fsl-quadspi.c 30.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Freescale QuadSPI driver.
 *
 * Copyright (C) 2013 Freescale Semiconductor, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/timer.h>
#include <linux/jiffies.h>
#include <linux/completion.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
29
#include <linux/mutex.h>
30
#include <linux/pm_qos.h>
31
#include <linux/sizes.h>
32

33 34 35 36
/* Controller needs driver to swap endian */
#define QUADSPI_QUIRK_SWAP_ENDIAN	(1 << 0)
/* Controller needs 4x internal clock */
#define QUADSPI_QUIRK_4X_INT_CLK	(1 << 1)
37 38 39 40 41
/*
 * TKT253890, Controller needs driver to fill txfifo till 16 byte to
 * trigger data transfer even though extern data will not transferred.
 */
#define QUADSPI_QUIRK_TKT253890		(1 << 2)
42 43
/* Controller cannot wake up from wait mode, TKT245618 */
#define QUADSPI_QUIRK_TKT245618         (1 << 3)
44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
/* The registers */
#define QUADSPI_MCR			0x00
#define QUADSPI_MCR_RESERVED_SHIFT	16
#define QUADSPI_MCR_RESERVED_MASK	(0xF << QUADSPI_MCR_RESERVED_SHIFT)
#define QUADSPI_MCR_MDIS_SHIFT		14
#define QUADSPI_MCR_MDIS_MASK		(1 << QUADSPI_MCR_MDIS_SHIFT)
#define QUADSPI_MCR_CLR_TXF_SHIFT	11
#define QUADSPI_MCR_CLR_TXF_MASK	(1 << QUADSPI_MCR_CLR_TXF_SHIFT)
#define QUADSPI_MCR_CLR_RXF_SHIFT	10
#define QUADSPI_MCR_CLR_RXF_MASK	(1 << QUADSPI_MCR_CLR_RXF_SHIFT)
#define QUADSPI_MCR_DDR_EN_SHIFT	7
#define QUADSPI_MCR_DDR_EN_MASK		(1 << QUADSPI_MCR_DDR_EN_SHIFT)
#define QUADSPI_MCR_END_CFG_SHIFT	2
#define QUADSPI_MCR_END_CFG_MASK	(3 << QUADSPI_MCR_END_CFG_SHIFT)
#define QUADSPI_MCR_SWRSTHD_SHIFT	1
#define QUADSPI_MCR_SWRSTHD_MASK	(1 << QUADSPI_MCR_SWRSTHD_SHIFT)
#define QUADSPI_MCR_SWRSTSD_SHIFT	0
#define QUADSPI_MCR_SWRSTSD_MASK	(1 << QUADSPI_MCR_SWRSTSD_SHIFT)

#define QUADSPI_IPCR			0x08
#define QUADSPI_IPCR_SEQID_SHIFT	24
#define QUADSPI_IPCR_SEQID_MASK		(0xF << QUADSPI_IPCR_SEQID_SHIFT)

#define QUADSPI_BUF0CR			0x10
#define QUADSPI_BUF1CR			0x14
#define QUADSPI_BUF2CR			0x18
#define QUADSPI_BUFXCR_INVALID_MSTRID	0xe

#define QUADSPI_BUF3CR			0x1c
#define QUADSPI_BUF3CR_ALLMST_SHIFT	31
75 76 77
#define QUADSPI_BUF3CR_ALLMST_MASK	(1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
#define QUADSPI_BUF3CR_ADATSZ_SHIFT		8
#define QUADSPI_BUF3CR_ADATSZ_MASK	(0xFF << QUADSPI_BUF3CR_ADATSZ_SHIFT)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

#define QUADSPI_BFGENCR			0x20
#define QUADSPI_BFGENCR_PAR_EN_SHIFT	16
#define QUADSPI_BFGENCR_PAR_EN_MASK	(1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
#define QUADSPI_BFGENCR_SEQID_SHIFT	12
#define QUADSPI_BFGENCR_SEQID_MASK	(0xF << QUADSPI_BFGENCR_SEQID_SHIFT)

#define QUADSPI_BUF0IND			0x30
#define QUADSPI_BUF1IND			0x34
#define QUADSPI_BUF2IND			0x38
#define QUADSPI_SFAR			0x100

#define QUADSPI_SMPR			0x108
#define QUADSPI_SMPR_DDRSMP_SHIFT	16
#define QUADSPI_SMPR_DDRSMP_MASK	(7 << QUADSPI_SMPR_DDRSMP_SHIFT)
#define QUADSPI_SMPR_FSDLY_SHIFT	6
#define QUADSPI_SMPR_FSDLY_MASK		(1 << QUADSPI_SMPR_FSDLY_SHIFT)
#define QUADSPI_SMPR_FSPHS_SHIFT	5
#define QUADSPI_SMPR_FSPHS_MASK		(1 << QUADSPI_SMPR_FSPHS_SHIFT)
#define QUADSPI_SMPR_HSENA_SHIFT	0
#define QUADSPI_SMPR_HSENA_MASK		(1 << QUADSPI_SMPR_HSENA_SHIFT)

#define QUADSPI_RBSR			0x10c
#define QUADSPI_RBSR_RDBFL_SHIFT	8
#define QUADSPI_RBSR_RDBFL_MASK		(0x3F << QUADSPI_RBSR_RDBFL_SHIFT)

#define QUADSPI_RBCT			0x110
#define QUADSPI_RBCT_WMRK_MASK		0x1F
#define QUADSPI_RBCT_RXBRD_SHIFT	8
#define QUADSPI_RBCT_RXBRD_USEIPS	(0x1 << QUADSPI_RBCT_RXBRD_SHIFT)

#define QUADSPI_TBSR			0x150
#define QUADSPI_TBDR			0x154
#define QUADSPI_SR			0x15c
#define QUADSPI_SR_IP_ACC_SHIFT		1
#define QUADSPI_SR_IP_ACC_MASK		(0x1 << QUADSPI_SR_IP_ACC_SHIFT)
#define QUADSPI_SR_AHB_ACC_SHIFT	2
#define QUADSPI_SR_AHB_ACC_MASK		(0x1 << QUADSPI_SR_AHB_ACC_SHIFT)

#define QUADSPI_FR			0x160
#define QUADSPI_FR_TFF_MASK		0x1

#define QUADSPI_SFA1AD			0x180
#define QUADSPI_SFA2AD			0x184
#define QUADSPI_SFB1AD			0x188
#define QUADSPI_SFB2AD			0x18c
#define QUADSPI_RBDR			0x200

#define QUADSPI_LUTKEY			0x300
#define QUADSPI_LUTKEY_VALUE		0x5AF05AF0

#define QUADSPI_LCKCR			0x304
#define QUADSPI_LCKER_LOCK		0x1
#define QUADSPI_LCKER_UNLOCK		0x2

#define QUADSPI_RSER			0x164
#define QUADSPI_RSER_TFIE		(0x1 << 0)

#define QUADSPI_LUT_BASE		0x310

/*
 * The definition of the LUT register shows below:
 *
 *  ---------------------------------------------------
 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 *  ---------------------------------------------------
 */
#define OPRND0_SHIFT		0
#define PAD0_SHIFT		8
#define INSTR0_SHIFT		10
#define OPRND1_SHIFT		16

/* Instruction set for the LUT register. */
#define LUT_STOP		0
#define LUT_CMD			1
#define LUT_ADDR		2
#define LUT_DUMMY		3
#define LUT_MODE		4
#define LUT_MODE2		5
#define LUT_MODE4		6
158 159
#define LUT_FSL_READ		7
#define LUT_FSL_WRITE		8
160 161 162 163 164
#define LUT_JMP_ON_CS		9
#define LUT_ADDR_DDR		10
#define LUT_MODE_DDR		11
#define LUT_MODE2_DDR		12
#define LUT_MODE4_DDR		13
165 166
#define LUT_FSL_READ_DDR		14
#define LUT_FSL_WRITE_DDR		15
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
#define LUT_DATA_LEARN		16

/*
 * The PAD definitions for LUT register.
 *
 * The pad stands for the lines number of IO[0:3].
 * For example, the Quad read need four IO lines, so you should
 * set LUT_PAD4 which means we use four IO lines.
 */
#define LUT_PAD1		0
#define LUT_PAD2		1
#define LUT_PAD4		2

/* Oprands for the LUT register. */
#define ADDR24BIT		0x18
#define ADDR32BIT		0x20

/* Macros for constructing the LUT register. */
#define LUT0(ins, pad, opr)						\
		(((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
		((LUT_##ins) << INSTR0_SHIFT))

#define LUT1(ins, pad, opr)	(LUT0(ins, pad, opr) << OPRND1_SHIFT)

/* other macros for LUT register. */
#define QUADSPI_LUT(x)          (QUADSPI_LUT_BASE + (x) * 4)
#define QUADSPI_LUT_NUM		64

/* SEQID -- we can have 16 seqids at most. */
#define SEQID_QUAD_READ		0
#define SEQID_WREN		1
#define SEQID_WRDI		2
#define SEQID_RDSR		3
#define SEQID_SE		4
#define SEQID_CHIP_ERASE	5
#define SEQID_PP		6
#define SEQID_RDID		7
#define SEQID_WRSR		8
#define SEQID_RDCR		9
#define SEQID_EN4B		10
#define SEQID_BRWR		11

209 210
#define QUADSPI_MIN_IOMAP SZ_4M

211 212 213
enum fsl_qspi_devtype {
	FSL_QUADSPI_VYBRID,
	FSL_QUADSPI_IMX6SX,
214
	FSL_QUADSPI_IMX7D,
215
	FSL_QUADSPI_IMX6UL,
216
	FSL_QUADSPI_LS1021A,
217 218 219 220 221 222
};

struct fsl_qspi_devtype_data {
	enum fsl_qspi_devtype devtype;
	int rxfifo;
	int txfifo;
223
	int ahb_buf_size;
224
	int driver_data;
225 226 227 228 229
};

static struct fsl_qspi_devtype_data vybrid_data = {
	.devtype = FSL_QUADSPI_VYBRID,
	.rxfifo = 128,
230
	.txfifo = 64,
231 232
	.ahb_buf_size = 1024,
	.driver_data = QUADSPI_QUIRK_SWAP_ENDIAN,
233 234 235 236 237
};

static struct fsl_qspi_devtype_data imx6sx_data = {
	.devtype = FSL_QUADSPI_IMX6SX,
	.rxfifo = 128,
238
	.txfifo = 512,
239
	.ahb_buf_size = 1024,
240 241
	.driver_data = QUADSPI_QUIRK_4X_INT_CLK
		       | QUADSPI_QUIRK_TKT245618,
242 243
};

244 245 246 247 248 249 250 251 252
static struct fsl_qspi_devtype_data imx7d_data = {
	.devtype = FSL_QUADSPI_IMX7D,
	.rxfifo = 512,
	.txfifo = 512,
	.ahb_buf_size = 1024,
	.driver_data = QUADSPI_QUIRK_TKT253890
		       | QUADSPI_QUIRK_4X_INT_CLK,
};

253 254 255 256 257 258 259 260 261
static struct fsl_qspi_devtype_data imx6ul_data = {
	.devtype = FSL_QUADSPI_IMX6UL,
	.rxfifo = 128,
	.txfifo = 512,
	.ahb_buf_size = 1024,
	.driver_data = QUADSPI_QUIRK_TKT253890
		       | QUADSPI_QUIRK_4X_INT_CLK,
};

262 263 264 265 266 267 268 269
static struct fsl_qspi_devtype_data ls1021a_data = {
	.devtype = FSL_QUADSPI_LS1021A,
	.rxfifo = 128,
	.txfifo = 64,
	.ahb_buf_size = 1024,
	.driver_data = 0,
};

270 271 272 273
#define FSL_QSPI_MAX_CHIP	4
struct fsl_qspi {
	struct spi_nor nor[FSL_QSPI_MAX_CHIP];
	void __iomem *iobase;
274
	void __iomem *ahb_addr;
275
	u32 memmap_phy;
276 277
	u32 memmap_offs;
	u32 memmap_len;
278 279 280
	struct clk *clk, *clk_en;
	struct device *dev;
	struct completion c;
281
	const struct fsl_qspi_devtype_data *devtype_data;
282 283 284 285
	u32 nor_size;
	u32 nor_num;
	u32 clk_rate;
	unsigned int chip_base_addr; /* We may support two chips. */
286
	bool has_second_chip;
287
	bool big_endian;
288
	struct mutex lock;
289
	struct pm_qos_request pm_qos_req;
290 291
};

292
static inline int needs_swap_endian(struct fsl_qspi *q)
293
{
294
	return q->devtype_data->driver_data & QUADSPI_QUIRK_SWAP_ENDIAN;
295 296
}

297
static inline int needs_4x_clock(struct fsl_qspi *q)
298
{
299
	return q->devtype_data->driver_data & QUADSPI_QUIRK_4X_INT_CLK;
300 301
}

302 303 304 305 306
static inline int needs_fill_txfifo(struct fsl_qspi *q)
{
	return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT253890;
}

307 308 309 310 311
static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
{
	return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT245618;
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
/*
 * R/W functions for big- or little-endian registers:
 * The qSPI controller's endian is independent of the CPU core's endian.
 * So far, although the CPU core is little-endian but the qSPI have two
 * versions for big-endian and little-endian.
 */
static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
{
	if (q->big_endian)
		iowrite32be(val, addr);
	else
		iowrite32(val, addr);
}

static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
{
	if (q->big_endian)
		return ioread32be(addr);
	else
		return ioread32(addr);
}

334 335 336 337 338 339
/*
 * An IC bug makes us to re-arrange the 32-bit data.
 * The following chips, such as IMX6SLX, have fixed this bug.
 */
static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
{
340
	return needs_swap_endian(q) ? __swab32(a) : a;
341 342 343 344
}

static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
{
345 346
	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
	qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
347 348 349 350
}

static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
{
351 352
	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
	qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
353 354 355 356 357 358 359 360
}

static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
{
	struct fsl_qspi *q = dev_id;
	u32 reg;

	/* clear interrupt */
361 362
	reg = qspi_readl(q, q->iobase + QUADSPI_FR);
	qspi_writel(q, reg, q->iobase + QUADSPI_FR);
363 364 365 366 367 368 369 370 371 372

	if (reg & QUADSPI_FR_TFF_MASK)
		complete(&q->c);

	dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg);
	return IRQ_HANDLED;
}

static void fsl_qspi_init_lut(struct fsl_qspi *q)
{
373
	void __iomem *base = q->iobase;
374 375 376 377 378 379 380 381 382
	int rxfifo = q->devtype_data->rxfifo;
	u32 lut_base;
	u8 cmd, addrlen, dummy;
	int i;

	fsl_qspi_unlock_lut(q);

	/* Clear all the LUT table */
	for (i = 0; i < QUADSPI_LUT_NUM; i++)
383
		qspi_writel(q, 0, base + QUADSPI_LUT_BASE + i * 4);
384 385 386 387 388

	/* Quad Read */
	lut_base = SEQID_QUAD_READ * 4;

	if (q->nor_size <= SZ_16M) {
389
		cmd = SPINOR_OP_READ_1_1_4;
390 391 392 393
		addrlen = ADDR24BIT;
		dummy = 8;
	} else {
		/* use the 4-byte address */
394
		cmd = SPINOR_OP_READ_1_1_4;
395 396 397 398
		addrlen = ADDR32BIT;
		dummy = 8;
	}

399
	qspi_writel(q, LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
400
			base + QUADSPI_LUT(lut_base));
401
	qspi_writel(q, LUT0(DUMMY, PAD1, dummy) | LUT1(FSL_READ, PAD4, rxfifo),
402 403 404 405
			base + QUADSPI_LUT(lut_base + 1));

	/* Write enable */
	lut_base = SEQID_WREN * 4;
406 407
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WREN),
			base + QUADSPI_LUT(lut_base));
408 409 410 411 412

	/* Page Program */
	lut_base = SEQID_PP * 4;

	if (q->nor_size <= SZ_16M) {
413
		cmd = SPINOR_OP_PP;
414 415 416
		addrlen = ADDR24BIT;
	} else {
		/* use the 4-byte address */
417
		cmd = SPINOR_OP_PP;
418 419 420
		addrlen = ADDR32BIT;
	}

421
	qspi_writel(q, LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
422
			base + QUADSPI_LUT(lut_base));
423 424
	qspi_writel(q, LUT0(FSL_WRITE, PAD1, 0),
			base + QUADSPI_LUT(lut_base + 1));
425 426 427

	/* Read Status */
	lut_base = SEQID_RDSR * 4;
428 429
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDSR) |
			LUT1(FSL_READ, PAD1, 0x1),
430 431 432 433 434
			base + QUADSPI_LUT(lut_base));

	/* Erase a sector */
	lut_base = SEQID_SE * 4;

435 436
	cmd = q->nor[0].erase_opcode;
	addrlen = q->nor_size <= SZ_16M ? ADDR24BIT : ADDR32BIT;
437

438
	qspi_writel(q, LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
439 440 441 442
			base + QUADSPI_LUT(lut_base));

	/* Erase the whole chip */
	lut_base = SEQID_CHIP_ERASE * 4;
443
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
444 445 446 447
			base + QUADSPI_LUT(lut_base));

	/* READ ID */
	lut_base = SEQID_RDID * 4;
448 449
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDID) |
			LUT1(FSL_READ, PAD1, 0x8),
450 451 452 453
			base + QUADSPI_LUT(lut_base));

	/* Write Register */
	lut_base = SEQID_WRSR * 4;
454 455
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRSR) |
			LUT1(FSL_WRITE, PAD1, 0x2),
456 457 458 459
			base + QUADSPI_LUT(lut_base));

	/* Read Configuration Register */
	lut_base = SEQID_RDCR * 4;
460 461
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDCR) |
			LUT1(FSL_READ, PAD1, 0x1),
462 463 464 465
			base + QUADSPI_LUT(lut_base));

	/* Write disable */
	lut_base = SEQID_WRDI * 4;
466 467
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRDI),
			base + QUADSPI_LUT(lut_base));
468 469 470

	/* Enter 4 Byte Mode (Micron) */
	lut_base = SEQID_EN4B * 4;
471 472
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_EN4B),
			base + QUADSPI_LUT(lut_base));
473 474 475

	/* Enter 4 Byte Mode (Spansion) */
	lut_base = SEQID_BRWR * 4;
476 477
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_BRWR),
			base + QUADSPI_LUT(lut_base));
478 479 480 481 482 483 484 485

	fsl_qspi_lock_lut(q);
}

/* Get the SEQID for the command */
static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
{
	switch (cmd) {
486
	case SPINOR_OP_READ_1_1_4:
487
		return SEQID_QUAD_READ;
488
	case SPINOR_OP_WREN:
489
		return SEQID_WREN;
490
	case SPINOR_OP_WRDI:
491
		return SEQID_WRDI;
492
	case SPINOR_OP_RDSR:
493
		return SEQID_RDSR;
494
	case SPINOR_OP_SE:
495
		return SEQID_SE;
496
	case SPINOR_OP_CHIP_ERASE:
497
		return SEQID_CHIP_ERASE;
498
	case SPINOR_OP_PP:
499
		return SEQID_PP;
500
	case SPINOR_OP_RDID:
501
		return SEQID_RDID;
502
	case SPINOR_OP_WRSR:
503
		return SEQID_WRSR;
504
	case SPINOR_OP_RDCR:
505
		return SEQID_RDCR;
506
	case SPINOR_OP_EN4B:
507
		return SEQID_EN4B;
508
	case SPINOR_OP_BRWR:
509 510
		return SEQID_BRWR;
	default:
511 512
		if (cmd == q->nor[0].erase_opcode)
			return SEQID_SE;
513 514 515 516 517 518 519 520 521
		dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd);
		break;
	}
	return -EINVAL;
}

static int
fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
{
522
	void __iomem *base = q->iobase;
523 524 525 526 527 528 529 530 531
	int seqid;
	u32 reg, reg2;
	int err;

	init_completion(&q->c);
	dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
			q->chip_base_addr, addr, len, cmd);

	/* save the reg */
532
	reg = qspi_readl(q, base + QUADSPI_MCR);
533

534 535 536
	qspi_writel(q, q->memmap_phy + q->chip_base_addr + addr,
			base + QUADSPI_SFAR);
	qspi_writel(q, QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
537
			base + QUADSPI_RBCT);
538
	qspi_writel(q, reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);
539 540

	do {
541
		reg2 = qspi_readl(q, base + QUADSPI_SR);
542 543 544 545 546 547 548 549 550 551
		if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
			udelay(1);
			dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
			continue;
		}
		break;
	} while (1);

	/* trigger the LUT now */
	seqid = fsl_qspi_get_seqid(q, cmd);
552 553
	qspi_writel(q, (seqid << QUADSPI_IPCR_SEQID_SHIFT) | len,
			base + QUADSPI_IPCR);
554 555

	/* Wait for the interrupt. */
556
	if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000))) {
557 558
		dev_err(q->dev,
			"cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
559 560
			cmd, addr, qspi_readl(q, base + QUADSPI_FR),
			qspi_readl(q, base + QUADSPI_SR));
561 562 563 564 565 566
		err = -ETIMEDOUT;
	} else {
		err = 0;
	}

	/* restore the MCR */
567
	qspi_writel(q, reg, base + QUADSPI_MCR);
568 569 570 571 572 573 574 575 576 577 578

	return err;
}

/* Read out the data from the QUADSPI_RBDR buffer registers. */
static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
{
	u32 tmp;
	int i = 0;

	while (len > 0) {
579
		tmp = qspi_readl(q, q->iobase + QUADSPI_RBDR + i * 4);
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
		tmp = fsl_qspi_endian_xchg(q, tmp);
		dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
				q->chip_base_addr, tmp);

		if (len >= 4) {
			*((u32 *)rxbuf) = tmp;
			rxbuf += 4;
		} else {
			memcpy(rxbuf, &tmp, len);
			break;
		}

		len -= 4;
		i++;
	}
}

/*
 * If we have changed the content of the flash by writing or erasing,
 * we need to invalidate the AHB buffer. If we do not do so, we may read out
 * the wrong data. The spec tells us reset the AHB domain and Serial Flash
 * domain at the same time.
 */
static inline void fsl_qspi_invalid(struct fsl_qspi *q)
{
	u32 reg;

607
	reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
608
	reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
609
	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
610 611 612 613 614 615 616 617

	/*
	 * The minimum delay : 1 AHB + 2 SFCK clocks.
	 * Delay 1 us is enough.
	 */
	udelay(1);

	reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
618
	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
619 620
}

621
static ssize_t fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
622 623 624 625 626 627 628 629 630 631
				u8 opcode, unsigned int to, u32 *txbuf,
				unsigned count, size_t *retlen)
{
	int ret, i, j;
	u32 tmp;

	dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n",
		q->chip_base_addr, to, count);

	/* clear the TX FIFO. */
632 633
	tmp = qspi_readl(q, q->iobase + QUADSPI_MCR);
	qspi_writel(q, tmp | QUADSPI_MCR_CLR_TXF_MASK, q->iobase + QUADSPI_MCR);
634 635 636 637

	/* fill the TX data to the FIFO */
	for (j = 0, i = ((count + 3) / 4); j < i; j++) {
		tmp = fsl_qspi_endian_xchg(q, *txbuf);
638
		qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);
639 640 641
		txbuf++;
	}

642 643 644
	/* fill the TXFIFO upto 16 bytes for i.MX7d */
	if (needs_fill_txfifo(q))
		for (; i < 4; i++)
645
			qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);
646

647 648 649
	/* Trigger it */
	ret = fsl_qspi_runcmd(q, opcode, to, count);

650 651 652 653 654
	if (ret == 0) {
		if (retlen)
			*retlen += count;
		return count;
	}
655 656 657 658 659 660 661 662 663

	return ret;
}

static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
{
	int nor_size = q->nor_size;
	void __iomem *base = q->iobase;

664 665 666 667
	qspi_writel(q, nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
	qspi_writel(q, nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
	qspi_writel(q, nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
	qspi_writel(q, nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
}

/*
 * There are two different ways to read out the data from the flash:
 *  the "IP Command Read" and the "AHB Command Read".
 *
 * The IC guy suggests we use the "AHB Command Read" which is faster
 * then the "IP Command Read". (What's more is that there is a bug in
 * the "IP Command Read" in the Vybrid.)
 *
 * After we set up the registers for the "AHB Command Read", we can use
 * the memcpy to read the data directly. A "missed" access to the buffer
 * causes the controller to clear the buffer, and use the sequence pointed
 * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
 */
static void fsl_qspi_init_abh_read(struct fsl_qspi *q)
{
	void __iomem *base = q->iobase;
	int seqid;

	/* AHB configuration for access buffer 0/1/2 .*/
689 690 691
	qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
	qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
	qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
692 693 694 695
	/*
	 * Set ADATSZ with the maximum AHB buffer size to improve the
	 * read performance.
	 */
696 697 698 699
	qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
			((q->devtype_data->ahb_buf_size / 8)
			<< QUADSPI_BUF3CR_ADATSZ_SHIFT),
			base + QUADSPI_BUF3CR);
700 701

	/* We only use the buffer3 */
702 703 704
	qspi_writel(q, 0, base + QUADSPI_BUF0IND);
	qspi_writel(q, 0, base + QUADSPI_BUF1IND);
	qspi_writel(q, 0, base + QUADSPI_BUF2IND);
705 706 707

	/* Set the default lut sequence for AHB Read. */
	seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
708
	qspi_writel(q, seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
709 710 711
		q->iobase + QUADSPI_BFGENCR);
}

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
/* This function was used to prepare and enable QSPI clock */
static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
{
	int ret;

	ret = clk_prepare_enable(q->clk_en);
	if (ret)
		return ret;

	ret = clk_prepare_enable(q->clk);
	if (ret) {
		clk_disable_unprepare(q->clk_en);
		return ret;
	}

727 728 729
	if (needs_wakeup_wait_mode(q))
		pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0);

730 731 732 733 734 735
	return 0;
}

/* This function was used to disable and unprepare QSPI clock */
static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
{
736 737 738
	if (needs_wakeup_wait_mode(q))
		pm_qos_remove_request(&q->pm_qos_req);

739 740 741 742 743
	clk_disable_unprepare(q->clk);
	clk_disable_unprepare(q->clk_en);

}

744 745 746 747 748 749 750
/* We use this function to do some basic init for spi_nor_scan(). */
static int fsl_qspi_nor_setup(struct fsl_qspi *q)
{
	void __iomem *base = q->iobase;
	u32 reg;
	int ret;

751 752 753 754
	/* disable and unprepare clock to avoid glitch pass to controller */
	fsl_qspi_clk_disable_unprep(q);

	/* the default frequency, we will change it in the future. */
755 756 757 758
	ret = clk_set_rate(q->clk, 66000000);
	if (ret)
		return ret;

759 760 761 762
	ret = fsl_qspi_clk_prep_enable(q);
	if (ret)
		return ret;

763
	/* Reset the module */
764
	qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
765 766 767
		base + QUADSPI_MCR);
	udelay(1);

768 769 770 771
	/* Init the LUT table. */
	fsl_qspi_init_lut(q);

	/* Disable the module */
772
	qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
773 774
			base + QUADSPI_MCR);

775 776
	reg = qspi_readl(q, base + QUADSPI_SMPR);
	qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
777 778 779 780 781
			| QUADSPI_SMPR_FSPHS_MASK
			| QUADSPI_SMPR_HSENA_MASK
			| QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);

	/* Enable the module */
782
	qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
783 784
			base + QUADSPI_MCR);

785
	/* clear all interrupt status */
786
	qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
787

788
	/* enable the interrupt */
789
	qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
790 791 792 793 794 795 796 797 798

	return 0;
}

static int fsl_qspi_nor_setup_last(struct fsl_qspi *q)
{
	unsigned long rate = q->clk_rate;
	int ret;

799
	if (needs_4x_clock(q))
800 801
		rate *= 4;

802 803 804
	/* disable and unprepare clock to avoid glitch pass to controller */
	fsl_qspi_clk_disable_unprep(q);

805 806 807 808
	ret = clk_set_rate(q->clk, rate);
	if (ret)
		return ret;

809 810 811 812
	ret = fsl_qspi_clk_prep_enable(q);
	if (ret)
		return ret;

813 814 815 816 817 818 819 820 821
	/* Init the LUT table again. */
	fsl_qspi_init_lut(q);

	/* Init for AHB read */
	fsl_qspi_init_abh_read(q);

	return 0;
}

822
static const struct of_device_id fsl_qspi_dt_ids[] = {
823 824
	{ .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, },
	{ .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, },
825
	{ .compatible = "fsl,imx7d-qspi", .data = (void *)&imx7d_data, },
826
	{ .compatible = "fsl,imx6ul-qspi", .data = (void *)&imx6ul_data, },
827
	{ .compatible = "fsl,ls1021a-qspi", .data = (void *)&ls1021a_data, },
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);

static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor)
{
	q->chip_base_addr = q->nor_size * (nor - q->nor);
}

static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
	int ret;
	struct fsl_qspi *q = nor->priv;

	ret = fsl_qspi_runcmd(q, opcode, 0, len);
	if (ret)
		return ret;

	fsl_qspi_read_data(q, len, buf);
	return 0;
}

850
static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
851 852 853 854 855 856 857 858 859
{
	struct fsl_qspi *q = nor->priv;
	int ret;

	if (!buf) {
		ret = fsl_qspi_runcmd(q, opcode, 0, 1);
		if (ret)
			return ret;

860
		if (opcode == SPINOR_OP_CHIP_ERASE)
861 862 863 864 865
			fsl_qspi_invalid(q);

	} else if (len > 0) {
		ret = fsl_qspi_nor_write(q, nor, opcode, 0,
					(u32 *)buf, len, NULL);
866 867
		if (ret > 0)
			return 0;
868 869 870 871 872 873 874 875
	} else {
		dev_err(q->dev, "invalid cmd %d\n", opcode);
		ret = -EINVAL;
	}

	return ret;
}

876
static ssize_t fsl_qspi_write(struct spi_nor *nor, loff_t to,
877 878 879 880
		size_t len, size_t *retlen, const u_char *buf)
{
	struct fsl_qspi *q = nor->priv;

881
	ssize_t ret = fsl_qspi_nor_write(q, nor, nor->program_opcode, to,
882 883 884 885
				(u32 *)buf, len, retlen);

	/* invalid the data in the AHB buffer. */
	fsl_qspi_invalid(q);
886
	return ret;
887 888
}

889
static ssize_t fsl_qspi_read(struct spi_nor *nor, loff_t from,
890 891 892 893 894
		size_t len, size_t *retlen, u_char *buf)
{
	struct fsl_qspi *q = nor->priv;
	u8 cmd = nor->read_opcode;

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
	/* if necessary,ioremap buffer before AHB read, */
	if (!q->ahb_addr) {
		q->memmap_offs = q->chip_base_addr + from;
		q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;

		q->ahb_addr = ioremap_nocache(
				q->memmap_phy + q->memmap_offs,
				q->memmap_len);
		if (!q->ahb_addr) {
			dev_err(q->dev, "ioremap failed\n");
			return -ENOMEM;
		}
	/* ioremap if the data requested is out of range */
	} else if (q->chip_base_addr + from < q->memmap_offs
			|| q->chip_base_addr + from + len >
			q->memmap_offs + q->memmap_len) {
		iounmap(q->ahb_addr);

		q->memmap_offs = q->chip_base_addr + from;
		q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;
		q->ahb_addr = ioremap_nocache(
				q->memmap_phy + q->memmap_offs,
				q->memmap_len);
		if (!q->ahb_addr) {
			dev_err(q->dev, "ioremap failed\n");
			return -ENOMEM;
		}
	}

924
	dev_dbg(q->dev, "cmd [%x],read from %p, len:%zd\n",
925 926
		cmd, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
		len);
927 928

	/* Read out the data directly from the AHB buffer.*/
929 930
	memcpy(buf, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
		len);
931 932

	*retlen += len;
933
	return len;
934 935 936 937 938 939 940 941
}

static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs)
{
	struct fsl_qspi *q = nor->priv;
	int ret;

	dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
942
		nor->mtd.erasesize / 1024, q->chip_base_addr, (u32)offs);
943 944 945 946 947 948 949 950 951 952 953 954 955 956

	ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0);
	if (ret)
		return ret;

	fsl_qspi_invalid(q);
	return 0;
}

static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	struct fsl_qspi *q = nor->priv;
	int ret;

957
	mutex_lock(&q->lock);
958

959
	ret = fsl_qspi_clk_prep_enable(q);
960
	if (ret)
961
		goto err_mutex;
962 963 964

	fsl_qspi_set_base_addr(q, nor);
	return 0;
965 966 967 968

err_mutex:
	mutex_unlock(&q->lock);
	return ret;
969 970 971 972 973 974
}

static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	struct fsl_qspi *q = nor->priv;

975
	fsl_qspi_clk_disable_unprep(q);
976
	mutex_unlock(&q->lock);
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
}

static int fsl_qspi_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct device *dev = &pdev->dev;
	struct fsl_qspi *q;
	struct resource *res;
	struct spi_nor *nor;
	struct mtd_info *mtd;
	int ret, i = 0;

	q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL);
	if (!q)
		return -ENOMEM;

	q->nor_num = of_get_child_count(dev->of_node);
	if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP)
		return -ENODEV;

997
	q->dev = dev;
998 999 1000
	q->devtype_data = of_device_get_match_data(dev);
	if (!q->devtype_data)
		return -ENODEV;
1001 1002
	platform_set_drvdata(pdev, q);

1003 1004 1005
	/* find the resources */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
	q->iobase = devm_ioremap_resource(dev, res);
1006 1007
	if (IS_ERR(q->iobase))
		return PTR_ERR(q->iobase);
1008

1009
	q->big_endian = of_property_read_bool(np, "big-endian");
1010 1011
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
					"QuadSPI-memory");
1012 1013 1014 1015 1016
	if (!devm_request_mem_region(dev, res->start, resource_size(res),
				     res->name)) {
		dev_err(dev, "can't request region for resource %pR\n", res);
		return -EBUSY;
	}
1017

1018 1019 1020 1021
	q->memmap_phy = res->start;

	/* find the clocks */
	q->clk_en = devm_clk_get(dev, "qspi_en");
1022 1023
	if (IS_ERR(q->clk_en))
		return PTR_ERR(q->clk_en);
1024 1025

	q->clk = devm_clk_get(dev, "qspi");
1026 1027
	if (IS_ERR(q->clk))
		return PTR_ERR(q->clk);
1028

1029
	ret = fsl_qspi_clk_prep_enable(q);
1030
	if (ret) {
1031
		dev_err(dev, "can not enable the clock\n");
1032
		goto clk_failed;
1033 1034 1035 1036 1037
	}

	/* find the irq */
	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
1038
		dev_err(dev, "failed to get the irq: %d\n", ret);
1039 1040 1041 1042 1043 1044
		goto irq_failed;
	}

	ret = devm_request_irq(dev, ret,
			fsl_qspi_irq_handler, 0, pdev->name, q);
	if (ret) {
1045
		dev_err(dev, "failed to request irq: %d\n", ret);
1046 1047 1048 1049 1050 1051 1052 1053
		goto irq_failed;
	}

	ret = fsl_qspi_nor_setup(q);
	if (ret)
		goto irq_failed;

	if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
1054
		q->has_second_chip = true;
1055

1056 1057
	mutex_init(&q->lock);

1058 1059 1060
	/* iterate the subnodes. */
	for_each_available_child_of_node(dev->of_node, np) {
		/* skip the holes */
1061
		if (!q->has_second_chip)
1062 1063 1064
			i *= 2;

		nor = &q->nor[i];
1065
		mtd = &nor->mtd;
1066 1067

		nor->dev = dev;
1068
		spi_nor_set_flash_node(nor, np);
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
		nor->priv = q;

		/* fill the hooks */
		nor->read_reg = fsl_qspi_read_reg;
		nor->write_reg = fsl_qspi_write_reg;
		nor->read = fsl_qspi_read;
		nor->write = fsl_qspi_write;
		nor->erase = fsl_qspi_erase;

		nor->prepare = fsl_qspi_prep;
		nor->unprepare = fsl_qspi_unprep;

		ret = of_property_read_u32(np, "spi-max-frequency",
				&q->clk_rate);
		if (ret < 0)
1084
			goto mutex_failed;
1085 1086 1087 1088

		/* set the chip address for READID */
		fsl_qspi_set_base_addr(q, nor);

1089
		ret = spi_nor_scan(nor, NULL, SPI_NOR_QUAD);
1090
		if (ret)
1091
			goto mutex_failed;
1092

1093
		ret = mtd_device_register(mtd, NULL, 0);
1094
		if (ret)
1095
			goto mutex_failed;
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124

		/* Set the correct NOR size now. */
		if (q->nor_size == 0) {
			q->nor_size = mtd->size;

			/* Map the SPI NOR to accessiable address */
			fsl_qspi_set_map_addr(q);
		}

		/*
		 * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
		 * may writes 265 bytes per time. The write is working in the
		 * unit of the TX FIFO, not in the unit of the SPI NOR's page
		 * size.
		 *
		 * So shrink the spi_nor->page_size if it is larger then the
		 * TX FIFO.
		 */
		if (nor->page_size > q->devtype_data->txfifo)
			nor->page_size = q->devtype_data->txfifo;

		i++;
	}

	/* finish the rest init. */
	ret = fsl_qspi_nor_setup_last(q);
	if (ret)
		goto last_init_failed;

1125
	fsl_qspi_clk_disable_unprep(q);
1126 1127 1128
	return 0;

last_init_failed:
1129 1130 1131 1132
	for (i = 0; i < q->nor_num; i++) {
		/* skip the holes */
		if (!q->has_second_chip)
			i *= 2;
1133
		mtd_device_unregister(&q->nor[i].mtd);
1134
	}
1135 1136
mutex_failed:
	mutex_destroy(&q->lock);
1137
irq_failed:
1138
	fsl_qspi_clk_disable_unprep(q);
1139
clk_failed:
1140
	dev_err(dev, "Freescale QuadSPI probe failed\n");
1141 1142 1143 1144 1145 1146 1147 1148
	return ret;
}

static int fsl_qspi_remove(struct platform_device *pdev)
{
	struct fsl_qspi *q = platform_get_drvdata(pdev);
	int i;

1149 1150 1151 1152
	for (i = 0; i < q->nor_num; i++) {
		/* skip the holes */
		if (!q->has_second_chip)
			i *= 2;
1153
		mtd_device_unregister(&q->nor[i].mtd);
1154
	}
1155 1156

	/* disable the hardware */
1157 1158
	qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
	qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
1159

1160
	mutex_destroy(&q->lock);
1161 1162 1163 1164

	if (q->ahb_addr)
		iounmap(q->ahb_addr);

1165 1166 1167
	return 0;
}

1168 1169 1170 1171 1172 1173 1174
static int fsl_qspi_suspend(struct platform_device *pdev, pm_message_t state)
{
	return 0;
}

static int fsl_qspi_resume(struct platform_device *pdev)
{
1175
	int ret;
1176 1177
	struct fsl_qspi *q = platform_get_drvdata(pdev);

1178 1179 1180 1181
	ret = fsl_qspi_clk_prep_enable(q);
	if (ret)
		return ret;

1182 1183 1184 1185
	fsl_qspi_nor_setup(q);
	fsl_qspi_set_map_addr(q);
	fsl_qspi_nor_setup_last(q);

1186 1187
	fsl_qspi_clk_disable_unprep(q);

1188 1189 1190
	return 0;
}

1191 1192 1193 1194 1195 1196 1197 1198
static struct platform_driver fsl_qspi_driver = {
	.driver = {
		.name	= "fsl-quadspi",
		.bus	= &platform_bus_type,
		.of_match_table = fsl_qspi_dt_ids,
	},
	.probe          = fsl_qspi_probe,
	.remove		= fsl_qspi_remove,
1199 1200
	.suspend	= fsl_qspi_suspend,
	.resume		= fsl_qspi_resume,
1201 1202 1203 1204 1205 1206
};
module_platform_driver(fsl_qspi_driver);

MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
MODULE_AUTHOR("Freescale Semiconductor Inc.");
MODULE_LICENSE("GPL v2");