)
#define QUADSPI_MCR_CLR_RXF_SHIFT	10
#define QUADSPI_MCR_CLR_RXF_MASK	(1 << QUADSPI_MCR_CLR_RXF_SHIFT)
#define QUADSPI_MCR_DDR_EN_SHIFT	7
#define QUADSPI_MCR_DDR_EN_MASK		(1 << QUADSPI_MCR_DDR_EN_SHIFT)
#define QUADSPI_MCR_END_CFG_SHIFT	2
#define QUADSPI_MCR_END_CFG_MASK	(3 << QUADSPI_MCR_END_CFG_SHIFT)
#define QUADSPI_MCR_SWRSTHD_SHIFT	1
#define QUADSPI_MCR_SWRSTHD_MASK	(1 << QUADSPI_MCR_SWRSTHD_SHIFT)
#define QUADSPI_MCR_SWRSTSD_SHIFT	0
#define QUADSPI_MCR_SWRSTSD_MASK	(1 << QUADSPI_MCR_SWRSTSD_SHIFT)

#define QUADSPI_IPCR			0x08
#define QUADSPI_IPCR_SEQID_SHIFT	24
#define QUADSPI_IPCR_SEQID_MASK		(0xF << QUADSPI_IPCR_SEQID_SHIFT)

#define QUADSPI_BUF0CR			0x10
#define QUADSPI_BUF1CR			0x14
#define QUADSPI_BUF2CR			0x18
#define QUADSPI_BUFXCR_INVALID_MSTRID	0xe

#define QUADSPI_BUF3CR			0x1c
#define QUADSPI_BUF3CR_ALLMST_SHIFT	31
75 76 77
#define QUADSPI_BUF3CR_ALLMST_MASK	(1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
#define QUADSPI_BUF3CR_ADATSZ_SHIFT		8
#define QUADSPI_BUF3CR_ADATSZ_MASK	(0xFF << QUADSPI_BUF3CR_ADATSZ_SHIFT)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

#define QUADSPI_BFGENCR			0x20
#define QUADSPI_BFGENCR_PAR_EN_SHIFT	16
#define QUADSPI_BFGENCR_PAR_EN_MASK	(1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
#define QUADSPI_BFGENCR_SEQID_SHIFT	12
#define QUADSPI_BFGENCR_SEQID_MASK	(0xF << QUADSPI_BFGENCR_SEQID_SHIFT)

#define QUADSPI_BUF0IND			0x30
#define QUADSPI_BUF1IND			0x34
#define QUADSPI_BUF2IND			0x38
#define QUADSPI_SFAR			0x100

#define QUADSPI_SMPR			0x108
#define QUADSPI_SMPR_DDRSMP_SHIFT	16
#define QUADSPI_SMPR_DDRSMP_MASK	(7 << QUADSPI_SMPR_DDRSMP_SHIFT)
#define QUADSPI_SMPR_FSDLY_SHIFT	6
#define QUADSPI_SMPR_FSDLY_MASK		(1 << QUADSPI_SMPR_FSDLY_SHIFT)
#define QUADSPI_SMPR_FSPHS_SHIFT	5
#define QUADSPI_SMPR_FSPHS_MASK		(1 << QUADSPI_SMPR_FSPHS_SHIFT)
#define QUADSPI_SMPR_HSENA_SHIFT	0
#define QUADSPI_SMPR_HSENA_MASK		(1 << QUADSPI_SMPR_HSENA_SHIFT)

#define QUADSPI_RBSR			0x10c
#define QUADSPI_RBSR_RDBFL_SHIFT	8
#define QUADSPI_RBSR_RDBFL_MASK		(0x3F << QUADSPI_RBSR_RDBFL_SHIFT)

#define QUADSPI_RBCT			0x110
#define QUADSPI_RBCT_WMRK_MASK		0x1F
#define QUADSPI_RBCT_RXBRD_SHIFT	8
#define QUADSPI_RBCT_RXBRD_USEIPS	(0x1 << QUADSPI_RBCT_RXBRD_SHIFT)

#define QUADSPI_TBSR			0x150
#define QUADSPI_TBDR			0x154
#define QUADSPI_SR			0x15c
#define QUADSPI_SR_IP_ACC_SHIFT		1
#define QUADSPI_SR_IP_ACC_MASK		(0x1 << QUADSPI_SR_IP_ACC_SHIFT)
#define QUADSPI_SR_AHB_ACC_SHIFT	2
#define QUADSPI_SR_AHB_ACC_MASK		(0x1 << QUADSPI_SR_AHB_ACC_SHIFT)

#define QUADSPI_FR			0x160
#define QUADSPI_FR_TFF_MASK		0x1

#define QUADSPI_SFA1AD			0x180
#define QUADSPI_SFA2AD			0x184
#define QUADSPI_SFB1AD			0x188
#define QUADSPI_SFB2AD			0x18c
#define QUADSPI_RBDR			0x200

#define QUADSPI_LUTKEY			0x300
#define QUADSPI_LUTKEY_VALUE		0x5AF05AF0

#define QUADSPI_LCKCR			0x304
#define QUADSPI_LCKER_LOCK		0x1
#define QUADSPI_LCKER_UNLOCK		0x2

#define QUADSPI_RSER			0x164
#define QUADSPI_RSER_TFIE		(0x1 << 0)

#define QUADSPI_LUT_BASE		0x310

/*
 * The definition of the LUT register shows below:
 *
 *  ---------------------------------------------------
 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 *  ---------------------------------------------------
 */
#define OPRND0_SHIFT		0
#define PAD0_SHIFT		8
#define INSTR0_SHIFT		10
#define OPRND1_SHIFT		16

/* Instruction set for the LUT register. */
#define LUT_STOP		0
#define LUT_CMD			1
#define LUT_ADDR		2
#define LUT_DUMMY		3
#define LUT_MODE		4
#define LUT_MODE2		5
#define LUT_MODE4		6
158 159
#define LUT_FSL_READ		7
#define LUT_FSL_WRITE		8
160 161 162 163 164
#define LUT_JMP_ON_CS		9
#define LUT_ADDR_DDR		10
#define LUT_MODE_DDR		11
#define LUT_MODE2_DDR		12
#define LUT_MODE4_DDR		13
165 166
#define LUT_FSL_READ_DDR		14
#define LUT_FSL_WRITE_DDR		15
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
#define LUT_DATA_LEARN		16

/*
 * The PAD definitions for LUT register.
 *
 * The pad stands for the lines number of IO[0:3].
 * For example, the Quad read need four IO lines, so you should
 * set LUT_PAD4 which means we use four IO lines.
 */
#define LUT_PAD1		0
#define LUT_PAD2		1
#define LUT_PAD4		2

/* Oprands for the LUT register. */
#define ADDR24BIT		0x18
#define ADDR32BIT		0x20

/* Macros for constructing the LUT register. */
#define LUT0(ins, pad, opr)						\
		(((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
		((LUT_##ins) << INSTR0_SHIFT))

#define LUT1(ins, pad, opr)	(LUT0(ins, pad, opr) << OPRND1_SHIFT)

/* other macros for LUT register. */
#define QUADSPI_LUT(x)          (QUADSPI_LUT_BASE + (x) * 4)
#define QUADSPI_LUT_NUM		64

/* SEQID -- we can have 16 seqids at most. */
196
#define SEQID_READ		0
197 198 199 200 201 202 203 204 205 206 207 208
#define SEQID_WREN		1
#define SEQID_WRDI		2
#define SEQID_RDSR		3
#define SEQID_SE		4
#define SEQID_CHIP_ERASE	5
#define SEQID_PP		6
#define SEQID_RDID		7
#define SEQID_WRSR		8
#define SEQID_RDCR		9
#define SEQID_EN4B		10
#define SEQID_BRWR		11

209 210
#define QUADSPI_MIN_IOMAP SZ_4M

211 212 213
enum fsl_qspi_devtype {
	FSL_QUADSPI_VYBRID,
	FSL_QUADSPI_IMX6SX,
214
	FSL_QUADSPI_IMX7D,
215
	FSL_QUADSPI_IMX6UL,
216
	FSL_QUADSPI_LS1021A,
217 218 219 220 221 222
};

struct fsl_qspi_devtype_data {
	enum fsl_qspi_devtype devtype;
	int rxfifo;
	int txfifo;
223
	int ahb_buf_size;
224
	int driver_data;
225 226
};

227
static const struct fsl_qspi_devtype_data vybrid_data = {
228 229
	.devtype = FSL_QUADSPI_VYBRID,
	.rxfifo = 128,
230
	.txfifo = 64,
231 232
	.ahb_buf_size = 1024,
	.driver_data = QUADSPI_QUIRK_SWAP_ENDIAN,
233 234
};

235
static const struct fsl_qspi_devtype_data imx6sx_data = {
236 237
	.devtype = FSL_QUADSPI_IMX6SX,
	.rxfifo = 128,
238
	.txfifo = 512,
239
	.ahb_buf_size = 1024,
240 241
	.driver_data = QUADSPI_QUIRK_4X_INT_CLK
		       | QUADSPI_QUIRK_TKT245618,
242 243
};

244
static const struct fsl_qspi_devtype_data imx7d_data = {
245 246 247 248 249 250 251 252
	.devtype = FSL_QUADSPI_IMX7D,
	.rxfifo = 512,
	.txfifo = 512,
	.ahb_buf_size = 1024,
	.driver_data = QUADSPI_QUIRK_TKT253890
		       | QUADSPI_QUIRK_4X_INT_CLK,
};

253
static const struct fsl_qspi_devtype_data imx6ul_data = {
254 255 256 257 258 259 260 261
	.devtype = FSL_QUADSPI_IMX6UL,
	.rxfifo = 128,
	.txfifo = 512,
	.ahb_buf_size = 1024,
	.driver_data = QUADSPI_QUIRK_TKT253890
		       | QUADSPI_QUIRK_4X_INT_CLK,
};

262 263 264 265 266 267 268 269
static struct fsl_qspi_devtype_data ls1021a_data = {
	.devtype = FSL_QUADSPI_LS1021A,
	.rxfifo = 128,
	.txfifo = 64,
	.ahb_buf_size = 1024,
	.driver_data = 0,
};

270 271 272 273
#define FSL_QSPI_MAX_CHIP	4
struct fsl_qspi {
	struct spi_nor nor[FSL_QSPI_MAX_CHIP];
	void __iomem *iobase;
274
	void __iomem *ahb_addr;
275
	u32 memmap_phy;
276 277
	u32 memmap_offs;
	u32 memmap_len;
278 279 280
	struct clk *clk, *clk_en;
	struct device *dev;
	struct completion c;
281
	const struct fsl_qspi_devtype_data *devtype_data;
282 283 284 285
	u32 nor_size;
	u32 nor_num;
	u32 clk_rate;
	unsigned int chip_base_addr; /* We may support two chips. */
286
	bool has_second_chip;
287
	bool big_endian;
288
	struct mutex lock;
289
	struct pm_qos_request pm_qos_req;
290 291
};

292
static inline int needs_swap_endian(struct fsl_qspi *q)
293
{
294
	return q->devtype_data->driver_data & QUADSPI_QUIRK_SWAP_ENDIAN;
295 296
}

297
static inline int needs_4x_clock(struct fsl_qspi *q)
298
{
299
	return q->devtype_data->driver_data & QUADSPI_QUIRK_4X_INT_CLK;
300 301
}

302 303 304 305 306
static inline int needs_fill_txfifo(struct fsl_qspi *q)
{
	return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT253890;
}

307 308 309 310 311
static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
{
	return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT245618;
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
/*
 * R/W functions for big- or little-endian registers:
 * The qSPI controller's endian is independent of the CPU core's endian.
 * So far, although the CPU core is little-endian but the qSPI have two
 * versions for big-endian and little-endian.
 */
static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
{
	if (q->big_endian)
		iowrite32be(val, addr);
	else
		iowrite32(val, addr);
}

static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
{
	if (q->big_endian)
		return ioread32be(addr);
	else
		return ioread32(addr);
}

334 335 336 337 338 339
/*
 * An IC bug makes us to re-arrange the 32-bit data.
 * The following chips, such as IMX6SLX, have fixed this bug.
 */
static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
{
340
	return needs_swap_endian(q) ? __swab32(a) : a;
341 342 343 344
}

static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
{
345 346
	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
	qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
347 348 349 350
}

static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
{
351 352
	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
	qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
353 354 355 356 357 358 359 360
}

static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
{
	struct fsl_qspi *q = dev_id;
	u32 reg;

	/* clear interrupt */
361 362
	reg = qspi_readl(q, q->iobase + QUADSPI_FR);
	qspi_writel(q, reg, q->iobase + QUADSPI_FR);
363 364 365 366 367 368 369 370 371 372

	if (reg & QUADSPI_FR_TFF_MASK)
		complete(&q->c);

	dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg);
	return IRQ_HANDLED;
}

static void fsl_qspi_init_lut(struct fsl_qspi *q)
{
373
	void __iomem *base = q->iobase;
374 375 376 377
	int rxfifo = q->devtype_data->rxfifo;
	u32 lut_base;
	int i;

378 379 380 381 382
	struct spi_nor *nor = &q->nor[0];
	u8 addrlen = (nor->addr_width == 3) ? ADDR24BIT : ADDR32BIT;
	u8 read_op = nor->read_opcode;
	u8 read_dm = nor->read_dummy;

383 384 385 386
	fsl_qspi_unlock_lut(q);

	/* Clear all the LUT table */
	for (i = 0; i < QUADSPI_LUT_NUM; i++)
387
		qspi_writel(q, 0, base + QUADSPI_LUT_BASE + i * 4);
388

389 390
	/* Read */
	lut_base = SEQID_READ * 4;
391

392
	qspi_writel(q, LUT0(CMD, PAD1, read_op) | LUT1(ADDR, PAD1, addrlen),
393
			base + QUADSPI_LUT(lut_base));
394 395
	qspi_writel(q, LUT0(DUMMY, PAD1, read_dm) |
		    LUT1(FSL_READ, PAD4, rxfifo),
396 397 398 399
			base + QUADSPI_LUT(lut_base + 1));

	/* Write enable */
	lut_base = SEQID_WREN * 4;
400 401
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WREN),
			base + QUADSPI_LUT(lut_base));
402 403 404 405

	/* Page Program */
	lut_base = SEQID_PP * 4;

406 407
	qspi_writel(q, LUT0(CMD, PAD1, nor->program_opcode) |
		    LUT1(ADDR, PAD1, addrlen),
408
			base + QUADSPI_LUT(lut_base));
409 410
	qspi_writel(q, LUT0(FSL_WRITE, PAD1, 0),
			base + QUADSPI_LUT(lut_base + 1));
411 412 413

	/* Read Status */
	lut_base = SEQID_RDSR * 4;
414 415
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDSR) |
			LUT1(FSL_READ, PAD1, 0x1),
416 417 418 419 420
			base + QUADSPI_LUT(lut_base));

	/* Erase a sector */
	lut_base = SEQID_SE * 4;

421 422
	qspi_writel(q, LUT0(CMD, PAD1, nor->erase_opcode) |
		    LUT1(ADDR, PAD1, addrlen),
423 424 425 426
			base + QUADSPI_LUT(lut_base));

	/* Erase the whole chip */
	lut_base = SEQID_CHIP_ERASE * 4;
427
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
428 429 430 431
			base + QUADSPI_LUT(lut_base));

	/* READ ID */
	lut_base = SEQID_RDID * 4;
432 433
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDID) |
			LUT1(FSL_READ, PAD1, 0x8),
434 435 436 437
			base + QUADSPI_LUT(lut_base));

	/* Write Register */
	lut_base = SEQID_WRSR * 4;
438 439
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRSR) |
			LUT1(FSL_WRITE, PAD1, 0x2),
440 441 442 443
			base + QUADSPI_LUT(lut_base));

	/* Read Configuration Register */
	lut_base = SEQID_RDCR * 4;
444 445
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDCR) |
			LUT1(FSL_READ, PAD1, 0x1),
446 447 448 449
			base + QUADSPI_LUT(lut_base));

	/* Write disable */
	lut_base = SEQID_WRDI * 4;
450 451
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRDI),
			base + QUADSPI_LUT(lut_base));
452 453 454

	/* Enter 4 Byte Mode (Micron) */
	lut_base = SEQID_EN4B * 4;
455 456
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_EN4B),
			base + QUADSPI_LUT(lut_base));
457 458 459

	/* Enter 4 Byte Mode (Spansion) */
	lut_base = SEQID_BRWR * 4;
460 461
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_BRWR),
			base + QUADSPI_LUT(lut_base));
462 463 464 465 466 467 468 469

	fsl_qspi_lock_lut(q);
}

/* Get the SEQID for the command */
static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
{
	switch (cmd) {
470
	case SPINOR_OP_READ_1_1_4:
471
		return SEQID_READ;
472
	case SPINOR_OP_WREN:
473
		return SEQID_WREN;
474
	case SPINOR_OP_WRDI:
475
		return SEQID_WRDI;
476
	case SPINOR_OP_RDSR:
477
		return SEQID_RDSR;
478
	case SPINOR_OP_SE:
479
		return SEQID_SE;
480
	case SPINOR_OP_CHIP_ERASE:
481
		return SEQID_CHIP_ERASE;
482
	case SPINOR_OP_PP:
483
		return SEQID_PP;
484
	case SPINOR_OP_RDID:
485
		return SEQID_RDID;
486
	case SPINOR_OP_WRSR:
487
		return SEQID_WRSR;
488
	case SPINOR_OP_RDCR:
489
		return SEQID_RDCR;
490
	case SPINOR_OP_EN4B:
491
		return SEQID_EN4B;
492
	case SPINOR_OP_BRWR:
493 494
		return SEQID_BRWR;
	default:
495 496
		if (cmd == q->nor[0].erase_opcode)
			return SEQID_SE;
497 498 499 500 501 502 503 504 505
		dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd);
		break;
	}
	return -EINVAL;
}

static int
fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
{
506
	void __iomem *base = q->iobase;
507 508 509 510 511 512 513 514 515
	int seqid;
	u32 reg, reg2;
	int err;

	init_completion(&q->c);
	dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
			q->chip_base_addr, addr, len, cmd);

	/* save the reg */
516
	reg = qspi_readl(q, base + QUADSPI_MCR);
517

518 519 520
	qspi_writel(q, q->memmap_phy + q->chip_base_addr + addr,
			base + QUADSPI_SFAR);
	qspi_writel(q, QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
521
			base + QUADSPI_RBCT);
522
	qspi_writel(q, reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);
523 524

	do {
525
		reg2 = qspi_readl(q, base + QUADSPI_SR);
526 527 528 529 530 531 532 533 534 535
		if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
			udelay(1);
			dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
			continue;
		}
		break;
	} while (1);

	/* trigger the LUT now */
	seqid = fsl_qspi_get_seqid(q, cmd);
536 537
	qspi_writel(q, (seqid << QUADSPI_IPCR_SEQID_SHIFT) | len,
			base + QUADSPI_IPCR);
538 539

	/* Wait for the interrupt. */
540
	if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000))) {
541 542
		dev_err(q->dev,
			"cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
543 544
			cmd, addr, qspi_readl(q, base + QUADSPI_FR),
			qspi_readl(q, base + QUADSPI_SR));
545 546 547 548 549 550
		err = -ETIMEDOUT;
	} else {
		err = 0;
	}

	/* restore the MCR */
551
	qspi_writel(q, reg, base + QUADSPI_MCR);
552 553 554 555 556 557 558 559 560 561 562

	return err;
}

/* Read out the data from the QUADSPI_RBDR buffer registers. */
static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
{
	u32 tmp;
	int i = 0;

	while (len > 0) {
563
		tmp = qspi_readl(q, q->iobase + QUADSPI_RBDR + i * 4);
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
		tmp = fsl_qspi_endian_xchg(q, tmp);
		dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
				q->chip_base_addr, tmp);

		if (len >= 4) {
			*((u32 *)rxbuf) = tmp;
			rxbuf += 4;
		} else {
			memcpy(rxbuf, &tmp, len);
			break;
		}

		len -= 4;
		i++;
	}
}

/*
 * If we have changed the content of the flash by writing or erasing,
 * we need to invalidate the AHB buffer. If we do not do so, we may read out
 * the wrong data. The spec tells us reset the AHB domain and Serial Flash
 * domain at the same time.
 */
static inline void fsl_qspi_invalid(struct fsl_qspi *q)
{
	u32 reg;

591
	reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
592
	reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
593
	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
594 595 596 597 598 599 600 601

	/*
	 * The minimum delay : 1 AHB + 2 SFCK clocks.
	 * Delay 1 us is enough.
	 */
	udelay(1);

	reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
602
	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
603 604
}

605
static ssize_t fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
606
				u8 opcode, unsigned int to, u32 *txbuf,
607
				unsigned count)
608 609 610 611 612 613 614 615
{
	int ret, i, j;
	u32 tmp;

	dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n",
		q->chip_base_addr, to, count);

	/* clear the TX FIFO. */
616 617
	tmp = qspi_readl(q, q->iobase + QUADSPI_MCR);
	qspi_writel(q, tmp | QUADSPI_MCR_CLR_TXF_MASK, q->iobase + QUADSPI_MCR);
618 619 620 621

	/* fill the TX data to the FIFO */
	for (j = 0, i = ((count + 3) / 4); j < i; j++) {
		tmp = fsl_qspi_endian_xchg(q, *txbuf);
622
		qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);
623 624 625
		txbuf++;
	}

626 627 628
	/* fill the TXFIFO upto 16 bytes for i.MX7d */
	if (needs_fill_txfifo(q))
		for (; i < 4; i++)
629
			qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);
630

631 632 633
	/* Trigger it */
	ret = fsl_qspi_runcmd(q, opcode, to, count);

634
	if (ret == 0)
635
		return count;
636 637 638 639 640 641 642 643 644

	return ret;
}

static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
{
	int nor_size = q->nor_size;
	void __iomem *base = q->iobase;

645 646 647 648
	qspi_writel(q, nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
	qspi_writel(q, nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
	qspi_writel(q, nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
	qspi_writel(q, nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
}

/*
 * There are two different ways to read out the data from the flash:
 *  the "IP Command Read" and the "AHB Command Read".
 *
 * The IC guy suggests we use the "AHB Command Read" which is faster
 * then the "IP Command Read". (What's more is that there is a bug in
 * the "IP Command Read" in the Vybrid.)
 *
 * After we set up the registers for the "AHB Command Read", we can use
 * the memcpy to read the data directly. A "missed" access to the buffer
 * causes the controller to clear the buffer, and use the sequence pointed
 * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
 */
static void fsl_qspi_init_abh_read(struct fsl_qspi *q)
{
	void __iomem *base = q->iobase;
	int seqid;

	/* AHB configuration for access buffer 0/1/2 .*/
670 671 672
	qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
	qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
	qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
673 674 675 676
	/*
	 * Set ADATSZ with the maximum AHB buffer size to improve the
	 * read performance.
	 */
677 678 679 680
	qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
			((q->devtype_data->ahb_buf_size / 8)
			<< QUADSPI_BUF3CR_ADATSZ_SHIFT),
			base + QUADSPI_BUF3CR);
681 682

	/* We only use the buffer3 */
683 684 685
	qspi_writel(q, 0, base + QUADSPI_BUF0IND);
	qspi_writel(q, 0, base + QUADSPI_BUF1IND);
	qspi_writel(q, 0, base + QUADSPI_BUF2IND);
686 687 688

	/* Set the default lut sequence for AHB Read. */
	seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
689
	qspi_writel(q, seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
690 691 692
		q->iobase + QUADSPI_BFGENCR);
}

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
/* This function was used to prepare and enable QSPI clock */
static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
{
	int ret;

	ret = clk_prepare_enable(q->clk_en);
	if (ret)
		return ret;

	ret = clk_prepare_enable(q->clk);
	if (ret) {
		clk_disable_unprepare(q->clk_en);
		return ret;
	}

708 709 710
	if (needs_wakeup_wait_mode(q))
		pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0);

711 712 713 714 715 716
	return 0;
}

/* This function was used to disable and unprepare QSPI clock */
static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
{
717 718 719
	if (needs_wakeup_wait_mode(q))
		pm_qos_remove_request(&q->pm_qos_req);

720 721 722 723 724
	clk_disable_unprepare(q->clk);
	clk_disable_unprepare(q->clk_en);

}

725 726 727 728 729 730 731
/* We use this function to do some basic init for spi_nor_scan(). */
static int fsl_qspi_nor_setup(struct fsl_qspi *q)
{
	void __iomem *base = q->iobase;
	u32 reg;
	int ret;

732 733 734 735
	/* disable and unprepare clock to avoid glitch pass to controller */
	fsl_qspi_clk_disable_unprep(q);

	/* the default frequency, we will change it in the future. */
736 737 738 739
	ret = clk_set_rate(q->clk, 66000000);
	if (ret)
		return ret;

740 741 742 743
	ret = fsl_qspi_clk_prep_enable(q);
	if (ret)
		return ret;

744
	/* Reset the module */
745
	qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
746 747 748
		base + QUADSPI_MCR);
	udelay(1);

749 750 751 752
	/* Init the LUT table. */
	fsl_qspi_init_lut(q);

	/* Disable the module */
753
	qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
754 755
			base + QUADSPI_MCR);

756 757
	reg = qspi_readl(q, base + QUADSPI_SMPR);
	qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
758 759 760 761 762
			| QUADSPI_SMPR_FSPHS_MASK
			| QUADSPI_SMPR_HSENA_MASK
			| QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);

	/* Enable the module */
763
	qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
764 765
			base + QUADSPI_MCR);

766
	/* clear all interrupt status */
767
	qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
768

769
	/* enable the interrupt */
770
	qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
771 772 773 774 775 776 777 778 779

	return 0;
}

static int fsl_qspi_nor_setup_last(struct fsl_qspi *q)
{
	unsigned long rate = q->clk_rate;
	int ret;

780
	if (needs_4x_clock(q))
781 782
		rate *= 4;

783 784 785
	/* disable and unprepare clock to avoid glitch pass to controller */
	fsl_qspi_clk_disable_unprep(q);

786 787 788 789
	ret = clk_set_rate(q->clk, rate);
	if (ret)
		return ret;

790 791 792 793
	ret = fsl_qspi_clk_prep_enable(q);
	if (ret)
		return ret;

794 795 796 797 798 799 800 801 802
	/* Init the LUT table again. */
	fsl_qspi_init_lut(q);

	/* Init for AHB read */
	fsl_qspi_init_abh_read(q);

	return 0;
}

803
static const struct of_device_id fsl_qspi_dt_ids[] = {
804 805 806 807
	{ .compatible = "fsl,vf610-qspi", .data = &vybrid_data, },
	{ .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, },
	{ .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, },
	{ .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, },
808
	{ .compatible = "fsl,ls1021a-qspi", .data = (void *)&ls1021a_data, },
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);

static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor)
{
	q->chip_base_addr = q->nor_size * (nor - q->nor);
}

static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
	int ret;
	struct fsl_qspi *q = nor->priv;

	ret = fsl_qspi_runcmd(q, opcode, 0, len);
	if (ret)
		return ret;

	fsl_qspi_read_data(q, len, buf);
	return 0;
}

831
static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
832 833 834 835 836 837 838 839 840
{
	struct fsl_qspi *q = nor->priv;
	int ret;

	if (!buf) {
		ret = fsl_qspi_runcmd(q, opcode, 0, 1);
		if (ret)
			return ret;

841
		if (opcode == SPINOR_OP_CHIP_ERASE)
842 843 844 845
			fsl_qspi_invalid(q);

	} else if (len > 0) {
		ret = fsl_qspi_nor_write(q, nor, opcode, 0,
846
					(u32 *)buf, len);
847 848
		if (ret > 0)
			return 0;
849 850 851 852 853 854 855 856
	} else {
		dev_err(q->dev, "invalid cmd %d\n", opcode);
		ret = -EINVAL;
	}

	return ret;
}

857
static ssize_t fsl_qspi_write(struct spi_nor *nor, loff_t to,
858
			      size_t len, const u_char *buf)
859 860
{
	struct fsl_qspi *q = nor->priv;
861
	ssize_t ret = fsl_qspi_nor_write(q, nor, nor->program_opcode, to,
862
					 (u32 *)buf, len);
863 864 865

	/* invalid the data in the AHB buffer. */
	fsl_qspi_invalid(q);
866
	return ret;
867 868
}

869
static ssize_t fsl_qspi_read(struct spi_nor *nor, loff_t from,
870
			     size_t len, u_char *buf)
871 872 873 874
{
	struct fsl_qspi *q = nor->priv;
	u8 cmd = nor->read_opcode;

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
	/* if necessary,ioremap buffer before AHB read, */
	if (!q->ahb_addr) {
		q->memmap_offs = q->chip_base_addr + from;
		q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;

		q->ahb_addr = ioremap_nocache(
				q->memmap_phy + q->memmap_offs,
				q->memmap_len);
		if (!q->ahb_addr) {
			dev_err(q->dev, "ioremap failed\n");
			return -ENOMEM;
		}
	/* ioremap if the data requested is out of range */
	} else if (q->chip_base_addr + from < q->memmap_offs
			|| q->chip_base_addr + from + len >
			q->memmap_offs + q->memmap_len) {
		iounmap(q->ahb_addr);

		q->memmap_offs = q->chip_base_addr + from;
		q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;
		q->ahb_addr = ioremap_nocache(
				q->memmap_phy + q->memmap_offs,
				q->memmap_len);
		if (!q->ahb_addr) {
			dev_err(q->dev, "ioremap failed\n");
			return -ENOMEM;
		}
	}

904
	dev_dbg(q->dev, "cmd [%x],read from %p, len:%zd\n",
905 906
		cmd, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
		len);
907 908

	/* Read out the data directly from the AHB buffer.*/
909 910
	memcpy(buf, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
		len);
911

912
	return len;
913 914 915 916 917 918 919 920
}

static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs)
{
	struct fsl_qspi *q = nor->priv;
	int ret;

	dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
921
		nor->mtd.erasesize / 1024, q->chip_base_addr, (u32)offs);
922 923 924 925 926 927 928 929 930 931 932 933 934 935

	ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0);
	if (ret)
		return ret;

	fsl_qspi_invalid(q);
	return 0;
}

static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	struct fsl_qspi *q = nor->priv;
	int ret;

936
	mutex_lock(&q->lock);
937

938
	ret = fsl_qspi_clk_prep_enable(q);
939
	if (ret)
940
		goto err_mutex;
941 942 943

	fsl_qspi_set_base_addr(q, nor);
	return 0;
944 945 946 947

err_mutex:
	mutex_unlock(&q->lock);
	return ret;
948 949 950 951 952 953
}

static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	struct fsl_qspi *q = nor->priv;

954
	fsl_qspi_clk_disable_unprep(q);
955
	mutex_unlock(&q->lock);
956 957 958 959
}

static int fsl_qspi_probe(struct platform_device *pdev)
{
960 961 962 963
	const struct spi_nor_hwcaps hwcaps = {
		.mask = SNOR_HWCAPS_READ_1_1_4 |
			SNOR_HWCAPS_PP,
	};
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
	struct device_node *np = pdev->dev.of_node;
	struct device *dev = &pdev->dev;
	struct fsl_qspi *q;
	struct resource *res;
	struct spi_nor *nor;
	struct mtd_info *mtd;
	int ret, i = 0;

	q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL);
	if (!q)
		return -ENOMEM;

	q->nor_num = of_get_child_count(dev->of_node);
	if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP)
		return -ENODEV;

980
	q->dev = dev;
981 982 983
	q->devtype_data = of_device_get_match_data(dev);
	if (!q->devtype_data)
		return -ENODEV;
984 985
	platform_set_drvdata(pdev, q);

986 987 988
	/* find the resources */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
	q->iobase = devm_ioremap_resource(dev, res);
989 990
	if (IS_ERR(q->iobase))
		return PTR_ERR(q->iobase);
991

992
	q->big_endian = of_property_read_bool(np, "big-endian");
993 994
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
					"QuadSPI-memory");
995 996 997 998 999
	if (!devm_request_mem_region(dev, res->start, resource_size(res),
				     res->name)) {
		dev_err(dev, "can't request region for resource %pR\n", res);
		return -EBUSY;
	}
1000

1001 1002 1003 1004
	q->memmap_phy = res->start;

	/* find the clocks */
	q->clk_en = devm_clk_get(dev, "qspi_en");
1005 1006
	if (IS_ERR(q->clk_en))
		return PTR_ERR(q->clk_en);
1007 1008

	q->clk = devm_clk_get(dev, "qspi");
1009 1010
	if (IS_ERR(q->clk))
		return PTR_ERR(q->clk);
1011

1012
	ret = fsl_qspi_clk_prep_enable(q);
1013
	if (ret) {
1014
		dev_err(dev, "can not enable the clock\n");
1015
		goto clk_failed;
1016 1017 1018 1019 1020
	}

	/* find the irq */
	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
1021
		dev_err(dev, "failed to get the irq: %d\n", ret);
1022 1023 1024 1025 1026 1027
		goto irq_failed;
	}

	ret = devm_request_irq(dev, ret,
			fsl_qspi_irq_handler, 0, pdev->name, q);
	if (ret) {
1028
		dev_err(dev, "failed to request irq: %d\n", ret);
1029 1030 1031 1032 1033 1034 1035 1036
		goto irq_failed;
	}

	ret = fsl_qspi_nor_setup(q);
	if (ret)
		goto irq_failed;

	if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
1037
		q->has_second_chip = true;
1038

1039 1040
	mutex_init(&q->lock);

1041 1042 1043
	/* iterate the subnodes. */
	for_each_available_child_of_node(dev->of_node, np) {
		/* skip the holes */
1044
		if (!q->has_second_chip)
1045 1046 1047
			i *= 2;

		nor = &q->nor[i];
1048
		mtd = &nor->mtd;
1049 1050

		nor->dev = dev;
1051
		spi_nor_set_flash_node(nor, np);
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
		nor->priv = q;

		/* fill the hooks */
		nor->read_reg = fsl_qspi_read_reg;
		nor->write_reg = fsl_qspi_write_reg;
		nor->read = fsl_qspi_read;
		nor->write = fsl_qspi_write;
		nor->erase = fsl_qspi_erase;

		nor->prepare = fsl_qspi_prep;
		nor->unprepare = fsl_qspi_unprep;

		ret = of_property_read_u32(np, "spi-max-frequency",
				&q->clk_rate);
		if (ret < 0)
1067
			goto mutex_failed;
1068 1069 1070 1071

		/* set the chip address for READID */
		fsl_qspi_set_base_addr(q, nor);

1072
		ret = spi_nor_scan(nor, NULL, &hwcaps);
1073
		if (ret)
1074
			goto mutex_failed;
1075

1076
		ret = mtd_device_register(mtd, NULL, 0);
1077
		if (ret)
1078
			goto mutex_failed;
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

		/* Set the correct NOR size now. */
		if (q->nor_size == 0) {
			q->nor_size = mtd->size;

			/* Map the SPI NOR to accessiable address */
			fsl_qspi_set_map_addr(q);
		}

		/*
		 * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
		 * may writes 265 bytes per time. The write is working in the
		 * unit of the TX FIFO, not in the unit of the SPI NOR's page
		 * size.
		 *
		 * So shrink the spi_nor->page_size if it is larger then the
		 * TX FIFO.
		 */
		if (nor->page_size > q->devtype_data->txfifo)
			nor->page_size = q->devtype_data->txfifo;

		i++;
	}

	/* finish the rest init. */
	ret = fsl_qspi_nor_setup_last(q);
	if (ret)
		goto last_init_failed;

1108
	fsl_qspi_clk_disable_unprep(q);
1109 1110 1111
	return 0;

last_init_failed:
1112 1113 1114 1115
	for (i = 0; i < q->nor_num; i++) {
		/* skip the holes */
		if (!q->has_second_chip)
			i *= 2;
1116
		mtd_device_unregister(&q->nor[i].mtd);
1117
	}
1118 1119
mutex_failed:
	mutex_destroy(&q->lock);
1120
irq_failed:
1121
	fsl_qspi_clk_disable_unprep(q);
1122
clk_failed:
1123
	dev_err(dev, "Freescale QuadSPI probe failed\n");
1124 1125 1126 1127 1128 1129 1130 1131
	return ret;
}

static int fsl_qspi_remove(struct platform_device *pdev)
{
	struct fsl_qspi *q = platform_get_drvdata(pdev);
	int i;

1132 1133 1134 1135
	for (i = 0; i < q->nor_num; i++) {
		/* skip the holes */
		if (!q->has_second_chip)
			i *= 2;
1136
		mtd_device_unregister(&q->nor[i].mtd);
1137
	}
1138 1139

	/* disable the hardware */
1140 1141
	qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
	qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
1142

1143
	mutex_destroy(&q->lock);
1144 1145 1146 1147

	if (q->ahb_addr)
		iounmap(q->ahb_addr);

1148 1149 1150
	return 0;
}

1151 1152 1153 1154 1155 1156 1157
static int fsl_qspi_suspend(struct platform_device *pdev, pm_message_t state)
{
	return 0;
}

static int fsl_qspi_resume(struct platform_device *pdev)
{
1158
	int ret;
1159 1160
	struct fsl_qspi *q = platform_get_drvdata(pdev);

1161 1162 1163 1164
	ret = fsl_qspi_clk_prep_enable(q);
	if (ret)
		return ret;

1165 1166 1167 1168
	fsl_qspi_nor_setup(q);
	fsl_qspi_set_map_addr(q);
	fsl_qspi_nor_setup_last(q);

1169 1170
	fsl_qspi_clk_disable_unprep(q);

1171 1172 1173
	return 0;
}

1174 1175 1176 1177 1178 1179 1180 1181
static struct platform_driver fsl_qspi_driver = {
	.driver = {
		.name	= "fsl-quadspi",
		.bus	= &platform_bus_type,
		.of_match_table = fsl_qspi_dt_ids,
	},
	.probe          = fsl_qspi_probe,
	.remove		= fsl_qspi_remove,
1182 1183
	.suspend	= fsl_qspi_suspend,
	.resume		= fsl_qspi_resume,
1184 1185 1186 1187 1188 1189
};
module_platform_driver(fsl_qspi_driver);

MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
MODULE_AUTHOR("Freescale Semiconductor Inc.");
MODULE_LICENSE("GPL v2");